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Abstract
We develop methods for studying transition operators on metric

spaces that are invariant under a co-compact group which acts prop-
erly. A basic requirement is a decomposition of such operators with
respect to the group orbits. We then introduce “reduced” transi-
tion operators on the compact factor space whose norms and spectral
radii are upper bounds for the Lp-norms and spectral radii of the
original operator. If the group is amenable then the spectral radii
of the original and reduced operators coincide, and under additional
hypotheses, this is also sufficient for amenability. Further bounds
involve the modular function of the group.

In this framework, we prove among other things that the bottom of
the spectrum of the Laplacian on a co-compact Riemannian manifold
is 0 if and only if the group is amenable and unimodular. The same
result holds for Euclidean simplicial complexes. On a geodesic, proper
metric space with co-compact isometry group action, the averaging
operator over balls with a fixed radius has norm equal to 1 if and only
if the group is amenable and unimodular. The technique also allows
explicit computation of spectral radii when the group is amenable.

1. Introduction: Four theorems in search of a common
theory

We start by stating four theorems, not in chronological order, concerning
Laplace operators on graphs and manifolds. The purpose of this paper is to
develop a common theory into which these results fit naturally.
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Theorem I (Soardi and Woess [38]). Let X be a vertex-transitive,
connected, locally finite graph and P the simple random walk on X. Then
the spectral radius ρ(P ) = 1 if and only if some (equivalently, every) closed,
transitive group of automorphisms of X is both amenable and unimodular.

Here, automorphisms are self-isometries of X with respect to the discrete
graph metric. “Closed” refers to the topology of point-wise convergence,
under which the automorphism group is locally compact and totally discon-
nected. The simple random walk on any locally finite, connected graph X is
the Markov chain with transition operator on X given by p(x, y) = 1/deg(x),
if y is a neighbour of x, and p(x, y) = 0, otherwise. The degree deg(x) is the
number of neighbours of x, and ρ(P ) = limn p(2n)(x, x)1/2n is the spectral
radius of P acting on �2(X, deg).

For Riemannian manifolds, there is the following analogue.

Theorem II (Pittet [28]). Let M be a connected non-compact Rie-
mannian manifold which is homogeneous in the sense that its group of isome-
tries G acts transitively. Then 0 is in the L2-spectrum of the Laplacian of
M if and only if G is amenable and unimodular.

By the Laplacian of M we mean the Laplace-Beltrami operator acting
on functions. Pittet’s paper concerns the decay of the heat kernel, and it
contains more than this theorem; it is likely that the latter was known to
the specialists before, but we are not aware of an earlier explicit reference.

In general, we equip the full isometry group of a metric space X with the
topology of uniform convergence on compact sets. We say that a group of
isometries G of X is quasi-transitive, or co-compact, if it acts with compact
factor space G\X. A metric space is called quasi-transitive, or co-compact,
if such a group exists. In case of a graph, this means that G acts with finitely
many orbits on the vertex set.

Theorem III (Salvatori [35]). Let X be a quasi-transitive, connected,
locally finite graph and P the simple random walk on X. Then ρ(P ) = 1
if and only if some (equivalently, every) closed, quasi-transitive group of
automorphisms of X is both amenable and unimodular.

Finally, the following is the earliest of the four theorems that we are
referring to.

Theorem IV (Brooks [5]). Let M be the universal cover of the compact
Riemannian manifold M0. Then 0 is in the L2-spectrum of the Laplacian
of M if and only if the fundamental group of M0 is amenable.

When comparing Theorems II and IV, recall that the fundamental group
of a compact manifold is of course discrete, hence unimodular. Brooks’ the-
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orem was extended to Schrödinger operators on normal coverings of com-
pact manifolds by Kobayashi, Ono and Sunada [24], and the analogue for
Schrödinger operators on coverings of finite graphs was proved by Sy and
Sunada [40]. For graph Laplacians, the latter result follows from Salvatori’s
Theorem III.

The reader will note that Theorem IV is not the complete generalization
of Theorem II to the quasi-transitive (≡ co-compact) case that one would
expect in analogy with Theorems I and III treating graphs. Here we shall
complete the picture: two among our main results are the following.

(8.1) Theorem. Let M be a complete, co-compact Riemannian manifold.
Then 0 is in the L2-spectrum of the Laplacian of M if and only if some
(equivalently, every) closed, quasi-transitive group of isometries of M is
both amenable and unimodular.

In Theorem 8.1, the groups in consideration are of course Lie groups,
possibly 0-dimensional, i.e., finitely generated discrete. Theorem IV of
Brooks [5] arises as a special case. It is noteworthy that our proof of The-
orem 8.1 uses almost no specific facts from Riemannian geometry besides a
basic long distance estimate for the heat kernel. It follows that Theorem 8.1
extends beyond the Riemannian setting in several directions. In particular,
we treat Euclidean simplicial complexes; see (8.4) for a precise description
of the setup.

(8.5) Theorem. Let X be a co-compact connected d-dimensional simplicial
complex. Then 0 is in the L2-spectrum of the Laplacian of X if and only if
some (equivalently, every) closed, quasi-transitive group of isometries of X
is both amenable and unimodular.

A simple but quite general example of interest which illustrates the prob-
lems studied in this paper and that the reader may keep in mind is the fol-
lowing. Let X be a locally compact metric space on which a group G acts by
isometries and with compact quotient. Consider the “averaging” operator
f �→ Kf where Kf(x) is the mean of f over the ball of radius 1 around x.
By analogy to the results described above, one would like to characterize
when the (Lp) spectral radius of such an operator is strictly less than 1 and,
in some specific instance, compute explicitly that spectral radius. The tech-
niques and results of this paper apply indeed to that type of situation: See
Examples 3.6 (averaging operator in the hyperbolic plane), 8.7 (averaging
operator on a simplicial homogeneous tree), and Theorem 8.6.

The setting that we shall use is that of transition operators. We start
with a proper metric space (X, d), where proper means that closed balls
in X are compact.
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(1.1) Definition. A transition operator on X is an operator of the form

Kf(x) =

∫
X

f(y) K(x, dy)

acting on non-negative measurable functions f : X → R, where K(x, .),
x ∈ X, is a family of non-negative Radon measures on X such that the
mapping x �→ K(x,B) is measurable for every B ∈ B(X), the collection of
Borel subsets of X.

In general, Kf is defined for all measurable functions f for which the
above integral exists. We always assume that K is non-degenerate, that is,
K(x,X) > 0 for all x. All measures appearing in this paper are assumed to
be Radon measures. (Since every σ-finite measure on X is a Radon measure,
see e.g. Rudin [31, Thm. 2.18], this is a natural assumption.)

The other basic object is a locally compact group G that acts properly
on X by homeomorphisms with compact factor space I = G\X. Recall that
a proper G-action is one where the set {g ∈ G : gA ∩ B �= ∅} is compact
in G for all compact sets A,B ⊂ X ; see e.g. tom Dieck [15] for equivalent
formulations. Note that these assumptions are satisfied when X is a proper
metric space and G a closed subgroup of the isometry group of X, equipped
with the topology of uniform convergence on compact sets.

The fundamental assumption is G-invariance of the transition operator,
that is,

(1.2) K(gx, gB) = K(x,B) for all g ∈ G , x ∈ X , B ∈ B(X) .

There are natural choices of Radon measures supported on the whole of X
which are invariant under the action of G (only in the special case when G
acts transitively on X, the invariant measure is unique up to normalization).
We shall (carefully) choose one of these measures and denote it by dX .

We are interested in the norms σp(K) = σp(K, dX) = ‖K‖p→p and
spectral radii ρp(K) = ρp(K, dX) of K acting on the spaces Lp(X, dX),
1 < p < ∞, and we want to relate these numbers to properties of the group G
(amenability, unimodularity). Since |Kf | ≤ K|f |, for norms and spectral
radii it is sufficient to consider the action of K on the positive cones Lp

+(X, dX),
and in this sense, those numbers are always well-defined in [0 , ∞].

The “historical” root of this paper is the Theorem of Kesten [23] and
Day [12], saying that for a symmetric random walk on a finitely generated,
discrete group, the spectral radius is equal to 1 if and only if the group is
amenable. This was extended to convolution operators on locally compact
groups by Berg and Christensen [1], [2] and by Derriennic and Guivarc’h [14].
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Another result related to the problems treated in this paper is Carl
Herz’ “principe de majoration” [20] and the well known transfer result that
can be informally stated as follows: If G is a locally compact group, H is a
closed amenable subgroup of G and µ is a positive measure on G, then the Lp-
norm of the operator defined by convolution with µ is equal to the Lp-norm
of the induced operator on G/H. See Herz [21], Lohoué [25], Guivarc’h [19],
and Cowling [10]. Note, however, the difference between a G-invariant tran-
sition operator, as considered in the present paper, and a left convolution
operator on a G-space. The latter is in general not G-invariant, while this
is the case for typical operators on a G-space, such as the ones considered
in Theorems 8.1, 8.5 and 8.6.

The methods that we use in the present paper are based on Saloff-Coste
and Woess [34], see also Saloff-Coste and Woess [33]. In those two papers, we
refined the results of Soardi and Woess [38] and Salvatori [35] in the setting of
transition operators (random walks) on graphs. The general setting that we
study here, where both the group and the G-space are allowed to be non-
discrete, presents various additional obstacles that we are going to tackle
here.

Here is an outline of this paper.
In §2, we consider a G-invariant transition operator K between two pos-

sibly different, but homogeneous G-spaces X and Y (i.e., G acts properly and
transitively on both of them). Considering K as an operator from Lp(Y, dY )
to Lp(X, dX), we extend a basic idea of Soardi and Woess [38] and lift K to
an operator K on Lp(G, dG). This K turns out to be a right convolution op-
erator on G, and computing its norm with respect to the left Haar measure
dG involves the modular function of G. We then apply results of Reiter, see
Reiter and Stegemann [30], and Berg and Christensen [1], [2] that relate the
norms of convolution operators with amenability. This leads to two upper
bounds on the Lp-norm of K, σp(K, dX , dY )) ≤ ap(K) ≤ b(K)1/q b(K∗)1/p,
with explicit expressions for the numbers ap(K) and the total masses b(K)
and b(K∗) of K and its adjoint K∗. (Here, 1

p
+ 1

q
= 1.) Furthermore, we ob-

tain conditions when equality holds that involve amenability (Theorem 2.12)
and unimodularity (Proposition 2.17), respectively.

In §3, we consider the specific situation where we have a G-invariant
transition operator on a single homogeneous G-space. Besides norms, we
can now also include spectral radii in our considerations. The main results
are subsumed in Theorem 3.2. Theorem II of Pittet [28] arises as an imme-
diate corollary. When G is amenable, Theorem 3.2 also yields an explicit
formula for the norm and the spectral radius of K acting on Lp(X, dX)
(the two coincide!), and at the end of §3, we illustrate this by a concrete
computational example.
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In §§4–8 we then develop a general theory for transition operators in the
co-compact situation.

Two basic measure-theoretic requirements are outlined in §4. The first
is a construction, resp. decomposition, of a G-invariant measure dX on the
co-compact space X of the form dX =

∫
I
dXi

dλ(i), where λ is a measure on
the factor space I, the Xi (i ∈ I) are the G-orbits, and dXi

is the suitably (!)
normalized G-invariant measure on Xi. The second, more complicated
question concerns the existence of an analogous decomposition K(x, ·) =∫

I
Kj(x, ·) dλ(j), where each Kj is a G-invariant transition operator from X

to Xj. The respective details and proofs are deferred to the Appendix (§9).
In §5, we start with such a decomposition of K and write Ki,j for the

restriction of Kj(x, ·) to x ∈ Xi. The results of §2 can then be applied to the
family of transition operators Ki,j, i, j ∈ I. The numbers ap(Ki,j), b(Ki,j)
and b(K∗

i,j) define the kernels, with respect to the measure λ, of transition
operators Ap[K], B[K] and B∗[K] (respectively) on I, and we find that their
Lp-spectral radii satisfy

ρp(K) ≤ ρp(Ap[K]) ≤ ρp(B[K])1/q ρq(B∗[K])1/p ,

and the same holds for the respective norms. See Theorem 5.3 and Propo-
sition 5.5, where we also show that the first, resp. second, inequality for the
spectral radii is an equality when G is amenable, resp. unimodular. (The
first is also true for norms).

In §6, we ask under which circumstances the reversed implications are
also true, i.e., that equality in the first or second of the above inequalities
implies amenability, resp. unimodularity of G, or at least of a suitable sub-
group of G. Results of this type can be obtained if the “reduced” operators
Ap[K], B[K] and B∗[K] are compact, λ-irreducible operators on Lp(I, λ).
The main results are Theorem 6.7 and Corollary 6.9 regarding amenability,
and Proposition 6.10 regarding unimodularity.

§7 is devoted to the most practicable situation, namely, when K(x, ·)
has a density k(x, y) with respect to dX , and G acts by isometries. If the
function k(·, ·) is bounded on compact subsets of X×X and both K and K∗

have bounded tails, then B[K], B∗[K] and Ap[K] have bounded densities.
Therefore they are compact operators. Thus, we obtain a rather general set
of natural geometric and analytic conditions under which the results of §§5–6
apply (Theorem 7.10).

In §8, we exhibit several applications of the preceding results. Theo-
rems 8.1 and 8.5 on the Laplacian of a co-compact Riemannian manifold,
resp. simplicial complex, arise as corollaries of Theorem 7.10: the density of
the transition operator which we use here is the heat kernel at time t = 1,
which is continuous and has uniform Gaussian decay.
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In the more general context of co-compact geodesic metric spaces, we
show that for a fixed radius r, the averaging operator over r-balls has spectral
radius equal to one if and only if the group is amenable and unimodular
(Theorem 8.6). This transition operator corresponds to a random walk,
where at each step, the walker – given that his actual position is x – moves
to a random point that is chosen according to dX-equidistribution in the ball
B(x, r). This works more generally for co-compact δ-geodesic metric spaces
(see §7 for the definition), when r > δ.

Already without the additional assumptions (compactness, irreducibility,
density) used in §§6–7, Theorem 5.3 yields that ρp(K) = ρp(Ap[K]) and
σp(K) = σp(Ap[K]) when G is amenable. Thus, computations reduce to
those of norms and spectral radii of operators on the compact space I.
This can be used, rather for spectral radii than for norms in general, to
perform explicit computations in suitable cases. Since computations are
space-consuming, only one – basic and typical – example of this type is
considered in the final part of §8. We plan to present further examples and
applications in forthcoming work.

The appendix (§9) completes §4: it contains the measure-theoretic de-
tails concerning decompositions of the invariant measure and the transition
operator over the group’s orbits.

We would like to stress that our intention is to provide a mathematical
framework into which the four introductory theorems as well as their exten-
sions (manifolds, complexes, geodesic spaces) fit nicely. Thus, in the present
paper, our aim is not merely to find the most rapid way towards the proofs
of the theorems in §8, but also to provide a sufficiently complete picture of
the framework. On the other hand, it is clear that some parts of this theory
can be pushed towards further generality in various ways. We have tried to
maintain a reasonable equilibrium in this respect.

2. Transition operators between homogeneous spaces

We shall first consider a slightly different general setup where G acts transi-
tively on two metric spaces X, Y . Again, G is assumed locally compact and
both actions have to be proper. We fix –once for all– a left Haar measure
dG on G, and choose some G-invariant measures dX on X and dY on Y .
Their existence and uniqueness up to normalization is guaranteed by Bour-
baki [3, Chap. VII, §7, Cor. 2], see also Raghunathan [29, pp. 16–19].

Denote by Gx the stabilizer of x in G. By properness of the action, this
is a compact subgroup of G, and it carries a (left and right) Haar measure
with finite total mass that will be denoted dGx . Now let x̄ ∈ X, and for
each x ∈ X, choose an element gx̄,x with gx̄,xx̄ = x. If F ∈ L1(G, dg) then
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x �→
∫

Gx̄
F (gx̄,xh) dGx̄h defines a function in L1(X, dX) that is independent of

the particular choice of gx̄,x ∈ G mapping x̄ to x. We have the fundamental
formula

(2.1)

∫
G

F (g) dGg =

∫
X

(∫
Gx̄

F (gx̄,xh) dGx̄h

)
dXx ,

see e.g. Bourbaki [3, Chap. VII, §2, Prop. 5]1 or Raghunathan [29, pp. 16-19].
In (2.1), the normalization of two of the three measures dG, dX and dGx̄ can
be chosen freely, and this forces the third one. We shall always start with
dG and dX , thus forcing the normalization of dGx̄ . With this normalization,
we set

|Gx̄| =

∫
Gx̄

dGx̄ .

The same applies to the action of G on Y , replacing gx̄,x by gȳ,y, where
ȳ, y ∈ Y , and writing Gȳ for the stabilizer of ȳ ∈ Y . Observe however that
|Gx̄| depends not only on Gx̄, but also on the orbit to which x̄ belongs. I.e.,
it may happen that Gx̄ = Gx′ as subgroups of G for different x̄, x′ ∈ X,
while (2.1) forces normalizations of the respective Haar measures such that
|Gx̄| �= |Gx′ |. Thus, the notation |Gx̄| should more correctly be |Gx̄|x̄, but
we will omit this. See Examples 3.6 and 8.7 for situations of this type.

In the setting of two homogeneous G-spaces X, Y , we now consider a
transition operator from X to Y , i.e., a family K(x, ·), x ∈ X, of non-
negative Radon measures on Y such that K(·, B) is measurable for every
B ∈ B(Y ). We assume G-invariance:

(2.2) K(gx, gB) = K(x,B) for all g ∈ G , x ∈ X , B ∈ B(Y ) ,

If f ∈ C00(Y ), the space of real-valued continuous functions on Y with
compact support, then

Kf(x) =

∫
Y

f(y) K(x, dy)

defines a measurable function X → R. Our “minimal” assumption is that
Kf is locally integrable for every f ∈ C00(Y ), i.e.,

∫
U

Kf(x) dXx exists and is
finite for every compact U ⊂ X. We then call K locally finite. (Typically, K
will be finite, i.e., the measure K(x, ·) is finite for every x ∈ X.) Supposing
that K extends to a bounded linear operator from Lp(Y, dY ) to Lp(X, dX),
we are interested in the corresponding norm

σp(K) = σp(K, dX , dY )
def
= ‖K‖p→p , 1 < p < ∞ .

1Use X ↔ G, H ↔ Gx̄, X/H ↔ X for the correspondence Bourbaki’s ↔ our setting



Transition operators on co-compact G-spaces 755

As pointed out in the introduction, since |Kf | ≤ K|f |, the norm is
always well defined in [0 , ∞] in terms of the action of K on non-negative
functions, even when K is not Lp-bounded. Throughout this paper, we shall
write q for the exponent that satisfies 1

p
+ 1

q
= 1.

We now choose reference points x̄ ∈ X and ȳ ∈ Y . Given x̄, we define
two operators Sx̄ : Lp(G, dG) → Lp(X, dX) and Tx̄ : Lp(X, dX) → Lp(G, dG)
(for any p ∈ [1 ,∞]) by

(2.3) Sx̄F (x) =
1

|Gx̄|

∫
Gx̄

F (gx̄,xh) dGx̄h and Tx̄f(g) = f(gx̄) .

Then we have the following.

(2.4) Lemma. (a) Sx̄Tx̄ is the identity operator.

(b) ‖Sx̄‖p→p = |Gx̄|−1/p and ‖Tx̄‖p→p = |Gx̄|1/p .

(c) For all f ∈ Lp(X, dX), F ∈ Lp(G, dG) and g ∈ G,

δg ∗ (Sx̄F ) = Sx̄(δg ∗ F ) and δg ∗ (Tx̄f) = Sx̄(δg ∗ f) .

The proof is an easy exercise. Recall that δg ∗ F (g′) = F (g−1g′) and
δg ∗ f(x) = f(g−1x). Furthermore, the operators Sx̄ and Tx̄ map continuous
functions to continuous functions.

Before proceeding, we need some considerations regarding the modular
function ∆ of G, which plays a crucial role in this paper. Recall that this is
an exponential, i.e., a continuous homomorphism from G to (R+, ·) with

(2.5) ∆(ḡ)

∫
G

F (gḡ) dGg =

∫
G

F (g) dGg =

∫
G

F (g−1)∆(g−1) dGg

for any F ∈ L1(G, dG). For the following lemma, it is crucial that the nor-
malization of the Haar measure on point stabilizers is as described after (2.1)
above.

(2.6) Lemma. (a) If f ∈ L1(X, dX) then for any x̄ ∈ X∫
G

f(gx̄) dGg = |Gx̄|
∫

X

f(x) dXx .

(b) For every ḡ ∈ X and x̄ ∈ X, ∆(ḡ) = |Gx̄|/|Gḡx̄| .
(c) For every ḡ ∈ G and x̄ ∈ X, if F : Gḡx̄ → R is dGḡx̄-integrable then∫

Gx̄

F (ḡhḡ−1) dGx̄h = ∆(ḡ)

∫
Gḡx̄

F (h) dGḡx̄h .
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Proof. Using (2.1),∫
G

f(gx̄) dGg =

∫
X

∫
Gx̄

f(gx̄,xhx̄) dGx̄h dXx =

∫
X

f(x)|Gx̄| dXx .

This proves (a). To see (b), we use (2.5) and a function f satisfying∫
X

f(x) dXx = 1 and get

|Gḡx̄| =

∫
G

f(gḡx̄) dGg = ∆(ḡ)−1

∫
G

f(gx̄) dGg = ∆(ḡ)−1|Gx̄| .

For proving (c), define a measure µḡx̄ on Gḡx̄ by∫
Gḡx̄

F dµḡx̄ =

∫
Gx̄

F (ḡhḡ−1) dGx̄h .

Let h̄ ∈ Gḡx̄. Then∫
Gḡx̄

δh̄ ∗ F dµḡx̄ =

∫
Gx̄

F
(
ḡ(ḡ−1h̄ḡ)hḡ−1

)
dGx̄h =

∫
Gḡx̄

F dµḡx̄ ,

since ḡ−1h̄ḡ ∈ Gx̄. Thus, µḡx̄ is left-invariant under the action of Gḡx̄ on
itself and must be a multiple of dGḡx̄ . That is, there is a constant Cḡ such
that ∫

Gx̄

F (ḡhḡ−1) dGx̄h = Cḡ

∫
Gḡx̄

F (h) dGḡx̄h .

Setting F ≡ 1, we find Cḡ = |Gx̄|/|Gḡx̄| = ∆(ḡ). �

For any measure Φ on G, denote by LΦ the left convolution operator
F �→ Φ ∗ F on G, and by RΦ the right convolution operator F �→ F ∗ Φ,
where

Φ ∗ F (ḡ) =

∫
G

F (g−1ḡ) dΦ(g) and F ∗ Φ(ḡ) =

∫
G

F (ḡg−1) ∆(g−1) dΦ(g) .

For all basic facts regarding convolution, see e.g. Hewitt and Ross [22].

With any transition operator on X × Y as in (2.2) and reference points
x̄∈X, ȳ∈Y , we associate a transition operator K = K[K] on the group G by

(2.7)

K[K] = Tx̄ K Sȳ , that is, for F : G → R ,

KF (g) =
1

|Gȳ|

∫
Y

∫
Gȳ

F (gȳ,yh) dGȳh K(gx̄, dy) .
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Denote by ‖K‖p→p its norm on Lp(G, dG). Recall that for any function F
on G, the reflected function F̌ is defined by F̌ (g) = F (g−1), and for any
measure Φ, the measure Φ̌ is given by

∫
G

F dΦ̌ =
∫

G
F̌ dΦ .

(2.8) Proposition. (a) ‖K‖p→p =
( |Gȳ|
|Gx̄|

)1/p

‖K‖p→p .

(b) The operator K is a right convolution operator:

KF (ḡ) =

∫
G

F (ḡg−1) ∆(g−1) dΦ(g) ,

where Φ = Φ[K] is the measure on G given by
∫

G
F dΦ = K(F̌ ∆̌)(id) , that

is, for a Borel set B ⊂ G, its measure is

Φ(B) =
1

|Gȳ|

∫
Y

|Gy ∩ gȳ,yB|y K(x̄, dy) ,

where | · |y is the Haar measure on Gy.

Proof. (a) By Lemma 2.4(b) and the definition of K, we have( |Gȳ|
|Gx̄|

)1/p

‖K‖p→p ≤ ‖K‖p→p .

The reversed inequality follows from Lemma 2.4(a), which yields the identity
K = Sx̄ KTȳ.

(b) Group invariance of K is the same as δg ∗ (Kf) = K(δg ∗ f) for
every g ∈ G and f ∈ Lp(Y, dY ). This and Lemma 2.4(c) imply that
δg ∗ (KF ) = K(δg ∗ F ) for every g ∈ G and F ∈ Lp(G, dG). Therefore
K is the right convolution operator on G by the measure Φ given above. �

Now, for any (non-negative) measure Φ on G, a routine computation

shows that, with the measure Φ̃p given by∫
G

F (g) dΦ̃p(g) =

∫
G

∆(g)−1/q F (g−1) dΦ(g)

one has

(2.9) ‖RΦ‖p→p = ‖L
�Φp
‖p→p .

compare e.g. with Hewitt and Ross [22, §20]. Furthermore, if Ψ is a non-
negative measure on G then ‖LΨ‖p→p ≤ Ψ(G), and when G is amenable,
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this is an equality, see e.g. Reiter’s book, 2nd edition: Reiter and Stege-
man [30, Thm. 8.3.10]. In addition, if Ψ is finite and supp(Ψ)supp(Ψ)−1

generates G as a closed group, then by Berg and Christensen [1], [2],

(2.10) ‖LΨ‖p→p =

∫
G

Ψ(g) dGg ⇐⇒ G is amenable.

(For p �= 2, see the comments in Saloff-Coste and Woess [34].)

In the sequel, we shall write 〈A〉 for the subgroup of G generated by
A ⊂ G, and 〈A〉− for its closure. Also, we shall write

(2.11) S[K] = S[K, x̄, ȳ] = {g ∈ G : gȳ ∈ supp
(
K(x̄, ·)

)
} .

This is the support of the measure Φ̌[K]. The set S[K] depends on the
choice of x̄ and ȳ, but S[K]S[K]−1 is independent of ȳ and depends on x̄
only up to conjugation by an element of G.

Combining all these facts with Proposition 2.8, one immediately gets the
following.

(2.12) Theorem. The norm σp(K) of K : Lp(Y, dY ) → Lp(X, dX) satisfies

σp(K) ≤ ap(K)
def
=

∫
Y

( |Gy|
|Gx̄|

)1/p

K(x̄, dy) .

Furthermore, this is an equality if and only if the subgroup 〈S[K]S[K]−1〉−
of G is amenable; the “only if” requires finiteness of ap(K).

Proof. This follows from (2.8)–(2.10) by computing

Φ̃p(G) = K∆−1/p(id) =

∫
Y

( |Gy|
|Gȳ|

)1/p

K(x̄, dy) =
( |Gȳ|
|Gx̄|

)−1/p

ap(K) . �

Note that by group invariance of K and by Lemma 2.6(b), the number
ap(K) does not depend on the choice of x̄. In general, it might happen that
ap(K) = ∞ even when K is stochastic. We might as well add the condition
ap(K) < ∞ to our assumptions. For example, this holds in the specific case
when K is stochastic and the measure Φ = Φ[K] on G is symmetric. Indeed,
in this case, ∫

G

∆ dΦ =

∫
G

∆−1 dΦ = 1

by Proposition 2.8(b), whence

Φ(G) ≤ 1

2

∫
G

(∆ + ∆−1) dΦ = 1,

so that Hölder’s inequality implies

ap(K) =
∫

G
∆−1/q dΦ ≤ Φ(G)1/p

(∫
G

∆−1 dΦ
)1/q ≤ 1 .
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Next, we consider the adjoint operator K∗ of K. Formally, it is defined
by the equation

(2.13)

∫
X

f(x) Kf ′(x) dXx =

∫
Y

K∗f(y) f ′(y) dY y .

for f ∈ C00(X) and f ′ ∈ C00(Y ) (the respective spaces of continuous real
functions with compact support). Local finiteness is needed here. (Note
that K∗ does not have to be finite when K is finite, while it will be locally
finite when K has this property.)

A priori, the way to compute K∗ is the following: we have K = Sx̄ KTȳ.
Straightforward computation yields T ∗

ȳ = |Gȳ|Sȳ and S∗
x̄ = |Gx̄|−1Tx̄. Fur-

thermore, as K = RΦ, where Φ = Φ[K] is given by Proposition 2.8, we have
K∗ = RΦ∗ , where the measure Φ∗ = Φ∗[K] is given by dΦ∗(g) = ∆(g) dΦ̌(g).
Thus one gets

(2.14) K∗ =
|Gȳ|
|Gx̄|

Sȳ RΦ∗ Tx̄ .

From here one finds after some computation the following two formulas that
a posteriori are easily verified.

(2.15) Proposition. For f ∈ C00(X) and arbitrary y0 ∈ Y ,

K∗f(y0) =
1

|Gx̄|

∫
Y

∫
Gy

f(gy,y0hx̄) dGyh K(x̄, dy)

=
1

|Gx̄|

∫
Y

|Gy|
|Gy0 |

∫
Gy0

f(hgy,y0 x̄) dGy0
h K(x̄, dy) .

Proof. The identity between the two formulas follows immediately from
Lemma 2.6(c+b). We now show that, when defining K∗f in this way, the
equation (2.13) does indeed hold:∫

Y

K∗f(y0) f ′(y0) dY y0

=
1

|Gx̄|

∫
Y

(∫
Y

∫
Gy

f ′(gy,y0hy) f(gy,y0hx̄) dGyh dY y0

)
K(x̄, dy)

=
1

|Gx̄|

∫
Y

(∫
G

f ′(gy)f(gx̄) dGg

)
K(x̄, dy)

=
1

|Gx̄|

∫
G

f(gx̄) K
(
δg−1 ∗ f ′)(x̄) dGg

=
1

|Gx̄|

∫
G

f(gx̄) Kf ′(gx̄) dGg =

∫
X

f(x) Kf ′(x) dXx .

In the second identity we have used that y0 = gy,y0hy for all h ∈ Gy. For-
mula (2.1) was used in the second and in the last identity. �
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(2.16) Lemma. ap(K) = aq(K
∗) .

Proof. Let Φ = Φ[K]. Then one finds Φ̃∗
q(G) =

∫
G

∆−1/q dΦ = Φ̃p(G).
Now (2.14) yields

aq(K
∗) =

|Gȳ|
|Gx̄|

( |Gx̄|
|Gȳ|

)1/q

Φ̃∗
q(G) = ap(K) .

�
After amenability, we next want to involve the question of unimodularity

in our considerations. We define b(K) = K(x̄, Y ), the total mass of K. It is
of course independent of x̄.

(2.17) Proposition. If K satisfies (2.2) then

ap(K) ≤ b(K)1/q b(K∗)1/p .

Equality holds if and only if the modular function ∆ of G is constant on
S = S[K], or equivalently, if ∆ ≡ 1 on 〈S S−1〉−.

Assume furthermore that the set S satisfies the condition

(i) there is k > 0 such that
∫

(S S−1)k dG > 0 (this holds, in particular, when∫
S

dG > 0).

Then equality holds if and only if the group 〈S S−1〉 (which is open-closed
under this assumption) is unimodular.

Again, the “only if” requires finiteness of b(K)1/q b(K∗)1/p .

Proof. We have

(2.18) b(K∗) = Φ ∗ 1(ȳ) =

∫
Y

|Gy|
|Gx̄|

K(x̄, dy) .

We now apply Hölder’s inequality:

ap(K) =

∫
Y

1 ·
(
|Gy|
|Gx̄|

)1/p

K(x̄, dy)

≤
(∫

Y

K(x̄, dy)

)1/q (∫
Y

|Gy|
|Gx̄|

K(x̄, dy)

)1/p

.

Equality holds if and only if there is a constant c0 such that |Gy| = c0 for
K(x̄, ·)-almost every y ∈ Y . Equivalently, |Gg−1ȳ| = c0 for Φ[K]-almost
every g ∈ S[K]. Again equivalently, this means that there is c > 0 such that
∆(g) = c for Φ[K]-almost every g ∈ S. Since ∆ is continuous, it must be
constant on S. Since ∆(gh) = ∆(g)∆(h), this is equivalent with ∆ ≡ 1 on

〈S S−1〉− =
(⋃

n≥1(S S−1)n
)−

.
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Suppose that (i) holds. Then (S S−1)2k contains an open set V �= ∅, see
e.g. Hewitt and Ross [22, Cor. 20.17]. Therefore, for each n ≥ 1, we have

(S S−1)2k+n ⊃ V (S S−1)n,

and

(2.19) 〈S S−1〉 =
⋃
n≥1

(S S−1)2k+n ⊃ V
⋃
n≥1

(S S−1)n ⊃ 〈S S−1〉− .

Thus, 〈S S−1〉 is open and closed, and its modular function is the restriction
of ∆. �

(2.21) Remark. Much of the above simplifies considerably when K has a
density, i.e., K(x, dy) = k(x, y) dY y, where k(·, ·) is a measurable function
on X × Y . In this case, the measure Φ[K] has the density

φ(g) = k(x̄, g−1ȳ)/|Gȳ|

with respect to the Haar measure dG, and the adjoint operator K∗ has den-
sity k∗(x, y) = k(y, x). We can always redefine k(·, ·), if necessary, such that
the support of the measure K(x̄, ·) coincides with the support of the function
k(x̄, ·) in Y . (The support of a function is the closure of the set where the
function is non-zero.) Consequently, S[K] = supp(φ) in the group G, and
in the above results, we may replace S[K] with supp(φ). �

To conclude this section, let X,Y, Z be three homogeneous G-spaces,
equipped with G-invariant measures dX , dY and dZ , respectively, and tran-
sition operators K from X to Y and L from Y to Z. We denote by KL the
transition operator from X to Z where

KL(x,B) =

∫
Y

L(y,B) K(x, dy) , B ∈ B(Z)

Note that we say “transition operator from X to Y ” because in our thinking,
the expression K(x,B), B ∈ B(Y ), describes a “rule” for going from x ∈ X
to B ⊂ Y . Of course, the corresponding linear operator goes the other way,
taking functions on Y to functions on X, and in that sense, KL corresponds
to first applying L and then K. By inspection one obtains the following.

(2.22) Lemma. If both K and L satisfy (2.2), then

Φx̄,z̄[KL] = Φȳ,z̄[L] ∗ Φx̄,ȳ[K] ,

ap(KL) = ap(K) ap(L) and b(KL) = b(K) b(L) .
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3. Transition operators on a homogeneous G-space

In this section we consider the special case of §2 when Y = X, the group G
acts transitively on X, and K is G-invariant (1.2). In all objects defined
in §2, we shall set ȳ = x̄.

We then have S[K] = {g ∈ G : gx̄ ∈ supp
(
K(x̄, ·)

)
}. Besides the quanti-

ties ap(K), b(K), b(K∗) and the norm σp(K), we also have the spectral radius
ρp(K)=limn σp(K

n)1/n, where Kn is the n-th iterate of the operator K on X.
The transition operator K is called irreducible if for every x ∈ X and

every open subset U of X, there is n such that Kn(x, U) > 0 for the n-th
iterate Kn of K. As a matter of fact, by transitivity it is enough to require
this for x̄ (and every open U) only. Equivalently, this means that the closed
semigroup in G generated by S[K] coincides with G,( ⋃

n

S[K]n
)−

= G .

In this case, it follows from Woess [42] that

(3.1) N(K) =
(⋃

n

S[K]nS[K]−n
)−

is a normal subgroup of G that either has finite index and hence is open-
closed, or else N(K) as well as each S[K]n is nowhere dense in G.

We now specialize the results of §2 to the transitive case. We have

ap(K) =

∫
X

(
|Gx|
|Gx̄|

)1/p

K(x̄, dx) ,

b(K) = a∞(K) = K(x,X) for all x, and b(K∗) = a1(K). We remark
that dX is an invariant measure for K if and only if K∗ is stochastic, i.e.,
K∗(·,K) ≡ 1, see (2.13). (This fact does not rely on group invariance.)

(3.2) Theorem. Suppose that K is G-invariant, and that G acts transi-
tively on X. Then the following statements are true.

(a) σp(K) ≤ ap(K) ,

and equality holds if and only if the subgroup 〈S[K]S[K]−1〉− of G is amenable.

(b) ρp(K) ≤ ap(K) ,

and equality holds if and only if the subgroup 〈S[K]〉− of G is amenable.

(c) ap(K) ≤ b(K∗)1/p ,

and equality holds if and only if ∆ ≡ 1 on 〈S[K]S[K]−1〉−. If K is irreducible
and N(K) is open, then equality holds if and only if G is unimodular.

In all three statements, the “only if” requires finiteness of the respective
upper bound.
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Proof. Statement (a) is Corollary 2.23, specified to the one-orbit-case.

For the inequality in (b), we use (a) and Lemma 2.22, which imply
σp(K

n) ≤ ap(K)n. For the “if and only if” in (b), we use the result of
Berg and Christensen [1], [2], by which the Lp-spectral radius of the left

convolution operator with Φ̃p coincides with Φ̃p(G) if and only if the closed

group generated by supp(Φ̃p) is amenable.

The first part of (c) is Proposition 2.17.

The addendum regarding the irreducible case in statement (c) is seen as
follows. If equality holds in (c), then it will also hold for Kn in the place of
K, for any n ≥ 1. Thus, ∆ ≡ 1 on S[K]nS[K]−n, and (since ∆ is continu-
ous) ∆(g) = 1 for every g ∈ N(K). Now N(K) has finite index (as a matter
of fact G/N(K) is cyclic), so that ∆ ≡ 1 on the whole of G. �

Note that condition (i) of Proposition 2.17, or

(ii) there is k such that S[K]kS[K]−k has positive Haar measure,

assure the validity of the “if and only if” in statement (c) of the last theorem.

(3.3) Corollary. Let X, K, G as in Theorem (3.2). If the group 〈S[K]〉−
is amenable then σp(K) = ap(K) = ρp(K). In particular, in this case, norm
and spectral radius coincide on Lp for every p ∈ (1 , ∞).

In the irreducible, homogeneous case, when K(·, X) < ∞, besides the
Lp-spectral radii ρp(K) there is as another number ρ(K), often also called
spectral radius, defined by

(3.4) lim sup
n

Knf(x)1/n = ρ(K) for all f ∈ C+
00(X) , x ∈ X .

(As usual, C00 denotes the space of compactly supported, continuous func-
tions.) That ρ(K) is independent of f follows from the corresponding the-
orem regarding convolution powers on locally compact groups, see Guiv-
arc’h [19]. Indeed, this reference shows that the number lim supn KnF (g)1/n

is independent of F ∈ C+
00(G). As Tx̄ Kn = Kn Tx̄, this carries over to the

operator K on X. In general, ρ(K) ≤ ρ2(K), but when K is self-adjoint
with respect to dX , this is an equality, see Berg and Christensen [2].2

As a “by-product”, we obtain a proof of Theorem II (§1) that does not
rely on any specific ingredient from differential geometry.

2Some translation is necessary here, since Berg and Christensen deal with left convo-
lution operators with respect to left Haar measure. The point is the following: since we
know that the upper limit is independent of F ∈ C+

00(G), we see that ρ(K) = ρ(L
�Φ2

), where
Φ̃2 is as defined before (2.9). Also, since K is self-adjoint the measure Φ̃2 is symmetric,
as required.
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(3.5) Corollary. Let M be a connected non-compact Riemannian manifold
which is homogeneous in the sense that its group Iso(M) of isometries acts
transitively.

Then 0 is in the L2-spectrum of the Laplacian of M (or equivalently, the
heat kernel kt(·, ·) on M has sub-exponential decay as t → ∞) if and only
if some (equivalently, every) closed, transitive subgroup of Iso(M) is both
amenable and unimodular.

Proof. The invariant measure dX = dM is the Riemannian volume el-
ement. It is well known —see e.g. Davies [11, Prop. 12]— that the heat
kernel has exponential decay if and only if ρ2(K1) < 1, where K1 is given
by K1(x, dy) = k1(x, y)dy. This transition operator is stochastic and self-
adjoint, and S[K1] = G. Theorem 3.2 applies. �

As announced, we shall extend this to the co-compact case in the next
sections. Let us now give a simple example to illustrate how our method
may be used to compute norms and spectral radii explicitly.

(3.6) Example. Let X = H = {z = x + iy ∈ C : y > 0} be the hyperbolic
plane with length element ds = |dz|/�(z) and area element dHz = dz/�(z)2.
Fix r > 0 and consider the ball B(z, r) with radius r and centre z in the
hyperbolic metric. Let V (r) = 2π cosh r be its hyperbolic area, and define
a transition operator K = K(r) by

Kf(z) =
1

V (r)

∫
B(z,r)

f(z) dHz .

As mentioned in the Introduction, this corresponds to a random walk, where
at each step, the walker – given that his acutal position is z – moves to
a random point that is chosen according to hyperbolic equidistribution in
B(z, r). This random walk is symmetric (dH-reversible), and K is clearly
irreducible.

The operator is invariant under the whole isometry group of H, which is
non-amenable. We prefer to work with a smaller group of isometries, namely
the affine group

G = {z �→ az + b : a > 0 , b ∈ R} .

It acts by isometries, fixed-point-freely and transitively on H and preserves
dH . The left Haar measure is dG = a−2 da db, where da and db are Lebesgue
measure on R+, resp. R . The modular function is ∆(g) = 1/a, when
g = (a, b). We chose the complex unit i as our reference point in H .

If z = x+iy ∈ H then z = gi, where g = (y, x). Therefore, by Lemma 2.6,
|Gz|/|Gi| = y. Note that all point stabilizers are trivial, but formula (2.1)
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forces |Gz| = �(z). Since the affine group is amenable, we can compute by
Theorem 3.2

ρp(K) = σp(K) = ap(K) =
1

V (r)

∫
B(i,r)

y−2+1/p dx dy .

Passing from the upper half plane model of H to the unit disk model via
the map z �→ w = (iz + 1)/(z + i), the volume element becomes dw =
4(1 − |w|2)−2 dx dy for w = x + iy, and B(i, r) transforms to B(0, r) in the
transformed metric. Writing P (w, ξ) for the Poisson kernel in the unit disk,
the formula becomes (using rotation invariance in the second equality, with
dξ the normalized Lebesgue measure on the unit circle S1)

ρp(K) =
1

V (r)

∫
B(0,r)

P (w, i)1/p dw =
1

V (r)

∫
B(0,r)

∫
S1

P (w, ξ)1/p dξ dw

=
1

V (r)

∫
B(0,r)

ϕα(w) dw ,

where α = 1
2
− 1

p
and

ϕα(w) =

∫
S1

P (w, ξ)α+1/2 dξ

is a spherical function. It depends only on

t = d(w, 0) = log
1 + |w|
1 − |w|

(hyperbolic distance d(w, 0) in the unit disk), i.e., ϕα(w) = φα(t). Thus,
we get

ρp(K) =
1

cosh r − 1

∫ r

0

φα(t) sinh t dt .

An analogous formula holds for arbitrary isotropic (rotation invariant) tran-
sition operators. For example, if S(z, r) denotes the hyperbolic sphere (cir-
cle) of radius r centered at z, and dlz is the hyperbolic length element, then
–writing �(r) for the length of S(z, r)– we can compute the spectral radii of
the averaging operator over spheres L = L(r),

Lf(z) =
1

�(r)

∫
S(z,r)

f dl , ρp(L) = φα(r) , α = 1
2
− 1

p
.

The value ρ2(L) has been computed by a different method by Żuk [43], using
amenability and Følner sets. The formulas can of course also be obtained
within the well-known framework of radial harmonic analysis on H, but the
present method is more elementary or at least more direct. �
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4. Decomposition of measures and transition operators
on co-compact G-spaces

In this section, we finally arrive at the general situation proposed by the
title of this paper. That is, we suppose that the group G acts properly (not
necessarily isometrically) on X, that closed balls in X are compact, and that
the factor space I = G\X is compact. On X, we shall consider a transition
operator K that satisfies (1.2). We write Xi, i ∈ I, for the orbits of G on X.

Let dX be a G-invariant measure on X. Each Xi is a homogeneous G-
space carrying a G-invariant measure dXi

. We assume that the latter are
normalized so that

(4.1) x �→ |Gx| is measurable and locally bounded on X,

and that there exists a measure λ on I, supported on the whole of I, such
that for f ∈ C00(X), writing fi = Pif for the restriction of f to Xi,

(4.2)

∫
X

f(x) dXx =

∫
I

∫
Xi

fi(x) dXi
x dλ(i) .

We then speak of a measurable decomposition of dX . If, in addition, x �→
|Gx| is continuous on X (it is continuous on each Xi), then we speak of a
continuous decomposition of dX .

Combining (4.1) with Lemma 2.6, it is easy to see that the function

(4.3) f �(i) =

∫
Xi

fi(x) dXi
x

is measurable and bounded on I for every f ∈ C00(X), continuous on I when
x �→ |Gx| is continuous on X. If f is an arbitrary dX-integrable function
on X, then one sees from Bourbaki [3, Chap. VII, §2, Prop. 5] that the
function f �(i), defined as in (4.3), exists and is finite for λ-almost every
i ∈ I, and that

∫
X

f(x) dXx =
∫

I
f �(i) dλ(i) precisely as in (4.2).3

In the Appendix (§9), we show that (i) one can use (4.2) to actually
construct invariant measures on X, and (ii) for any G-invariant measure dX

there exists a measure λ on I such that dX has a continuous decomposition
with respect to λ (see Lemma 9.3 and Proposition 9.5).

3Again, some translation is necessary in the use of the cited chapter of Bourbaki.
There, the group – called H – acts on X from the right, while left Haar measure is used.
In our case, this would require use of right Haar measure. Thus, to achieve compatibility
with Bourbaki’s notation up to the exchange between left and right, what we denote by
f � should be written f̃ �, where f̃(x) = f(x)/|Gx|.
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Let us now consider the G-invariant transition operator K. We want to
relate properties of G (amenability, unimodularity) with the computation
of the norm of K on Lp(X, dX) and more generally on Lp(X,µ). In order
to apply the results of §2 to the present situation, besides the measurable
decomposition (4.2) of dX , we need a decomposition of K, that is, a family
Kj(·, ·), j ∈ I, of transition operators from X to Xj, with the following
properties

(4.4.i) Kj(gx, gB) = Kj(x,B) for all x ∈ X , B ∈ B(Xj) , g ∈ G ,

(4.4.ii) (j, x) �→ Kj(x,B ∩ Xj) is measurable for every B ∈ B(X) ,

and, for dX-almost every x ∈ X,

(4.4.iii) K(x,B) =

∫
I

Kj(x,B ∩ Xj) dλ(j) for all B ∈ B(X).

Such a decomposition will not always exist. In the Appendix (Theorem 9.8),
we give a necessary and sufficient existence condition in the case when K is
finite. The decomposition is of course straightforward when K has a density
with respect to dX , see §7.

Now let us suppose to have a decomposition (4.2) of dX and an associated
decomposition (4.4) of K. For i, j ∈ I, we define Ki,j as the restriction of
the operator Kj to Xi, that is, Ki,j = PiKj, or equivalently, for every x ∈ Xi

and B ∈ B(Xj), we get Ki,j(x,B) = Kj(x,B) .

With this definition, for all f ∈ C00(X) and almost all x ∈ X, we have

Kf(x) =

∫
I

Ki,jfj(x) dλ(j) if x ∈ Xi .

In particular, for all f, f ′ ∈ C00(X), we have∫
X

f ′(x) Kf(x) dXx =

∫
I

∫
I

∫
Xi

f ′
i(x) Ki,jfj(x) dXi

x dλ(j) dλ(i) .

Using the notation of §2, for p ∈ (1 , ∞), define

σp(i, j) = σp(Ki,j, dXi
, dXj

) .

This is the norm of Ki,j as an operator from Lp(Xj, dXj
) to Lp(Xi, dXi

).

(4.5) Lemma. The mapping (i, j) �→ σp(i, j) on I × I is measurable.

Proof. Let f ∈ C00(X) such that Pjf is non-zero. Then, by (4.3) and (4.4),
the mapping

(i, j) �→ ‖Ki,jPjf‖p
/
‖Pjf‖p =

∫
Xi

|Kjfj(x)|p dXi
x
/∫

Xj

|fj(y)|p dXj
y

is measurable on I × I.
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Now, Pj : C00(X) → C00(Xj) is surjective. This follows from the Tietze–
Urysohn Extension Theorem, see e.g. Copson [9, p. 106]. Thus, the image of
C0 (defined as above) under Pj is dense in C00(Xj). Therefore (i, j) �→ σp(i, j)
is the point-wise supremum of a countable family of measurable functions. �

(4.6) Lemma. Let K and L be two G-invariant transition operators on X
for which the product transition operator K L is defined. If both K and L
have a decomposition (4.4), then this is also true for K L, and

(K L)i,j =

∫
I

Ki,i′Li′,j dλ(i′) .

Furthermore,

σp

(
(KL)i,j, dXi

, dXj

)
≤
∫

I

σp(Ki,i′ , dXi
, dXi′ )σp(Li′,j , dXi′ , dXj

) dλ(i′) .

Proof. The first statement is straightforward, using Fubini’s theorem. For
the second statement, take f ∈ C00(Xj) and f ′ ∈ C00(Xi), and apply Hölder’s
inequality to get∫

Xi

f ′(x) (K L)i,jf(x) dXi
x ≤
∫

I

‖f ′‖q ‖Ki,i′Li′,jf‖p dλ(i′)

≤ ‖f ′‖q‖f‖p

∫
I

σp(Ki,i′ , dXi
, dXi′ )σp(Li′,j, dXi′ , dXj

) dλ(i′) . �
The following is a straightforward exercise, using only (2.13).

(4.7) Lemma. If K has a decomposition (4.4) then so does the adjoint K∗,
and we have (K∗)i,j = (Kj,i)

∗.

We shall set K∗
i,j = (K∗)i,j .

5. General results regarding norms, spectral radii, ame-
nability and unimodularity

According to Parthasarathy [27, Th. I.4.2], we can find a measurable section,
that is, a set {x̄i : i ∈ I} ∈ B(X) that is contained in the support of our
normalizing function f̄ , such that x̄i ∈ Xi for each i and i �→ x̄i is one-to-one
and measurable. From (4.4) it follows that (i, j) �→ ap(i, j) is measurable,
where ap(i, j) = ap(Ki,j) as defined in Theorem 2.12. We can now consider
the transition operators Σp = Σp[K] and Ap = Ap[K] on I, defined by

(5.1) Σp(i, A) =

∫
A

σp(i, j) dλ(j) and Ap(i, A) =

∫
A

ap(i, j) dλ(j) .



Transition operators on co-compact G-spaces 769

Let

(5.2) S =
(⋃

i,j∈I

S[Ki,j]
)−

,

where S[Ki,j] is defined as in (2.11) with respect to the reference points x̄i

and x̄j.

(5.3) Theorem. Suppose that the transition operator K on X is G-
invariant, that I = G\X is compact, and that we have a measurable de-
composition of dX on X as in (4.2) and a decomposition of K as in (4.4).
Then the norm σp(K) of K on Lp(X, dX) satisfies

(5.3.i) σp(K) ≤ σp(Σp[K]) ≤ σp(Ap[K]) .

Furthermore, if the group 〈S S−1〉− is amenable, then

(5.3.ii) σp(K) = σp(Ap[K]) .

Analogously, the spectral radius ρp(K) of K satisfies

(5.3.iii) ρp(K) ≤ ρp(Σp[K]) ≤ ρp(Ap[K]) ,

and if the group 〈S〉− is amenable, then

(5.3.iv) ρp(K) = ρp(Ap[K]) .

Proof. The second of the two inequalities in (5.3.i) follows from Theo-
rem 2.12. To prove the first, let f, f ′ ∈ C00(X). Write Σp for Σp[K] and
set u(i) = ‖fi‖p, the norm of fi = Pif in Lp(Xi, dXi

), and analogously
v(i) = ‖f ′

j‖q. Then, applying twice Hölder’s inequality,∫
X

f ′(x) Kf(x) dXx =

∫
I

∫
I

∫
Xi

f ′
i(x)Ki,jfj(x) dXi

x , dλ(j) dλ(i)

≤
∫

I

v(i)

∫
I

σp(i, j) u(j) dλ(j) dλ(i)

=

∫
I

v(i) Σpu(i) dλ(i) ≤ σp(Σp) ‖f ′‖q ‖f‖p

since ‖u‖p = ‖f‖p, where the first norm is in Lp(I, dλ) and the second
in Lp(X, dX), and analogously, ‖v‖q = ‖f ′‖q. This implies that σp(K) ≤
σp(Σp[K]).

In order to prove the equality in (5.3.ii) when 〈S S−1〉− is amenable,
note that for computing norms we can assume without loss of generality
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that (4.4.iii) holds for all x ∈ X. We use the Borel cross section {x̄i : i ∈ I}
from above. Recall from §2 the operators Sx̄i

: Lp(G, dG) → Lp(Xi, dXi
)

and Tx̄i
: Lp(Xi, dXi

) → Lp(G, dG). Now let u, v ∈ C+(I) (the cone of non-
negative continuous functions) such that ‖u‖p = ‖v‖q = 1 with respect to
the measure λ on I. Define operators Tv,q : Lp(X, dX) → Lp(G, dG) and
Su,p : Lp(G, dG) → Lp(X, dX) by

Tv,pf(g) =

∫
I

v(i) |Gx̄i
|−1/p Tx̄i

Pif(g) dλ(i) and

Su,pF (x) = u(i) |Gx̄i
|1/p Sx̄i

F (x) , if x ∈ Xi .

The property (4.4.ii) is crucial for this definition. It is straightforward that
both operators have norm ≤ 1. We finally introduce the operator

K = Ku,v,p
def
= Tv,p K Su,p : Lp(G, dG) → Lp(G, dG) .

For F ∈ Lp(G, dG), we obtain

KF (g) =

∫
I

∫
I

v(i) u(j)

( |Gx̄j
|

|Gx̄i
|

)1/p

Ki,jF (g) dλ(i) dλ(j) ,

where Ki,j = K[Ki,j], as defined in (2.7) with respect to the reference points
x̄i and x̄j. Since δg ∗ (KF ) = K(δg ∗ F ) for every g ∈ G, the operator K is a
right convolution operator. The support of the associated measure on G is
contained in S. Therefore (2.8)–(2.10) imply that

σp(K, dG) = K∆−1/p(id)

=

∫
I

∫
I

v(i) u(j)

( |Gx̄j
|

|Gx̄i
|

)1/p

Ki,j∆
−1/p(id) dλ(i) dλ(j)

=

∫
I

v(i)

∫
I

ap(i, j)u(j) dλ(i) dλ(j) ,

compare with Theorem 2.12 and its proof. Since σp(Ku,v,p, dG) ≤ σp(K, dX),
we get ∫

I

v(i) Apu(i) dλ(i) ≤ σp(K)

for all u, v ∈ C+(I) with ‖u‖p = ‖v‖q = 1. As all our operators preserve
non-negativity, the proposed equality follows.

We next prove (5.3.iii). Lemmas 4.6 and 2.22 imply that for h ∈ C+(I),

Σp[K
n]h ≤

(
Σp[K]

)n
h and Ap[K

n]h =
(
Ap[K]

)n
h ,
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where the powers of the respective transition operators are taken on X on
the left and on I on the right hand sides. Since all our transition operators
are non-negative (i.e., they preserve the respective cones of non-negative
functions), this together with (5.3.i) yields

σp(K
n) ≤ σp(Σp[K]n) ≤ σp(Ap[K]n)

for every n. Taking n-th roots and passing to the limit, we obtain the
proposed inequalities for the spectral radii.

Finally, regarding (5.3.iv), if 〈S〉− is amenable, then we can apply (5.3.ii)
to every power Kn of K. Again, passing to the limit of the n-th roots, we
get the proposed equality. �

Formulas (5.3.ii) and (5.3.iv) show that in the amenable case, we can
reduce the computation of norms and spectral radii of K to that of suitable
transition operators on the compact space I. This will be useful for concrete
calculations; an example will be given at the end. We shall also study the
question when the equalities (5.3.ii) and (5.3.iv) imply amenability of the
group. This will require some additional assumptions, see §5 and §6, and
we first consider the analogues of the bounds of Proposition 2.17.

Consider the numbers

b(i, j) = b(Ki,j) =

∫
Xj

Ki,j(x̄i, dy) and

b∗(i, j) = b(K∗
i,j) =

∫
Xi

|Gx|
|Gx̄j

|Kj,i(x̄j, dx)

and the associated transition operators B = B[K] and B∗ = B∗[K] =
B[K∗] on I given by

(5.4) B(i, A) =

∫
A

b(i, j) dλ(j) and B∗(i, A) =

∫
A

b∗(i, j) dλ(j) ,

where A ∈ B(I).

(5.5) Proposition. Under the assumptions of Theorem 5.3, we have

(5.5.i) σp(Ap[K]) ≤ σp(B[K])1/qσq(B∗[K])1/p and

(5.5.ii) ρp(Ap[K]) ≤ ρp(B[K])1/qρq(B∗[K])1/p .

Furthermore, if G is unimodular, then

(5.5.iii) ρp(Ap[K]) = ρp(B[K]) = ρq(B∗[K]) ,

so that (5.5.ii) becomes an equality.
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Proof. Let u, v ∈ C+(I) with ‖u‖p = ‖v‖q = 1 (norms with respect to λ).
By Proposition 2.17, ap(i, j) ≤ b(i, j)1/qb∗(j, i)1/p. This and Hölder’s in-
equality imply∫

I

v(i)Apu(i) dλ(i) ≤
∫

I

∫
I

(
v(i)b(i, j)u(j)

)1/q(
u(j)b∗(j, i)v(i)

)1/p

dλ(i) dλ(j)

≤
(∫

I

v(i)Bu(i) dλ(i)

)1/q(∫
I

u(j)B∗v(j) dλ(j)

)1/p

≤ σp(B)1/qσq(B∗)1/p .

This yields the first inequality. The second follows, since Lemmas 4.6
and 2.22 imply that B[K]n = B[Kn] and B∗[K]n = B∗[Kn]. Assume
unimodularity. Then the function x �→ |Gx| is constant on each Xi. Thus,
δ(i) = |Gx̄i

| defines a continuous, strictly positive function on I. We find
that ap(i, j) = δ(i)−1/pb(i, j)δ(j)1/p and b∗(i, j) = δ(j)−1b(j, i)δ(i). There-
fore (5.5.iii) holds by a basic exercise. (Note that the analogue of (5.5.iii)
does not necessarily hold for the norms in the place of the spectral radii.) �
(5.6) Remark. For the main results of this section, co-compactness is not
essential. Suppose that X is a proper metric space, G a locally compact
group that acts properly on X, and let I = G\X (not necessarily compact).
Consider a G-invariant transition operator K on X. We need a G-invariant
measure dX on X which has a measurable decomposition dX =

∫
I
dXi

dλ(i),
where λ is a Radon measure supported by the whole of I. We also need a
decomposition (4.4) of K, and a measurable cross-section {x̄i : i ∈ I}. In
typical specific cases, these objects are usually at hand. Then Theorem 5.3
and Proposition 5.5 remain valid without assuming compactness of I. �

6. The use of irreducibility and compactness conditions

In this section, we start with an observation on irreducibility. Then we
recall the Theorem of Jentzsch which extends the Perron Frobenius theorem
to more general transition operators. This will be used to provide conditions
that allow us to infer amenability from equality in (5.3.iii) and unimodularity
from equality in (5.5.ii).

Let µ be any Radon measure on the metric space X. Then the transition
operator K on X is called µ-irreducible,4 if

µ
(
{x ∈ X \ B : K(x,B) > 0}

)
> 0

for every B ∈ B(X) with µ(B) µ(X \ B) > 0.

4This definition, taken from Schaefer [36, p. 337], is slightly different from the one
given in Nummelin [26].
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For the following, recall that K0 = IdX , the identity operator on X, that
is, IdX(x,B) = δx(B).

(6.1) Lemma. If K is µ-irreducible then for every B ∈ B(X) with µ(B) > 0
we have

µ
(
{x ∈ X : ∀ n ≥ 0 , Kn(x,B) = 0}

)
= 0 .

Proof. Write X \ B′ for the above set whose measure is claimed to be 0.
Then B ⊂ B′, whence µ(B′) > 0. Assuming µ(X \B′) > 0, the assumption
of µ-irreducibility yields existence of x ∈ X \ B′ with K(x,B′) > 0. But
then also Kn(x,B) > 0 for some n, a contradiction. �

Next, consider compact integral operators on the compact space I equipped
with the finite measure λ. For the moment, let

(
b(i, j)

)
i,j∈I

be an arbitrary

non-negative measurable kernel (density) that defines a bounded transition
operator Bh(i) =

∫
I
b(i, j)h(j) dλ(j) on Lp(I, λ). For 1 < p < ∞, set

B p
p =

∫
I

(∫
I

b(i, j)q dλ(j)

)p/q

dλ(i) .

From Schaefer [36, p. 283] we learn that if B p < ∞, then B is a compact
operator on Lp(I, λ), and its adjoint B∗ (whose kernel is of course b∗(i, j) =
b(j, i)) is compact on Lq(I, λ).

(6.2) Theorem [Jentzsch]. If B is λ-irreducible and compact (in partic-
ular, if B p < ∞ or B∗

q < ∞) then the spectral radius ρ = ρp(B) > 0 is
an eigenvalue of B whose eigenspace is one-dimensional and spanned by a
function hρ that is λ-almost everywhere > 0.

See e.g. Schaefer [36, Thm. V.6.5].

We remark that in the specific case when b(·, ·) is essentially bounded
(λ×λ) then ρ has to be independent of p and hρ is essentially bounded (λ).
If in addition b(·, ·) is continuous on the (compact) space I × I then B maps
Lp(I, λ) to C(I) for each p, and is also a compact operator on C(I) with the
max-norm. In particular, hρ is continuous and strictly positive in this case.

The following is also well known; for safety’s sake we include the proof.

(6.3) Proposition (Subinvariance Theorem). Under the assumptions
of (6.2), let f ∈ Lp(I, λ), f ≥ 0 and λ(f > 0) > 0. Suppose that there is
t > 0 such that Bf ≤ t · f almost everywhere (λ). Then

(a) f > 0 almost everywhere (λ),

(b) t ≥ ρ, and

(c) t = ρ if and only if Bf = t · f almost everywhere (λ).
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Proof. (a) Let A = {f > 0}. Assume that λ(I \ A) > 0, and let A′ = {i ∈
I \ A : B(i, A) > 0 , t · f(i) ≥ Bf(i)}. By λ-irreducibility, λ(A′) > 0. For
i ∈ A′, we have

0 = t · f(i) ≥ Bf(i) ≥
∫

A

b(i, j)f(j) dλ(j) > 0 ,

a contradiction.

(b) Since ρ(B∗) = ρ(B), we can apply the Theorem of Jentzsch to B∗

and find a corresponding eigenfunction h∗
ρ that is λ-a.e. > 0. We have

t

∫
I

h∗
ρ(i)f(i) dλ(i) ≥

∫
I

h∗
ρ(i)Bf(i) dλ(i)

=

∫
I

f(j)B∗h∗
ρ(j) dλ(j) = ρ

∫
I

f(j)h∗
ρ(j) dλ(j) .

Since the last integral is positive by (a), (b) follows.

(c) If Bf = t · f a.e. (λ) then we must have t = ρ by the above.
Conversely, suppose that Bf ≤ ρ · f , and that the inequality is strict in a
set of positive measure. Then the argument used to prove (b), with ρ in the
place of t, would imply ρ > ρ, a contradiction. �
(6.4) Corollary. Let A and B be two transition operators on I with
densities a(i, j) and b(i, j), respectively, with respect to λ. Assume that
both satisfy the assumptions of Theorem (6.2).

(i) If a(i, j) ≤ b(i, j) for λ × λ-almost every (i, j) then ρp(A) ≤ ρp(B).

(ii) If a(i, j) ≤ b(i, j) for λ × λ-almost every (i, j) and ρp(A) = ρp(B)
then a(i, j) = b(i, j) almost everywhere (λ × λ), i.e., A = B.

Proof. Let ρ = ρp(B) and hρ = hρ,B. Then Ahρ ≤ Bhρ = ρ · hρ . Thus, (i)
follows from Proposition 6.3(b). By (c), if the two spectral radii coincide,
then Ahρ = ρ · hρ a.e. (λ). Therefore∫

I

(
b(i, j) − a(i, j)

)
hρ(j) dλ(j) = 0 for λ-almost every i.

Since hρ > 0 a.e., (ii) follows. �
We point out the obvious fact that if in addition a(·, ·) and b(·, ·) are

continuous, then in statement (ii) they must coincide everywhere.
We now return to our G-invariant transition operator on X as in Sec-

tions 4 and 5. Let z > 0 be such that

(6.5) K(x, ·) =
∑
n≥1

znKn(x, ·)

is a Radon measure on X. Note that if σ2(K) < ∞ then we may take any
z < 1/σ2(K).
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For the following, recall that we always assume that the measure λ is
supported by the whole of I, and consequently supp(dX) = X.

(6.6) Lemma. (a) If K has a decomposition (4.4) then so does K.

(b) If K is dX-irreducible then there is a subset I0 of I such that

λ(I \ I0) = 0 and, for all x ∈
⋃
I0

Xi , supp
(
K(x, ·)

)
= X .

Proof. (a) is obvious.

For (b), note that in (6.5) it might have been more natural to start sum-
mation with n = 0, i.e., with K0, the identity operator. However, the latter
decomposes only when I is discrete. Write K̃ = IdX +K. Apply Lemma 6.1
to all B in a countable set of open balls that generate the topology of X.
This yields supp

(
K̃(x, ·)

)
= X for all x in a set B ⊂ X of full dX-measure.

Now G-invariance implies that B = π−1(I0), where λ(I \ I0) = 0.

In order to pass from K̃ to K, fix x ∈ B. If x is not an isolated point
of X, then clearly supp

(
K(x, ·)

)
= X.

If x is isolated, then its orbit, say Xi, is discrete, and
∫
{y} dX > 0 for

all y ∈ Xi. As dX is supported by all of X, both x and X \ {x} have posi-
tive measure, whence K(x,X \ {x}) > 0 by dX-irreducibility of K. On the

other hand, K̃(y, {x}) > 0 for all y ∈ B. Since K = K K̃, it follows that
K(x, {x}) > 0. �

By an abuse of terminology, we shall say that K is λ-irreducible, if B[K]
has that property on I. This can also be formulated without use of a decom-
position (4.4), but if such a decomposition is given, then together with B[K],
also B∗[K] and all the Ap[K] and Σp[K], 1 < p < ∞, are λ-irreducible.

(6.7) Theorem. Suppose that the transition operator K on X is G-
invariant, that I = G\X is compact, and that we have a measurable de-
composition of dX on X as in (4.2) and a decomposition of K as in (4.4). If
K is λ-irreducible,

Ap[K] p < ∞ and ρp(K) = ρp(Ap[K]) ,

then 〈S[Ki,j]S[K i,j]
−1〉− is amenable for λ × λ-almost every (i, j).

Proof. In view of (5.3.i), we may take K with z < Ap[K] −1
p . The transition

operators Σp[K] and Ap[K] are both λ-irreducible and compact on Lp(I, λ),
since

Σp[K] p ≤ Ap[K] p < ∞.
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Using spectral theory and Lemmas 4.6 and 2.22, we get

ρp(K) =
∑

n

znρp(K)n =
∑

n

znρp(Ap[K])n = ρp(Ap[K]) .

Therefore Corollary 6.4 implies that σ̄p(i, j) = āp(i, j) with respect to K for
λ × λ-almost every (i, j). For these (i, j), Theorem 2.12 yields amenability
of 〈S[K i,j]S[K i,j]

−1〉−. �

(6.8) Remarks. (a) Recall Lemma 2.16, which implies that the “trans-
pose” (adjoint over I) of Ap[K] is Ap[K]∗ = Aq[K

∗]. Thus, the assumption
Ap[K] p < ∞ in Theorem 6.7 can also be replaced with Aq[K

∗] q < ∞.

(b) Contrary to the discrete case of Saloff-Coste and Woess [34], here we
have no straightforward general argument that allows us to conclude that
also the larger group 〈S[Ki,j]〉− has to be amenable for λ × λ-almost every
(i, j) under the assumptions of Theorem 6.7. Namely, when I is non-discrete,
we cannot replace K with IdX + K in the proof, since IdX will not factorize
over I.

(c) Anyway, in many cases, we will have that supp
(
Ki,j(x̄i, ·)

)
= Xj and

thus S[Ki,j ] = G for λ×λ-almost every (i, j), see §§7–8 below. For this rea-
son we have avoided to introduce additional space-consuming technicalities
for passing to larger subgroups than the ones considered above. �

The reasonable cases of (c) include Brownian motion on co-compact man-
ifolds as well as random walks on quasi-transitive graphs. In particular, we
have already collected all ingredients for deducing the theorem of Brooks [5]
regarding the spectral gap on covers of compact Riemannian manifolds. We
defer this to the last section for the sake of the inner logic of the presentation
of our results.

For norms in the place of spectral radii, our necessary condition is more
restrictive; as in Saloff-Coste and Woess [34], we can only treat the case p = 2.

(6.9) Corollary. Assume that KK∗ is λ-irreducible and that the Hilbert-
Schmidt norm A2[K] 2 is finite. If

σ2(K) = σ2(A2[K])

then for λ×λ-almost every (i, j), the subgroup 〈S[(KK∗)i,j]S[(KK∗)i,j]
−1〉−

of G is amenable.

Proof. By Lemmas 2.16 and 2.22, A2[KK∗] = A2[KK]A2[KK]∗, which is
λ-irreducible and has finite Hilbert-Schmidt norm A2[K] 2

2. We have

ρ2(KK∗) = σ2(X)2 = σ2(A2[K])2 = ρ2(A2[KK∗]) ,

so that we can apply Theorem 6.7 to KK∗. �
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Let us next study which implications equality in (5.5.ii) yields for the
modular function. Because of the product on the right hand side of (5.5.ii),
we cannot use the same argument as above in order to show that equality
for K also yields equality for K in its place.

(6.10) Proposition. Suppose that the transition operator K on X is G-
invariant, that I = G\X is compact, and that we have a measurable decom-
position of dX on X as in (4.2) and a decomposition of K as in (4.4). If K
is λ-irreducible,

B[K] p B∗[K]∗ p < ∞ and ρp(Ap[K]) = ρp(B[K])1/qρq(B∗[K])1/p

then there are constants αi,j, i, j ∈ I, such that for λ×λ-almost every (i, j),
the following holds: |Gy| = αi,j on S[Ki,j], or equivalently, ∆ ≡ 1 on the
group 〈S[Ki,j ]S[Ki,j]

−1〉−.

Proof. Let cp(i, j) = b(i, j)1/qb∗(j, i)1/p and recall from Proposition 2.17
that ap(i, j) ≤ cp(i, j). Write Cp[K] for the resulting transition operator
on Lp(I, λ). Irreducibility of B[K] implies that of Cp[K] and Ap[K]. An
exercise based on a few applications of Hölder’s inequality shows that

Cp[K] p ≤ B[K] 1/q
p B∗[K]∗ 1/p

p .

Therefore Cp[K] and Ap[K] are compact on Lp(I, λ).

Next, let c
(n)
p (·, ·) be the density of Cn

p . By induction and Hölder,

c(n)
p (i, j) =

∫
I

c(n−1)
p (i, i′)cp(i

′, j) dλ(i′)

≤
∫

I

(
b(n−1)(i, i′)b(i′, j)

)1/q(
b∗(j, i′)b(n−1)

∗ (i′, i)
)1/q

dλ(i′)

≤ b(n)(i, j)1/qb(n)
∗ (j, i)1/p .

If h ∈ Lp
+(I, λ) then

Cn
ph(i) =

∫
I

(
b(n)(i, j)h(j)

)1/q(
b(n)
∗ (j, i)h(j)

)1/p
dλ(j)

≤
(
Bnh(i)

)1/q(
Bn ∗

∗ h(i)
)1/p

.

Therefore
‖Cn

ph‖p ≤ σp(B
n)1/qσq(B

n
∗ )

1/p‖h‖p

by another application of Hölder’s inequality, whence

σp(C
n
p ) ≤ σp(B

n)1/qσq(B
n
∗ )

1/p

for every n.
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We conclude that

ρp(Ap[K]) ≤ ρp(Cp[K]) ≤ ρp(B[K])1/qρq(B∗[K])1/p .

Consequently, if ρp(Ap[K]) = ρp(B[K])1/qρq(B∗[K])1/p then Corollary 6.4
implies that ap(i, j) = cp(i, j) for λ× λ-almost every (i, j). Proposition 2.17
implies the proposed statement. �

In the last proposition, the condition B[K] p B∗[K]∗ p < ∞ may be re-
placed with B[K]∗ q B∗[K] q < ∞. Further conditions that imply unimodu-

larity of the subgroup 〈S[Ki,j ]S[Ki,j]
−1〉 can be obtained by transcribing (ii)

and (iii) of Proposition 2.17.

7. Transition operators with densities

In sections 7 and 8 we assume that G acts properly by isometries on the
co-compact, proper G-space X. Here, we also assume to have a continu-
ous decomposition dX =

∫
I
dXi

dλ(i) of the G-invariant measure on X, as
constructed in §4A. Furthermore, we assume that our transition operator K
on X has a density k(x, y) with respect to dX , that is,

Kf(x) =

∫
X

k(x, y)f(y) dXy ,

where k(·, ·) is measurable on X × X. In this case, the decomposition (4.4)
is immediate, namely, Ki,j is the transition operator whose density ki,j is the
restriction of k to Xi ×Xj. Also, the adjoint of K is the transition operator
with density k∗(x, y) = k(y, x), and the density of K∗

i,j is the corresponding
restriction of k∗, that is,

K∗
i,jf(x) =

∫
Xj

f(y)k(y, x) dXj
y , x ∈ Xi .

As in the preceding sections, we use a measurable, relatively compact
section {x̄i : i ∈ I} containing one point in each orbit. A transition operator
K on X×X, not necessarily having a density, is said to have bounded range,
if there is r > 0 such that supp

(
K(x, ·)

)
⊂ B̄(x, r) = {y ∈ X : d(y, x) ≤ r}

for every x ∈ X. In order to cover also the case of unbounded range, we
define

(7.1) Θ(r) = sup
{
Ki,j

(
x̄i, Xj \ B(x̄i, r)

)
: i, j ∈ I

}
.

We say that K has bounded tails if Θ(r) < ∞ for some r > 0, and uniform
decay if limr→∞ Θ(r) = 0.



Transition operators on co-compact G-spaces 779

In practice, the effort of proving bounded tails is more or less the same as
proving uniform decay. We next provide a sufficient condition on the space
X and the density k(·, ·) that implies uniform decay. Let us say that X is
δ-geodesic (δ > 0), if for all x, y ∈ X, the following holds.

(7.2)
If nδ ≤ d(x, y), where n ∈ N, then there is w ∈ X

such that d(x,w) = nδ and d(x,w) + d(w, y) = d(x, y).

By rescaling the metric, one may of course turn this into the case when
δ = 1. “Purely” geodesic metric spaces satisfy condition (7.2) for all δ > 0.
The definition also works for graphs, considered as discrete metric spaces
(on the vertex set).

(7.3) Proposition. If X is δ-geodesic and there are C, κ > 0 such that

k(x, y) ≤ C exp
(
−d(x, y)1+κ/C

)
then both K and K∗ have uniform decay.

Proof. As above, we choose a compact set B ⊂ X that intersects every
orbit, and let D = diam(B).

If i ∈ I, then we define the relative growth function of Xi (independent
of the choice of x ∈ Xi) as

Vi(r) =

∫
B(x,r)∩Xi

dXi
.

The term “relative” refers to the fact that this is the growth with respect to
the “outer” metric on Xi, i.e., the restriction of the metric on X. We claim
that there is C > 0 such that

(7.4) Vi(r) ≤ C eC r for all i ∈ I and all r ≥ 1.

Suppose that (7.4) holds. Note that Ki,j

(
x,Xj \B(x, r)

)
is the same for all

x ∈ Xi. Now let x ∈ Xi ∩B and y ∈ Xj ∩B. Then B(y, r−D) ⊂ B(x, r) ⊂
B(y, r + D). Set A(y, r) = B(y, r + 1) \ B(y, r). We get

Ki,j

(
x,Xj \ B(x, r)

)
≤ Ki,j

(
x,Xj \ B(y, r − D)

)
=

∞∑
n=0

Ki,j

(
x,Xj ∩ A(y, n + r − D)

)
.

For w ∈ A(y, n + r − D), we have d(x,w) ≥ n + r − 2D. Therefore the last
sum is

≤
∞∑

n=0

C exp
(
− 1

C
(n + r − 2D)1+κ

)(
Vj(n + r − D + 1) − Vj(n + r − D)

)
≤

∞∑
n=0

C2 exp
(
− 1

C
(n + r − 2D)1+κ + C (n + r − D + 1)

)
,

which tends to 0 as r → ∞.
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Thus, we are left with proving (7.4). We assume without loss of generality
that δ = 1. As above, let x ∈ Xi ∩ B and y ∈ Xj ∩ B. If g ∈ G is such
that gx ∈ B(x, r), then gy ∈ B(x, r + D) ⊂ B(y, r + 2D). Therefore by
Lemma 2.6

(7.5)

Vi(r) =
1

|Gx|

∫
G

1B(x,r)(gx) dGg ≤ 1

|Gx|

∫
G

1B(y,r+2D)(gy) dGg

=
|Gx|
|Gy|

Vj(r + 2D) ≤ M Vj(r + 2D) ,

where M = max{|Gx|/|Gy| : x, y ∈ B}.
For x ∈ X and r > 0, let V (x, r) =

∫
B(x,r)

dX , the growth function of X

at x. It depends only on the orbit of x, and we may suppose that x ∈ B.
Choose xi ∈ Xi ∩ B for each i. We have for all i, j ∈ I∫

B(x,r)∩Xj

dXj
≥
∫

B(xj ,r−D)∩Xj

dXj
≥ Vi(r − 3D)/M ,

whence

V (x, r) =

∫
I

∫
B(x,r)∩Xj

dXj
dλ(j) ≥ λ(I)

M
Vi(r − 3D) .

Next, let

N(x, r) = min
{
m : ∃ y1, . . . , ym with B̄(x, r) ⊂

⋃m
k=1B(yk, 1)

}
.

Clearly, N(gx, r) = N(x, r) for g ∈ G. Also note that V (x, r) ≤ V (y, r +D)
and N(x, r) ≤ N(y, r + D) for all x, y ∈ B.

Fix x and let y1, . . . , ym, m = N(x, r) be as in the above definition.
Since X is 1-geodesic, if w ∈ B̄(x, r + s) then there is v ∈ B̄(x, r) such that
w ∈ B̄(v, s), and there is yk such that w ∈ B̄(yk, s + 1). Consequently,

B̄(x, r + s) ⊂
m⋃

k=1

B̄(yk, s + 1) .

Therefore

N(x, r + s) ≤
N(x,r)∑
k=1

N(yk, s + 1) ≤ N(x, r)N(x, s + D + 1) .

This implies that N
(
x, n(D +1)

)
≤ N(x,D +1)n, whence N(x, r) ≤ C ′ eC′ r

for all r ≥ 1, where C ′ > 0. To conclude, we only need that

V (x, r) ≤
N(x,r)∑
k=1

V (yk, 1) ≤ V (x,D + 1)N(x, r) .

Regarding uniform decay of K∗, the proof is exactly the same, replacing
k(x, y) with k∗(x, y) = k(y, x). �
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(7.6) Remark. In (7.4) above, we have shown that X has at most expo-
nential growth. If X is δ-geodesic and has subexponential growth, that is,

lim sup
r→∞

V (x, r)1/r = 1 ,

then G has to be both amenable and unimodular.
To see this, one first verifies that for r sufficiently large, the set V = {g ∈

G : d(gx, x) ≤ r} is a compact neighbourhood of the identity that gener-
ates G. Next, the comparability of V (x, r) with Vi(r) that we have obtained
in the proof of Proposition 7.3 yields that the homogeneous G-space Xi has
subexponential growth. Now one can use the results of Guivarc’h [18, §I]. �

Using bounded tails, we can provide compactness criteria for the “re-
duced” transition operators on I. A function (on X, X × X, etc.) will be
called locally bounded, if it is bounded on every compact set.

(7.7) Lemma. If K and K∗ have bounded tails and if the density of K is
locally bounded, then b(·, ·) and b∗(·, ·) are bounded. In particular, B[K] p,
B∗[K]∗ p and Ap[K] p are all finite.

Proof. Let D = sup{d(x̄i, x̄j) : i, j ∈ I} < ∞, and let r be such that Θ(r) <
∞ . There is C is such that k(x̄i, y) < C for all i ∈ I and y ∈ B(x̄i, r + D).
Using (7.5) – which does not rely on (7.2) – we get

b(i, j) ≤ Θ(r) + Ki,j(x̄i, Xj ∩ B(x̄i, r)) ≤ Θ(r) + Ki,j(x̄i, Xj ∩ B(x̄j, r + D))

≤ Θ(r) + C Vj(r + D) ≤ Θ(r) + M C Vi0(r + 3D) ,

where i0 ∈ I is fixed. The “tail function” associated with K∗ is

Θ∗(r) = sup
i,j∈I

∫
Xi\B(x̄j)

k(y, x̄j) dXi
.

Hence, precisely as above, b∗(i, j) ≤ Θ∗(r) + M C Vi0(r + 3D).

Finally recall the inequality ap(i, j) ≤ b(i, j)1/qb∗(j, i)1/p from Proposi-
tion 2.17, showing that also ap(·, ·) is bounded. �

Jentzsch’s Theorem now implies the following.

(7.8) Corollary. If K is λ-irreducible, has bounded tails and locally
bounded density, and A is any one among the operators Σp[K], Ap[K], B[K]
and B∗[K], then A is a compact, positive operator on each of the spaces
Lp(I, λ) (1 < p < ∞). The spectral radius ρ(A) is independent of the one
among the latter spaces upon which A acts, the eigenspace has dimension
one, and there is a bounded eigenfunction which is strictly positive.
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(7.9) Remarks. (a) If the assumptions of Lemma 7.7 are replaced by the
stronger assumptions that K has uniform decay and continuous density, then
it is quite easy to show that b(·, ·) is continuous on I × I.

(b) If k(·, ·) is continuous, the conditions of Proposition 7.3 yield conti-
nuity of σp(·, ·) and ap(·, ·) as well as of b(·, ·) and b∗(·, ·). For proving this,
one can use the fact that |Gy|/|Gx| ≤ eC d(x,y) for suitable C > 0, if (7.2)
holds. To see this, assume without loss of generality that X is 1-geodesic.
If d(x, y) > 1 then take w ∈ X such that d(y, w) = 1 = d(x, y) − d(x,w).
Let g be such that gw ∈ B, where B ⊂ X is compact and intersects every
orbit. Then

|Gy|
|Gx|

=
|Gw|
|Gx|

|Ggy|
|Ggw|

≤ |Gw|
|Gx|

max

{
|Gy0 |
|Gx0 |

: x0 ∈ B , d(y0, x0) ≤ 1

}
.

(c) If all these kernels are continuous, then each of the the operators A in
Corollary 7.8 will also act on C(I), and its eigenfunctions are continuous. �

If the conditions of Lemma 7.7 are satisfied, we can apply Theorem 6.7.
Collecting all facts that we have accumulated so far, we obtain the following.

(7.10) Theorem. Suppose that

(i) X is proper, G acts properly by isometries, and I = G\X is compact,

(ii) the transition operator K is G-invariant, λ-irreducible, with density k(·, ·)
(iii) the density is locally bounded and both K and K∗ have bounded tails,
and

(iv) G is connected, or k(·, ·) > 0 on X, or S[Ki,j] generates G as a semigroup
for all i, j in a set of positive λ × λ-measure.

Then, for every p ∈ (1 , ∞),

ρp(K) ≤ ρp(Ap[K]) ≤ ρp(B[K])1/qρq(B∗[K])1/p .

The first inequality is an equality if and only if G is amenable, and the second
inequality is an equality if and only if G is unimodular. Furthermore,

σ2(K) ≤ σ2(A2[K]) ,

and if K K∗ is dX-irreducible then equality holds if and only if G is amenable.

If, in addition, K is symmetric, i.e., k(x, y) = k(y, x), and stochastic,
then

ρp(K) = 1 ⇐⇒ G is amenable and unimodular.

Proof. The two inequalities come from Theorem 5.3 and Proposition 5.5.

Regarding the “if and only if” in case of equalities, note the small gap
between the necessary and the sufficient conditions of Theorem 5.3.iv, resp.
Proposition 5.5.iii on one hand and Theorem 6.7, resp. Proposition 6.10 on
the other hand.
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When G is connected, the gap disappears because existence of the density
implies that the groups 〈S S−1〉 ⊂ 〈S〉 appearing in Theorem 5.3, as well as
λ× λ-almost all among the groups 〈S[Ki,j]S[K i,j]

−1〉 and 〈S[Ki,j ]S[Ki,j]
−1〉

that appear in Theorem 6.7 and Proposition 6.10, respectively, are open-
closed and non-empty and hence must coincide with the whole of G. (Recall
once more that the product of two subsets of G with positive Haar measure
contains a non-empty open set.)

If S[Ki,j] generates G as a semigroup then S[Ki,j]S[Ki,j ]
−1 contains an

open set. Therefore, the normal subgroup N(Ki,j) defined as in (3.1) is
open-closed and must have finite index in G by Woess [42]. This closes the
gap, as in the proof of Theorem 3.2.

The same works under the last of the conditions stated in (iv).

When k(·, ·) > 0 on X all the above supports coincide with G, and so do
the respective groups generated by them.

Finally, when K is stochastic, then so is B[K], whence ρp(B[K]) = 1.
In the symmetric case, the same holds for B∗[K]. �

In the symmetric case, we have of course σ2(K, dX) = ρ2(K, dX), so that
we also get σ2(K, dX) = 1 if and only if G is amenable and unimodular.

We remark that further variants or generalizations of the conditions
(i)-(iv) can be formulated. For example, the case when X is discrete and K
is irreducible has been completely settled by Saloff-Coste and Woess [34].

8. Applications and computations

From Theorem 7.10, we can now deduce as an immediate corollary one of the
main results of this paper, namely the extension to co-compact manifolds of
Theorems II and IV announced in the Introduction.

(8.1) Theorem. Let M be a complete, co-compact Riemannian manifold
and LM its (positive definite) Laplace-Beltrami operator.

Then the bottom of the L2-spectrum of LM is 0 (or equivalently, the
heat kernel on M decays sub-exponentially in time) if and only if some
(equivalently, every) closed, co-compact group of isometries of M is both
amenable and unimodular.

Proof. As in the proof of Corollary 3.5, dX ≡ dM is the volume element
of M, and we know from §4, resp. the Appendix, that it has a contin-
uous decomposition of the form (4.2). We work with the heat operator
K1(x, dy) = k1(x, y) dXy at time t = 1, which is stochastic with symmetric,
continuous density.
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A well-known long range estimate, says that for every ε > 0, there is
C = Cε > 0 such that

(8.2) kt(x, y) ≤ C exp
(
−d(x, y)2/(Ct)

)
for all x, y ∈ M , t ≥ ε ,

see Varopoulos [41] or Saloff-Coste [32, Thm. 5.2.10].
Also, M is of course geodesic. Therefore both K and K∗ decay uniformly

by Proposition 7.3, and Theorem 7.10 applies. �
Note that in the last theorem it is not necessary that G be a connected

Lie group; it may also be discrete (= zero-dimensional). Since discrete
groups are unimodular, Brooks’ theorem stated in the introduction follows
immediately.

(8.3) Corollary (Brooks [5]). Let M be the universal cover of the com-
pact Riemannian manifold M0. Then the bottom of the L2-spectrum of LM
is 0 if and only if the fundamental group of M0 is amenable.

An analogous result is valid for the Laplacian on simplicial complexes.
We briefly explain the setup, see the book by Eells and Fuglede [16].

(8.4.i) X is a d-dimensional simplicial complex, and each d-dimensional
simplex has an isometric embedding into Rd as a non-degenerate Euclidean
simplex. Every k-dimensional simplex (k < d) is contained in some d-
dimensional simplex.

(8.4.ii) The dual graph of X is connected, that is, the graph whose vertices
are the d-dimensional simplices, and two of them are neighbours if they have
a common face (= (d − 1)-dimensional simplex).

(8.4.iii) Bounded geometry: every vertex of X is contained in at most
M < ∞ different simplices (of dimension ≤ d). Inradius and outradius of
each d-dimensional simplex, viewed as embedded in Rd, are bounded below,
resp. above by a positive, resp. finite constant. (In our situation, this is a
consequence of co-compactness.)

(8.4.iv) The interior of each d-dimensional simplex is equipped with the
standard Lebesgue measure and differential structure of (its embedding
into) Rd. We extend this to a measure dX on the whole complex.

(8.4.v) There is a natural Laplacian L and associated heat kernel on X.
Let C∞

00(X) be the space of all compactly supported functions on X which are
infinitely differentiable in each d-dimensional simplex and such that along
the (d − 1)-dimensional interior of any face, the sum of the inward normal
derivatives with respect to all d-dimensional simplices containing that face
is 0. On C∞

00(X), the Laplacian is well defined, and via spectral and Dirichlet
form theory one can show that it extends to a self-adjoint operator.
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(8.4.vi) The heat kernel associated with L is continuous and has a Gaussian
long range estimate as in (8.2). The latter is proved along the same lines as
in the Riemannian case, see e.g. Saloff-Coste [32] and Sturm [39].

In the specific case of 2-dimensional complexes with non-positive curva-
ture, an analogous Brownian motion theory has been studied by Brin and
Kifer [4].

Since X is a geodesic, proper metric space, precisely the same proof as
that of Theoren 8.1 yields the following.

(8.5) Theorem. Let X be a co-compact d-dimensional simplicial com-
plex with properties (8.4.i–iv). Then the bottom of the L2-spectrum of
the Laplacian on X is 0 (or equivalently, the heat kernel on M decays
sub-exponentially in time) if and only if some (equivalently, every) closed,
co-compact group of isometries of X is both amenable and unimodular.

In the last theorem, note that X can also be viewed as a k-dimensional
complex, i.e., one can consider the Laplacian Lk on its k-skeleton, where
1 ≤ k ≤ d. If the statement of Theorem 8.5 holds for Lk for some k, then
it holds for all k ≤ d. Note the particular case d = 1, where we have the
Laplacian on a graph whose edges are considered as copies of some interval.
In all these cases, Salvatori’s Theorem III stated in the introduction implies
that the bottom of the spectrum of the Laplacian is 0 if and only if the 1-
skeleton of X, viewed as a discrete graph, has isoperimetric constant 0. We
also remark here that spectral properties of the one-dimensional Laplacian
on infinite graphs have been studied by Cattaneo [7]. Finally, we add that
Theorem 8.5 has obvious extensions to more general co-compact Riemannian
complexes of the type described by Eells and Fuglede [16].

We next give a result on more general spaces than manifolds or simplicial
complexes. Given r > 0, the averaging operator over r-balls, K = K(r), is
given as in Example 3.6 by

Kf(x) =
1

V (x, r)

∫
B(x,r)

f(x) dXx ,

where as above V (x, r) =
∫

B(x,r)
dX . Note that K is in general not symmetric

(unless V (·, r) is constant). Thus, we cannot make use of the last statement
in Theorem 7.10. Nevertheless, we can prove the following.

(8.6) Theorem. Suppose that X is δ-geodesic, G is a closed subgroup of
Iso(X) and that I = G\X is compact. Let K =K(r) be the averaging operator
over r-balls, where r > δ. Then, for every p ∈ (1 , ∞), we have ρp(K) ≤ 1 and

ρp(K) = 1 ⇐⇒ G is amenable and unimodular.

If X is a purely geodesic space then this is true for any r > 0. The same
holds for closed balls instead of open ones.
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Proof. The operator is G-invariant. It has bounded range and consequently
it has bounded tails. The function m(x) = V (x, r) is constant on each orbit,
and the density of K is k(x, y) = 1/m(x), if d(y, x) < r, and k(x, y) = 0,
otherwise. We claim that

M−1 ≤ m(x) ≤ M for all x ∈ X, where 0 < M < ∞.

It is clear that V (x, r) ≤ V (x̄i0, r +D) < ∞ for all x, where D = diam(I) as
above, and i0 ∈ I is fixed. For the lower bound, let B ⊂ X be compact such
that x̄i ∈ B for all i ∈ I. We can find y1, . . . , y� ∈ X such that the balls
B(yk, r/2) cover B. If x̄i ∈ B(yk, r/2) then V (x̄i, r) ≥ V (yk, r/2). Thus,
m(x) ≥ min{V (yk, r/2) : k = 1, . . . , �} for every x ∈ X. The latter number
is positive, since dX is supported by all of X.

Let k(m)(·, ·) denote the density of Km. It is clearly bounded above.
Also, k(m)(x, y) > 0 implies that d(y, x) < mr, so that Km has bounded
range.

We claim that d(x, y) < (m − 1)δ + r implies k(m)(x, y) > 0.
This is true for m = 1. Suppose it holds for m, and let d(x, y) < mδ + r.

If d(x, y) < (m−1)δ+r then by assumption, k(m)(x,w) > 0 for w ∈ B(y, ε),
where 0 < ε < r, and

k(m+1)(x, y) ≥
∫

B(y,ε)

k(m)(x,w)k(w, y) dXw > 0 .

If d(x, y) ≥ (m − 1)δ + r, which is > mδ, then we can find v ∈ X such
that d(x, v) = mδ and d(v, y) = d(x, y) − mδ < r. Thus, by the induction
hypothesis, k(m)(x,w) > 0 and k(w, y) in B(v, ε), where 0 < ε < r, and
k(m+1)(x, y) > 0 as above.

We now fix m such that r̄ = (m − 1)δ + r > δ + 2D. Then ρp(K) = 1
⇐⇒ ρp(K

m) = 1. Therefore we can work with Km in the place of K. It has
bounded density and bounded range.

Writing b(m)(i, j), b
(m)
∗ (i, j), a

(m)
p (i, j) and σ

(m)
p (i, j) for the densities of

the reduced operators on I associated with Km (we warn the reader that
these are not the same as the densities of B[K]m, etc. !), all these numbers
are > 0 on I × I, so that the reduced operators are all λ-irreducible and
compact.

We note immediately that not only ρp(B[Km]) = 1, since this operator
is stochastic, but also ρp(B∗[Km]) = 1, even though the adjoint of Km is
not necessarily stochastic: we have m(x)k(m)(x, y) = m(y)k(m)(y, x), i.e., Km

is reversible. Setting h(i) = m(x), where x ∈ Xi (a bounded function), we

find that b
(m)
∗ (i, j) = h(i)b(m)(i, j)/h(j). Consequently, B∗[Km]h = h, and

ρq(B∗[Km]) = 1 by the Theorem of Jentzsch.
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To conclude, we show that for a suitable choice of reference points x̄i,
i ∈ I, and for all i, j in a set of positive λ × λ-measure, the set

S[(Km)i,j] ⊃ {g ∈ G : d(gx̄j , x̄i) < r̄}
contains an open, symmetric, relatively compact neighbourhood of the iden-
tity in G that generates G.

Again, fix i∈ I and x̄i ∈Xi, let ε>0 and set V = {g ∈ G : d(gx̄i, x̄i)<r1},
where r1 = 2D + δ + ε. Let � ∈ N be such that D < �δ ≤ D + δ, and set
r0 = � δ − D.

We claim that for each n ∈ N, if g ∈ G and d(gx̄i, x̄i) ≤ nr0 then g ∈ V n.
This is true when nδ < r1, in particular when n ≤ 2� − 1. Suppose it holds
for n − 1, where nδ ≥ r1. Since X is δ-geodesic, there is y ∈ X such that

d(gx̄i, x̄i) = d(gx̄i, y) + d(y, x̄i) and d(gx̄i, y) = �δ .

Now there must be z ∈ Xi such that d(y, z) ≤ D. We get

d(x̄i, g
−1z) = d(gx̄i, z) ≤ �δ + D < r1 ,

so that there is h ∈ V such that g−1z = h−1x̄i. On the other hand,

d(x̄i, gh−1x̄i) = d(x̄i, z) ≤ d(x̄i, y) + D = d(gx̄i, x̄i) − r0 ≤ (n − 1)r0 .

By the induction hypothesis, gh−1 ∈ V n−1, and g ∈ V n.
In I with the factor space metric, we now consider the open ball U of ra-

dius ε = (r̄−δ−2D)/3 centred at i. We can choose the representatives of the
G-orbits in X such that x̄j ∈ B(x̄i, ε) for every j ∈ U . If j, j′ ∈ U and g ∈ V
then d(gx̄j′ , x̄j) < d(gx̄i, x̄i) + 2ε < r, which means that S[(Km)j,j′] ⊃ V
generates G as a semigroup for all (j, j′) ∈ U × U .

Our basic assumption that supp(dX) = X implies supp(λ) = I, whence
U × U has positive λ × λ-measure.

Thus, we can apply Theorem 7.10.

If X is purely geodesic then the above proof works for every δ > 0. �

The last theorem can be extended to more general “averaging opera-
tors”. Before concluding, we exhibit an example where Theorem 5.3 allows
computation of norms and spectral radii, when G is amenable.

(8.7) Example. Let T = Ts be the homogeneous tree with degree s + 1
(s ≥ 2), considered as a one-dimensional complex where each edge is a copy
of the unit interval with Lebesgue measure. We write V T for its vertex set.

As in Cartwright, Kaimanovich and Woess [6] and Saloff-Coste and
Woess [34], we choose a reference end ω of T and draw T in horocyclic
layers with respect to ω. We also choose a reference vertex o, its horocycle
is numbered H0, and we write h(x) = n if x ∈ Hn, n ∈ Z. See Figure 1.
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Figure 1

Thus, every vertex v ∈ V T has a unique predecessor v − 1 ∈ V T with
h(v − 1) = h(v)− 1, and is itself the predecessor of s vertices in Hh(v)+1. For
every point t ∈ T and every τ ≥ 0, we define t − τ as the unique point on
the geodesic ray from t to ω at distance τ from t in the obvious metric on T.
Thus, every t ∈ T can be written uniquely as t = v − α, where v ∈ V T

and 0 ≤ α < 1. If we define h(t) = h(v) − α, then h becomes a real valued
function on T with h(t−τ) = h(t)−τ for all t ∈ T and τ ≥ 0. The horocycles
in T are the sets Hκ = {t ∈ T : h(t) = κ}, where κ ∈ R.

Consider the group G = Aff(T) of all graph automorphisms (neigh-
bourhood preserving permutations of the vertex set) g which fix ω. It
acts transitively on V T, is amenable and non-unimodular. By defining
g(v − α) = gv − α, each g ∈ G extends naturally to the whole of T. The
factor space I = G\T is the circle with unit length, which we parametrize
as I = [0 , 1). The G-orbits are the sets

Tα =
⋃
n∈Z

Hn−α , α ∈ [0 , 1).

The obvious choice for the G-invariant measure dT on T is the one whose
restriction to each edge is a copy of Lebesgue measure on the unit interval,
i.e., for a function f : T → R,∫

T

f(t) dTt =
∑
v∈V T

∫ 1

0

f(v − α) dα .

We now look for a decomposition of dT according to (4.2). On T0 = V T, we
choose dT0 as the counting measure, and normalize left Haar measure on G
such that |Go| = 1. Then |Gv| = s−h(v) for every v ∈ V T, see e.g. Soardi and
Woess [38]. Note that Gv−α = Gv for each v ∈ V T and α ∈ I, but in order
to obtain a continuous decomposition of dT, we should normalize such that
|Gt| = s−h(t) for all t ∈ T.
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Thus, dTα is s−α times the counting measure on Tα, and dλ(α) = sα dα,
where (as above) dα is Lebesgue measure on I. That is,∫

T

f(t) dTt =

∫ 1

0

s−α
∑
v∈V T

f(v − α)︸ ︷︷ ︸∫
Tα

f(t) dTαt

dλ(α) .

As representatives of the orbits we choose the points t̄α = o − α, α ∈ I.
We now consider the averaging operator K = K(1) over balls of radius

r = 1. It is easy to compute the volume V (t, 1) = s + 1 of B(t, 1) for all
t ∈ T. (However, when r is not integer, then V (t̄α, r) depends on α.) Thus,
Kf(t) = 1

s+1

∫
B(t,1)

f dT. Since G is amenable, we can use Theorem 5.3 for

computing ρp(K), 1 < p < ∞. We calculate ap(α, β) for α, β ∈ I.
The general formula (for arbitrary radius r in the place of r = 1) is

ap(α, β) =
1

V (t̄α, r)

∑
n∈Z

s−β|B(t̄α, r) ∩ Hn−β| s−(n+α−β)/p ,

since |Gt|/|Gt̄α | = 1/sn+α−β for t ∈ Hn−β. If we conjugate the resulting
operator on I with respect to λ by the (bounded) function α �→ sα/p then
the spectral radius remains the same. The last operator is the transition
operator Ãp on I whose density with respect to Lebesgue measure (instead
of λ) is ãp(α, β) = sβ

(
sα/pap(α, β)s−β/p

)
. For r = 1, we compute with a little

combinatorial effort

(1 + s) ãp(α, β) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s1/q + s , 1 − β ≤ α < β ,

s1/q + 1 , α < β < 1 − α ,

s1/p + 1 , β < α < 1 − β ,

s1/p + s , 1 − α ≤ β < α .

Ãp is an integral operator with bounded density that is continuous on [0 , 1)×
[0 , 1) with exception of the diagonals β = α and β = 1 − α. Thus,
the “Perron-Frobenius” eigenfunction according to the Theorem of Jentzsch
must be bounded. That is, we look for a positive, bounded function h on I
such that ∫ 1

0

ãp(α, β)h(β) dβ = ρ · h(α) ∀α ,

and then we must have ρ = ρp(Ãp) = ρp(Ap, λ) = ρp(K, dT). If we set
H(α) =

∫ α

α0
h(β) dβ, then our integral equation transforms into the following
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two equations: for α ≤ 1/2,

ρ h(α) = a
(
H(α)−H(0)

)
+ b
(
H(1−α)−H(α)

)
+ c
(
H(1)−H(1−α)

)
ρ h(1−α) = a

(
H(α)−H(0)

)
+ d
(
H(1−α)−H(α)

)
+ c
(
H(1)−H(1−α)

)
,

where a = (s1/p + 1)/(s + 1), b = (s1/q + 1)/(s + 1), c = (s1/q + s)/(s + 1) and
d = (s1/p + s)/(s + 1). In particular, h must be continuous.

Setting Λ = (s+1)ρ, F (α) = H(α) and G(α) = H(1−α) for α ∈ [0 , 1/2],
we obtain a linear system of differential equations

ΛF ′(α) = (s1/p + 1)D + (s1/p − s1/q)F (α) − (s − 1)G(α) ,

ΛG′(α) = −(s1/p + 1)D + (s − 1)F (α) − (s1/p − s1/q)G(α)

subject to the boundary conditions F (1/2)=G(1/2) and s1/qG(0) − F (0)=D.
With � =

√
(s2/p − 1)(s2/q − 1)

/
Λ, we find the real solutions

F (α) = D/(s1/q − 1) + C(s − 1)ei�α + C̄(s − 1)e−i�α

G(α) = D/(s1/q − 1) + C
(
(s1/p − s1/q) − i

√
(s2/p − 1)(s2/q − 1)

)
ei�α

+ C̄
(
(s1/p − s1/q) + i

√
(s2/p − 1)(s2/q − 1)

)
e−i�α ,

where C is arbitrary complex and C̄ its conjugate. Inserting the two bound-
ary conditions, we get D = 0 and

� = �n = 2nπ + arctan

√
(s2/p − 1)(s2/q − 1)

s1/p + s1/q
, n ∈ Z .

Each �n leads to a real solution, and among the corresponding eigenvalues ρ,
the one when n = 0 is largest. This is the value that we are looking for:

ρp(K) =

√
(s2/p − 1)(s2/q − 1)

s + 1

/
arctan

√
(s2/p − 1)(s2/q − 1)

s1/p + s1/q
.

In particular,

ρ2(K) = σ2(K) =
s − 1

s + 1

/(
2 arctan

√
s − π/2

)
.

It may be useful to restate at this point the well-known analogous formulas
for the transition operator P of the simple random walk on the vertex set
of T,

ρp(P ) =
s1/p + s1/q

s + 1
, in particular ρ2(P ) =

2
√

s

s + 1
.

Similar computations can be undertaken when the radius of the ball is r �= 1,
but already for r = 1/2 this leads to a linear system of 4 differential equations
with non-constant coefficients. �
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Outlook. In a forthcoming paper, we shall explain in detail a variety of
further applications and examples. Here is a selection.

(a) Right convolution operators on a semi-simple Lie group NAK with finite
centre are left-invariant under the action of the amenable group NA. Thus,
the computation of norms and spectral radii can be reduced to those of (not
necessarily K-invariant) transition operators on the compact factor space
parametrized by K. The structure theory allows to extend such formulas
and the resulting bounds to connected, locally compact groups. In this
context, see also the recent paper by Chatterji, Pittet and Saloff-Coste [8].

(b) On graphs, seen as 1-dimensional complexes, we consider diffusions that
behave like Brownian motion with drift on each edge (≡ copy of the unit
interval). If we have an amenable group of automorphisms that acts tran-
sitively, like in Example 8.7, then we can perform explicit computations in
several cases, in particular, on homogeneous trees.

(c) Another interesting example combines Examples 3.6 and 8.7. This is
the “hyperbolic – tree”, or “treebolic” space appearing on page 421 in Farb
and Mosher [17], on which the solvable Baumslag-Solitar groups act co-
compactly, and generalizations thereof.

9. Appendix: decomposition results

In this appendix, we return to the situation of §4 and provide the details
regarding the construction, resp. decomposition of invariant measures and
transition operators that we have omitted there for the purpose of acceler-
ating the access to the main results.

A. Construction of invariant measures

In order to construct an invariant measure on X, we choose a normalizing
function f̄ ∈ C+

00(X) such that supp(f̄i) is non-empty, so that f̄i has positive,
finite integral with respect to dXi

for every i. The latter measure is unique
up to normalization, and we normalize it such that

(9.1)

∫
Xi

f̄i(x) dXi
x = 1 ∀ i ∈ I .

A typical choice for f̄ is a non-negative continuous function whose support is
a ball B(x, r) in X with r large enough such that B(x, r)∩Xi is non-empty
for each i. Recall from Lemma 2.6 that with the above normalization,

(9.2) |Gx| =

∫
G

f̄(gx) dGg for every x ∈ X .
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(9.3) Lemma. Let f ∈ C00(X).

(1) The mapping x �→
∫

G
f(gx) dGg is continuous on X.

(2) In particular, the function x �→ |Gx| is continuous on X.

(3) The function f �(i) =
∫

Xi
f(x) dXi

x is continuous on I.

Proof. Statement (1) is a straightforward exercise that uses properness of
the action of G on X. By (9.2), (2) arises as a special case of (1). State-
ment (3) also follows from Lemma 2.6, since x �→ 1

|Gx|
∫

G
f(gx) dGg is con-

tinuous on X and has constant value f �(i) on Xi. �

Next, an invariant measure on X is obtained by normalizing the measures
on Xi according to (9.1) and setting dX =

∫
I
dXi

dλ(i) as in (4.2), where λ
is a Borel measure supported on the whole of I.

We now ask the following natural question: starting with a G-invariant
measure dX on X and a normalizing function f̄ as in (9.1), is it always
possible to decompose dX countinuously in as in (4.2) ? That is, we are now
looking for a measure λ on I such that dX =

∫
I
dXi

dλ(i) .
Let π : X → I denote the natural projection. If h ∈ C(I) then (9.1)

and (4.2) imply that we should have

(9.4)

∫
I

h(i) dλ(i) =

∫
X

h
(
π(x)
)
f̄(x) dXx .

(9.5) Proposition. Suppose that dX is a G-invariant measure on X and
f̄ ∈ C+

00(X) is a normalizing function. Then there is a unique measure
λ = λf̄ on I, defined by (9.4), such that dX =

∫
I
dXi

dλ, where each dXi
is

normalized according to (9.1).

Proof. Given f̄ , we have the associated normalization of dXi
and measure

λf̄ on I. It follows from (9.4) that λc1f̄1+c2f̄2 = c1 · λf̄1 + c2 · λf̄2 for all
c1, c2 > 0. Also, λδg∗f̄ = λf̄ for every g ∈ G.

Set U = {f̄ > 0}. By assumption, the family of sets g U , g ∈ G, form an
open cover of X. By properness of X, there is a sequence gn, n ∈ N, in G
such that the sets gn U cover X, i.e., f̂ =

∑
n 2−nδgn ∗ f̄ > 0 on all of X.

Even though f̂ is not a “true” normalizing function, since it does not have
compact support, we can define λf̂ analogously and find that λf̄ = λf̂ .

Now, we define a finite measure ν on X by ν(B) =
∫

B
f̂(x) dXx. Its

projection onto I is λf̄ , that is, λf̄(A) = ν
(
π−1(A)

)
for A ∈ B(I). There-

fore, Dellacherie and Meyer [13, 70–72 on pp. 125–127] provide the existence
of a family of probability measures νi on Xi, such that i �→

∫
Xi

fi dνi is
measurable and∫

X

f(x) dν(x) =

∫
I

∫
Xi

fi(x) dνi(x) dλf̄ (i) for all f ∈ C(X).
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We define a (Radon) measure µi on Xi by dµi(x) =
(
1/f̂i(x)

)
dνi(x) and

claim that it is G-invariant. Indeed, for all g ∈ G, h ∈ C(I) and f ∈ C00(X),
since h

(
π(gx)

)
= h
(
π(x)
)
,∫

I

h(i)

∫
Xi

fi(gx) dµi(x) dλf̄ (i) =

∫
X

h
(
π(x)
)
f(gx) dXx

=

∫
X

h
(
π(x)
)
f(x) dXx =

∫
I

h(i)

∫
Xi

fi(x) dµi(x) dλf̄(i) .

Therefore,∫
Xi

fi(gx) dµi(x) =

∫
Xi

fi(x) dµi(x) for λf̄ -almost every i ∈ I .

A priori, the set of full λf̄ -measure where this last identity holds does de-
pend on f and g. But there is a standard procedure where one first starts
with suitable dense and countable families of functions f ∈ C00(X), resp.
elements g ∈ G, and then extends to all functions and group elements by
approximation. (This will be done in detail in a similar, but more compli-
cated situation in the proof of Theorem 9.8 below.) Therefore, for λf̄ -almost
every i, we have that µi = dXi

, and obviously
∫

Xi
f̄i dXi

= 1. �
We add the following simple observation.

(9.6) Lemma. Given the G-invariant measure dX on X, let f̄ , f̄ ′ ∈ C+
00(X)

be two normalizing functions. Then the measures λf̄ and λf̄ ′
, associated

with f̄ and f̄ ′ (respectively) according to (9.4), are mutually absolutely
continuous.

Proof. Since the function f̂ constructed in the above proof is continuous and
> 0 on X, there is ε > 0 such that ε f̄ ′ ≤ f̂ . Therefore ε λf̄ ′ ≤ λf̂ = λf̄ . �

Finally, the following lemma closes the circle and shows that our way of
constructing, resp. decomposing invariant measures on X is natural.

(9.7) Lemma. Suppose that we have a normalization of all dXi
, i ∈ I,

such that x �→ |Gx| is continuous, and let dX =
∫

I
dXi

dλ(i). Then there is

a normalizing function f̄ such that λ = λf̄ .

Proof. Let f̄0 be any normalizing function. By Lemma 9.3(1) and the
assumed continuity of x �→ |Gx|, also the function

h̄(x) =
1

|Gx|

∫
G

f̄0(gx) dGg

is continuous. Furthermore, it is constant on each orbit, i.e., h̄(gx) = h̄(x)
for every g ∈ G. Therefore, if we set f̄ = f̄0/h̄, then this is a normalizing
function, and applying Lemma 2.6(a) to an element of an orbit Xi, we find
that (9.1) holds. �
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Note, however, that the preceding results do not imply that any two G-
invariant measures that are supported by the whole of X must be mutually
absolutely continuous. (In (4.2), take different measures λ that are not
mutually absolutely continuous.)

B. Decomposition of transition operators

Let us now consider the G-invariant transition operator K. We suppose
to have dX =

∫
I
dXi

dλ(i) as in (4.2), and we want to have a decomposi-
tion (4.4) of K. We give a necessary and sufficient existence condition in
the case when K is finite. For x ∈ X, consider the measure λx on I which
is the image under π of K(x, ·). It is a finite measure by finiteness of K. If
A ∈ B(I) then π−1(A) =

⋃
j∈A Xj is invariant under every g ∈ G. From G-

invariance of K we see that λgx = λx, so that λx depends only on i = π(x),
and we write λi instead of λx.

(9.8) Theorem. Let K be finite. For the existence of a decomposition of
K as in (4.4), it is necessary and sufficient that for λ-almost every i ∈ I, the
measure λi is absolutely continuous with respect to λ.

Proof. Necessity is easy: suppose that we have (4.4). Let V ⊂ X be
such that

∫
X\V dX = 0 and (4.4.iii) holds for every x ∈ V . For i ∈ I, let

Vi = V ∩ Xi. Then
∫

Xi\Vi
dXi

= 0 on a set I0 ⊂ I with λ(I \ I0) = 0. For

i ∈ I0, set ϕ(i, j) = Kj(x,Xj), where x ∈ Xi. By (4.4.i), this is independent
of the choice of x ∈ Xi, and by (4.4.ii), it is a measurable function on I × I.
Let A ∈ B(I), and choose x ∈ Vi. Then (4.4.iii) yields

λi(A) = K
(
x, π−1(A)

)
=

∫
A

Kj(x,Xj) dλ(j) .

Therefore ϕ(i, j) is the density of λi with respect to λ.
Sufficiency needs more work. If we fix x ∈ X, then the theorem of

Dellacherie and Meyer [13] used in Proposition 9.5 above guarantees the ex-
istence of a decomposition satisfying (4.4.iii) for this given x, but (i) and (ii)
are not immediate from here. We have to extend carefully the method used
by Dellacherie and Meyer.

To start with, let H be a countable, dense subset of the space C(I) of
continuous functions on I with the max-norm. Next, let G0 be a countable,
dense subgroup of G, and finally, let C0 be a countable subset of C00(X) with
the following properties: (1) every f ∈ C00(X) can be approximated in the
sup-norm both from above and from below by functions in C0, (2) C0 is a
vector space over the rational numbers, (3) with any two functions, C0 also
contains their point-wise maximum and minimum, (4) if f ∈ C0 and g ∈ G0

then δg ∗ f ∈ C0, (5) if f ∈ C0 and h ∈ H then f · (h ◦ π) ∈ C0.
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First, let f ∈ C+
00(X) be arbitrary, and consider the measures λx,f on I

and Λf on X × I defined by

λx,f (A) =

∫
π−1(A)

f(y)K(x, dy) and Λf (B × A) =

∫
B

λx,f (A) dXx ,

where A ∈ B(I) , B ∈ B(X).
Then λx,f is absolutely continuous with respect to λ for dX -almost

every x. Consequently Λf is absolutely continuous with respect to dX × λ
and has a density ϕf (x, j) that is measurable on X × I. We extend Λf

and ϕf to arbitrary functions in C00(X) by setting Λf = Λf+ − Λf− and
ϕf = ϕf+ − ϕf−. Note that f �→ Λf is linear. Thus, if f1, f2 ∈ C00(X)
and a1, a2 ∈ R, then ϕa1f1+a2f2 = a1ϕf1 + a2ϕf2 almost surely (dX × λ).
Furthermore, if h ∈ C(I) and F ∈ C00(X × I), then∫

X×I

F (x, j) dΛf ·(h◦π)(x, j) =

∫
X

∫
I

F
(
x, π(y)

)
h
(
π(y)
)
K(x, dy) dXx

=

∫
X×I

F (x, j)h(j) dΛf (x, j) ,

whence ϕf ·(h◦π)(x, j) = h(j)ϕf(x, j) for dX × λ-almost every (x, j). Also, if
g ∈ G then λx,δg∗f = λg−1x,f since π−1(A) is G-invariant. Therefore

Λδg∗f (B × A) = Λf (g
−1B × A) ,

and ϕδg∗f(x, j) = ϕf(g
−1x, j) for dX × λ-almost every (x, j). We extend the

action of G to X × I by g(x, j) = (gx, j).
Combining all these facts, we can find a Borel subset U of X × I of full

measure such that

(9.9.a) gU = U for all g ∈ G0 ,

and, on the whole of U , for all h ∈ H, g ∈ G0, f, f1, f2 ∈ C0 and a1, a2 ∈ Q ,

(9.9.b) ϕδg∗f = δg ∗ ϕf

(9.9.c) ϕf ·(h◦π) = hϕf

(9.9.d) ϕa1f1+a2f2a1 = ϕf1 + a2ϕf2 and

(9.9.e) f ≥ 0 =⇒ ϕf ≥ 0 .

Fix (x, j) ∈ U . The map f �→ ϕf (x, j) is Q -linear and continuous with
respect to uniform convergence on C0 by properties (1)–(3) of the latter
space. Therefore it extends uniquely to a linear functional on C00(X). For
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arbitrary f ∈ C00(X), we write ϕf (x, j) for this extension, when (x, j) ∈ U ,
and set ϕf(x, j) = 0 when (x, j) ∈ (X × I) \ U . This is justified, because it
is a realization of the density of Λf with respect to dX ×λ. We remark that
the extension is given by

ϕf (x, j)=sup{ϕf ′(x, j) :f ′∈ C0, f ′ ≤ f} = inf{ϕf ′′(x, j) : f ′′ ∈ C0, f ′′ ≥ f} ,

and the supremum and infimum coincide by properties (1)–(3) of C0 (thus
guaranteeing additivity of the extension). Thus, we obtain a non-negative
functional f �→ ϕf(x, j) on C00(X) for every (x, j) ∈ X × I, and for every
g ∈ G, we have ϕδg∗f = δg∗ϕf . (A priori, by property (4) of C0 and by (9.9.b),
the last identity holds on G0. It extends to G because gn → g implies that
δgn ∗ f → δg ∗ f uniformly, when f ∈ C00(X).) Finally, using denseness of H
in C(I), we get that (4.4.c) holds for all f ∈ C00(X) and h ∈ C(I).

Therefore, for every (x, j) ∈ X × I, there is a Radon measure on X that
we denote by Kj(x, ·), such that

ϕf(x, j) =

∫
X

f(y) Kj(x, dy) for every f ∈ C00(X) .

This is the required transition operator Kj. By construction, (x, j) �→
Kjf(x) is measurable for every f ∈ C00(X), and Kj is G-invariant. Fur-
thermore, since by construction,∫

X

f(y)h
(
π(y)
)
Kj(x, dy) = h(j)

∫
X

f(y) Kj(x, dy)

for f ∈ C00(X) and h ∈ C(I), we have that the measure Kj(x, dy) is sup-
ported by Xj for every x ∈ X.

To conclude, let B ∈ B(X) and f ∈ C00(X). Then we get

Λf (B × I) =

∫
B

∫
I

ϕf (x, j) dλ(j) dXx =

∫
B

∫
I

Kjfj(x) dλ(j) dXx ,

where (recall) fj is the restriction of f to Xj. On the other hand, Λf (B×I) =∫
B

Kf(x) dXx. Since this holds for every B ∈ B(X), we get that

Kf(x) =

∫
I

Kjfj(x) dλ(j) for dX-almost every x ∈ X.

The “almost every” refers to a set Vf ⊂ X whose complement has dX-
measure 0. Starting as above with the countable set C0 of functions and
extending to all compactly supported functions by denseness, we find that
Vf may be replaced with a set of full measure that does not depend on f . �
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