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1 Introduction

Recent years have seen considerable developments in the theory of analysis on certain
fractal sets from both probabilistic and analytic viewpoints [1, 10, 19]. In this the-
ory, either a Dirichlet energy form or aftlision on the fractal is used to construct a
weak Laplacian with respect to an appropriate measure, and thereby to define smooth
functions. As a result the Laplacian eigenfunctions are well understood, but we have
little knowledge of other basic smooth functions except in the case where the fractal is
the Sierpinski Gasket [15, 5, 16]. At the same time the existence of a rich collection
of smooth functions is crucial to several aspects of classical analysis, where tools like
smooth partitions of unity, test functions and mollifications are frequently used. In this
work we give two proofs of the existence of smooth bump functions on fractals, one
taking the probabilistic and the other the analytic approach. The probabilistic result
(Theorem 2.1) is valid provided the fractal supports a heat operator with sub-Gaussian
bounds, as is known to be the case for many interesting examples [1, 2, 3] that include
non-post-critically finite (non-p.c.f.) fractals such as certain Sierpinski carpets. By
contrast the analytic method (Theorem 3.8) is applicable to self-similar p.c.f. fractals
with a regular harmonic structure and Dirichlet energy in the sense of Kigami [10].

For p.c.f. fractals we use our result on the existence of bump functions to prove
a Borel-type theorem, showing that there are compactly supported smooth functions
with prescribed jet at a junction point (Theorem 4.3). This gives a very general answer
to a question raised in [15, 5], and previously solved only for the Sierpinski Gasket
[16]. We remark, however, that even in this special case the results of [16] neither
contain nor are contained in the theorem proven here, as the functions in [16] do not
have compact support, while those here do not deal with the tangential derivatives at a
junction point.

Finally we apply our Borel theorem to the problem of partitioning smooth func-
tions. Multiplication does not generally preserve smoothness in the fractal setting [4],
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so the usual partition of unity method is not available. As a substitute for this clas-
sical tool we show that a smooth function can be partitioned into smooth pieces with
supports subordinate to a given open cover (Theorem 5.1).

Setting

Let X be a self-similar subset &Y (or more generally any complete metric space) in
the sense that there is a finite collection of contractive similamﬁf;ﬁ\‘:l of the space

andX is the unique compact set satisfyin@le(X). The setd;(X) are the 1-cells,
and for a wordw = (W, Wy, ..., Wn) of lengthm we defineF, = Fy, o--- o Fy,
and callF,(X) anm-cell. If wis an infinite word then we defina,, to be its length

m truncation and leFy(X) = NmFw;,,(X), which is clearly a point inX. The map
from infinite words toX is surjective but not injective, and the points of non-injectivity
play an important role in understanding the connectivity properties of the fractal (see
Section 1.6 of [10]). In particular there are critical points of the cover byrth@amely
thosex andy for which there arg # kin {1,..., N} such that;(x) = F(y) (SoF;(X)

is a critical value). We call an infinite wond critical if F,,(X) is a critical value, and
then callw post-critical if there isj € {1,..., N} such thatjw is critical. The boundary
0X of X consists of all point&(X) for whichWw is post-critical. In the case that the set
of post-critical words is finite the fractal is called post-critically finite (p.c.f.) and we
also use the notationg = X andVy, = UyFw(Vo), where the union is over all words
of lengthm. The points in Vi) \ Vo are calledjunction points We shall always
assume thav, contains at least two elements.

We suppose thaK comes equipped with a self-similar probability measure
meaning that there a8, . .., un such that the cell correspondingwo= (wx, . .., W)
has measurg(Fy(X)) = []}2; pw,- In order to do analysis oX we assume thaX
admits a Dirichlet forn€, so& is a closed quadratic form drf(u) with the (Markov)
property that ifu € dom(€) then so iu™= Uyo<1 + xus1 andE(D, 0) < E(u, u), where
Xxa is the characteristic function @& We will work only with self-similar Dirichlet
forms, having the property that

&U,v) = Z rol&(Uo Fy, Vo Fy) (1.1)

mwords w

where the factors; are called resistance renormalization factors and as ugual

lw, - - Tw,. FOr convenience we restrict to the case of regular harmonic structures, in

which 0< rj < 1forall j. In addition we assumg has the property th&(X)ndom()

is dense both in dorél) with &-norm and in the space of continuous functi@(¥)

with supremum norm. We often refer &as the energy. IK is a nested fractal in the

sense of Lindstrgm [13] then such a Dirichlet form may be constructed usilfigsidin

or a harmonic structure [12, 7, 18]. Other approaches may be found in [17, 11, 14, 9].
Using the energy and measure we produce a weak Laplacian by defigiriqu if

&(u,v) = —f fvdu for all v e dom(€) that vanish ordX. Then—A is a non-negative

self-adjoint operator oh?(u). WhenAu € C(X) we writeu € dom(A); this notation is

continued inductively to define dom) for eachk and then dom{®) = N, dom(AX).

We sayf is smooth iff € dom(A*~). On a p.c.f. fractal the weak Laplacian admits an



additional pointwise description in whiéhis a renormalized limit of energies;, cor-
responding to the finite graph approximatidfsand the Laplacian is a renormalized
limit of the associated graph Laplaciag. Details are in Section 3.7 of [10].

By standard results, existence of the Dirichlet f@nmplies existence of a strongly
continuous semigroufP;} with generator-A. Conversely if there is such a semigroup
and it is self-adjoint then there is a corresponding Dirichlet form, so we could equally
well begin with{P;} and construcE (see [6, 8]). The Markov property & ensures
thatifO<u< 1u-a.e. thenalso @ Piu< 1u-a.e.

If Xis p.c.f. then there is a definition of boundary normal derivatives of a function
in dom(A) and a Gauss-Green formula relating these to the integral of the Laplacian on
X. The usual definition uses resistance-renormalized limits of the terms of the graph
Laplacian that exist at the boundary point. glfis the boundary point oK that is
fixed by Fj andr; is the resistance factor correspondindg-tove may define a normal
derivatived, atqg; and have a Gauss-Green formula as in Section 3.7 of [10] by

Bou(@) = = lim 17 ™Amg (@) (1.2)

3 (UDBnu(e) - u(@)dnv(a)) = fx (VAU — UAV)dp (13)

geoX

where in (1.2) the quantitgmqu(q;) is the usual graph Laplacian with the terms that
are not defined aj; omitted. Normal derivatives may also be localized to cells, so that
OnFuoU(Fw(a)) is given by the limitin (1.2) but witlhy,wu(Fw(0)) omitting terms that
involve points outsidé-,,(X). It is then easy to see thatAfu exists and is continuous
on each of finitely many cells that meetRyj(q;), then it is continuous on their union
if and only if the following conditions holdu is continuousAu has a unique limit at
Fw(q), and the normal derivatives &ty(qg;) sum to zero. We call these timeatching
conditionsfor the Laplacian.

We shall have need of two other pieces of information about a p.c.f. fractal with
regular harmonic structure. The first is that there is a Green'’s fungfiary) > 0 that
is continuous ornX x X and has self-similar structure related to the discrete Greens
function®(x, y) on (V1 \ Vo). According to Section 3.5 of [10]

m-1
gxy) = lim > 3" B (R0, Fa') (1.4)

k=0 weW

whereW is the collection of words of lengtk but the sum is only over those such

that F,,}(x) andF;1(y) make sense. Integration against (the negative of) this Green’s
function gives the Green’s operat@rf(x) = —fg(x, y) f(y)du(y) and solvesAGf =

f with Dirichlet boundary conditions. In particular we will make use of pointwise
estimates ofy(x, y) that follow from (1.4). The second thing we need to know is an
estimate on the oscillation of a harmonic function on a EgliX), details of which are

in Section 3.2 and Appendix A of [10]. A harmonic functib(x) is determined by its
values on the boundaiy,, and its values may be computed using harmonic extension
matricesA; via hlr, v, = Aw, - - Aw, -hlv,. TheA; are positive definite, have eigenvalue

1 on the constant function and second eigenvalue at mdsfollows immediately that



the oscillation ofAih|Vy is at mostr; when the oscillation ofiy, is bounded by 1, and
similarly that the oscillation ofil,x) is at mostry,.

More details about analysis on self-similar p.c.f. fractals may be found in [10], or
[19] in the special case of the Sierpinski Gasket. The lecture notes of Barlow [1] cover
the probabilistic approach that begins with &wsion semigroup; non-p.c.f. examples
include Sierpinski carpets [2, 3]. Some of the general theory connecting Dirichlet
forms, heat semigroups and spectral theory of the Laplacian is covered in [6, 8].

Smooth bump functions

In classical analysis on Euclidean spaces the usual bump functions to consider are of
the formu € C* with support in a specified open €t bounds 0< u < 1 and the
propertyu = 1 on a specified compaét c Q. In the fractal setting described above
it is not usually the case that a product of smooth functions is itself smooth (see [4],
or Section 5 below), so there is less practical benefit to asking that our bump functions
be identically 1 onK and we will not always do so. Nor is it always essential that
0 < u < 1, though this is sometimes useful. For this reason we will use the term
smooth bump functiot® mean a functiom € dom@>) with support in a specified set
Q and a boundu — 1| < € on a specified compaét c Q.

SupposeX is a p.c.f. self-similar fractal and we have a functioa dom(A*) with
lu—1] < eonK c X and such thahku anda,A*u vanish onV, for all k. Then for any
wordw we see that

uoFyt  on the cellFy(X)
Uy =
0 elsewhere

is a smooth bump function with support i, (X) by the matching conditions for the
Laplacian. For this reason we also use the temooth bump functioto refer to
u € dom@A>) on X with |u — 1] < € on K and whichvanishes to infinite ordeat all
pointsq € Vo, by which last phrase we meau(q) = d,A u(q) = 0 for all k.

2 A smooth bump from the heat operator

In this section X, dist) is a metric space with measyre We require that there be a
self-adjoint Neumann Laplaciaf, and we make two assumptions An The first is
that it has a positive spectral gap, in the sense that thare i8 such that the spectrum
of A is contained if0} U [1, ). This implies the estimatiP; — I|l,» < min{at, 2},
where|| - |2 refers to the operator norm dar?, P; is the heat operator at tinteand|

is the identity. Secondly we assume that thudionY; associated ta satisfies the
sub-Gaussian bound

supPX(dist(Y;, X) > d} < 2% exp(—yz(f)l/w_l)). (2.1)
X te/p t
A stronger assumption would be thBf has a transition densitp(t, X, y) such that
(2.1) remains true when the left side is replaceddf x,y) for any x andy with
dist(x,y) < d. Heat kernel bounds of this type on fractals have been the subject of



a great deal of research; here we satisfy ourselves with noting that they are known
for many examples, including various p.c.f. fractals [12, 7, 18] and certain highly
symmetric generalized Sierpinski carpets (which are not p.c.f.) [2, 3]. They are also
valid on products of some fractals [20].

For convenience we also assume that our space has finite médstineugh it
will be clear in the proof that a weaker assumption woulffise. For example if we
consider only compadf in Theorem 2.1 it would be enough to know théts locally
compact angk is Radon.

Theorem 2.1. For any K ande > 0 there is a honnegative infinitely smooth function v
such that v= 1in K, and v= 0in K¢, where K is thee-neighborhood of K, and Kis
its complement.

When reading the proof it may be helpful to have the following heuristic in mind.
Our goal is a function with two properties, the first of which is smoothness and the
second is the property of beirgl onK and= 0 onK¢, which we call thecharacter-
istic property. Beginning with a characteristic functiofi= ya, whereK c Ag c K,
which has the characteristic property but is not smooth, we recursively apply a two step
method. The first step smoothegby applying the heat operator for a small tite
to obtainv; = Py U, which is smooth but does not have the characteristic property.
The second step replacesby a constani; on a neighborhood; of K and another
constanb; on a neighborhoo®, of K¢, then translates and rescales as stated in (2.6)
to obtain a functioru; which has the characteristic property but is again non-smooth.
What we have gained in passing framto u; is replacing the original abrupt drop of
the characteristic function with the improved piece betw&egandB,, as illustrated on
Figure 1. This argument is repeated inductively, each time applying the heat kernel for
a shorter time; to getv; = Py, uj_; and then cutting; off above at heigha; on a neigh-
borhoodA; with K ¢ Aj ¢ Aj_; and below at heighh; on B; with K¢ c B; c Bj_;
to getu;. Once we know that; — 1 andbj — 0 it is unsurprising that this process
converges (say ih?). What is perhaps unexpected is that the result is smooth, and
this is where the sub-Gaussian estimate (2.1) is crucial. Essentially what is going on
is that the “steepness” of the¢ ¢ 1)-th interpolant depends both on the height it must
interpolate and the “width scale” on which it interpolates. The “width scale” depends
on tj,1 through the norrnIA"PtHlIIz,z < tj*fl for the “steepness” measured hY, but
the height to be interpolated depends instead on how rycthanged the function
during the smoothing step, and this quantity is exponentially smajlby (2.1). The
fact that the “steepness” measuredAlyis of sizet.‘fl(aj + bj) is shown in Lemma
2.5, while Lemma 2.2 is where we exploit the sub-Gaussian estimate (2.1) to choose

times{t;} such that §; + b,-)t].‘fl is summable. Lemmas 2.3 and 2.4 are the necessary

substeps showinb? convergence; as expected they do not require the full strength of
the conclusions of Lemma 2.2.

Proof. Let Aj = K-i+ip andB; = K wherejo will be chosen later. Induc-

c
e(1-2-(i+io))?
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Figure 1: Initial steps of the bump construction

tively define smoothed functiong and cut-df versionsu; of thev; as follows.

Uo = XA, (2.2)

Vj = Ptju,-_l (23)

aj=1- iQf Uj-1 (2.4)

i

bj = Supv; (2.5)
i
1 iij(X)Zl—aj

() =1 b <vi( <1-g (2.6)

0 if Vj(X) < bj

whereyp, is the characteristic function d%. We see from Lemma 2.2 that a good
choice ofjo ensures; + b; < $ so that (2.6) is well defined. It is clear that0u; < 1
with u; = 1 onA;j andu; = 0 on B;. Moreover Lemma 2.4 shows andv; converge
to the same limiv in L2, and from Lemma 2.5 we see that for e&ch 0 the sequence
{Aij} is L? Cauchy. It follows thav is smooth and non-negative, and that 1 onK
andv = 0 onK¢, so the theorem follows. |

Lemma 2.2. There is § and a decreasing sequence of times t% with the property
thata +bj < 3 forall j > 1, thaty7t; = T < oo, and for all k> O we have

00

Z t7%(aj + b)) = C(K) < co.

1

Proof. Observe that ifx € Aj thenuj_; = 1 in a ball of radiuse2-0*1) aroundx.
Similarly if y € B;j thenuj_; = 0 in a ball of radius2-0*o aroundy. It follows from



this, the assumption (2.1), andOu;_; < 1 that
aj < supl1-v(x)|
XEA]

< supPX{dist(Y;,, x) > €2~ (+lo)}

XEA]

Y1 e2-(i+io) \ 1/(8-1)
< t‘?‘_/ﬁ exp(—yz( tj ) )
I

and the same bound is valid fby by the same method. It is then easy to find superex-
ponentially decaying; that have the required properties, for exantpte (j+ jo) U+,
ortj = 27(+9” poth work once we choosj so large that; < 2 anda; + b; < 1 for

j>1 i
Lemma 2.3. |||, < 22°OM1/2,

Proof. Fort > 0 the heat operatd?, is anL? contraction, SAVji1llz = 1Py, Ujll2 <
llujll2. Recognizing thati; can be written as

uj = maxX0, min{(1 — &), v} — b;}

1—aj—bj

we see immediately thiit;ll, < (1-a; - b,-)*1||vj||, whence

j 00
Vjeallz < fluollz | [(L-a =b)™ < MY ex2In2) (& + b)) = 22°OM*?
=1 1

i
Lemma 2.4. [lv; — ujll2 < 3MY2(a; + b)).
Proof. Compute
Vj — bj 2
||v-—u-||2:f |v-|2+f |1—v-|2+f o Y
J 12 vj<b; . vj21-g; . bj<vj<1-a; 1-aj-b J'
1 2
2 2
< Mb] + MaJ + m f((aj + bj)vj - bj)
M(aj + bj)?
<Mb?+ Ma? + —— 17
' P (1-aj-by?
< 5M(aj + bj)2
i

Lemma 2.5. For each k> 0 the sequenci\v;} is L2-Cauchy.



Proof. Using that the heat operator commutes wittas well as the estimaaPy||,» <
ot from the spectral representati®p= |~ e dEx(x) we find
N INCRTRR
< [[A Py, U = ), + APy .avi = i),
k
< HA Ptj+1 ”2
12~ +K (4. . : Ky/.
<3M cktjﬂ(aJ +bj) + AtjallAvill2 (2.7)

2,2”“1' - VJH2 + ||(Ptj+1 — 1Ak,

where in the final step we used the bound from Lemma 2.4, the spectral gap assumption
that||P; — 1]l < mint, 2 and the fact that atj < 2. Then

||Aij+1||2 < 3M1/2th]2|:1(aj +b)+ 1+ /ltj+1)||Aij||2

and by induction and Lemma 2.2

1A%V alla < MY 20 )" (65 (@ + b) [ [(1+ atj,1)) < 3MY2cC()el”
1=0 m=l

Upon substitution into (2.7) we find

||Ak(Vj+1 - Vj)“2 < 3M1/chtj‘fl(aj +bj) + 3M1/ZCkC(k)eﬂT/ltj+1

which is summable by Lemma 2.2. |

3 A smooth bump as a fixed point of an operator

To understand why it is sometimes possible to construct a smooth bump function on
a self-similar set as a fixed point of an operator, we invite the reader to consider an
elementary situation. Lét= [0, 1] be the unit interval irR. We may viewl as a p.c.f.
self-similar set under the contractiofis= x/2 andf; = (x+ 1)/2. If u is Lebesgue
measure and is defined using a limit of a regular self-similar harmonic structures
with resistance factors/2 then we obtain the usual Dirichlet energy and Laplacian,
and the normal derivatives are the outward-directed one-sided derivatives at 0 and 1
(see [10, 19] for details).

The intuition for our construction is as follows. Consider a symmetric smooth bump
functionu on the interval = [0, 1], for whichu= 1 on [L, 1- L] as shown in Figure 2.
If we look at the graph oAu = d?u/dx? we obtain something that looks like a constant
multiple of Figure 3, which appears as if it could be assembled from rescaled copies of
u according to a rule like

u(%) ifo<x<}
—u(zf‘—l) if 5<x<L
du=10 ifL<x<1-L (3.2)

x

—u(z—L‘2+2) ifl-L<x<1-%
2241)  ifl-L<x<1

c



L 1-L 1

Figure 2: The smooth bump functian

so that we might hope there is actually a smooth bump functiwhich has precisely
this scaling behavior. If we léb denote the Green’s operator for the operatan |
with Dirichlet boundary conditions, then this would be equivalent to askingutbata
fixed point of the operator

_ Godu(x)
) = 5o (3.2)
It is a consequence of our general result Theorem 3.8 that the op@raidB.2) has
11
L 1-L
0 8
-1

Figure 3: The functiomu = d?u/dx? = ®(u).

a fixed point and that the fixed point is a smooth bump function. In fact more is true
in the special case of where the fact that removing any interior point disconnects the
set, along with the existence of an explicit formula for the Green’s function, allows us
to prove that the fixed point has values in1pand is identically 1 onl],1 - L]. For
reasons of brevity we do not include the proof of this result; it is a simpler version of
the proof of Theorem 3.8.

Proposition 3.1. If L is syficiently small then the operatd? preserves the space
of continuous functions on | that have values[y1], vanish atO and 1, and are
identically1 on[L,1 - L]. FurthermoreV is a contraction in the £ norm on these
functions, and its fixed point is a smooth function that vanishes to infinite order at
and 1.

Another example in which we can define operatband¥ that are similar to (3.1)
and (3.2) is the Sierpinski gasketGwith its standard harmonic structure and measure,



where for sificiently largel we can set

2u(F () if xe F!*Y(sQ
du(X) = 1 -U(F;* o (X))  if xe FloFj(SQ), j #i (3.3)
0 otherwise

and withp any vertex fromv; let

_ Godu(x)

" Godu(p) (34)

as illustrated in Figure 4 for the cabe- 2. Again we omit the variant of the proof of

2u

Figure 4:®uin the casé = 2.

Theorem 3.8 that establishes the following result

Proposition 3.2. The operator¥ of (3.4) is an L*-contractive self-map of the set
of functions that are continuous on SG, vanish at the boundary, are identicalty
SG\ UiF!, and satisfyf [ u— 1| < 1. The fixed point of’ is a smooth bump function.

The method described férandS Grely heavily on the symmetry of these sets and
on the assumption that they are endowed with the symmetrical harmonic structures and
measure. This assumption is unavoidable if we want to use the same opédratton
all steps of the computation, as the natural linear combination of rescaled copies of
the function will not otherwise have the desired properties, but it is very restrictive.
Even some of the simplest of the nested fractals defined by Lindstrgm [13] have insuf-
ficient symmetry for a fixed to be used in the construction of a smooth bump by this
method. Nonetheless the method can be adapted to general p.c.f. self-similar fractals
with regular harmonic structure and self-similar measure.

Let X be p.c.f. self-similar with boundary, = 90X, measure: that is self-similar
with scaling factorg:; and regular harmonic structure with factors We fix a scale

10



I, with size to be determined later, and label the boundamells byY; = F'jl(x).
Their union isY = UY;. For anye > 0 we will build a smooth function that satisfies
lu—-1] < eonX\ Y by a construction that inductively determines its Laplacian on the
cellsY;, writing it as a fixed point of an operattf on the following space of functions.

Definition 3.3. LetC be the space of continuous functions u on X such tf@t+ 0
for g € X and|lu - 1Jl; < 3. Note that this space is non-empty and closed in the
continuous functions with supremum norm.

To define the operatd¥ we need a little more notation. L8tc V,, consist of those
points that lie in som&; and in at least one othér-cell. If 1, is suficiently large then
no two of theY; can intersect; we assume this and see that the connected components
of X\ S are the cellsy; (less points ofS) and the seX \ Y. Label those boundary
points of the celly; at whichY; intersects anothéy cell by x ; fori = 1,...,1;. Fixing
a second scale, also with size to be determined, we associate to eggcthe unique
(I + I2)-cell in Y; containingx; j, calling it Z ;. We also seZo; = F{'**(X), so it is
the (1 + I2)-cell in Y; that containsy; € Vo, and definew; ; to be the word such that
Fi.j(X) = Fw,(X) = Z;. Figure 5 illustrates our labelling conventions in the case
X =SG Iy =2andl; = 1. We identify a particular function that is & whenl; is

O3

ql le 1 X1’2 q2

Figure 5: NotationiX =SG |; = 2 andl, = 1.

large enough. Let be the piecewise harmonic function drwith valuesf(x;;) = 1
fori=1,...,Ijandj =1,...,Nbutf(xg;) = Oforall j. Itis clear thatf is continuous,
identically 1 onX \ Y and harmonic on each of the s#&fs It fails to be harmonic only
at the pointsq ; with i > 1, and we readily compute that the Laplaciarf & a measure
supported at these points. In factjfdenotes the Dirac massathen

1
J

N N |
Af = Zzati% = —ZZc’f’an(Xa,j)éxLj (3.5)
=1

-1 =1 i=1

11



from which we also find that there is a const&ft), depending on the harmonic struc-
ture but not on the scales or locations, so thgt < C(r)rj"l.

The smooth bump function we seek will actually be a perturbatiah cbnstructed
by iteratively replacing the Dirac masses in (3.5) by rescaled copies of thekdiage,
correcting for the boundary normal derivatives, and applying the Dirichlet Green’s op-
erator to obtain the stade+ 1 bump. We will see that each stage gains one order of
smoothness, so the limiting function will be in do®{). Our first step is to estimate
the dfect of a perturbation of the type described.

Lemma 3.4. Foreach j=1,...,Nandi=1,...,1; lety; be a finite, signed Borel
measure with support ini£ If we use the cggcients in(3.5) to define

l:
J

N
V= Z & Vi
e

j i=1

and let u= G(v) be the result of applying the Dirichlet Green’s operator, then

lu()| < C(r)N?supljvi jl| forall x € X (3.6)
N

wherellv; ;|| is the total variation o ;. If in addition we havefvi,j =0foralliand j
then

N
U] < C(r)N(sqpnvi,ju)(Z r';) forall x € X\ Y (3.7)
L] k=1

Proof. Recall thatG may be represented as integration against the continuous kernel
—g(x,y), with sign chosen sg(x,y) > 0. The estimates we desire follow from (1.4)
and the fact thafg; ;| < C(r)rj"l. The former ensures both thigtx, y)| < C(r)r'j1 on
eachy; and that the oscillation af(x,y) onZ  is at mostC(r)ry, ;. We compute

i = | fx g0xy)any)

N 1
=D IPICN IV

=1 i=1

N |
<0200 [ el o)

=1 i=1
< C(r)N? sup]lvi jli
L

which establishes the first inequality. To obtain the second we observauhka0 on
X\Y, so by the maximum principle we need only verify the inequality at the pajnts
Fix such a poink; j, and use that eaCﬁdVi,j = 0 to subtract the appropriate constant

12



from each integrand before estimating:

() = f .- )v0)|

= iajf 9(%jr» y)dvlj(y)'

=1 i=1

I
J

Mz

ai,jfz (g(xi',j'sy)_g(xi',j',xi,j))dvi,j()’)‘
i,

=1 i=1

Il

LI f C(F) oy, |
N

)ZZrLﬁi,Dnvi,,—u

J: i=1

Mz

H

because,,; = r'lr|2 for somek = k(i, j). Eachk(i, j) occurs at most once for a fixgd
S0 we obtain

N N

N
(%)l < C(r)( supl| (Z > r'ﬁ) < C(ON( Supli, 1”)(2 rk)

j=1 k=1 k=1
O

There is an analogous but simpler estimate for tfieceé of introducing a mass
supported on one of the small celfl; at the boundary. I is a finite, signed
Borel measure with support iy ; we use (1.4) to selg(x,y)| < C(r)r'j1+|2 onZy; and
therefore

B0l = | [ totxyiaivo 0 = o, 38)

The ideas discussed so far allow us to generalize the definition of the opé&rator
(3.2) and (3.4). The idea is that to replace the Dirac mass terms on the boundary cells
Z; ; in (3.5) with normalized rescaled copieswé C and apply the Green’s operator to
obtain a function that is near 1 of\\ Y. By adding some terms on the cellg; we can
make the result have vanishing normal derivatives at the boundary without changing
the value orX \ Y very much. In consequence we will obtain an operator that smooths
u € C to be inC n dom() with vanishing normal derivatives and is near 1R Y.
Iterating the operator will then produce a sequence of smoother and smoother bump
functions.

Let

ui,;(x)z{g(Zi'j)_l(fXUdy) (boFifo) ez (3.9)

otherwise

so that eachy; j is continuous and has integral 1. Singes C we also have that

Sl < (fu) Tl < 3.
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Definition 3.5. The operatoi¥ onC is Yu = G(v), where

N
vO) = > > (%) (3.10)

j=1 i=0
and G is the Dirichlet Green’s operator. In this expression thefiments for i> 1 are
given by bj = r'jla;,,- with g j as in(3.5), but the B ; are yet to be determined.

Note that|b; ;| < C(r) wheni > 1. Itis immediate thaG(v) = 0 ondX and is
continuous. MoreoveAG(v) = Vvis a linear combination of continuous functions, so
Yu € dom(). The next lemma uses the Gauss-Green formula to reduce finding the
correcthy j to a problem in linear algebra.

Lemma 3.6. If I, and b are syficiently large then there are valueg psuch that
dpPu = 0 ondX. The minimal sizes of hnd b depend only on the harmonic structure
of X and the number of vertices N #X.

Proof. Let h; be the function that is harmonic ofi equal to 1 atj; and O at all other
points ofdX. UsingAG(v) = v, G(v) = 0 ondX, and the Gauss-Green formula

f hj(Y)V(Y)du(y) = f hj (Y)AG(V)(y)du(y)
= > hi(@d(@GV)(aK)

qedX

= (0nG(V)(q))

from whichd,G(v) = 0 ondX is simply
0= [ o)) = ¥ brsr [ i 01y
iy

forall j =1,...,N. Moving the terms depending on the fixed valleg fori’ > 1
this may be reformulated as

Ny
Zbo,yf?“f hi(uoy M)du(y) = = > > by pry f hi)ur (du(y)  (3.11)
i i=1i=1

which we recognize as a matrix equatign M(u); r].‘,'lbo,j/ = A(u); with

(M(udk), | = f hy()to  (Y)du(y) (3.12)
Ny

(Ad); == 3" bt [ ) )cko) (3.13)
=

It is clear that we need to knoM = M(udu) is invertible, but rather than prove this
directly we do so by proving a perturbation estimate similar to Lemma 3.4 that will

14



be useful later. To this end consider replacing each of the measyiyélg in (3.12)

with a copy of a diferent probability measurdo scaled and translated to gider j
supported ory; ;. We call the resulM(do). The diterence of these measures has
mass zero, SO we can compute an estimate involving the total variation of the measures

M~ do)| = | [ 1)t ()3) — o )

<

fmm—mwwwwmwm—wwm)
< C(NrE2|ludy - dor (3.14)

becauseh; is harmonic and therefore varies by at m(i:%t)r'j?“|2 on eachZgyj. In
particular if the measuredo, j are Dirac masses at the pointg; then M(do) is
simply the identity, so (3.14) implies
(1 = M)y < Cryris®

from which M is invertible wherl; + 1, is large, withl|l — M=% < C(N,r) 3 r'**.

A similar perturbation argument can be madeA¢du — do), WhereA(dA is ob-
tained by replacing eaaly jdu by doy j in (3.13). Estimating the integral terms and
using the boundby j| < C(r) we obtain

|A(udu - dor)j| < C(N,T) (Z ) ludy: — dorl (3.15)

however this is not the most useful thing we can do here. Instead we recognize that the
boundsh;(y) - 1| < C(r)r'jl onY;j andlh;j(y)l < r'jl, onYj for j # j ensure

lj
‘A(udy)j + > bu | < C(NT)
=1

so that combining this with our bound dr- M~ we have

lj
‘bo,j - b
i=1

If we examine the functiorf in (3.5) it is clear that the normal derivative at each
point Xg j is Zi'j:l bi,;, so our choice obg; is a small perturbation of that which would
be used to cancel the normal derivativesfof We also remark that this shows all
lboj| < C(N,r). i

< C(N,nr} (3.16)

If 1, andl; are large enough then the valugg from Lemma 3.6 may be used to
complete Definition 3.5 for the operatd¥t. Some key properties of this operator are
summarized in the following lemma.
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Lemma 3.7. If I, and b are syficiently large then¥(u) € C n dom(A) and
[eull,, < Ca (3.17)

N
[Wu@) - 1| <C Y r'2 forally e X\ Y (3.18)
=1
where G, C, and the minimal sizes of bnd L, are constants depending only on the
harmonic structure of X, the measurend the number of vertices N &#X.

Proof. Since

N | N
lI’(U) = G(Z Z ai Ui+ Z bo,jrj_IIUo’j)
=1 i=1 i=1
we obtain (3.17) from (3.6) and (3.8), and the fact thgt| < C(N,r) for all j. The
estimate (3.18) is only a little morefficult. Usingf(x) = 1 and (3.5) on the sét\ Y
we see that

[Pu(x) — 1| = [Pu(x) - F(X)|

e

G(Z > bi,,-rj*'lui,j) - G(ZN: > aa,jaxh,)

i=1 -0 =
N N
< G(Z ai,j(Ui,jd/l - 6Xi_j)) + Z|b0,jrj_llG(Uo,jdu)|
=1 i-1 =
N N
< C(N, I') SuFﬂU”d/J - 5)(” ”(Z rLZ) + C(N’ r)( rIJZ)”uOJd/J”
bl k=1 =1
N
<C(N, ”(Z rlf) (3.19)

j=1
where the estimate for th® ; terms came from (3.8) and that for thg terms is from
(3.7) becausd u; jdu = 1 = [ 6y, and both are supported @;.
Finally we check thaff¥u — 1|, < . Using the results we have so far

N

Pu—1jj; < fx\v C(N, r)(z I’ljz)d,u + fY(l + Cy)du

=1

N
<C(N, r)( r']?) + L+ Cou(Y) (3.20)
=1
so that we can be suiu € C if both I; andl, are stficiently large, becausgY) — 0
asl; — oo. It has already been observed thiat dom() andu = 0 ondX, so the

lemma is proven. O

Finally we come to the main result of this section. The following theorem imple-
ments the idea that motivated our definitiontgfnamely that? smoothes functions in
C and therefore its recursive application gives a bump function in def(
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Theorem 3.8. Givene > Othere are | and b syficiently large that¥ has a fixed point
Up in C with Ju— 1] < e on X\ Y. The fixed point is a smooth bump function and every
U € C has||¥*u - ug|lc — 0as k— co.

Proof. Letu, i € C. We calculatePu — Wi = G(v — V), wherev andvare as in (3.10).
Beginning with a variant of the computation (3.19) we have

I N

N
|G(V— V)(X)| < (Z Z g J(U| i~ G J)) ‘ Z (bOJUOJ BO,jUO,j))

=1 i=1 -1

N
= G(Z aj(uij - ai,j)) + Z 1} "1Bo,1|G(Uo j — o )|

=1 i=1 j=1
N

+ Zr 1o, — Bo,{IG(Uo ) (X) (3.21)
i=

which suggests we will need to know estimates for bmm € Gi;) and|bgj — Bo,j|.
Conveniently we can reduce the latter to the former using (3.14) and (3.15), because
boj andbol are computed from equations of the fopi M(udu);, .boJ roh = = A(udu);.

We easily see that

(o, — bo,j) = (M(udu) ™" A(udu — tidu) ) + (M(udu) " M(Tidu — udu)(r; " bo))

however by (3.14) we have bottM(udu — Gdu)ll < C(N,r)llu — @l 3 ri**"? and that
Il = M~Y(udu)ll < C(N,n)lully ¥ ri'“'z, while (3.15) gives us thalA(udu — Tidu)|| <

C(N, 1) > r:2||u —{ll1. In both cases we have used that the total variatiam of G; j is

bounded bylu; ; — T jll; and that writinguy = fx u we can calculate

f|ui,j il = ﬂu;lu(x) - axa(x)' < OM(1+ |u|xu;(1)f|u — 0 < 8lu—1lx
X

The conclusion is then tha}”lbol - bo,| < C(N,Nllu—=1ll1 X g r'e. Substituting this
into (3.21) and using (3.7) and (3.8) we find thatXR Y

N

IG(v—9)(¥)| < C(N,r)(z )supﬂu.,dy | + CON (Y lu — il

i=1

< C(N.D( D 17)llu Bl

because the total variatidio; jdu—i; ;dull was already computed to be at mojg-8i|;.
On the rest ofX we must use (3.6) instead of (3.7). The weaker estimate is easily
computed to be

|G(v = D)(®)| < C(N, 1)lju - Tillx (3.22)
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From our estimates dB(v — ¥) = Yu — ¥{i we see tha¥ is a contraction om.* if
I; andl, are stficiently large, because

[[eu = ], < £\ VSN, DD 1)l = Tl + u(Y)C(N, nllu = Gl

< C(N n)(u() + > r#)u-f,

J

It follows readily that¥ has a unique fixed point i and¥ku converges to this fixed
point in L. From (3.22) this convergence is uniform, and we notice that the correct
choice ofl, providesjup — 1| = [¥up — 1| < e on X\ Y by (3.18).

It remains only to see that is a smooth bump function oX. Inductively suppose
¥ku € dom(A¥) and bothA!¥ku = 0 ongX for 0 < j < k andd,Al¥P<u = 0 on X for
0 < j < k—-1. This is certainly true fok = 0. By constructionA¥**'u is a linear
combination of rescaled copies ¥¥u that have been extended by zero as in (3.9).
Each of these functions is in dont() by the matching conditions for the Laplacian,
so we conclude that**u € dom@k). It is immediate that/¥**1u = 0 onaX for
1<j<k+1ando,Al¥ktu = 0ondX for 1 < j < k. By Lemma 3.7 we know also
that ¥*+1u and 9, ¥¥*1u vanish ondX, which closes the induction and establishes that
Up € dom(A*) and vanishes to infinite order @X. ]

4 A Borel theorem on p.c.f. fractals

The classical Borel theorem tells us that given any neighborhoog efR and any
prescribed sequence of valuesdiand its derivatives aty, we may construct a smooth
functionu with support in the neighborhood and the given sequence of derivatives at
Xo. Using the smooth bump functions we have constructed, we now show that the
same result holds at junction points of certain p.c.f. fractals. In what follvis

p.c.f. and self-similar unde{rF,—}jN:1 and the measurg is self-similar with factors

0 <y <1, Ny =1, so thau(Fu(X)) = TL1 kw; Whenw is the wordwy . ... W,

The Dirichlet form is that associated to a regular self-similar harmonic structure with
resistance renormalization factors<rj < 1 for j = 1,..., N. Our arguments depend

on the existence of smooth bumps as previously constructed. The crucial step is the
existence of smooth functions with finitely many prescribed normal derivative values,
which is established in the following lemma.

Lemma 4.1. Given a boundary point g Vy there are smooth functions duch that

A*fi(p) =0 forallk>0andall pe V,
dA*fi(p) =0 forallk >0andall pe Vo \ {g}
InA*fi(0) = di

Proof. We begin with the caske= 0. If U is the smooth positive bump function &h
produced in Theorem 2.1 we localize it near the boundary poin¥aifa scalem to
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be determined later. Define

U = UoF™ onF(X)
"o otherwise
and observe from the matching conditions for the Laplacian that Bads smooth.

Now apply the Dirichlet Green’s operat@ to these functions and form the linear
combination

N
f=> aGU))
=1

with codficients to be chosen. It is clear from the propertiesldhat AKf = 0 onV,
for all k > 0 and that),A*f = 0 onV, if k > 1. Moreover the Gauss-Green formula
yields values of the normal derivatives at the poupts Vg

N

onf@) ==Y a [ ny

=1

whereh; is the harmonic function oX with boundary valuek;(q;) = d;;. In order that
there be cogiicientsa; such thatf has the properties asserted fgit then sufices that
we can invert the matrix with entriel; = fhiU,-. We use the fact that

Il <r on F(X) for j#i
lhi =1 <r™ on F"(X)

which follow from the estimates on the oscillation of a harmonic function that were
mentioned at the end of the introduction. Using this we calculate

|Aij|=‘fhiuj‘sr?‘u’j“fu forj#i

X

a—ur [u] <[ [0 -] < [ (@.1)
X X

Let D be the diagonal matrix with entrid3; = ,uimfx U. Then we readily compute
(AD™Y);; = yj*m(fU)_lA”- is close to the identity ifn is large. Indeed, by (4.1) we
have|(I - AD);| < p™ with p = maxr;, so thatAD! is invertible providedm is
suficiently large.

We proceed by induction o) with an almost unchanged argument. Suppose the
functionsf; for | < L — 1 have been constructed as linear combinations of the form

N
Z anG™Y(U) l<L-1 (4.2)

|
fi=
n=1 j=1

and consider the function .
f = Z a;GI(U;)
j=1
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so thatA*f = 0 onV, for all k andd,AXf = 0 onVy for k > L + 1. Whenk = L we
have

N
GA"1(@) = - ) aiA
=1
whereA; is as before, so we may selegtto obtaind,A-f(q) = 1 andd,A-f(p) = 0
at other pointsp € Vp. Subtracting an appropriate linear combination of théor
| < L -1 we obtain the desirefl in the form of (4.2). ]

With this in hand it is simple to deal with finitely many values of the Laplacian at a
boundary poing € V.

Lemma 4.2. Given a boundary point g Vy there are smooth functions guch that

A g(p) =0 forallk >0andall pe Vo
A¥g(p) =0 forallk >0andall pe Vo \ {q}

A*gi(a) = i

Proof. Let h be the harmonic function which is 1 gtand 0 at all other points ofj.
Clearly Ah = 0 for all k > 1 and therefore alsé,Ah(p) = O for allk > 1 and

p € Vo. For eachp € V let o, be the function constructed in Lemma 4.1 with non-
vanishing normal derivative gi. It is clear thatgo = h — .y, (dnh(p)) fop has the
desired properties, so we have found the first of our functions. To obtain the others we
simply apply the Dirichlet Green's operatGr Notice thatA*"G'h(p) = 6k dpq for all

kand allp € Vo, and als@,AXG'h(p) = 0 for allk > | + 1. To obtaingy it remains only

to subtract €& all normal derivatives that occur for€ k < | using the functions from
Lemma4.1. ]

The proof of a Borel-type theorem from the above lemmas is standard. All that is
needed is information about how scaling the support of a function changes its Laplacian
and normal derivatives. Recall that for a Dirichlet form associated to a regular self-
similar resistance, both the Laplacian and the normal derivative may be obtained as
renormalized limits of corresponding quantities defined on the approximating graphs
(Section 3.7 of [10]). In particular, pre-composition with the nfgp rescales thé-
th power of the Laplacian byu(r;)™ and its normal derivative by *r7*1. For this
reason, ifg = q is the boundary point of interest we define

. pm e £ o EEM - on EM
'm0 otherwise

0 otherwise

Oim = {(ﬂiri)mkg' oF(™ onF

so that we have for ak

Afim(@) = 0 A*gim(@) = o
Onfim(@) = o A g m(@) =0 4.3)
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but theL* norms of the lower order derivatives have decreased and those of the higher
order derivatives have increased.
A fy lloo = DD AR (4.4)
1A G mlleo = (ir) ™ lIA Gl (4.5)

With this in hand we can easily prove our version of the Borel theorem.

Theorem 4.3. Let q € Vy be fixed, and2 be an open neighborhood of q. Given a jet
o = (o, p1,...) Of values for powers of the Laplacian and= (o, 01, ...) of values
for their normal derivatives, there is a smooth function f with suppofiand both
AXT(q) = px andd,AKT(q) = o for all k.

Proof. We give the usual proof that it is possible to definby the series
f= Z(Plgl,m +0 fm) (4.6)
|

for an appropriate choice ofi andn;.
Let my = ng be suficiently large thaFi”’"(X) c Q. For eacH choosem > mgy so
large that
oA g m]|, <2t foro<k<l-1

using the scaling estimate (4.5). Similarly use the scaling relation (4.4) totakey
such that

oA g, <27 foro<ks<i-1
Then for fixedk we have

00

A0 + o fin
2

I=k+1

siz"*'sl

o0 k+1

so that all powers of the Laplacian applied to (4.6) produ€econvergent series. It
follows that f as defined in (4.6) is smooth and has suppofinBy (4.3) it has the
desired jet, so the result follows. O

We remark that for any > 0 we could replace the bound§ 2% in the proof with
€21-1_ |t follows that we can definé by (4.6) and have the estimate

k
A4, < Q) Y (lail + Ibi) + € (4.7)
1=0

whereC(k, Q) does not depend on the jet we prescribe.

It is also clear that the result of the theorem may be transferred to any junction
point F(q) and cellF,,(X) in X, simply by modifying the desired jet to account for the
effect of composition with-, solving for f on X, and defining the new function to be
f o F;! on the cell. We record a version of this that will be useful later; note that in
the following we use the notatiasy, for the normal derivative with respect to the cell
Fw(X).

21



Corollary 4.4. Let F,(q) be a junction pointin X. Given a j€bg, o1,...), (01,02,...)
there is a smooth function f onEX) that hasAXf(p) = 9,Af(p) = 0 at all points
p € dF(X) such that p# Fy(q), and satisfies\*f (Fw(q)) = px and d,AXf(Fw(Q)) =
oy for all k.

5 Additive Partitions of Functions

The results of [4] show that multiplication is not generally a good operation on func-
tions in dom@). In particular, forX a p.c.f. fractal with self-similar measure and
regular self-similar harmonic structure it is generically the case that iflom(A) then

u? ¢ dom(A). In such a situation there is no hope of using a smooth partition of unity
to localize problems in the classical manner. Instead we provide a simple method for
making a smooth decomposition bfe dom(A*) using Theorem 4.3.

Theorem 5.1. Letu,Q, be an open cover of X andd dom(A*). There is a decom-
position f= Zle fi in which each k has a corresponding such that f is smooth on
X and supported i, .

Proof. Compactness oK allows us to reduce to the case of a finite cwénak for
which there is no sub-collection that covétsWe write Qy for Q,,, and construct the
functions fy inductively. At thek-th stage we suppose there are functidps. ., fi_1
with the properties asserted in the lemma, and that funglion= f—zlkz‘ll fi is smooth

on X and vanishes identically on a neighborhdadd; of Q\ UK:ij). In the base case

k = 1 this assumption is trivial, and it is clear that the theorem follows immediately
from the induction. We have therefore reduced to the case where our cover consists of
the two set€), andfzk = U:-(:k+le, because the induction is complete once we Have

as in the lemma such thgt is identically zero on a neighborho®k of Q \ fzk.

For a scalem and x € X, define them-scale open neighborhood &fto be the
interior of the uniquen-cell containingx if x ¢ Vp,, and to be the uniofx}U(UyFw(X)\
IFw(X)) if x = Fy(q) is a junction point. By Section 1.3 of [10], thre-scale open
neighborhoods form a fundamental system of open neighborhoadsAifeachx in
Q there is a largesh such that then-scale neighborhood ofis contained irf2¢. The
collection of all such largest neighborhoods of point<xpfis an open cover of the
compact set Sppit_1) \ Qk. We useA, to denote the union over a finite subcover.

Clearly A has finitely many boundary points. Let those boundary points that are
also inf)k bex,...,X;, and take at each a finite collection of ce{tIs,,-}i"':l havingx;

in their boundary. We require that, U (Ui'jzlci,j) contains a neighborhood af, that
all of theC; ; lie entirely withinQ, and none intersey, and thatC; ; N C;. j is empty
unlessj = j’, in which case it contains only;. On each cell we apply Corollary 4.4
to find functionsh; j that matchge-1(x;) and all powers of its Laplacian af, and such
that the sun}; hi ; has normal derivatives that canédgA"g._1(x;) atx; for all n. Thus

Z:Ll hi ; matchesgk_; in the sense of the matching condition and vanishes to infinite

order at the other boundary points Loithi,j. The matching condition implies that
fk = Ok-1la, + 2 2i hij is smooth. Itis clearly supported @ and equal taf on the
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closureAy of Ay, sSogx = g1 — fx is zero on a neighborhoadd, of Q \ Q, which
completes the induction and the proof. |
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