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We present a numerical exploration of contact transitions with the fingertip. When
picking up objects our fingertips must make contact at specific locations, and —
upon contact — maintain posture while producing well-directed force vectors. How-
ever, the joint torques for moving the fingertip towards a surface (1) are different
from those for producing static force vectors (7¢). We previously described the neu-
ral control of such abrupt transitions in humans, and found that unavoidable errors
arise because sensorimotor time-delays and lags prevent an instantaneous switch
between different torques. Here we use numerical optimization on a finger model to
reveal physical bounds for controlling such rapid contact transitions. Resembling
the human data, it is necessary to anticipatorily switch joint torques to T¢ ~ 30 ms
before contact to minimize the initial misdirection of the fingertip force vector. This
anticipatory strategy arises in our deterministic model from neuromuscular lags,
and not from optimizing for robustness to noise/uncertainties. Importantly, the op-
timal solution also leads to a trade-off between speed of force magnitude increase vs.
accuracy of initial force direction. This is an alternative to prevailing theories that
propose multiplicative noise in muscles as the driver of speed-accuracy trade-offs.
We instead find that the speed-accuracy trade-off arises solely from neuromuscular
lags. Finally, because our model intentionally uses idealized assumptions, its agree-
ment with human data suggests that the biological system is controlled in a way
that approaches the physical boundaries of performance.
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1. Introduction

Everyday we use our fingertips to make and break contact with objects as we inter-
act with them. This often requires abruptly transitioning from moving the fingertip
towards a specific location on the object to producing well-directed force vectors.
We recently found (Venkadesan and Valero-Cuevas, 2008) that the human ner-
vous system achieves this via an anticipatory and neurally demanding strategy of
switching muscle activations — and therefore finger joint torques — before contact
(i.e., from those controlling finger motion to those controlling fingertip force). We
(Venkadesan and Valero-Cuevas, 2008) and many others (Whitney, 1987; Hogan,
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1985) have demonstrated that such a strategy is sensitive to time-delays and lags
in the combined controller + finger system, and to errors in planning. These ob-
servations raise several questions: Does the strategy used by the biological system
for contact transitions approach a strategy that is mechanically optimal or near-
optimal; or is it driven by biological considerations/limitations that are not typically
included in biomechanical models? In addition, given that the rapidity of the task
precludes the benefit of sensory feedback, how sophisticated and accurate does the
motor program need to be? What are the limits to the mechanical performance of
the task given the inherent dynamics of muscle function? As a first step towards
answering these questions we tested whether an open-loop optimal controller for
an ideal mathematical model of the finger (i.e., a planar, frictionless, torque-driven
mechanical system with free hinge joints) would transition between joint torques in
a manner that resembles electromyographic (EMG) measurements in humans.

2. Experimental findings on human finger contact transitions

In a prior study (Venkadesan and Valero-Cuevas, 2008), we investigated the neural
control of finger musculature when the index fingertip abruptly transitions from
motion to static force production. Human subjects produced a downward tapping
motion followed by vertical fingertip force against a rigid surface. By simultaneously
recording 3D fingertip force and EMG from all seven index finger muscles, we found
that the muscle coordination pattern clearly switched from that for motion to that
for isometric force ~ 65 ms before contact (Figure 1). We then used mathematical
modelling and analysis to find that the underlying neural control was predictive
and switched between mutually incompatible strategies in a time-critical manner.
Importantly, this abrupt switch in underlying neural control polluted fingertip force
vector direction beyond what is explained by muscle activation-contraction dynam-
ics and neuromuscular noise. Therefore, we proposed that because the neuromus-
cular system cannot switch between control strategies instantaneously or exactly,
there arise physical limits to the accuracy of force production upon contact.

However, the prior modelling work does not establish the bounds on perfor-
mance of this transition, nor does it provide any insight about the necessity for an
anticipatory strategy.

3. Methods

(a) Problem statement

We seek to find an optimal open-loop control strategy for transitioning from
finger motion to static fingertip force production. In the 3D space of joint torques
(where each axis represents the torque about one joint), this problem can be de-
scribed graphically as the need to smoothly transform one vector in torque space
(that for fingertip motion) into another vector (that for fingertip force) within a
finite time (Figure 2). The task goal at the specified contact time is to arrive at the
surface (i) as close to the coordinates of the target location as possible, (ii) with
minimal horizontal and angular velocities of the fingertip, (iii) with joint torques
that produce a prescribed static force vector (magnitude and direction) upon con-
tact (i.e., 7 = 7¢), and (iv) with the time-derivative of the joint torque vector
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Figure 1. Main experimental findings of our prior work. Reproduced with permission from
Venkadesan and Valero-Cuevas (2008). a. The seven EMG signals were assembled into a
7D EMG vector weighted by the relative strengths of the muscles. To track the temporal
change in direction and magnitude of the muscle coordination vector, we used (a) the
scalar angle between instantaneous EMG and a reference EMG vector (from static force
production 500 ms after contact); and (b) its Euclidean norm. The data show that change
in vector direction is almost complete by ~ 65 ms before contact (¢ = 0). b. Magnitude of
the EMG vector, however, begins to increase by only ~ 70 ms before contact occurs and
continues to increase after contact. The EMG vector reflects the vector of joint torques
because the EMG vector is related to net joint torques through an affine map as described
before (Valero-Cuevas et al., 1998; Valero-Cuevas, 2006).

aligned with 7¢ ((f = #¢), i.e., the fingertip force vector should only be growing in
magnitude and not changing in direction. Therefore, the specific path of the torque
vector, its temporal evolution and the time at which the transition is completed
are all free to change. We used numerical optimization to find the optimal control
strategy that best achieves this task goal. Details of the numerical optimization are
given in Section 3(e).

Notation: Throughout the text we use bold-italicized symbols (e.g., f, T, N)
for vectors, ROMAN-CAPITALS for matrices (e.g., M, C), and italicized symbols
for scalars (e.g., t, 8, Tact). For denoting specific components of vectors, we use
subscript indices and when there is no room for subscripts, we use superscripted
indices within parentheses (e.g., 71, 7'1(31)). Hatted symbols denote the unit vector
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Figure 2. Multiple paths for transitioning from the control of fingertip motion to fingertip
force. There are multiple possible paths in 3D space of joint torques to transition from
the torques for motion (start) to production of well-directed forces upon contact (end).
Because the neurophysiologic system can transition neither instantaneously nor exactly,
it must be done by interpolating in one of several ways in an open-loop manner (because
the transition is faster than delays in sensory feedback). Some possible strategies are: (1)
first rotate the vector and then growing its magnitude (like in humans, Figure 1); or (2)
by simultaneously change both vector direction and magnitude. In this work we find the
optimal strategy so that the fingertip force vector is closest to vertical upon contact.

corresponding the vector denoted by the hat-less version of the same symbol (e.g.,
7 is the unit vector of 7).

(b) Modelling assumptions

We list below the main assumptions in building the finger model and briefly
state the rationale underlying each assumption.

Ideal finger joints: The finger is modelled as a planar 3-joint mechanism with
ideal, frictionless hinge joints with no stiffness or damping. We make this assump-
tion primarily because we want to find the neural contributions to the experi-
mentally observed joint torque trajectories separate from passive musculoskeletal
viscoelastic elements such as ligaments, skin, etc.

Torque-actuated joints: Our model has joints actuated by torque generators
instead of muscles. This permits us to simplify the model while at the same time
identify the physical bounds on performance of the biological system.

Open-loop switching strategy: We consider only open-loop control strategies in
a transition time-window between [—60ms, 0 ms]. This is because we assume that
physiological time-delays preclude the use of sensory information in guiding the
control switching during this window. Typical values for sensory time-delays in
finger manipulation tasks range from 65 ms to 120 ms (Venkadesan et al., 2007,
and references therein.).

Torque actuator’s activation and contraction dynamics: We prescribe that acti-
vation-contraction dynamics prevent the muscle forces, and in turn the joint torques,
from switching instantaneously between those for finger motion and those for static
fingertip force. In the absence of this assumption, there is a trivial and physiologi-
cally unrealistic solution to our optimal control problem. Namely, the joint torques
could switch instantaneously at the exact time of contact and produce a perfectly
vertical initial fingertip force vector. However, a key and unavoidable limitation in
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the biological system is the presence of neuromuscular lags that limit the rate of
change of muscle forces (Zajac, 1989), and hence of joint torques.

Collision law: We assume that the fingertip is well-damped so that high impact
forces, rebound, etc. are not of concern. Additionally, we assume that damping
from the fingertip and finger joints can completely dissipate the vertical and (small)
horizontal velocity components of the fingertip, but not the rotational velocity. This
is justifiable by the known finger pulp properties in humans (Hajian and Howe,
1997; Pawluk and Howe, 1999a,b; Jindrich et al., 2003) and our own kinematic
measurements (Venkadesan and Valero-Cuevas, 2008).

Post-contact force production: We only consider the instant of time immediately
after contact to calculate the fingertip force vector (mis)direction that needs to be
within the friction cone. Subsequently, of course, the passive viscoelastic elements
in joints (that we have omitted in our model) and the nervous system will stabilize
the force direction and finger posture. Those subsequent adjustments are beyond
the scope of this work.

Time-window of interest: We restrict the time interval of all simulations to
[-60 ms, 0 ms], where contact occurs at 0 ms. This assumption reflects our exper-
imental observation that humans performed an anticipatory transition in EMGs.
This assumption therefore restricts the class of optimal solutions that we search to
anticipatory strategies. However, it does not specify how much sooner than con-
tact the actual transition itself should occur. Our results (Section 4(a)) reveal some
surprising findings in this regard.

(¢) Dynamic model of the index finger

We use a 3 degree-of-freedom planar and hinged serial mechanism driven by
torques at each joint for modelling the index finger (Figure 3. The numbering
system we use for all variables associated with each joint is as follows: 1 for the
metacarpophalangeal (MCP) joint, 2 for the proximal interphalangeal (PIP) joint,
and 3 for the distal interphalangeal (DIP) joint (Figure 3). The index finger model
consists of three parts — finger motion, collision law, fingertip force production.

(i) Three-link open-chain model of finger motion

The equations of motion of a planar torque driven three-link open-chain were
derived using a Lagrangian formulation. This is a very standard derivation and
can be found in many textbooks (e.g., Spong and Vidyasagar, 1989). The final
equations of motion are given below.

M(p(1))@(t) + Clp(t),9(1))p(t) + N(p(t)) = 7(t) (3.1)

Henceforth, all time-dependencies will be suppressed for sake of readability. M(¢p)
is the symmetric (and positive definite) 3 X 3 inertia matrix such that the total
kinetic energy of the system can be calculated as %(pTM((p)(p Then, the 3 x 3
matrix C(yp, ) that contains centrifugal and Coriolis contributions to joint torques
is calculated using the formula,

3
1 OM;;  OMy  OM\ .
Cij(p.9) = 5D < Iy M J{’“) Pr (3.2)
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Figure 3. Schematic of a three-link open-chain and a four-link closed chain model of the
index finger. a. Three-link model for the motion phase. This figure shows the posture
300 ms before contact. Joint angles ; are positive counter-clockwise as measured from
the positive z-axis. Joint torques (7;) also follow the same convention. L and H are the
horizontal and vertical distances to the target point from the origin of the coordinate
system located at the MCP joint. b. Four-link model of force production when the fingertip
is in contact with the surface. This figure shows a specific posture, namely the desired
(goal) posture for force production. This posture was identical to the instruction given
during our experiments. f is the contact force at the fingertip. Because the fingertip
cannot resist any torques at the tip, we treat the contact as a frictionless joint.

Finally, N(¢) is simply the 3 x 1 vector of joint torques induced by gravity.

Numerical values for model parameters: We assumed all phalanges to be of
uniform circular cross-section with a diameter of 13 mm. Because fingers have low
fat content, we assumed them to be denser than average human body density which
is ~ 1100kg/m? (Behnke et al., 1942) and used a value of 1250 kg/m?. Using these
we calculated the masses and planar moments of inertia assuming each phalanx to
be a cylindrical prism with its axis in the simulation plane. The lengths we used for
each of the phalanges are, [; = 0.0508 m, ls = 0.0254m, I3 = 0.01905m. All results
we report were robust to biologically reasonable variations of these numbers. We
however do not present the results of that sensitivity analysis.

(ii) Collision law for the fingertip

The vector r comprises of endpoint position (r,7, ) and its orientation, i.e.,
angle relative to the vertical (7). Then, the fingertip linear and angular velocities
(7) are related to joint angular velocities (¢) through the 3 x 3 posture-dependent
manipulator Jacobian (A(g)). If the manipulator Jacobian is full-rank, as in this
case, the collision law specified in terms of the fingertip velocity can be rewritten
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in terms of joint angular velocities.

TT le
y | = Alp) | 2 (3-3)
Ta ¢3
Tg 0

gl —10 (3.4)
Ta Ta

(iii) Four-link closed-chain model of fingertip force production

The equations of motion for the non-slipping finger where the fingertip is in
contact with the surface differs from that for free motion because of joint torques
induced by fingertip contact force. This force was calculated using Lagrange mul-
tipliers and the constraint equations for the fingertip. The resulting equations of
motion are:

M(@)§ + Clp.0)p + N(p) + Al) " f =7
f=AMTAT) T AM T (1 — Cp — N) + Ap)

Note that to calculate the fingertip force at the instant of contact, given the finger’s
state just prior to contact, we only need to transform the pre-contact finger state
according to the collision law (Equation (3.4)) and then evaluate the algebraic
equation for contact force (Equation (3.6)).

(d) Joint torque model with “activation-contraction” dynamics

We do not explicitly include muscles or other skeletal structures like tendons,
ligaments, skin, etc. in our model. As discussed earlier (Section 3(b)) we want to
avoid trivial solutions without imposing arbitrary constraints on the evolution of
joint torques prior to contact. We therefore use a model for the torque actuators
that has temporal dynamics similar to those for muscles.

Muscles are often modelled to act like second-order low-pass filters of the neural
command (Zajac, 1989) with chemical activation dynamics and mechanical force-
generation (also called contraction) dynamics. Activation dynamics refers to the
dynamics of calcium uptake/release in the muscle fibre once the neural spike train
excites the tissue. Contraction dynamics refers to the dynamics of force genera-
tion in the muscle that depends on sarcomere mechanics and muscle + tendon
compliance. We developed a torque generation model with two time-scales as prox-
ies for muscle activation-contraction dynamics. The two-time scales are, one for
“activation” dynamics (T,e in Equation (3.7a)), and another for “contraction” dy-
namics (Teon in Equation (3.7b)). We also include the well-known asymmetry in
activation wvs. deactivation time-scales (Brown and Loeb, 2000) caused by faster
uptake of calcium compared to the release of calcium (parametrized by £ in Equa-
tions (3.7a)—(3.8))

For each joint ¢ = 1,2,3, the differential equations for the torque production
is governed by a hidden internal variable that we will refer to as “activation” and
denote by the symbol a(¢). Time dependency has been omitted below for clarity.
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Toesa® + (8+ (1= 8) |7)|) a® = 1) (3.72)
Toont® + 70 = @ (3.7b)

Combining the above two equations we obtain a second-order nonlinear ODE model
for torque production. The nonlinearity arises because of the dependence (governed
by ) of the activation-deactivation time-constant on the driving input command
(Tp).

TactTcon%(i) + (Tact + Tcon (ﬁ + (1 - ﬁ) ‘T](Dl)

)0+ (84 (1=

) =)
(3.8)

where, Tp is the torque-command signal that we want to find as part of the optimal
control problem.

Numerical values for model parameters: We used values for T,et, Teon and 3
based on calculations similar to those given in Zajac (1989). To allow for the fastest
possible, but biologically plausible, torque-actuators we chose Thet = 12 ms based
on existing experimental data on fast-muscle fibres (Wells, 1965; Close, 1972; Zajac,
1989). Note that this value is slightly faster than typical values reported in human
muscles (e.g., Winters and Stark, 1985). For calculating Tcon, note that the biggest
muscles actuating the finger are located in the forearm and therefore possess long
tendons (Lieber, 1993). Using a calculation similar to Zajac (1989) we chose Teon =
3Tact = 36 ms. We chose § = 0.2 based on existing experimental data (Winters
and Stark, 1988). This is similar to values used by others in muscle models (e.g.,
Raasch et al., 1997).

(e) Numerical optimization

For the numerical optimal control problem, we focus only on the time-interval
from —60 ms to 0 ms, where 0 ms is the contact time. We fully specify the initial
condition of the finger (¢m, @y, Tm,Tm) at —60 ms and find 7p to minimize a cost
function that depends on the finger’s state at contact (r(0), 7,(0), 74(0), 7(0), and
7(0)). For numerical efficiency without compromising time-resolution of joint torque
dynamics, we time-discretize the torque command (7p), using a piecewise linear
approximation defined on a mesh of 4 points in the time-interval [—60ms, 0 ms].
Thus, the command varies linearly in pieces of 20 ms duration. A duration of 20
ms is faster than the rate-limiting time-scale of joint torque dynamics, namely
Teon = 36 ms. Moreover, this choice of time-discretization is biologically reasonable
based on known peak discharge rates of spinal motor neurons. Neurophysiologic
studies report ranges for measured peak discharge rates between 35 Hz to 45 Hz
(Fuglevand et al., 1993). Modelling studies typically use values in the range of
25 — 50 Hz (Keenan and Valero-Cuevas, 2007; Jones et al., 2002; Brown and Loeb,
2000, e.g., ). We now outline the numerical optimization procedure.

(i) Calculating initial conditions

Resembling our experimental data (Venkadesan and Valero-Cuevas, 2008), at
t = —500 ms we specify the fingertip to be at rest, located vertically at level
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with the MCP joint, vertically above the target, and with a vertically oriented
distal phalanx. During the interval [—500ms, —60ms], we prescribe the fingertip
to move downwards, with the distal phalanx remaining vertical, and the fingertip
acceleration being a [-function such that the fingertip exactly reaches the surface
height at ¢ = 0 ms. For this calculation, we also assume that the fingertip horizontal
velocity and distal phalanx angular velocity are 0. The corresponding fingertip
velocity profile is a smooth, symmetric sigmoid. These conditions resemble our
experimental data and uniquely specify the time-series of the finger’s state (p, @,
7, 7) until ¢ = —60 ms. Thus, the conditions at ¢ = —60 ms are specified.

(ii) Cost function

The cost function was calculated using the finger’s state at ¢t = 0 ms, at the end
of a dynamic simulation of finger motion during the interval [—60 ms, 0 ms] driven
by the piecewise linear control command 7p(¢).

= () () o) < () + (5)
Fo |2 IS 2
regan ] (ER) e

where, L is the horizontal location of the target relative to the MCP joint (see
Figure 3), H is the corresponding vertical location, k; is the desired magnitude
of immediate post-contact joint torque vector, and 7¢ is the unit vector for joint
torques that would produce vertically oriented fingertip force in the desired contact
posture (see Figure 3). Note that the 6' term is a sum over the three components
of the joint torque vector at contact.

We divide the error in each component by a scaling factor to non-dimensionally
define the term “small error”. The scaling factors for each term in Equation (3.9)
were chosen so that the cost function is negligibly small if and only if at ¢ = 0 ms:
Ar, < 10 mm, Ar, < 3 mm, Ar, < 7/10 rad, Ar, < 100 mm/s, Ar, < 7/2
rad/s, A7) < ky N-m for i = 1,2, 3, and arccos(7-7¢) < 7/18 rad. Note that larger
errors in this cost function also mean larger deviation of the fingertip force vector
direction from vertical, because 7¢ was calculated to produce vertical force at the
specific target posture and zero joint angular velocities. Therefore Equation (3.9)
serves as a surrogate to the actual cost we are interested in.

(iil) Indtial guess

For generating the initial guess, we first extend finger joint-angle trajectories
obtained in Section 3(e)(i) to the interval [—500 ms, 0 ms]. We then solve for 7(t) by
substituting for ¢(t), ¢(¢) and ¢(¢) in Equation (3.1) and find 7(¢) by differentiating
7(t). By substituting 7(¢) and 7(¢) in Equation (3.8) we find 7p(t). Thus we find the
initial guess of Tp at 4 uniformly spaced mesh points of the interval [—60 ms, 0 ms].

(iv) Optimization loop

We first make an initial guess for 7p as outlined in Section 3(e)(iii) and use
the function fminsearch within the MATLAB simulation environment to find the
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optimal control solution. This optimization routine uses the Nelder-Mead simplex
method. Despite unprovable convergence (Lagarias et al., 1998) in problems with
more than 2 dimensions (our problem is 4 x 3 = 12 dimensional), we chose this
algorithm because it does not use gradient information and is hence robust. More-
over, we performed additional steps to verify convergence as outlined below. Other
smooth, gradient-based methods failed to converge for our problem and stochastic
methods like Simulated Annealing were too slow to converge.

In each iteration of fminsearch, we solve the differential equations (3.1)—(3.8)
in the interval [—60ms, Oms] using initial conditions specified in Section 3(e)(i).
We use the values of ¢(0), ¢(0), 7(0), and 7(0) at the termination of the dynamic
simulation of finger motion and Equation (3.9) to calculate the cost function.

(v) Convergence criteria

We consider a solution to have converged if and only if all of the following criteria
are satisfied. First, we require the solution to remain unchanged (to a tolerance of
10710) for at least 5000 iterations of the optimization loop. Once that condition is
satisfied, we then randomly perturb the solution using a random value drawn from
a uniform distribution with a range of +1% of the solution value. Finally, using this
perturbed solution as an initial guess, we verify whether the optimization converges
to the unperturbed solution (using the same tolerance of 10710) before calling it
a locally optimal solution. We repeated the random perturbation three times for
each solution, all of which always converged back to the same solution.

4. Results and Discussion

We solved a sequence of optimization problems with increasing values of k; (mag-
nitude of the joint torque vector upon contact) from 0.015 N-m to 0.1 N-m. This
corresponded to larger force magnitudes at contact i.e., with increasing require-
ments on initial fingertip force magnitude from low (0.385 N) to high (1.889 N).
All of these simulations converged successfully as per our criteria. Specifically, in
all cases, the converged solution had a “perfect” residual cost of < 1076 (Equa-
tion (3.9)). Individual terms in the cost function were each < 107°. This means the
error with respect to desired accuracy for every term in the cost function was less
than 0.1%. The corresponding angular deviation of the fingertip force vector from
the vertical was always < 1072 rad. Our results were also robust to variability in
the initial guess, although convergence to the final solution was faster if we used
numerical continuation for finding the optimal solution for increasing values of k.
As an example of numerical continuation, say we have a converged solution for
k1 = 0.015 N-m and want to solve for k; = 0.02 N-m. Then, we would first solve
for k; = 0.016 N-m using the converged solution for k; = 0.015 N-m as the initial
guess. We repeat this slow increase in k; until we reach k1 = 0.02 N-m. This process
is referred to as numerical continuation and is effective when there is a smooth (at
least continuous) dependence of the output on a varying parameter, which in our
problem is the dependence of optimal Tp on kj.
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(a) Agreement with experimental data
(i) Control switching: Joint torque direction before magnitude

As in the experimental data, Figure 4 clearly shows that (i) changes in the
joint torque vector direction are completed ~ 30 ms before contact and (ii) growth
in vector magnitude begins in earnest only after the change in vector direction is
completed. This is in contrast to the other possible alternatives where torque vector
magnitude and direction change simultaneously, or changes in direction lag changes
in magnitude.

We present physical arguments for why the optimal solution shows this sequenc-
ing of change in vector direction followed by vector magnitude increase. The finger
is very light and requires low torques for producing the desired motion. There-
fore, if the magnitude of the torque vector increased rapidly while the finger is
far from contact and joint torques are still transitioning, these high torques may
over-accelerate the fingertip away from the target or cause the finger to land in an
undesirable posture. In the real biological finger it would also make it necessary to
dissipate more energy at impact, or have other possible undesirable consequences
(e.g., slipping, bouncing, etc). Thus, it is best to maintain low torque magnitudes
for as long as possible.

(ii) Anticipatory nature of control switching

With respect to timing, our simulations are meant to shed light on our exper-
imental results and therefore explore only the space of anticipatory joint torque
strategies. However, the specific timing of direction change in the optimal solution
were surprising. Given how rapidly the vector direction changed (< 10 ms), the
controller could have waited to execute the switch until just before contact (say,
until t = —10 ms). Instead, the switch was executed well before contact (~ 30 ms),
in agreement with the experimental data. Although it is tempting to attribute the
early switch in the biological system to uncertainties and noise, that is not applica-
ble to our results. Our optimal controller had exact knowledge of the contact time
and there was no stochastic element in our simulations.

We provide some physical arguments for this result. In Section 4(i)(ii) we pre-
sented physical arguments for the sequencing of direction change followed by mag-
nitude increase in the joint torque vector. However, for small values of Tp, i.e., when
the joint torque vector is close to the origin, the actual time-scale of the contraction
dynamics is slower than T,,, = 36 ms because of the nonlinearity introduced by
08 (Equation (3.8)). Therefore the time taken to increase joint torques might be
so severely rate-limited that the magnitude increase has to start well in advance,
and in turn, the direction change has to be earlier still. In other words, given that
a specific force magnitude is required at contact, the controller does indeed wait
until the last minute to perform the transition, but the rate-limiting process is the
magnitude increase and not the direction change. Note that we used smaller than
typical values for Tt and T¢op in our model (Section 3(d)) to truly estimate upper
bounds on physical limits of performance. In the biological system, these time-scales
are likely to be slower and the real finger has additional joint viscoelastic elements
that are absent in the model, which might explain the ~ 35 ms discrepancy in exact
timing of the switch between our model and the experimental results.
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Figure 4. Optimal joint torque transitions for a low demand on post-contact joint torque
magnitude (0.015 N-m). For this low level of initial force production (0.385 N), the optimal
controller found a solution that produces perfectly vertically aligned fingertip force upon
contact. We show 100 uniformly spaced data-markers over 60ms. a. The angle between the
joint torque vector before contact and the torque needed for maximal force production
anticipatorily switched ~ 30 ms before contact. Magnitude of the joint torque vector,
however increases only after re-orientation of the joint torque vector. This closely resembles
our experimental data. b. A 3D plot of the joint torques reveals why the torque vector
direction changes before the magnitude: The joint torque vector for producing motion first
shrinks in magnitude to close to the origin, it then re-orients towards the torque vector
needed for force production, and finally increases in magnitude. Note that the 3D plot
looks planar because 73(t) = 0 for all of our optimal solutions.

(b) Speed-accuracy trade-off

As the demands of the task increase, which in our problem is the magnitude of
immediate post-contact fingertip forces (represented by k1), we see that the control
switching happens earlier. More interestingly, when we compare increasing values
of k1 from 0.015 N-m to 0.1 N-m, we see a qualitative difference emerge in the
optimal control strategy (Figure 5). Namely, the joint torque vector re-orients itself
twice for higher values of k1, as opposed to only once for lower values of k;.

Upon further inspection of the more demanding tasks we find that the solutions
with corrective torques also exhibit unrealistically hyper-extended DIP joint angles
in their motion (e.g., finger snapshot shown in Figure 5 at ~ —18 ms for k1 = 0.1).
This anatomically unrealistic action is what helps the optimal controller achieve a
perfect solution (residual ~ 0) for even the demanding tasks. This is an artefact
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Figure 5. Transition of the joint torque vectors for increasing demands on the initial force
magnitude (what we call “speed”). Despite a 20x range in initial fingertip force magnitude
(6.6x range in k1), a perfectly accurate solution was always found, i.e., the fingertip force
vector was perfectly vertically oriented upon contact and produced the required force
magnitude. The orientation of the joint torque vectors (a) and joint postures ((c) and (d))
during the transition provide some insight into this result. a. Orientation of the joint torque
vector has a “double-dip” for higher speed demands (k1 > 0.05), something akin to a
“corrective” torque to optimize the finger’s state upon contact. Note that this “corrective”
action occurs even though our model has no sensory feedback. b. Magnitude increases only
after reorientation of the joint torque vector. c. These corrective torques, however, were
associated with intermediate postures that were unrealistically hyper-extended at the DIP
joint. As seen here, the magnitude of an unrealistic hyper-extension of the DIP joint grows
almost linearly with increasing “speed” demands, i.e., increasing k1. d. For k1 = 0.1 N-m,
this figure shows the unrealistic finger posture attained at ¢t = —18 ms. We only show four
of six values of k1 in panels (a) and (b) for clarity.

of insufficient constraints in our model because we do not impose restrictions on
range-of-motion of the joints.

Our proposition is that if we were to solve the (harder to converge) constrained
optimization problem by adding joint constraints, the optimal controller would no
longer be able to execute “perfect” transitions. In other words, we expect that
with addition of joint constraints, the error in fingertip force vector direction would
be greater for increasing demands on initial force magnitude. This proposition is
supported by Figure 5, where we plot the peak hyper-extension of the DIP joint (i.e.,
peak value of unrealistic postures) as a function of k;. It is apparent that there is a
nearly linear and monotonic increase in the unrealistic hyper-extension of the DIP
joint with increasing values of k;. Given that this was the unique optimal solution
with a large basin of attraction (because perturbations of this solution converged
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back to it), constraining the controller to avoid joint hyper-extension would only
increase the residual cost function, i.e., there would be greater errors in fingertip
force vector direction for higher demands on speed of rise of force magnitude. This
is because, (i) this joint constraint would exclude the current optimal solution we
found, and (ii) the fitness landscape does not permit a continua of optimal solutions
in this neighbourhood (uniqueness of present solution), i.e., excluding the “perfect”
solution we found will necessarily incur higher cost, namely greater misdirection in
fingertip force vector upon contact.

Although this result is not conclusive until we solve the constrained optimization
problem, we are confident that future refinements to the model will reveal this
trend of a speed-accuracy trade-off. We conclude by hypothesizing that with higher
demands on initial speed of force rise, the transition has to start sooner because
of limitations imposed by neuromuscular lags, thus causing greater errors in the
fingertip force vector direction upon contact. This hypothesis is already indirectly
supported by experimental data showing that healthy subjects cannot perform the
transition without incurring error in the initial force direction (Venkadesan and
Valero-Cuevas, 2008), and a report showing that reducing the friction of the target
surface advances the time of the transition (Medina et al., 2007).

A further comment on prevailing theories of speed-accuracy trade-off is war-
ranted. Starting with the paper by Paul Fitts, noise in the sensorimotor system
has been implicated as the origin of speed-accuracy trade-offs in human behaviour
(Fitts, 1954). With the discovery of signal-dependent noise in muscles, most contem-
porary research considers noise as the reason for speed-accuracy trade-offs (Meyer
et al., 1990; Todorov, 2004, 2005; Harris and Wolpert, 1998, 2006). However, there
was an alternative theory proposed by Card et al. (1983) explaining speed-accuracy
trade-offs based on time-delays in deterministic systems. This theory has been chal-
lenged by many on the basis of unrealistic assumptions such as the existence of
“submovements” for any movement, etc. (see pages 192-3 of Meyer et al., 1990, for
a detailed critique of Card et. al.’s theory). A contribution of our work is, there-
fore, to discover speed-accuracy trade-offs in the context of deterministic control
transitions with physiologically plausible neuromuscular lags. At the very least, our
model’s findings complement and serve as an alternative to prevailing noise-based
theories. At best, it proposes a deterministic route to speed-accuracy trade-offs that
occur for the ubiquitous, yet critical task of transitioning between control regimes.

(¢) Near-optimal performance by humans

The physical bounds of performance identified by our simple model of the fin-
ger robustly reproduces experimental observations made on the real human despite
excluding some known physiological properties and other simplifications. Our re-
sults therefore suggest that our model implements some fundamental mechanism
whose importance overrides the simplifying assumptions. A possible alternative re-
sult could have been that our solutions always converged to large residual costs (or
did not converge at all) because requiring torques to transition before contact is
simply mechanically detrimental. In contrast, we find that our idealized model was
able to arrive at “perfect” solutions whose predicted torque time histories repli-
cate the main features of the biological data. In addition, the details of the torque
transitions are sensitive to changes in the desired initial force magnitude, which ar-
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gues for a gradient in performance for which some form of optimization is beneficial.
These results lead us to conclude that the behaviour of the nervous system is indeed
near-optimal. Even if the reader disagrees that the similarity of the predictions with
experimental data implies near-optimality of human performance, it is clear that
the resemblance suggests, at the very least, that the transitions in control command
in this context are mostly governed by mechanical principles and requirements (as
opposed to being dominated by non-mechanical neural/behavioural/idiosyncratic
constraints) and indeed approach the physical boundaries of performance. This con-
clusion agrees well with, and extends into the dynamical domain, prior work showing
that the control of finger musculature for force production is mostly governed by
mechanical principles (Valero-Cuevas et al., 1998).

(d) Scope and limitations

We have presented here two main results: (i) The experimental observations of
anticipatory switching of joint torques and the sequencing of the joint torque vec-
tor’s angle change followed by magnitude can both be explained solely by neuromus-
cular lags in the context of control switching; (ii) Our modelling suggests that when
switching between mutually incompatible control regimes, speed-accuracy trade-offs
arise solely from neuromuscular lags. This is an alternate explanation to many cur-
rent theories that require stochastic elements in their models for speed-accuracy
trade-offs.

While our results (Figure 5) support the hypothesis that speed-accuracy trade-
offs can arise solely from neuromuscular lags, we do not have a definitive proof. A
definitive proof would require solving a constrained optimization and verification
that the solution is a unique global optimum. While a constrained optimization is
something we will pursue in the future, guaranteeing that the solution is a unique
global optimum likely requires analytical proofs (not just numerical demonstration),
which is beyond the scope of this first numerical exploration of biomechanical finger
contact transitions. However, because all the solutions we found made the cost
function vanish, and because there are no nearby solutions with the same property,
we can at least guarantee that all solutions we found are globally optimal and
non-degenerate.
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