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Behaviors such as fine manipulation in humans are quintessentially nonlinear, dy-
namic and complex. Exploring, quantifying and characterizing such complex dy-
namic systems is essential to expand our understanding of biological systems and
to design artificial systems that can match the versatility and performance of their
biological counterparts. However, we currently lack means to quantify or model
nonlinear dynamical behavior for most such complex systems.

Here we present a paradigm that exploits ubiquitous low-dimensional phenom-
ena at the edge of instability in arbitrarily complex nonlinear dynamical systems
to quantify and understand their behavior. Specifically, we examine dynamic ma-
nipulation at the edge of instability by asking subjects to compress a slender spring
using their thumbpad almost to a point of instability. The spatiotemporal dynam-
ics of a one-dimensional nonlinear dynamical system based on bifurcation theory
and dynamics of spring buckling was indistinguishable from experimental measure-
ment at the edge of instability.

We then use this model to answer a neurophysiologically important question:
why do we normally handle objects effortlessly without looking at them, but rely
heavily on vision if our fingers were numb? We extend our simple model to incor-
porate feedback from noisy and time-delayed multiple sensory channels — namely,
thumbpad sensors, non-digital sensors, and vision. Using numerical optimization,
we find that the selective use of vision depending on finger numbness is a cu-
mulative effect of noise and time-delays on task-optimal multisensory integration
strategies.

Next we provide preliminary evidence that an upcoming treatment for thumb
osteoarthritis — intra articular Hyaluronan injection — causes self-reported im-
provement in patients primarily due to pain relief and not due to any improvement
in their dynamic manipulation ability. We are able to distinguish between the con-
tribution of pain-relief and innate sensorimotor control ability because dynamic
manipulation ability at low forces is independent of pain.

We conclude with a brief presentation of various directions for short and long
term goals that build upon the foundation established by this thesis for exploring
dynamic sensorimotor behavior. We observe that there are several clinical, neu-
rophysiological, and control theoretical benefits of studying complex dynamical
systems at the edge of instability. The ubiquitous nature of well-classified low-
dimensional phenomena at the edge of instability in arbitrarily complex nonlinear
dynamical systems makes the techniques developed in this thesis widely applicable
to biological or artificial systems alike.
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Chapter 1
Introduction

In this work, an attempt will be made to quantify and reveal some aspects of the
neuromuscular control of manual dexterity. More specifically, this work develops
a mathematical-experimental method to quantify and explore the complex, noisy
and nonlinear system of dynamic dexterous manipulation. Results from dynamical
systems theory and the theory of elastic buckling are used to develop a method
to experimentally quantify and mathematically model dynamic manipulation. We
then use this method to reveal hitherto unexplored effects of time-delays on how
the nervous system combines signals from (or not) and uses signals from multiple
sensory channels!. Finally, a clinical application of this paradigm is presented.
We demonstrate potential use of our experimental method to predict treatment
outcome for patients with osteoarthritis of the thumb — a disease with devastating
effects that is very common, if not inevitable in the older population.

A brief overview of some necessary background material is included below to
help read this thesis. This overview is by no means exhaustive or detailed. It is
meant only to provide representative examples of ongoing research in various fields
relevant to this work. The overview also serves the dual purpose of motivating the
work reported in this thesis.

1.1 Theories of sensorimotor control

For the benefit of readers who are not familiar with contemporary theories of
how the nervous system controls the body and its interaction with the environ-
ment, I will first provide a brief overview of theories relevant to the present work.
Although not all of these theories have been established beyond doubt, we can
nonetheless garner some useful facts and observations about the nervous system
from the experimental, mathematical and computational studies underlying these
theories.

It is important to first define the term sensorimotor control. By sensorimotor
control, I refer to sensory (e.g. vision), neural (e.g. spinal cord) and musculoskeletal
(muscles, tendons, ligaments, bone, etc.) components of the body acting as a
fused dynamical system that is controlled by inherent properties or variables such
as neural signals, muscle contraction, etc. to yield useful interactions with the
environment. The mechanisms that you use to hold and read this thesis is an
example of sensorimotor control. Now I present some theories of sensorimotor
control that are relevant to the work presented here.

!The process of combining and using multiple sensory channels is often called
multisensory integration or sensor fusion.



1.1.1 Predictive aspects of sensorimotor control

The ability of the nervous system to predictively control the body, i.e., con-
trol the body even when it has no sensory feedback, is essential for activities of
daily living. When you walk with a full glass of water without spilling it, you
move your arm in sync with your foot-falls by predictively anticipating your foot-
falls. You need to predictively anticipate and not reactively respond to footfalls
because, time-delays in your sensors and in your nervous system make it impossi-
ble to move your arm in sync with footfalls by relying solely on sensory feedback.
Contemporary theories of the predictive capability of the nervous system provide
a systematic mathematical formalization that has led to a much clearer picture of
how the nervous system uses predictive capabilities in everyday tasks.

One key aspect of this predictive capability is known as motor prediction
(Wolpert and Flanagan, 2001). Motor prediction refers to predicting the behav-
ior of systems that are directly influenced by the nervous system’s commands to
muscles in our body (motor commands). For example, motor prediction could
mean predicting how your leg will swing during walking in response to a motor
command and also predicting what will happen to the bag that is swinging from
your shoulder as your body rises up and down during walking. One dominant
thought in the field of motor control says that to predict the consequences of the
motor command on our body or on the environment we interact with, there must
be some mechanism in the nervous system to simulate the dynamic behavior of
our body (Wolpert et al., 1995, 1998) and the environment (Dingwell et al., 2002,
2004). This hypothesized mechanism is commonly referred to as the internal for-
ward model — internal because it has to be physically inside the nervous system
and forward because it is used to predict the causal relationship between motor
action and its consequence. One of the earliest systematic investigations into the
existence of an internal forward model were carried out by a 19th century German
scientist and philosohper, Hermann Ludwig Ferdinand von Helmholtz when he
tried to understand how the brain identifies the spatial location of visual objects
(von Helmholtz, 1867; von Helmholtz et al., 1971). The spatial location of an ob-
ject relative to the head depends on where the object lies on the retina and on the
orientation of the eye in its socket. Hermann von Helmholtz made an audacious
(at that time) and ingenious proposition that the brain does not use any sensors
to measure the orientation of the eye inside the socket, rather it uses the motor
commands sent to the eye muscles to predict the eye orientation (von Helmholtz,
1867; von Helmholtz et al., 1971, original and translation, respectively). He used
a simple experiment to demonstrate this idea — when the eye is moved without
any motor command to the muscles (close one eye and gently press the open eye
through the eyelid), the visual scenery seems to shift because the location of ob-
jects on the retina changes, but the predicted eye orientation is not updated. The
corresponding neural mechanism by which the nervous system informs itself of
outgoing motor commands is called the efference copy, the existence of which was
further reinforced by more recent experiments (for instance, Sperry, 1950).



The flip-side of a forward model is the ability of the nervous system to take a
desired outcome (say, pointing to an object) and determine the appropriate motor
command. This is equivalent to inverting the forward model and hence referred
to as the inverse internal model. The inverse internal model is considered an
important part of sensorimotor control (Wolpert et al., 1995, 1998, 2001; Wolpert
and Ghahramani, 2000; Kawato, 1999; Jordan, 1996). However, as we shall soon
see (in Section 1.1.2), from the point of view of optimal feedback control, this
nomenclature of an inverse model becomes somewhat redundant.

It should be noted that there is still disagreement and debate about the exis-
tence of (forward and inverse) internal models (Ostry and Feldman, 2003; Feldman
and Latash, 2005). The primary objection is that there exists an alternate to inter-
nal models? — the nervous system could tune the stiffness and damping properties
of the muscles appropriately so that all control is achieved solely via the viscoelas-
tic mechanical properties of the body and not via direct control of muscle forces.
This is based on the equilibrium point hypothesis proposed by Feldman (1966a,b),
Bizzi et al. (1984, 1992), Hogan (1984a,b), etc. However, a vast amount of re-
cent evidence from psychophysical (Shadmehr and Mussa-Ivaldi, 1994; Flanagan
and Wing, 1997; Kawato, 1999; Flanagan and Lolley, 2001) and neurophysiological
(Gribble and Scott, 2002; Li et al., 2001) studies strongly support the existence of
internal models.

This discussion takes us naturally to theories about how the nervous system
puts its predictive capability to use. A thorough review of various theories that
attempt to explain sensorimotor control would fill several books and is not the
purpose of this overview. It suffices to say that theories of sensorimotor control
have evolved from the purported existence of a ‘vital force’ that drives all living
things® to optimality as a principle of sensorimotor control(Jordan, 1996; Todorov
and Jordan, 2002; Todorov, 2004).

1.1.2 Optimality in sensorimotor control

The subtle, yet important connection between the predictive capability of the
nervous system that we surveyed above and sensorimotor control appears to be
in the form of “optimality laws”. Optimality in the context of predicting or
explaining sensorimotor coordination in biological systems, refers to generating
detailed predictions of how muscles are activated by the nervous system using
a low-dimensional and well-defined goal that is specified in the form of a ‘cost-

2An internal model is defined as an internal neural mechanism that can simulate
the dynamics of the body, the world and their interaction.

3The ‘vital force’ or ‘vitalism’ is the metaphysical notion that living things
possess an inner “force” that makes them different from non-living things. Her-
mann von Helmholtz, the German philosopher and scientist was a pioneer of the
viewpoint that the study of physiology must be founded on laws of physics and
chemistry (Mackey and Santillan, 2004) and not on vital forces.



function™ (in fact, almost always a scalar function). An example application of
optimality principle is in predicting how humans walk by specifying only that we
want to minimize the metabolic energy that is consumed as the fitness-function
(Srinivasan and Ruina, 2006; Srinivasan, 2006). In order to use optimization to
predict how the nervous system controls the body, it is also necessary to constrain
allowable behaviors to a meaningful, yet not over-constrained set. For example, in
human locomotion one could (mathematically) specify that our bipedal computer
model can only produce periodic gaits and of the infinite possibilities of periodic
gaits, find the gait that minimizes energy consumption. In other words, optimiza-
tion provides a mathematical method for finding the best possible way of doing
something given constraints on what can be done and a measure of fitness or cost,
i.e. a scalar metric to compare two choices and qualify one as better or worse than
the other. There are other methods that use non-scalar meaures of fitness or cost.
However, they are often plagued by uncertainties about how to relatively weight
independent dimensions or goals since they try to achieve multiple goals. The un-
certainties arise because in general, there is no unambiguous way to call one vector
“bigger” than another when the each of independent axes of the vectors could be
scaled differently. In all, we will henceforth focus on optimization techniques that
rely on scalar cost-functions.

Of the mind-bogglingly large number of scientific attempts at explaining senso-
rimotor coordination, optimality holds the appeal of being the most parsimonious
explanation. It could be argued that optimality principles well approximate both
evolutionary pressures and task-demands in biological systems. A more thorough
discussion of optimality in biological systems in general can be found in Smith
(1978) and Alexander (1996, 2001). Optimality has been successfully applied in
the past to biomechanical systems like maximal static force production (Valero-
Cuevas et al., 1998), locomotion (Srinivasan and Ruina, 2006; Srinivasan, 2006,
and references therein), etc. Valero-Cuevas et al. (1998) used linear programming
(a linear convex optimization method) to predict muscle coordination for maximiz-
ing fingertip force in a specified direction with well-defined constraints on fingertip
forces/torques. Srinivasan and Ruina (2006) used energy minimization as the goal
of the optimization to explain transitions from ‘walking’ to ‘running’ in bipedal
animals.

The two examples cited above use optimization to predict average behavior.
They translate a desired goal into detailed specifications for how best to coordi-
nate muscles / actuators on average. This form of application of optimization
to predict control action is referred to as open-loop optimal control. Undoubt-
edly, given the presence of unavoidable environmental and internal disturbances
(or noise), some form of feedback is essential for single trial performance. In open-
loop optimal control, there is no unambiguous specification of how to implement

4The cost-function is also alternately referred to as ‘objective-function’ or
‘fitness-function’. In its typical usage, the cost-function is a quantity that we desire
to minimize, while the fitness-function is a quantity that we desire to maximize.



the feedback portion of the controller. The superset of open-loop optimal control
is then closed-loop optimal control, that optimizes not only the open-loop portion
(from goal to average control action), but also the response to trial-to-trial pertur-
bations according to some high-level goal or cost-function. So, closed-loop optimal
control predicts both average behavior and trial-to-trial variability. We present
below a more detailed overview of open-loop vs. closed-loop optimal control in the
context of sensorimotor control. It is important not to confuse this terminology
of open-loop vs. closed-loop with the absence or presence of feedback — both fla-
vors of optimal control necessarily entail feedback in order to be implemented in
real-world systems. ‘Open’ or ‘closed’ loop in optimal control refer only to the
optimization procedure — whether only the desired goal to control action is op-
timized (open-loop) or the feedback loop is incorporated (closed-loop) into the
optimization routine.

Open-loop optimal control

In the context of sensorimotor control, a large class of optimal control mod-
els predict average behavior (over repeated measurements of the same animal or
measurements across several animals) by optimizing some preset cost-function in
the same spirit as energy optimality models of locomotion. These models can be
lumped under the category of open-loop optimal control models. Cost functions
other than energy minimization were proposed because energy minimization failed
to account for behaviors such as arm movements (Nelson, 1983). Several authors
proposed that the nervous system might be trying to maximize “smoothness” of
limb movements i.e., jerk (the time-derivative of acceleration) (minimum-jerk mod-
els such as Hogan, 1984b; Flash and Hogan, 1985; Smeets and Brenner, 1999) or
the nervous system might be trying to minimize the effects of sensorimotor noise®
(minimum-variance models such as Harris and Wolpert, 1998). Irrespective of the
debate whether these fitness-functions seem reasonable or not, the point is that
control actions needed to achieve a desired task goal can be computed using some
form of optimality law®. However, it is important to note that there is one im-
portant shortcoming of open-loop optimal control models. They focus only on
average behavior and tell us nothing about how the nervous system responds to
unexpected disturbances. For example, if you picked up an empty can of soda, but

°Noise is a general term used to describe variability in a system that cannot be
captured by a deterministic model of a specified complexity. The source of ‘noise’
in biological and other physical systems is in general extremely hard to identify.
For an interesting discussion of whether neuronal variability is a hindrance (noise)
or useful information, see Stein et al. (2005).

5This is a reason why the nomenclature of an inverse internal model is rendered
superfluous by optimal sensorimotor control. An inverse internal model becomes
just another name for the mechanism (whatever it may be) that computes the
control action needed to achieve the desired goal.



expected it to be full, your arm would move “unnaturally” before your muscular
coordination adjusts appropriately to restore your arm motion to something more
“natural”. Does the nervous system just use some open-loop strategy to pick up
the can and try to update it online using some form of simple feedback control,
thus acting like a servo to the open-loop strategy? Or does it have the capabil-
ity to choose feedback control laws that are also optimal in some sense? Hence,
although both open-loop and closed-loop optimal control utilize sensory feedback,
the distinction between them is whether the use of sensory feedback is also optimal
(i.e., closed-loop optimal control) or if sensory feedback is used in a predetermined,
non-optimal, servo-like manner (i.e., open-loop optimal control).

Closed-loop optimal control

Closed-loop optimal control is a superset of open-loop optimal control. It op-
timizes (i) the preplanned sensorimotor control strategy for a given goal (i.e. de-
termines optimal open-loop behavior) and, (ii) the feedback control strategy (i.e.
online response to unexpected perturbations). In other words, it does what it
takes to achieve the specified goal and lets the dynamics arising out of the interac-
tion between the body and the world determine the optimal feedback strategy. A
very thorough review and discussion of optimal feedback control (synonymous to
closed-loop optimal control) and open-loop optimal control in the context of sen-
sorimotor systems can be found in Todorov (2004). The main feature of optimal
feedback control models that is relevant to the work presented in this thesis is the
necessity for existence of optimal state estimators. Optimal state estimators are
mechanisms that can use sensors with noise and time-delays to make an optimal
guess’ of the true state of the system being sensed. For a broad range of sensory
noise characteristics (i.e., even for non-Gaussian, colored noise) and definitions of
optimality, optimal estimators are Bayesian® in nature (Clark and Yuille, 1990),
i.e. they take into account the measured sensory signals, the dynamics of the sys-
tem being controlled, the context of the task being performed?, current and past
control signals, and combines them by weighting them according to their rela-
tive reliability. Several studies have experimentally found remarkable agreement
between experiments and optimal feedback control models that use Bayesian es-
timators. For example, if optimality for the state estimate is defined in terms of
least-squared error, then maximum likelihood estimation, i.e., Bayesian estimation

"The guess is optimal in the sense of minimizing the error in the estimate.

8The term 'Bayesian’ refers to Bayes’ theorem that provides a way to calculate
conditional probability, i.e. the probability of event B, given that event A has
happened.

Tt is not clear how exactly to define context. However, a loose definition could
be based on the time-scales. Phenomena with such slow time-scales compared
to other dynamics in the system so that they can be considered as static (time-
invariant) can be grouped together to define ‘context’.



is the optimal thing to do. For the purpose of this thesis and for typical scenarios
encountered in biological settings, we will accept the hypothesis that optimal esti-
mators are Bayesian to be a true statement. In summary, the important message
to remember is that optimal feedback control, Bayesian estimation and internal
forward models go hand-in-hand.

Here is a brief overview of some studies to provide a sample of the evidence
in support of optimal feedback control in the nervous system. Studies of balance
control during quiet standing provide an informative comparison between opti-
mal control models and experiments. Using linearized models of inverted pendula,
several studies have demonstrated how the measured response of joint angle tra-
jectories to small perturbations closely resembles optimal feedback control models
that try to maintain balance while minimizing control effort (Loeb et al., 1990;
Kuo, 1995, 2005; van der Kooij et al., 1999). The most convincing evidence in sup-
port of optimal feedback control in the nervous system (Todorov and Jordan, 2002,
2003) arise from attempts at explaining key ideas in sensorimotor control that were
originated by the pioneering work of Bernstein (1967). Bernstein noted that almost
all tasks we perform everyday require resolving redundancy, i.e. the same goal can
be achieved in many ways (usually infinite), thus leading to the problem of how to
choose one out of the many possibilities. For example, you could touch your nose
using (infinitely) many trajectories of your arm, most of which appear ‘unnatural’
to you. What made you decide that a specific trajectory was ‘natural’” and others
were ‘unnatural’? Although open-loop optimal control models specify how best
to behave on average based on some well defined task goal, they do not specify
how to use feedback control to implement the desired behavior in reality where
there is noise from the surrounding and from within the neuromuscular system. In
the presence of noise, even if the average behavior was identical, different feedback
control strategies typically produce different behavior (Loeb et al., 1999; Todorov,
2004). Hence, understanding how noise affects behavior served as an ideal test
bed for theories of feedback control in the nervous system. Specifically, one im-
portant prediction of optimal feedback control models that try to achieve the task
goal using the least amount of effort is the emergence of ‘minimal intervention’,
i.e. optimal feedback control models do not try to control any departure from the
desired average behavior unless the departure will affect the task goal (Todorov
and Jordan, 2002; Todorov, 2004). There are several phenomena observed in sen-
sorimotor control in humans that naturally emerge from the concept of minimal
intervention thus providing support for the utility of optimal feedback control in
understanding human sensorimotor behavior:

1. Selective response to external perturbations. The nervous system
responds to external perturbations only if the perturbation will affect the
desired goal (Bernstein, 1967; Cole and Abbs, 1988; Gracco and Abbs, 1985;
Burdet et al., 2001, 2006). This is exactly what an optimal feedback con-
troller (and not others) would do, since perturbations that do not affect the
goal, would not affect the cost-function, but extra control effort does affect



the cost-function.

2. Structure in variability — Uncontrolled manifold. The variability
in most tasks have been repeatedly observed to be elongated along those
directions that have no effect on the desired goal when the variability is
represented in the space of variables that describe the task. This has been
named the ‘uncontrolled manifold’ (Scholz and Schoner, 1999; Scholz et al.,
2000). Once again it is clear why minimal intervention would naturally lead
to an uncontrolled manifold. Because, variability due to internal perturba-
tions that has no effect on the task outcome is best left uncontrolled, but it
is beneficial to control variability in directions that affect task outcome, the
observed structure in variability is a natural outcome of optimal feedback
control.

3. Muscle synergies. Applying statistical techniques like principal compo-
nents analysis to muscle EMGs often show that several muscles act in a
concerted way as if they were controlled by the nervous system to represent
only the relevant features of the task, leading to the idea of ‘motor synergies’
(Bernstein, 1967; Cheung et al., 2005; d’Avella and Bizzi, 2005; Ivanenko
et al., 2003). In optimal feedback control models, the absence of control in
certain directions implies that control signals are correlated or some control
signals are completely absent. Statistical techniques such as principal com-
ponents analysis find that very few principal components suffice to account
for the variance in a correlated data set. The muscle synergies that are found
in experimental data rely on statistical techniques like principal components
analysis. Hence, the frequent observation of synergies in muscle coordination
is once again an expected outcome of optimal feedback control.

1.1.3 Bayesian inference

The final piece of our overview of theories of optimal sensorimotor control is
Bayesian estimation. The most commonly used name in the literature of motor
control for optimal state estimation using Bayesian techniques is 'Bayesian infer-
ence’. Studies on state estimation in humans have repeatedly found that Bayesian
inference models resemble human behavior in perception (Knill and Pouget, 2004;
Ernst and Bulthoff, 2004; Ernst and Banks, 2002a,b; Wolpert et al., 1995), sensori-
motor learning (Kérding and Wolpert, 2004; Kérding et al., 2004), motor planning
(Sober and Sabes, 2003, 2005; Wolpert et al., 1995), posture balance (Kuo, 1995,
2005; van der Kooij et al., 1999) and even in tasks where the same sensory channel
(vision) perceives multiple signals (position and velocity of the fingertip; Saunders
and Knill, 2003, 2004). Here, I will go over some of the evidence presented in
support of Bayesian inference in the nervous system and more importantly, ex-
amine the specifics of the types of tasks that were used in these studies. We will
see how the type of tasks restrict the results from these studies to reveal only the



effect of sensorimotor noise and not the effect of time-delays in the nervous system
on behavior. The strength and weakness of these past studies both arise from the
simple tasks they use, like pointing to a target, where the goal of the task is always
static, or tasks where assumptions of linearity were justifiable. It is a strength of
these studies, because it is astounding how much about the nervous system can be
revealed with such simple tasks. It is a weakness because the static or linear nature
of these tasks restricts them to conclusions that do not truly reflect everyday tasks
like object manipulation that are typically nonlinear and dynamic (Bicchi, 2000;
Valero-Cuevas, 2005). Past studies of multisensory integration come under one of
three groups listed below.

Static task goal

Several previous studies have examined how humans combine multiple sensory
signals. Most of them use a static task goal of moving the hand to a given target as
accurately as possible to study sensory estimation (Ernst, 2004; Ernst and Banks,
2002a; Ernst and Bulthoff, 2004; Knill and Pouget, 2004; Koérding et al., 2004;
Kording and Wolpert, 2004; Saunders and Knill, 2004; Sober and Sabes, 2003,
2005; van Beers et al., 2002, 2004; Wolpert et al., 1995). In the language of optimal
control models, the goal is to minimize errors in pointing to a static target. The
errors during behavior like pointing to a target arise from noise (uncertainty) in:
(1) sensory signals that inform the nervous system of the target’s location and the
posture of the arm, (ii) the motor system, i.e., apparently random fluctuations in
muscle force that could affect the accuracy of task performance and, (iii) neural
computations — although noise and variability in sensorimotor control is typically
attributed to either sensors or muscles, it is possible that a significant amount of
noise might arise from neural computation. The review by van Beers et al. (2002,
page 7) provides a good list of studies that try to elucidate the source of noise at
every level in the sensorimotor system — from sensors and muscles to neuronal
networks.

Ernst and Banks (2002a) used a study where human subjects had to estimate
which out of two blocks held between their index finger and thumb was taller.
The perceptual variance of volunteers in the experiment was estimated using a
virtual reality setup to provide only one of visual or haptic feedback. Subjects
then performed trials where both visual and haptic feedback were simultanesouly
available, but visual feedback was randomly perturbed, so that there was a ran-
dom discrepancy between visual and haptic feedback. A model based on Bayesian
inference found a rate of successful discrimination that was indistinguishable from
experimental data. This sort of experiment is a recurring theme, where the vari-
ance of each sensory channel is first obtained experimentally and when all sensory
channels are available, one of them is randomly perturbed to deliberately induce a
discrepancy between the available sensory channels. This can then be compared to
a model to determine how the different sensory channels are combined. When con-
sidering only the effect of noise on multisensory integration, assuming independent
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noise processes for different sensors, the optimal (in the sense of minimizing effect
of noise) sensory estimate is given by, & = ). w;x;, where z; are noisy sensory
signals from different sensory channels with noise variances o7, # is the net sensory
estimate and w; are sensory weights such that ) w; = 1. The net estimate % is

optimal when

= % (1)

> (/7))
J

Other studies (van Beers et al., 1999) have found similar results when examining
the ability of the nervous system to combine vision and proprioceptive sensation
from the arm to localize the hand in space. Instead of a 1D static task like height
of an object (Ernst and Banks, 2002a), van Beers et al. (1999) had to contend with
a 2D distribution of variance in sensory perception since they tested the ability of
subjects to sense the location of their fingertip on a plane. The novelty of their re-
sult is that these 2D variances were non-uniform, i.e. they were elliptical in shape.
For such distributions, if there is a discrepancy in the mean location from visual
and proprioceptive sensations, then the optimal combination did not even lie on
the line connecting the two mean locations — a possibly counter-intuitive result.
However, they found that their humans subjects also made the same error, namely,
when both vision and proprioception were available, they perceived the location
of their fingertip to be off the line connecting the mean location of the visual and
proprioceptive feedback signals! Kérding and Wolpert (2004) found that not only
do humans use Bayesian inference to combine sensory signals from multiple chan-
nels, but also use Bayesian inference to combine measured sensory signals with the
expected sensory signal — called the prior distribution (a probabilistic internal
model). The result of probabilistically combining the actual sensory signal with
expected sensory signal (i.e., combining distributions) yields yet another distribu-
tion called the posterior. Kérding and Wolpert (2004) found that via sensorimotor
learning, humans could learn to represent and combine their prior distributions
with measured noisy sensory signals, thus behaving as predicted by optimal esti-
mation models. They also found similar results for fingertip force discrimination
(Kording et al., 2004). In another study, Saunders and Knill (2004) studied op-
timal estimation in the nervous system when the same sensory channel measures
different variables simultaneously. For example, human vision is known to measure
both location and velocity of objects in the visual field. Using a linear Kalman
filter model Basar (2001) found that during reaching movements with the arm,
humans combine information about fingertip position and velocity optimally to
carry out the task of reaching a static target. Finally, Sober and Sabes (2003,
2005) examined motor planning, i.e. determining arm trajectory to point to a tar-
get and found that vision and proprioception are not combined based only on the
sensory variance, but based on the additional noise injected by the neural system.
They argue that this additional noise exists for proprioception since these sensors
respond primarily to joint angle changes and need to be converted to an spatial
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reference-frame which will entail necessary noisy neural computation, thus increas-
ing the noise-level in proprioceptive sense and thus decreasing its sensory weight.
This evidence is indirect, but is one of the first studies to try to address how known
noise in neural computation might be significant to sensorimotor control.

These studies provide a broad spectrum of evidence that human perception
probably uses Bayesian inference to minimize deleterious effects of sensory noise
during static tasks.

Linear or linearized dynamics

Similarly, other studies have examined whether optimal feedback control that
uses optimal state estimation can explain human balance control (Kuo, 1995, 2005).
These studies differ from those cited above in one key aspect — they do not
rely on conscious perception (both “conscious” and “perception” are ill-defined
terms; see Prochazka et al., 2000), but use some form of “subconscious” control
to keep balance during quiet standing. Moreover, the systems being studied here
are dynamic in the sense that time-varying trajectories of the center of pressure
should stay within reasonable bounds for the model (or person) not to lose stability.
Since, the full-blown nonlinear system of balance control is extremely complex,
these studies restrict themselves to a linear analysis of optimal sensory estimation
by studying the response to very small random external perturbations delivered
to their standing human subjects. They find that their linear models that use
Kalman filtering for state estimation were able to reproduce various features of
experimental center-of-pressure trajectories remarkably well.

Time-delay compensation

Time-delays are ubiquitous in the nervous system. The first category of stud-
ies on Bayesian inference in the nervous system that we reviewed previously all
involved static task goals, which renders time-delays irrelevant. However, time-
delays are critical for stability of dynamical systems such as balance control. Un-
fortunately, all model-based studies to test optimality of sensory integration in
the nervous system during dynamic tasks such as balance control, whether linear
(Kuo, 1995, 2005) or nonlinear (van der Kooij et al., 1999) use time-delay com-
pensation to make their models robust (in this case independent) of time-delays
so long as the delays are not extremely large. Time-delay compensation is just the
name for the feature of optimal controllers that use optimal state estimators such
as Kalman filters. If sensory signals are time-delayed, then the optimal estimator
just relies on its forward internal model to predict the current state of the system
being controlled using delayed sensory feedback. The only studies that have ex-
amined sensory estimation during dynamic sensorimotor behavior (and hence are
potentially influenced by time-delays) are of balance control which are modeled us-
ing linear or nonlinear models that exclude effects of sensorimotor time-delays on
multisensory integration by using time-delay compensation techniques. A natural
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question to ask at this point is, “why bother more about time-delays if we know
that the nervous system’s behavior closely resembles optimal control models that
can compensate for time-delays”? There are two reasons why this is of concern to
us.

1. A very well known and big problem related to aging is the dramatic increase
in how often people drop objects or fall down themselves. The study of the
reasons behind this dramatic increase is a vast area of research. With respect
to object manipulation, it suffices to say that one careful study (Cole et al.,
1998) has revealed that the reason for loss of manual dexterity is not degraded
sensors (hence greater noise), thus by a process of elimination, blames the
overall slowing of cortical processing, i.e. increased time-delays with aging.

2. Although optimal controllers are capable of compensating for time-delays,
this ability not is robust to noise when the closed-loop system (controller
+ body + world) is close to instability (Stein, 2003), which is typically the
case when the sensorimotor system is at its limit of performance (with the
exception of static activities like producing maximum force). It is impor-
tant to note that sensorimotor control is highly regarded for its remarkable
performance at the limit of performance (at least compared to robotic con-
trollers) and disease is regarded as devastating because of the dramatic loss
of ability to push the limit of performance. But, because of the unavoidable
and ubiquitous nature of sensorimotor noise, any time-delay compensation
techniques are rendered ineffective at the edge of instability. In fact, the
importance of time-delays extends beyond just multisensory integration in
biological systems to the mathematical theory of Bayesian inference. Clark
and Yuille (1990, page 181) in their book on mathematical techniques of
multisensory integration rightly point out that, “Time is an important, and
all too often ignored, aspect of the operation of sensory systems”. Mathe-
matically, they find that optimal Bayesian estimate of a measured parameter
using time-delayed and noisy sensory signals should depend on both noise
and time-delays. In other words, the knowledge gained so far based on the
monumental volume of research on human sensorimotor behavior is only half
the story of multisensory integration. Keep in mind that for the purpose of
this discussion and this thesis we will restrict ourselves to noise and time-
delays as the primary factors that can affect sensorimotor performance and
hence, multisensory integration strategies.

Because of the above cited reasons, despite their novelty and insight into the
effects of sensorimotor noise, past studies on Bayesian inference cannot address
how unavoidable time-delays in the nervous system affect the ability of the nervous
system to use multiple sensory channels. A whole chapter of this thesis presents
novel results that provide evidence for the effects of time-delays in addition to
noise on multisensory integration and provides a model-based explanation for the
increased reliance on vision for manipulation when you get old or cold.
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1.2 Sensorimotor control of manual “dexterity”

So far we have covered what is known about the sensorimotor control of a wide
range tasks, but primarily simple ones such as finger pointing. A quintessential
feature of humans is our ability for dexterous manipulation using our fingers. The
research into dexterous manipulation (in humans or robots) is still in its infancy,
with much that is not yet known or understood. This thesis delves primarily into
aspects related to dexterous manipulation in the context of previous research on
optimality of sensorimotor behavior. As Sir Isaac Newton famously said'®, “If I
have been able to see further, it was only because I stood on the shoulders of
giants”. If this thesis goes any further at all in our present understanding of senso-
rimotor control and of dexterous manipulation it is by building on the monumental
effort of past researchers who have revealed features of sensorimotor control (re-
viewed above) and others who are beginning to unravel the horrendously complex
system of the human hand (e.g., Valero-Cuevas, 2005; Bicchi, 2000; Johansson and
Birznieks, 2004; Cole and Abbs, 1988; Johansson and Cole, 1992; Zatsiorsky et al.,
2002). Here, I present a brief overview of some features of sensorimotor control
using the hand relevant to the work presented in this thesis.

1.2.1 Static pinch and tactile dominance

In the neuroscience literature, holding or manipulation with the fingertips is
frequently referred to as precision pinch or precision manipulation. Using the whole
hand to hold an object like a hammer is called a power grip. Grasp is a term most
often used to describe the process of acquiring a pinch or a grip by appropriately
bringing our fingers into contact with an object. A very large number of studies on
sensorimotor control of dexterous manipulation have focused exclusively on static
precision pinch using the thumb and index finger to hold an object. In these past
studies, the objects that experimental volunteers grasped or manipulated were of
two types, passive or active. Passive objects are static objects held between the
index finger and thumb, and active objects are similar to passive objects but for
unexpected external perturbations (Johansson and Cole, 1994).

The first systematic and quantitative study to examine how frictional properties
of the object surface and weight of the object affect the coordination of fingertip
force exerted on the object was carried out by Westling and Johansson (1984);
Johansson and Westling (1984). These two papers found several key aspects of
fingertip force coordination during static pinch that have been repeatedly validated
by several other studies:

1. The grip force (fingertip force) scaled extremely consistently and linearly with
load force (weight of object supported by the fingers). For a given load, the

19This quote appeared in a letter to Robert Hooke who discovered “Hooke’s law
of elasticity” for springs.
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slope of the linear relationship between load force and grip force also system-
atically varied with frictional properties of the object surface. Importantly,
the grip force was always just marginally greater than the force at which
the object would slip (slip force). The results of this study indicate that the
nervous system predictively modulates grip force so that it is appropriate to
the weight and frictional properties of the object to be lifted.

2. The ratio of the slip force vs. load force was defined as the slip ratio and the
difference between the ratio of grip force vs. load force and the slip ratio as
the safety-margin (Westling and Johansson, 1984; Johansson and Westling,
1984). Although the safety-margin was found to be variable across individ-
uals, it was typically very small. Hence, these researchers suggested that
the nervous system uses predictive sensorimotor control to hold objects hard
enough so that they don’t slip, but not too much harder than necessary.
Interestingly, the safety-margin increased dramatically with any tactile im-
pairment (using a local anaesthetic; Johansson and Westling, 1984; Cole and
Abbs, 1988; Monzee et al., 2003; Augurelle et al., 2003). This has led to
the proposal that the safety-margin is a hallmark of sensorimotor control of
manual dexterity.

3. Perhaps the most salient find from several studies on static pinch is the dom-
inance of finger tactile sensation to static pinch. For a passive object, tactile
impairment dramatically increased the safety-margin, and completely abol-
ished the stereotypical modulation of grip force with changes in frictional
properties. Cole and Abbs (1988) found that with all sensation intact, the
grip force responded as fast as 60ms to any unexpected external perturba-
tions. But, once tactile sensation was impaired the latency of the grip force
response dramatically increased to as much as 160ms and also became ex-
tremely variable. This strong dependence of fingertip force coordination on
tactile sensation from the digits has been repeatedly established by several
studies on static pinch (e.g., Johansson and Westling, 1987; Johansson and
Cole, 1992, 1994; Johansson, 1996; Monzee et al., 2003; Augurelle et al.,
2003). In fact Johansson and Birznieks (2004) used the paradigm of static
pinch to find that the rapid response to perturbations using tactile sensa-
tion is because information about object slip is encoded using only the first
neuronal spike from an ensemble of tactile sensors in the fingerpad.

A series of publications also examined how these stereotypical patterns of static
pinch developed in children (Eliasson et al., 1995; Forssberg et al., 1991, 1995,
1992; Gordon et al., 1992) and revealed that the predictive features of precision
pinch took several years to develop and mature.

Cole and Abbs (1988) observed that, after losing digit sensation because of
an administered local anesthetic, “subjects found it difficult to grasp and lift the
object without visual monitoring of the hand and object”. Subsequently, other
studies (Héger-Ross and Johansson, 1996; Macefield and Johansson, 1996; Monzee
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et al., 2003; Augurelle et al., 2003; Cole et al., 1998) have begun to explore how
sensations other than tactile sensation contribute to static pinch. For example
Héger-Ross and Johansson (1996) found that if the hand was not restrained at
the wrist, even subjects with a tactile nerve-block showed grip force modulation in
response to external perturbations. But, the latency of response in grip force mod-
ulation was greatly prolonged after a digital anesthesia. Therefore, they concluded
that digital tactile sensors are dominant in feedback control and non-digital recep-
tors such as non-digital skin, muscle spindles, etc. are used only when digital tactile
sensation is absent. Augurelle et al. (2003) find that even in the absence of digital
tactile sensation, subjects could respond appropriately to external perturbations
and speculate that it could be due to subjects using visual or proprioceptive sen-
sory feedback. However, Monzee et al. (2003) found that even with vision the force
vectors from the thumb and index finger were not properly aligned causing the held
object to rotate and slip for subjects with digital anesthesia. They speculate that
the lack of sufficient visual acuity could be to blame for this.

In summary, although the theories of optimal control that we reviewed should
be applicable to object manipulation, there are no studies that examine this
quintessential human behavior of manual dexterity using the framework of op-
timal estimation. Instead, current studies on object manipulation are limited to
heuristic speculation about the relative merits of various sensory channels. More-
over, as evident from the literature survey presented in this section, almost all
studies on dexterous manipulation are still restricted to static tasks although in
the very first paper that used this paradigm of static pinch Westling and Johans-
son (1984) observed that static precision pinch “serves [only| as a basis for further
precision handling which may involve rotation of the object about one of its own
axes ... . Hence, there is undoubtedly a vital need for methods to quantify and
explore the nonlinear dynamic aspects of dexterous manipulation.

1.3 Nonlinear dynamics in biological sciences

Not only do we lack studies of dynamic manipulation in humans, but, existing
studies of nonlinear dynamic manipulation in robotic mechanisms are also highly
limited despite the use of extremely complicated mathematical methods (Bicchi,
2000). However, there exist some studies that have explored nonlinear dynamical
behavior in other sensorimotor systems and various other dynamic systems (such
as disease dynamics, weather patterns etc.) that could provide insight into how we
could study the nonlinear dynamics of manipulation (Longtin et al., 1990; Mackey
and Glass, 1977; Mackey and Santillan, 2004; Collins and Deluca, 1994; Cabrera
and Milton, 2002, 2004a; Beuter, 2003; Poon and Merrill, 1997; Wiesenfeld and
Moss, 1995; Robertson et al., 2004).

At this juncture, it is useful to briefly define what we mean by a “dynamical
system” and “bifurcations” which are terms that will be frequently used in this
section. A dynamical system in continuous time is usually described by a set of
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ordinary differential equations such as & = f(x; \), where z is a set of n variables
that suffice to describe the state of the dynamic system under consideration, &
is the time-derivative of x determined by x and p parameters A as specified by
the function f : R™*? — R". An equivalent geometric picture of this dynamical
system for specific values of \ is the n-dimensional picture that traces how x evolves
over time for every possible initial condition — called the phase portrait of this
dynamical system. Sometimes, when one or more components of A change, the
phase portrait of the system undergoes a sharp, qualitative change that is called
a bifurcation. For example, consider a pitchfork bifurcation (Guckenheimer and
Holmes, 1983) for a dynamical system described by # = Az — z®, where x is a
scalar; x = 0 is the only equilibrium point and is stable for A < 0. However, at
A =0, z = 0 is no longer stable, but just marginally stable, i.e. the trajectories
of this dynamical system are no longer attracted towards x = 0. Once A > 0, the
point x = 0 becomes an unstable equilibrium point and two new stable equilibria
arise at = £v/A. This qualitative change that happens at A = 0 is called a
bifurcation (of the pitchfork type in this example).

Longtin et al. (1990) studied the human pupil light reflex where oscillatory phe-
nomena of varying complexity have been observed. They choose that system as a
paradigm for neurological control systems because, the “advantage of studying the
pupil light reflex. . .is the ease with which the feedback loop can be opened (i.e.,
the effect of the output on the input can be removed). This has led to extensive
studies of the linear and nonlinear properties of the reflex components. . . closed-
loop oscillations can be studied using an experimental setup in which the normal
feedback is replaced by controllable external electronic feedback.” Hence, they
could model the dynamic behavior of this system using first-principles! as a de-
layed differential equation with noise. They explore and reveal several interesting
interactions between noise and bifurcations (for example, they find that a Hopf
bifurcation occurs in this system that is postponed by the presence of additive
or multiplicative noise). Although the exact details of the interactions are not
directly relevant to us, the message to take away from their studies is the power
of a combined experimental-mathematical approach that uses nonlinear dynami-
cal systems to reveal the workings of a neurological system. The edited book by
Beuter (2003) contains a very good collection of such studies that have examined
nonlinear dynamical aspects of various biological systems ranging from a single cell
to a whole human.

Not all of the above cited studies started with systems that could be modeled
from first-principles. For example, Robertson et al. (2004) sought to explain how
infants choose to focus attention when presented with a visual scenery. Specifically,
they sought to determine if the frequent shifts (saccades) that are experimentally
observed in infants is driven by some visual processing or by some intrinsic noisy
process. They found that a nonlinear dynamic alsystem that had multiple stable

1See Section 1.4 for our chosen definition of first-principles vs. phenomenological
models.
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points (like A > 0 in the example presented earlier) representing objects of interest
in the visual scenery, together with hysteresis and additive Gaussian white noise
acted quantitatively like experimental measurements on 4-week-old infants. Thus
they concluded that noise and hysteresis could explain the ‘visual foraging’ that is
observed in infants. Yet another series of studies that are well summarized in the
review by Wiesenfeld and Moss (1995) found that the presence of noise in nonlinear
dynamical systems could be beneficial. The common theme in the studies reviewed
by Wiesenfeld and Moss (1995) is the development of nonlinear dynamic models
either from first-principles or from the phenomenology of the system of interest
(that ranged from biological systems, climate systems to electromagnetic systems)
and a model-based examination of the effects of noise.

Another class of studies that use nonlinear dynamic techniques such as Collins
and Deluca (1994); Cabrera and Milton (2002, 2004a) rely on nonlinear time-
series analysis to reveal aspects of interest about the systems they study. Collins
and Deluca (1994) found that the postural sway observed during quiet standing
was indistinguishable from a random walk so long as deviations of the center of
pressure under the feet were not too large. For large deviations, there seemed
to be rapid corrections that returned the center of pressure toward the center
of contact of the feet. This result is strong evidence for the presence of hybrid
control (continuous-time + event-driven) in human balance control. Similarly,
Cabrera and Milton (2002, 2004a) find that the human ability to balance sticks
reveals something known as ‘on-off intermittency’ that points to the benefit of
multiplicative noise in feedback control and of deliberately pushing the system to
the edge of instability.

It is hard to miss that most of these studies are interested in bifurcations in
one way or another. There are two main reasons for this that arise from the
mathematical properties of almost all nonlinear dynamic systems, irrespective of
their complexity.

1. The center-manifold theorem states that at the point of bifurcation of al-
most all dynamic systems, all non-trivial dynamics are restricted to a low-
dimensional (compared to the dimension of the full system) manifold. This
result is of course governed by several caveats about properties that the
dynamic system under consideration should satisfy. However, from the ap-
plication point of view, this creates the possibility of modeling otherwise in-
tractably complex systems such as sensorimotor control of the hand, global
climate, etc.

2. There are only a finite number of possible bifurcations of a fixed point when
one or two parameters (e.g., components of A in the example discussed above)
are changing. These bifurcations can then be described by ‘normal form’
equations that closely approximate the dynamics of the full system when
restricted to the center-manifold. We restrict our attention to fixed points
and only one or two changing parameters, since that is the only focus of this
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thesis and permits us to make a stronger statement (finiteness) about the
number of possible bifurcations.

1.3.1 Benefits of the edge of instability

Based on these two results stated above, it seems that the benefits of pushing
a system to an edge on instability, where a bifurcation might ensue are tremen-
dous. That is indeed the case and the principal motivation for the work presented
in this thesis. It is especially important to examine the dynamics at the edge of
instability of sensorimotor control systems for reasons other than just the con-
venience of mathematical modeling. A very illuminating lecture by Stein (2003)
called ‘Respect the unstable’ goes over the challenges posed by systems that are
nearly unstable to the design of robust controllers from the engineering perspec-
tive. The realization that skilled behavior such as dexterous manipulation or ice
skating are often at the sensorimotor limit of performance makes the importance
of studying sensorimotor control near an instability especially pertinent.

I now present examples of studies that used the edge of instability as a tool
to examine complex nonlinear dynamics of various systems. Based on observed
time-series of occurrence of measles, Earn et al. (2000) find that bifurcations of a
simple nonlinear model can explain various cyclic occurrences of measles outbreaks.
Alvarado et al. (1994) observe that voltage collapse and blackouts in electric power
systems due to increase in demand is because the power grid loses stability through
a saddle-node bifurcation. They use this observation to design algorithms to detect
such voltage collapses before the occur. Milton et al. (2004) find that epileptic
attacks can be modeled as a dynamic system at the edge of instability and propose
along the lines of theories of self-organized criticality (Bak et al., 1987, 1988) that
most neural systems are naturally poised at the edge of instability.

In a study that was the direct precursor to the work in this thesis, Valero-
Cuevas et al. (2003b) used the edge of instability as a measure of the limit of
sensorimotor performance to quantify the effects of impairment to the thumb due
to osteoarthritis.

1.4 What this thesis is about

The different ways to model a system could be roughly categorized into two
blocks — first-principles vs. phenomenological. A ‘first-principle’ is a statement in
a formal logic system that cannot be deduced from any other. In that strict sense,
for physical systems, only a molecular or smaller-scale model whose physical laws
derive purely from empirical observations and cannot be broken down further can
be regarded as a first-principles model. But, we will stick to a less strict defini-
tion in this thesis — if the system can be modeled using empirical “laws” that
describe its constituent components, then we will refer to it as a first-principles
model. On the other hand, if we use empirical observations of the entire system of
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interest to develop a model with no knowledge about its constituents, we will refer
to the model as a phenomenological model. In this chosen grammar for classifying
models, a first-principles model is just an assembly of several phenomenological
models! First-principles models are easy to justify based on known physics of the
system being modeled, but more often than not, such detailed models cannot be
developed because of unknown or unmeasurable properties of very complex sys-
tems like the human sensorimotor system. On the other hand, phenomenological
models are often not restricted by our ability to measure properties of the original
system, but typically suffer from lack of generalizability of results they find because
of their specificity. Almost independent of the modeling approach chosen, “under-
standing” can be achieved in one of two ways — dynamical/emergent behavior vs.
goal-oriented behavior (e.g. optimality, external forcing or somehow explicitly spec-
ifying a goal, i.e., fitness function approach). I say almost independent of modeling
approach because there is no obvious coupling that is necessary between any of the
modeling approaches, vs. any of the understanding approaches, but one typically
finds that most studies that use first-principle models will resort to the emergent
behavior flavor of understanding and most studies that use a phenomenological
approach will use a goal-oriented behavior flavor of understanding. The reason
for this coupling is in some ways a purely technological limitation. Goal-oriented
approaches are often optimality based and suffer from computational and conver-
gence issues if the system being studied is very high-dimensional, so they resort
to simpler models that are often either derived phenomenologically or are in some
way a cartoon of the real system being studied. However, this coupling is often
trespassed in relatively contemporary studies either by using sheer computational
power or by ideas such as emergent low-order dynamics near a bifurcation that
may considered as valid cartoons of the real system with as few assumptions as
possible. The body of work presented in this thesis sits firmly in the territory of
a “cartoon of reality” approach, and uses bifurcation theory of nonlinear dynam-
ics to build the cartoon (i.e., phenomenological) model. In some ways, a purpose
of this thesis could be considered as trying to highlight the strength of bifurca-
tion theory in helping generate cartoons of reality that are very close and valid
approximations of the system being studied while still remaining mathematically
and computationally tractable. In terms of “understanding”, this thesis lies some-
where between the emergent behavior and goal-oriented flavors. The development
of the cartoon model relies on mathematical theories that classify the types of
emergent behavior when a system undergoes a qualitative change in its dynamics.
But, once the cartoon model is developed, the work presented here resorts to nu-
merical optimization that tries to achieve an externally specified goal (maximize
a well defined fitness function), which is an interpretation of the nervous system’s
functioning in the context of our experimental design.
In summary, this thesis tries to address three intertwined questions:

1. How can we design an experimental technique and the mathematical tools
necessary to extend our understanding of dexterous manipulation into the
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realistic regime of nonlinear dynamic manipulation?

e We address this issue by designing an experimental task of dexterous
manipulation at the edge of instability. This enables us to model the
otherwise intractable behavior of dynamic manipulation using a simple
low-order model that is mathematically and computationally tractable,
but because it naturally emerges due to the property of dynamic systems
at the edge of instability, it remains extremely generalizable to a large
class of systems (biological and others).

2. During dynamic sensorimotor control, does the nervous system perform sen-
sory estimation according optimal estimation theories, namely, does multi-
sensory integration emerge from the combined effect of noise and time-delays?

e We perform an equivalent of previous studies on sensory occlusion (see
Section 1.2.1), but use our novel paradigm and provide an explanation in
the framework of Bayesian inference for the tactile dominance in intact
hands and visual dominance once tactile sensation is impaired.

3. Can we quantify and understand the clinical consequences of treatments and
diagnose impairments of the hand using the neurophysiological understand-
ing of sensorimotor control that we have obtained?

e We use the techniques developed in this study to understand why a
specific treatment for osteoarthritis of the carpometacarpal joint of the
thumb caused improvement in everyday function for the patients who
underwent treatment.

e We use our model of multisensory integration to provide explicit predic-
tions and direction for future work to design a measurement technique
for detecting specific neurological diseases such as carpal tunnel syn-
drome or multiplesclerosis in their early stages.

1.5 What this thesis is not about

It is important to clearly outline what this thesis is not about, especially since
there is a body of literature in sensorimotor control that uses similar language
to this thesis. Schoner and Kelso (1988) performed experiments of periodic bi-
manual finger motions that they modeled as coupled oscillators. They found that
increasing the frequency of finger oscillation automatically led to mirror symmetric
bimanual oscillations and any other form of oscillation could not be sustained by
their subjects. They related this phenomena of stereotypical behavior beyond a
critical frequency to the work of Haken (1975) and claimed that the nervous system
has a tendency to spontaneously self-organize sensorimotor control. Kelso (1995)
provides a collection of several such studies and goes further to propose that the
nervous system spontaneously organizes itself near some form of criticality. To
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state this in terms of the dynamical systems language we have been using so far,
Schoner and Kelso (1988); Kelso (1995); Sternad (2000) postulate that the nervous
system and sensorimotor control in specific exhibits self-organized criticality (Bak
et al., 1987, 1988). They go further to postulate (Kelso, 1995) that the emer-
gent self-organized state is often at the edge of instability, i.e. near a bifurcation,
which is not necessarily true of self-organized criticality. Although these studies
use similar language to the work in this thesis, the important distinction lies in the
fact that those studies (Schoner and Kelso, 1988; Kelso, 1995; Sternad, 2000) do
not use results of bifurcation theory to develop generalizable models, but develop
specific phenomenological models of coupled oscillators that best fit their experi-
mental data. Moreover, these studies are along the lines of “emergent behavior”
route of “understanding” sensorimotor control, which is a distinctly different fla-
vor from the “goal-oriented” approach of this thesis. In fact, it is not even clear if
the postulated self-organization of sensorimotor control is a valid claim since more
recent studies have shown experimental evidence to the contrary (Mechsner et al.,
2001).

1.6 Why study the hand?

The hand is considered by some to be what sets humans apart from most
other species (Valero-Cuevas, 2005; Bicchi, 2000; Clack, 2004). Not surprisingly,
robust and versatile hands have proven to be the hallmark of a large volume of
contemporary research in robotics (Bicchi, 2000; Okamura et al., 2000). Above
all, any impairment to the hand often has devastating effects on a person’s quality
of life (Valero-Cuevas et al., 2003b; Valero-Cuevas and Hentz, 2002). Yet, despite
this apparent gravity of the hand, very little is known or understood about the
hand and its quintessential, yet incredible versatility (Valero-Cuevas, 2005; Bicchi,
2000).

What made the human hand what it is today? How can one model or un-
derstand the complex interaction of the nervous system, the hand and the world
that yields such rich and versatile behavior? Is the human hand distinguished
because of or despite of its nonlinearities, noisiness, time-delays and such aspects
that are extremely hard to mathematically describe? How do the interactions of
the nervous system at the level of individual neurons and the muscles at the level
of motor-units (if not smaller) result in the emergence of such coherent and robust
behavior? In all, the hand appears to be the Kurukshetra'? of science, where bi-
ology, physics and mathematics converge in a battle of many unsolved problems,
several of which promise to deliver deep insights into the working of not just our

2The purported site of a legendary battle in ancient India around 3067 BCE
that is depicted in the Hindu epic Mahabharata. This battle served as the setting
for the Bhagavad Gita that summarizes a number of philosophical explanations in
Hinduism for the meaning and purpose of life.
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body, but the physical world in general. This work aims to establish the foundation
upon which some of these questions can be explored in the future.

1.7 Layout of this thesis

The following is the specific layout of this thesis based on the goals and hy-
potheses listed in Section 1.4. In Chapter 2, we introduce an experimental task of
compressing a slender spring that pushes the closed-loop thumb + object + ner-
vous system to the edge of instability. We use the normal form of a subcritical
pitchfork bifurcation to model this system based on the mechanics of the object
and measured spatiotemporal dynamics. We provide evidence that the spatiotem-
poral dynamics of our model are indistinguishable from experimentally measured
dynamics. We also provide experimental evidence to demonstrate that this task
truly takes people to their limit of sensorimotor performance that is independent of
muscular strength. We present evidence from our experiments that is contrary to
the notion of ‘safety-margins’ that is prevalent in the literature of static precision
pinch and provide a possible explanation for our result. In Chapter 3, we extend
our model to incorporate multisensory feedback from thumbpad tactile sensation,
vision and non-digital mechanoreceptors. Importantly, we incorporate noise and
time-delays in this model based on known neurophysiological data. We then use
numerical optimization on this model to explain the effects of sensory occlusion in
the framework of Bayesian inference, where both time-delays and noise influence
sensory weights. We also provide experimental evidence that experimental results
of sensory occlusion closely resembled model behavior. Chapter 4 provides pre-
liminary evidence that explains improvement in manual dexterity after treatment
using Hylan G-F 20 (Hyaluronic acid) for osteoarthritis of the carpometacarpal
joint of the thumb. Specifically, we propose that self-reported improvement in
dexterity was primarily due to alleviation of pain, thus permitting the patients to
better use their inherent sensorimotor ability. Then, in Chapter 5 we present a
brief list of short, intermediate and long term goals for future work based on the
results and methods developed in this thesis. We conclude the thesis with a dis-
cussion of implications of this work to optimal feedback control theory in general
and sensorimotor control in specific.



Chapter 2
Dynamic manipulation at the edge of
instability — Experimental design and

mathematical modeling
2.1 Introduction

In this chapter we provide evidence that experimentally measured spatiotempo-
ral dynamics of manipulation at the edge of instability are indistinguishable from
that of a low-order nonlinear dynamical model that we developed using bifurcation
theory. The work presented in this chapter lays the necessary foundation for sub-
sequent chapters of this thesis where we test neurological and clinical hypotheses
using the combination of our experimental task and low-order model.

2.1.1 Background

In Chapter 1 we reviewed existing literature about sensorimotor control of dex-
terous manipulation. We saw that the study of manipulation in humans has been
restricted to static force production and force coordination in the past. However, a
paradigm used in some of these past studies that is relevant to the work presented
in this thesis is that of pushing the neuromechanical® system of the hand to some
point of uniqueness. To clarify this further, let us look at an example. Valero-
Cuevas et al. (1998) imposed a goal of trying to maximize static force production
from the index fingertip. They found subject-independent muscle coordination pat-
terns and a computer model predicted muscle coordination patters for maximizing
force output (using linear programming — an optimization method) that agreed
remarkably well with experimental measurements. Other examples are studies
that have examined muscle coordination during maximum height jumping (Zajac
et al., 1981, 1984; Pandy et al., 1990). Once again, they found consistent muscle
coordination patterns that agreed well with optimal control models. In both these
examples, the researchers pushed the neuromechanical system to a limit of perfor-
mance, thereby pushing the system to near-uniqueness, i.e., only very few motor
control strategies could yield task-optimal performance (be it maximum force or

!This phrase is used to represent the fact that the nervous system, muscles of
the hand and the kinematic mechanism of the digits are best treated as a coupled
dynamic system (Valero-Cuevas, 2000). This approach is in contrast to the strictly
hierarchical picture of sensorimotor control with the nervous system at the top as
adopted by several researchers. However, the phrases neuro and mechanical do
reflect the fact that we still distinguish the neural and musculoskeletal components
of this system as distinct entities. This distinction helps place any analysis of this
system in the realm of goal-oriented behavior as discussed in Section 1.4.

23
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maximum jump height). We sought to design a similar paradigm, where the neu-
romechanical system of the hand manipulating an object was pushed to some limit
of performance. However, in contrast to the past studies on manipulation that
relied on static tasks, we developed a dynamic manipulation task that required
very low forces.

2.1.2 Past work — The “Strength-Dexterity Test”

The immediate precursor to the work presented in this study, referred to as the
“Strength-Dexterity Test” or simply the “S-D Test”, has been previously reported
(Valero-Cuevas et al., 2003b; Valero-Cuevas, 2003). In this past study (Valero-
Cuevas et al., 2003b), we developed a method to decouple pinch “strength” from
pinch “dexterity”. We chose to define dexterity as the ability to regulate fingertip
force vector (i.e., magnitude and direction) as well as fingertip position in order to
control an inherently unstable object. We graded “dexterity” by asking subjects
to handle objects of different dexterity requirements. The objects were helical
compression springs and the manipulation task was to compress these spring until
they reach their solid length, i.e., the coils come in contact with one another. For
a given spring, the slenderness ratio (length/diameter) represents the dexterity
requirement and the stiffness (or force magnitude required to compress it to solid
length) represents the strength requirement. This ability to decouple strength and
dexterity enabled us to define a Strength-Dexterity plane that we discretized using
springs of various slenderness ratios and stiffnesses (see Figure 2.1).

Dexterity Index

We defined “Dexterity Index” as a function of the geometry of the spring given
by,

DC, Cy

where D is the mean spring diameter, C; and C5 are constants that depend on the
spring material, and L is the free length of the spring. For a given spring, ¥mq. 18
the maximal distance the spring can be compressed before reaching its solid length.
This formula is obtained directly from the well-known equation to calculate the
critical spring compression at which it buckles under a static load (Timoshenko,
1961; Wahl, 1963; Shigley and Mischke, 1989) for given end-conditions (say, fixed,
pinned, free, etc...). The vertical compression (distance) at which the spring
elastically buckles is related to the imposed end-condition. The end-condition is
quantified by the ratio of the ‘effective-length’ vs. ‘free-length’ of the spring. The
effective length for a given end-condition is the distance between zero-moment
points of the spring (or column) just before it is about to buckle. The end-condition
parameter is then defined as the ratio: a = Leg/Lg. For the example of a column
buckling with one end ‘fixed” and the other end ‘free’ that is shown in Figure 2.2,

1 2UmazC1 Lo — 42
Dexterity Index = \/ Y 120~ Ymag (2.1)



25

Strength-Dexterity Kit

@®©
c
2 (169-239 H 000000000
g (122-143 GO0 OO0 0000 0io
>2 (079-1.04 Fl 00O O0O0O000 000000
5§82 (057-072 Ef 000 00000000000
g;g; (0.44-059) D} OOOOEOOOOO
£ (035-044) C| 000000000
%(0.31-0.38) B| OOOOEOOOOO
§ 1234658678 910111213 14
= SRNY=-RNYITTY TN =T
TANTNREL2IILSRS
N I T R
T T T2 d5FLERSE

Strength (N)

Figure 2.1: The discretized strength-dexterity plane. Adapted from Valero-Cuevas
et al. (2003b) with permission. We found that every unimpaired young adult (< 40
years) could compress every spring inside the rectangle bounded by dashed lines.
The same could not be said for older adults, impaired adults (Valero-Cuevas et al.,

2003b) or children (unpublished data).
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Figure 2.2: A column buckling example with fixed-free end conditions to illustrate
the definition of “effective length”. The curvature of the column and the lateral de-
flection of the free end are exaggerated for clarity. The definition for end-condition
parameter « holds precise meaning at the load when the column just begins to
buckle, i.e., in this example, the free end just begins to elastically deflect away
from the previously stable centerline.
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the effective length is twice the length of the column, hence, a = 2. With this
definition of o and the same definitions of D, C;, Cy and Lg as listed above, the
critical spring compression is given by,

CyD?
Yer = LoCl (1 - 1-— (042[,—0)2> (22)

Using this formula, a natural definition for dexterity arises in the context of using
the fingertips to compress a spring. If a person successfully compressed a spring
to its solid length, i.e. ynae = Lo — L, where L, is the solid length of the spring,
then we can replace y. in Equation (2.2) with ¢4, the compression at solid
length, to calculate a lower bound on the effective end-condition (a,;,) they could
emulate using their digits. The Dexterity Index (Equation (2.1)) was then defined
as the reciprocal of «,,;, for each spring in the discretized grid of the S-D plane.
Say, for a specific spring, the critical compression for fixed-free end-conditions was
at the compression just before it reached solid length (e.g., springs in row ‘D’
of Figure 2.1), then if the person could emulate a fixed-free end condition using
their digits, they would be able to successfully compress the spring. However, this
person may also be able to emulate stricter end conditions like fixed-pinned (where
the top end is allowed to rotate, but not deflect, e.g., row ‘F’). That is why, if a
person could successfully compress a given spring, the corresponding ‘Dexterity
Index’ is only a lower bound.

Dexterity — the ability to control an instability

By making subjects compress every spring from the S-D grid (Figure 2.1) and
quantifying the area of the spring-grid that each subject could successfully com-
press, we found that unimpaired young adults could cover a larger area than unim-
paired older adults, who were in turn better (i.e., covered a larger area) than older
adults with osteoarthritis of the carpometacarpal joint. The main message to take
away from this study is that defining “dexterity” as the ability to control an in-
stability seems to be informative of manipulation ability, at least consistent with
the qualitative notion that age degrades dexterity and disease degrades it further.

2.1.3 “Manipulating the edge of instability”

Dynamic sensorimotor behaviors such as manipulation are quintessentially com-
plex, non-linear and high-dimensional. Due to the mathematical intractability of
such systems, past attempts at a nonlinear dynamic description of sensorimotor
control have remained limited in one of two ways.

1. The systems studied were simple enough so that they could be modeled by as-
sembling empirically well-known properties for their constituent components.
For example, Longtin et al. (1990) sought to understand various rhythms ob-
served in the pupil light reflex. Although there are no known studies that
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have modeled sensorimotor control systems using first-principles in the strict
sense?, the study by Longtin et al. (1990) is an example that comes close
to a first-principles approach. In their own words, the “advantage of study-
ing the pupil light reflex. . .is the ease with which the feedback loop can be
opened (i.e., the effect of the output on the input can be removed). This has
led to extensive studies of the linear and nonlinear properties of the reflex
components. . . closed-loop oscillations can be studied using an experimental
setup in which the normal feedback is replaced by controllable external elec-
tronic feedback.” This quote is illuminating because it reveals an important
facet of the system they chose to study, namely, the dynamical behavior of
the underlying components of the pupil light reflex were well studied and
modeled, hence, they could model the complete system of the reflex start-
ing from first-principles, i.e., empirically observed, well-defined constituent
properties. However, that is unfortunately not the case for more complex
sensorimotor behavior like object manipulation, where almost none of the
underlying components have been well understood!

2. A second category of studies on nonlinear dynamics of sensorimotor control
examine complex systems with little knowledge about its constituents, but
rely on phenomenological models that are often not generalizable beyond the
specific time-series they model. For example, several studies have examined
apparent qualitiative transitions in behavior during rhythmic bimanual finger
oscillations as the frequency of oscillation is increased (Schoner and Kelso,
1988; Kelso, 1995; Sternad, 2000). Any system with stable limit-cycles will
exhibit oscillatory behavior in some region of its phase space. They chose to
model their experimental observation using coupled van der Pol - like oscil-
lators. These studies found that their model exhibited the same qualitative
transitions as the real systems they were studying and posited that their
model was in fact a true representation of the underlying phenomena. Such
approaches to phenomenological modeling do not yield uncontestable models
or explanations of the real system being studied since the models lack any
form of uniqueness or genericity, thus limiting the scope of their applicabil-
ity. In fact, for the example of bimanual rhythmic motor control, there is
more recent experimental evidence that challenges (Mechsner et al., 2001)
the inferences drawn from the phenomenological models that were developed
for bimanual coordination.

However, for the complex system of dynamic manipulation, we overcome this
impasse between first-principles models (not necessarily in the strict sense) vs. phe-

2A “first-principle’ is a statement in a formal logic system that cannot be de-
duced from any other. In that strict sense, only a molecular or smaller-scale model
whose physical laws derive purely from empirical observations and cannot be bro-
ken down further can be regarded as a first-principles model for most physical
phenomena.
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nomenological models by defining dexterity as the ability to control an instability.
This definition leads to a natural choice for modeling and analyzing the dynamics
of manipulation at the edge of instability as we shall see in this chapter. As dis-
cussed in Sections 1.3 and 1.3.1, the mathematical theory of bifurcations provides
necessary tools for identifying and modeling ubiquitous low-dimensional dynamics
in arbitrarily complex nonlinear dynamic systems at the edge of instability. Thus,
studying manipulation at the edge of instability allows us to model the otherwise
intractably complex nonlinear dynamics of dexterous manipulation.

Based on these fundamental properties of non-linear dynamical systems, we
designed the novel paradigm of asking our subjects to compress a slender spring
to near-instability using their thumb-pad (Figure 2.3), thus pushing the fused
thumb + spring + nervous system to the edge of instability. This is a nonlinear

Motion capture
camera

P
€O,

Reflective
marker

\\ =
Vol o8
Sample W\ ©
Compression
\
i
)
Y
// 2 6 10
Loadcell Time (sec)

Figure 2.3: A schematic showing the experimental setup used in this study. A
representative sample compression is shown on the right, where a subject slowly
compressed the spring to minimize the volume of the audio feedback provided (not
shown), without letting the spring slip and maintained that compression for 7
seconds before slowly releasing the spring. For the sake of clarity of the figure, we
have not shown the hand and arm restraints.

dynamic task using noisy and time-delayed multisensory information from thumb-
pad sensors, non-digital sensors (cutaneous sensors and joint sensors outside the
thumb, muscle spindles, and Golgi tendon organs) and vision. The dynamics of
spring buckling is known to undergo either a pitchfork (one-dimensional buckling
dynamics) or Hopf (two-dimensional buckling dynamics with sustained oscillations)
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bifurcation (Croll and Walker, 1972; El Naschie, 1990; Guckenheimer and Holmes,
1983; Lobas et al., 2002; Lobas and Lobas, 2004). Since we never observed any
oscillatory behavior in our experiments — the signature of a Hopf bifurcation — we
modeled our task with the normal form of a subcritical pitchfork bifurcation (a
one-dimensional nonlinear dynamical system; Figure 2.8). We found model pa-
rameters using the frictional properties of the thumbpad-object interface and the
measured highest compressive load reached by subjects.

In summary, we propose to extend our prior experimental study (Valero-Cuevas
et al., 2003b) by forcing the closed loop thumb + spring + nervous system to an
edge of instability. This enables us to exploit ubiquitous low-dimensional phenom-
ena in nonlinear dynamical systems to quantify and understand dynamic manipu-
lation.

2.1.4 Hypotheses

Based on the above discussion, we proposed and tested the following hypothe-
ses.

1. A low-order model based on a subcritical pitchfork bifurcation normal form
can capture the dominant dynamics of manipulation at the edge of instability.
We expect this to be true since the chosen equation is not an arbitrary
phenomenological model, but a center manifold reduction of the dynamics of
the fused thumb + spring + nervous system at the edge of instability.

2. The edge of instability reached in this task of compressing a slender spring
is a strength independent limit of performance. Based on past work (Valero-
Cuevas et al., 2003b) we know that the area of the S-D plane covered by
unimpaired subjects was independent of pinch strength, i.e. the ability to
regulate fingertip force and motion to control an instability was independent
of strength. Hence, we expected the ability to push the edge of instability
to the furthest possible (compress the spring to the furthest possible) to be
independent of strength as well.

3. There is no safety-margin during dynamic manipulation like observed in
static precision pinch. This hypothesis is motivated by the qualitative obser-
vation in everyday activities that holding an object “hard-enough” is not the
only determinant of typical object manipulation. An object may slip even if
held hard enough or conversely, an object may be manipulated successfully
despite very low contact forces (e.g. twirling a pen). So, we hypothesized that
the notion of a “safety-margin” is not applicable to dynamic manipulation
tasks.
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2.2 Experimental methods

After giving written informed consent, nine males and three females (19-40
years of age, mean=23 years) participated in this study approved by the Cornell
University Committee on Human Subjects. All subjects were right-handed, healthy
young adults with no known impairments or recent injuries to their hand and had
normal visual acuity or normal with correction. None of the subjects had any prior
experience with this experimental task, namely compressing slender springs.

We tested our hypotheses by asking our subjects to compress a slender spring
prone to buckling as far as possible (i.e., maximize compressive force) without
letting the spring’s endcap slip from under their thumbpad (see Figure 2.3). The
performance metric was the maximal compressive spring force that they could sus-
tain (Fy) for 7 seconds, which is a measure of the greatest instability they could
control for a prolonged period of time. To ensure that our measurements were not
during a transient learning phase, we performed a rigorous training routine for all
subjects over 2 days (see below). Note that all data that we report in the remainder
of the paper refer only to day 2 (post-training) unless otherwise explicitly men-
tioned. We also measured subjects’ performance using a 2x2 randomized factorial
design of 4 sensory occlusion conditions: with or without vision (via blindfolding)
x with or without thumbpad sensation (via Lidocaine nerve block of the radial and
ulnar branches of digital nerves of the thumb; see Section 3.3.1 on Page 66).

The data from the sensory occlusion experiments are presented in Chapter 3
where we use the experimental task and model developed in this chapter to test
a hypothesis about optimal state estimation in the nervous system. However,
because the data are all derived from the same experiment (same subject pool), we
included all data in our statistical analyses to control for overall Type-I error rate
(the probability that we reject our null-hypothesis incorrectly). Type-I errors are
a predominant source of incorrect scientific conclusions, since incorrectly rejecting
the null-hypothesis amounts to acceptance of the alternate hypothesis, in contrast
to not rejecting the null-hypothesis, when no inference is made. For example, say
we wanted to test a statistical (null-) hypothesis that the mean age of all readers
of this thesis is 50 years and surveyed the age of a randomly selected, sufficiently
large set of people who have read this thesis to test our null-hypothesis. We need
to propose an alternate hypothesis, say, the mean age is not equal to 50. If our
statistical test does not reject the null hypothesis (say using a t-test, the ‘p-value’
was 0.1, greater than our threshold for rejecting the null-hypothesis), that does
not imply that the null hypothesis is true. The only conclusion that can be drawn
is that our data are insufficient to reject the null-hypothesis, in contrast to saying
that we accept our null-hypothesis. Though this seems like a trivial subtlety, the
core of statistical hypothesis testing relies on this subtlety and is by no means
triviall
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2.2.1 Experimental setup

Subjects tried to compress a slender helical spring prone to buckling using just
their thumbpad (Figure 2.3). The design specifications for the spring used are
— free length = 76.2 mm, mean diameter = 8.7 mm, wire diameter = 0.79 mm,
total coils = 24, material: music wire (part no. 12201, Century Spring Corp., Los
Angeles, CA). We chose this specific spring based on buckling load calculations for
a dead-load. Specifically, we chose the free length so that it would be a little longer
than the width of the palm when the hand was held in the orientation shown in
Figure 2.3. Given the free length, we picked a spring that was sufficiently slender
so that it buckled at very low loads (< 10N) for fixed-pinned end-conditions. This
procedure was guided by Equation (2.2) and trial - and - error. We mounted
this spring in polymer (ABS P400, Stratasys Inc., Eden Prairie, MN) endcaps on
both ends, taking care to use only the final, closed coil of the spring so that the
mounting does not change the free length of the spring. We manufactured the
endcaps using a rapid prototyping 3D printer (model FDM3000, Stratasys Inc.,
Eden Prairie, MN) with hollow internal structure to avoid unnecessarily increasing
the inertia of the endcap and affecting the unstable dynamics of the system. The
endcap surface was smooth and flat (thumbpad-endcap coefficient of friction ~
0.5) with a small (0.1 mm tall) conical projection at its center, precisely coincident
with the cylindrical axis of the spring. This projection provides a tactile cue for
the cross-sectional center of the spring. We then mounted the spring on a uniaxial
load cell (model SML-25, Interface Inc., Scottsdale, AZ) and logged data using a
16-bit digital-to-analog data acquisition system (Vicon Peak, Lake Forest, CA),
sampled at 1000 Hz. We also recorded 3D location and orientation of the spring’s
endcap using a 4-camera motion capture system (Vicon Peak, Lake Forest, CA).
We rigidly attached the entire setup to a table and adjusted its height so that the
elbow was at approximately 90° flexion during the experiment.

As shown in Figure 2.3, the thumb rests on the endcap and the unused fingers
were curled around a vertical post. We fixed the forearm using a vacuum pillow
(model Versa Form, Sammons Preston Roylan, Bolingbrook, IL) with the wrist
placed in neutral flexion-extension and ad-abduction. However, we did not fix the
base of the thumb or the wrist since non-digital mechanoreceptors may contribute
to object manipulation as seen in automatic slip-grip responses (Hager-Ross and
Johansson, 1996; Macefield and Johansson, 1996). We adjusted the height of the
whole arm using foam pads beneath the vacuum pillow so that the distal phalanx
of the thumb was horizontal before subjects compressed the spring and they could
move their thumb freely over their voluntary range of motion comfortably while
still maintaining contact with the endcap. We also ensured that the palm of the
hand never touched the spring during the experiment or over the range of normal
thumb motion. During trials with vision, subjects could move their head so that
they could see the entire spring and their thumb from a self-selected comfortable
viewing angle much as in everyday object manipulation.

We provided subjects with audio feedback about the vertical compressive spring
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force. The audio feedback was in the form of a loud and clearly audible 500 Hz
tone that decreased in volume as the vertical compressive spring force increased.
We calibrated this inverse linear relationship between the tone volume and vertical
compressive spring force so that none of the subjects ever succeeded in making the
tone faint enough to be completely inaudible.

2.2.2 Experimental protocol
We instructed subjects to,

“Slowly compress the spring only using your thumbpad to make
the tone volume as faint as possible (i.e., maximize vertical compressive
spring force) without causing the spring to slip. Once you have reached
the point where you cannot decrease the tone volume without letting
the spring slip, hold the compressive load so that the tone volume,
although now faint, remains constant and slowly release the spring after
10 seconds. It does not matter if the spring bends or oscillates, it only
matters that the volume stay constant once you reach the minimum
attainable volume and that the spring does not slip.”

We accepted only those trials where the loading/unloading rate was less than 5
N/s as successful trials to prevent any postponement in the onset of instability
(Berglund and Gentz, 2002) and to differentiate between trials where the spring
slipped from successful control of the spring’s instability.

2.2.3 Metric of performance: Fg

We defined the performance of subjects for each compression as the mean com-
pressive spring force that we measured during the sustained hold phase. We called
the hold phase as “sustained” when the coefficient of variance (COV = standard
deviation / mean) of the compressive spring force was less than 5% over the entire
hold of 7 seconds. Fy was the largest mean compressive spring force during the sus-
tained hold phase of 7 seconds during trials when there was no slip. For example, if
the subject held the spring for 10 s, there are 10,000 data points (sampled at 1000
Hz). First, we calculated the COV for every continuous 7,000 sample segment (7
seconds, there will be 3001 such segments) and discarded all but those with COV
< 5%. We then calculated the mean compressive spring force for the remaining
segments (with COV < 5%) and defined the maximum of the calculated mean val-
ues as F,. We used the three largest values of Fy measured from ten attempts at
compressing the spring per treatment condition per subject as repeated measures
for our statistical analyses. We provided rest for at least 1 minute after every five
compressions to ensure that fatigue did not affect our measurement. Keep in mind
that slow compression and slow release at the end of the hold phase are essential
to prevent postponing the spring buckling (e.g., Berglund and Gentz, 2002) and
to help distinguish a slip from a well-controlled release, respectively.
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2.2.4 Experiments to test for effect of training

We conducted the experiment over two days for each subject. On the first
day, subjects underwent a training phase of 100 compressions to learn to minimize
the tone volume and hold for 10 seconds. The subjects had their eyes open and
normal thumbpad sensibility throughout the training phase. We measured their
performance before training with normal visual and thumbpad sensibility.

On the second day, we measured subjects’ performance with normal thumb-
pad sensation, both with and without vision. We also carried out trials after a
digital nerve-block where subjects lost all sensation from their thumbpad. See
Section 3.3.1 in Chapter 3 on Page 66 for more details on how we blocked vision
and thumbpad sensation. Since, the results presented in this chapter do not test
any hypotheses related to sensory occlusion, we will not go over the details of
how sensory occlusions were achieved. However, the statistical analysis of variance
(ANOVA) performed will include all available data so that we control for overall
Type-I error rate as discussed previously in Section 2.2.

We measured the maximum isometric force that subjects could produce in
two postures, namely key and opposition pinch postures (same procedure as in
Valero-Cuevas et al., 2003b) using a pinch meter before the start of the spring
compression trials on both the first and second day. We picked the largest reading
of three attempts as the pinch strength of the subjects. We gave enough rest (at
least 2 minutes) at the end of the strength measurement to ensure that fatigue
induced due to maximal voluntary force production did not affect our experiment.
Subjects were always allowed extra rest, more than what we provided by default,
if they asked for it.

2.2.5 Safety-margin

To see if there was a consistent safety-margin used by the subjects, i.e., if they
reached a compressive spring force consistently shy of the force at which the spring
slips when asked to maximize compressive spring force, we compared the values of
F, and Fi,.x (maximum compressive load) between trials when the spring slipped
vs. when it did not. We defined F; for the trials where the spring slipped as the
supremum of the mean value of compressive spring load with COV < 5% for a
duration of at least 3s, since the spring often slipped well before 7s elapsed.

2.2.6 Analysis of endcap rotation

To analyze endcap rotation, we used the three markers on the top endcap and a
motion capture system to determine the unit normal vector to the endcap as sub-
jects held the spring at a sustained load for 7s (see Figure 2.3). The 3D Cartesian
coordinates of motion of the tip of this unit vector unambiguously describe endcap
rotation. We performed principal components analysis on the 3D motion data of
the tip of the endcap’s unit normal vector to test the validity of modeling our
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task using a one-dimensional dynamic equation for endcap rotation dynamics. We
transformed the motion along each principal component to an equivalent rotation
of the endcap about a constant axis (i.e., “principal” axis corresponding to each
principal component) for comparing experimental data to model predictions (see
Section 2.3 for details about the model). We used the ratio of the range of endcap
rotation along the first two principal components to quantify how well a single
fixed axis fits the endcap rotation. For the subsequent discussion, we will refer
to this ratio as the “eccentricity” of endcap rotation. We also tested to see if the
range of rotation along the second and first principal components systematically
changed with compressive spring force as predicted by the subcritical pitchfork
bifurcation normal form equation.

2.2.7 Statistical analyses

We manipulated 6 independent variables, namely,
1. Training (measurement before or after training)

2. Available sensory modalities (absence or presence of vision/thumbpad sen-
sation).

The dependent variable for all our statistical analyses was Fj, but for the safety-
margin analyses, where F},., was an additional dependent variable. In all, we
had six treatments levels, namely: (i) Day 1, before training, (ii) Day 1, after
training, and (iii)-(vi) Day 2, all four combinations of presence or absence of vi-
sion/thumbpad sensation. We set v = 0.025 as our threshold for significance for
all our statistical analyses, since we performed two ANOVAs using this data set:
(1) effect of the above stated six treatments, and (ii) effect of slip vs. no-slip for all
six treatment levels. The numerical value of a defines the acceptable probability
of Type-I errors. Although we present only part of the results in this chapter,
by including all our data in a single ANOVA, we can more effectively reduce the
overall probability of reaching incorrect statistical conclusions. We also performed
a multiple regression analysis to test whether Fj is dependent on pinch strength
using the independent data set of pinch strengths for the same subjects.

First, we performed a one-way repeated measures ANOVA with subjects as
random factors, the six treatment levels as fixed factors and F as the dependent
variable. We carried out three planned comparisons as post-hoc tests if the ANOVA
was significant for finding the effect of training.

Second, we performed a one-way repeated measures ANOVA with subjects as
random factors, the six treatment levels as fixed factors and the paired difference
in Fy or Fy.x between no-slip compressions and slipped compressions as the depen-
dent variable. If the ANOVA was significant, we carried out hypothesis tests to
determine if the difference in F or F,.x was significantly different from 0 for each
treatment level. This way of carrying out the analysis once again ensures that we
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control for overall Type-I error rate, which would not be controlled if we were to
do a series of paired t-tests.

Third, we used an ANCOVA as an equivalent family of regressions to test
dependence of Fy on both key and opposition pinch strength for at least one of
the six treatment levels. We framed this analysis as an ANCOVA with subjects
as random factors, the six treatment levels as fixed factors, key and opposition
pinch strengths as covariates and F; as the dependent variable. We obtained
three separate p-values from this ANCOVA, one each for the significance of (i) the
effect of treatment level (a test of intercept of the ANCOVA), (ii) slope of the key
pinch strength as a covariate, and (iii) slope of the opposition pinch strength as
a covariate. Since a mixed model such as the one we used does not provide R?
for the model, we used a regular fixed factor ANCOVA to determine approximate
model R2.

We tested to see if the mean eccentricity of the endcap rotation data was statis-
tically different from 1 (i.e., equal range of motion along each principal component)
using an 2-sided t-test.

We then found the best-fit nonlinear regression curve for the relationship be-
tween range of endcap rotation along the first principal component vs. compressive
spring force (Fs) and compared this regression curve to our normal form model’s
prediction. Specifically, we estimated the parameters &, 5 and K in Equation (2.8)
that is shown on Page 49. This equation is our normal form model’s prediction of
the relationship between the domain of attraction (i.e., range of endcap rotation)
and Fj.

Finally, we used a linear regression between range of endcap rotation along the
second pricipal component and Fy to test whether it is valid to approximate the
endcap’s rotational dynamics using a single fixed axis. A slope that is significantly
different from 0 would invalidate our claim of one-dimensional dynamics at the
edge of instability.

We verified necessary assumptions for the validity of each ANOVA /t-test we
performed, namely normality and identical distribution of the residuals. We veri-
fied normality by generating normal probability plots for the residuals and found
them to lie very close to the normal line. We had to log-transform the eccentricity
data to make them normally distributed and carry out the t-test on the trans-
formed data. By plotting the residuals against predicted values, we ensured that
the residuals were identically distributed (in the statistical sense of identical dis-
tributions). Hence, the parametric statistical analyses we carried out are justified.
We used SAS (SAS 9.1 for Windows, SAS, Cary, NC) to perform all statistical

analyses.
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2.3 Mathematical model of manipulation at the edge of
instability

To test our primary hypothesis that a low-order nonlinear dynamic model can
capture the dominant spatiotemporal dynamics of manipulation at the edge of
instability, we modeled the task using a subcritical pitchfork bifurcation normal
form. We calculated model parameters using frictional properties of the thumbpad-
endcap interface, known mechanics of a buckling spring, and experimentally mea-
sured ‘best-performance’ (maximal value of Fj).

2.3.1 Why a subcritical pitchfork bifurcation model?

We will attempt here to provide detailed rationale for the specific choice of
a subcritical pitchfork bifurcation normal form. We will then test the primary
hypothesis of this chapter by comparing some predictions of our model with ex-
perimental data.

It is important to note that we used a subcritical pitchfork bifurcation normal
form to describe the spring endcap’s rotational (torsional) dynamics and not the
lateral deflection of the endcap. Typically, most treatises on spring (or column)
buckling choose to model the dynamics of the lateral deflection of the spring’s top
endcap and not the rotation of the top plane like we do. Hence, it is only meaningful
to treat our subcritical pitchfork bifurcation model as a working hypothesis that
we explicitly validated using experimental data (see Section 2.2.6 on Page 34). In
that spirit, the rationale below is really the motivation for selecting a subcritical
pitchfork bifurcation as a working hypothesis and not a justification in of itself for
our model choice.

Codimension-1 bifurcations of a buckling spring

With our experimental design involving a buckling spring, we are concerned
only with codimension-1 bifurcations of a fixed point?® of the spring buckling dy-
namics. We will provide here the rationale for why we are interested in bifurcations
of fixed points and also a heuristic definition of codimension of a bifurcation.

We restricted our mathematical analysis (and hence our model choice) to bi-
furcations of fixed points, i.e., how stable and unstable equilibria change in the
system as a function of one or more independent parameters. The rationale be-
hind this lies in experimental results and mechanics of spring buckling when loaded
at its end (Croll and Walker, 1972; El Naschie, 1990; Lobas et al., 2002; Lobas and
Lobas, 2004). A slender spring or column buckles either through a pitchfork or
a Hopf bifurcation. A pitchfork bifurcation occurs when a specific configuration
of the spring (typically, the straight configuration) becomes unstable beyond a

SFixed point is just another name for an equilibrium point of the system, i.e.,
a stationary point in the phase space of the system.
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critical load and the spring bends or deflects away from the previously stable con-
figuration. A Hopf bifurcation induces the spring or column to exhibit sustained
oscillations. In our experiments where subjects compressed the spring, we never
observed sustained periodic oscillatory behavior. Thus, we selected a pitchfork
bifurcation normal form model.

Follower Load Dead Load
‘Free’ end-condition ‘Guided’ end-condition

Hopf Pitchfork
bifurcation bifurcation

\, WM/% Avn

\ ‘Fixed’ end-condition

Figure 2.4: Schematic showing a Hopf (left) and pitchfork (right) bifurcation for
a buckling spring. The figure on the left depicts spring buckling under a follower
load leading to self-sustained oscillations. The bottom end-condition is ‘fixed’ in
both cases, i.e., the bottom is not allowed to laterally or torsionally deflect. The
top end-condition is ‘free’ (o = 2), i.e., the top can laterally and torsionally deflect
freely. On the right, the spring undergoes a pitchfork bifurcation under a dead-
load. The top end-condition is ‘guided’ (a = 1), i.e., the top can laterally deflect
freely, but torsional deflections are not permitted.

The distinction between these two qualitatively and patently different types of
buckling are depicted in the schematic shown in Figure 2.4. On the left the spring
is shown to lose stability and buckle via a Hopf bifurcation, where beyond a critical
load, the spring shows sustained oscillations. One simple loading method that will
result in a Hopf bifurcation is when the load on the top of the spring is always
directed perpendicular to its top surface, i.e., tangential to the spring’s axis at its
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top end. This type of load is called a ‘follower load” or a ‘non-conservative load’
and this form of oscillatory buckling is also called as ‘flutter’. On the right, is an
example of the spring laterally buckling by a pitchfork bifurcation beyond some
critical load. Note that in the illustration, the horizontal orientation of the endcap
remains stable and does not undergo any bifurcation. Here, the top of the spring
has deviated from the centerline (the desired, pre-buckled stable configuration) to
a new stable configuration. This form of buckling happens when an increase in
the load on the spring causes a supercritical pitchfork bifurcation (see below for an
explanation of ‘supercritical’). One possible loading method that will result in a
pitchfork bifurcation is a load pointed in a constant direction, say, vertically down
as depicted in Figure 2.4. This type of load is also referred to in the literature as
a ‘dead-load’ or ‘conservative load’” and this type of buckling is sometimes known
as ‘static buckling’.

We will now attempt to relate this discussion to our earlier discussion on end
conditions in Section 2.1.2 on Page 24. As described above, the figure on the right
in Figure 2.4 depicts a pitchfork bifurcation for the spring buckling by lateral de-
flection . In the lateral deflection pitchfork bifurcation of a spring shown above,
the endcap remains horizontal. So, if we examine the dynamics of the endcap rota-
tion, the endcap rotation is still “stable” or unbuckled according to our definition
of torsional /rotational buckling. In other words, the end condition corresponding
to the purely lateral buckling described above (spring on the right in Figure 2.4)
is fixed-guided — the base is ‘fixed’, i.e., neither lateral deflection nor rotation
is permitted and the top is ‘guided’, i.e., lateral deflection is permitted, but not
rotation. The spring profile for this mode of buckling is described by,

d(z) =1—cos (E> (2.3)
L

where, L is the length of the spring (or column) and z is the axial location. The

end condition parameter for this mode of buckling is a = 1.

The papers by Lobas et al. (2002) and Lobas and Lobas (2004) provide a
more detailed exposition of pitchfork vs. Hopf bifurcation in a buckling column (or
spring) using a low-order approximation. They use an inverted double pendulum
with stiff pivot joints as a discretization of a slender column and show how under
a dead-load, it undergoes a pitchfork bifurcation and under a follower load, it
undergoes a Hopf bifurcation. Note that the discussion in the papers by Lobas
et al. (2002) and Lobas and Lobas (2004) focus only on the lateral deflection and
not rotation of the top of the inverted double pendulum.

After this discussion on stability and transitions in stability for fixed points, i.e.,
non-oscillatory equilibrium configurations of a spring, I now attempt to provide a
brief definition of ‘codimension’ of a bifurcation. The codimension of a bifurcation
can be roughly understood as the number of parameters that need to be varied
simultaneously in order for the bifurcation to occur. For a more detailed discussion
and rigorous definition of codimension of a bifurcation, see Guckenheimer and
Holmes (1983). For the case of the buckling spring, a bifurcation, say, loss of
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stability of the vertical spring configuration happens by fine-tuning the vertical
compressive load on the spring — one parameter. Assuming axisymmetry of the
spring the only types of codimension-1 bifurcations for lateral deflection dynamics
that are possible are either a pitchfork or a Hopf bifurcation. This is a well known
fact about elastic buckling of slender columns under end-point loads (Croll and
Walker, 1972; El Naschie, 1990). In terms of the endcap rotation dynamics, a Hopf
bifurcation is characterized by self-sustained oscillatory behavior, i.e. the horizontal
endcap orientation (# = 0) becomes unstable and self-sustained oscillations ensue.
On the other hand, a pitchfork bifurcation is characterized by loss of stability of
0 = 0 accompanied by the appearance of two other symmetric stable equilibria.

Supercritical vs. subcritical bifurcations

Both pitchfork and Hopf bifurcations can be of two types — supercritical or
subcritical. We will for now use the endcap rotational dynamics () as an example
to help elucidate the differences between these two types of bifurcations. Consider
first the example of a pitchfork bifurcation. An approximate way to differentiate
between the two types is in terms of the abruptness of change in the dynamics of
the system once 6 = 0 becomes unstable. A supercritical pitchfork bifurcation is
“continuous” in the sense that once 6 = 0 becomes unstable, two new symmetric
stable fixed points first appear with no separation between them and grow apart
continuously (see the bifurcation diagram in Figure 2.5). On the other hand, a
subcritical pitchfork bifurcation is “abrupt”. Two stable fixed points with a finite
(non-zero) separation appear even before § = 0 becomes unstable. Once § = 0
becomes unstable, the two already existing stable fixed points with a large separa-
tion between them cause an abrupt jump in the corresponding bifurcation diagram
(see Figure 2.6). For the Hopf bifurcation, just replace the symmetric stable fixed
points by a single stable limit cycle in the above description to understand the
difference between the supercritical and subcritical types.

Rationale for selecting a subcritical pitchfork bifurcation for endcap
rotational dynamics

We now turn our attention to the rotation of the top plane of the spring in an
attempt to better define our working hypothesis of a subcritical pitchfork bifur-
cation model for the spring’s endcap rotational dynamics. For convenience, and
without loss of generality, we define the unbuckled, desired rotational orientation
as ¢ = 0 rad.

From visual examination of the endcap’s motion data it was clear that there
were no sustained oscillations of the spring. This rules out the possibility of a
Hopf bifurcation (supercritical or subcritical). Another qualitative feature of the
loss of stability, i.e., how the spring slips, was the abrupt and drastic rotation of
the endcap just before it slips. Finally, visual examination of the spring’s profile
during the experiments resembled ‘fixed-guided’ end-conditions, much as shown
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Supercritical pitchfork bifurcation

6=A0-03

As A crosses 0, trajectories will
gradually jump away from 06 =0

T I/t

Repelled by unstable fixed points
and attracted to stable fixed points

-0.5 0 0.5
A

Figure 2.5: The bifurcation diagram for the normal form of a supercritical pitchfork
bifurcation. The normal form equation is § = Ad—63, where ) is the parameter that
is tuned, leading to a superciritcal pitchfork bifurcation at A = 0. As evident from
the bifurcation diagram, the two new symmetric stable fixed points that appear
for A > 0, make their first appearance with no separation at all between them,
leading to a “continuous ” change in fixed points of this system as A is changed.
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Subcritical pitchfork bifurcation
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Figure 2.6: The bifurcation diagram for the normal form of a subcritical pitchfork
bifurcation. The normal form equation is § = M\ + 63 — 65, where \ is once
again the parameter that is tuned, leading to a subciritcal pitchfork bifurcation
at A = 0. The quintic term is often not included in the normal form, however, its
inclusion provides more realistic bounded behavior of trajectories in the system,
since without the quintic term, the outer stable fixed points (not # = 0) would be
absent. As evident from the bifurcation diagram, for A > 0 the loss of stability of
the fixed point at = 0 is not accompanied by the creation of any new stable fixed
points near = 0. This creates an “abrupt jump” in the location of stable fixed
points.
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on the right in Figure 2.4 on Page 38. An ideal ‘guided’ end-condition at the top
endcap would prevent any rotational buckling. However, in a real-world system,
the ideal ‘guided’ end-condition would probably resemble a stiff torsional spring
(at best) that is attached to the top endcap, leading to both lateral and rotational
buckling as shown in Figure 2.7.

Lateral vs. rotational
buckling

X

Figure 2.7: An illustration of spring buckling under a dead-load that depicts a
non-ideal guided end-condition resulting in both lateral and rotational buckling.
Importantly, during experimental trials with human subjects the lateral buckling
happened at a lower load than the rotational buckling.

Importantly, during experimental trials with human subjects, the lateral buck-
ling had already happened before the rotational buckling as the subjects com-
pressed the spring. Hence, the rotational buckling is a ‘secondary’ buckling phe-
nomena and it is this secondary buckling that we chose to model. This observed
spring profile, together with the former two observations on the endcap rotational
dynamics, strongly suggest that it is appropriate to model the dynamics of the
closed loop thumb + spring 4+ nervous system as a subcritical pitchfork bifurca-
tion. This empirical observation leads to a revealing proposal. A spring (or column)
undergoes a Hopf bifurcation only when the endpoint force is always directed close
to the endcap normal (Croll and Walker, 1972; El Naschie, 1990). Since we never
observed any sustained oscillations, thus ruling out a Hopf bifurcation, we can



44

postulate that the strategy used by our subjects to maximize compressive force in
the spring was to somehow stabilize § = 0. Keep in mind that § = 0 is only a
normative model and that in the real experiment, subjects could have stabilized
0 = 0y (where 6 # 0) and the above rationale will be identical in all other regards.

2.3.2 Endcap rotational buckling as a secondary bifurca-
tion

A comment is called for at this point about the relationship between the lateral
buckling and the rotational buckling that happen in the spring. As discussed
above, the rotational buckling is a secondary buckling that happens at higher
loads that the lateral buckling. Hence, as the spring is compressed, the spring
would already be laterally post-buckled when the endcap rotational dynamics reach
the edge of instability. The laterally buckled spring would clearly introduce an
asymmetry in the rotational dynamics. This asymmetry can be captured using an
additional ‘imperfection parameter’ in the subcritical pitchfork bifurcation normal
form equation, called as a versal unfolding of the pitchfork bifurcation normal form
(Guckenheimer and Holmes, 1983):

0 =X\ +60°—0°+e¢ (2.4)

However, this adds an additional parameter to our model that we cannot estimate
without a more detailed model of spring buckling that can capture both the lateral
and rotational buckling. Hence, for the present study, we will stick to the symmet-
ric (without imperfection) subcritical pitchfork bifurcation normal form and leave
the inclusion of this additional parameter to a future study, which is beyond the
intended scope of this thesis. Nevertheless, we present a more detailed exposition
on the effect of including an imperfection parameter in Section 5.1.1 on Page 90.

2.3.3 Subcritical pitchfork bifurcation model

Based on the rationale stated above, we modeled the dynamics of the entire
system as a subcritical pitchfork bifurcation in the dynamics of 8, the rotation of
the endcap with respect to the horizontal orientation. The subcritical pitchfork
bifurcation model for the dynamics of the endcap rotation is,

0 =a(F, — K) + 36> —16° (2.5)

where 6 represents the rotation angle of the endcap from the desired orientation.
As discussed above, we will henceforth assume that the orientation of the endcap
that subjects tried to stabilize was § = 0, without loss of generality. The parameter
F; is the compressive force. Note that it has been modeled as a constant parameter
with no temporal dynamics of its own. This reflects the experimental protocol that
the experimentally measured Fj is the sustained (near-constant) compressive spring
force. K is the maximum value of F for which # = 0 is stable in this model, i.e., for
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F, > K, the orientation # = 0 becomes an unstable fixed point. The parameters «,
[ and v are positive parameters that “stretch” or scale the normal form equation
appropriately to reflect the specific spatiotemporal instantiation of the subcritical
bifurcation we are interested in. In other words, these three parameters depend
on the physics of the specific problem we are examining.

The stable and unstable equilibria? for the dynamical system governed by Equa-
tion (2.5) are given by setting the right-hand side of Equation (2.5) to zero, i.e.,

0 (a(Fy— K)+ 86° —46*) =0 (2.6)
to obtain,

0 : stable if F, < K and unstable if Fy > K

e i\/§+\/<§>2+d(Fs—K) stable; K — 2 (2) <
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. N 2 3\ 2
ﬂ:\/%-\/(%) +d(Fs—K):unstable;K—é<§> S <K

where, 0% are the fixed points of Equation (2.5), @ = a/y and 3 = 3/v. For
specific parameter values of K, & and B, the dependence of 6* on F; and their
stability is shown in Figure 2.8 on Page 46. The figure shows that a finite ‘domain
of attraction’ exists around # = 0 that shrinks as Fj increases until the point of
extinction at Fy; = K. This is the predicted scaling with F; of allowable range of
rotation of the endcap so that the spring does not slip. We tested this using our
experimental data as already outlined in Section 2.2.6.

2.3.4 Parameter values for the low-order model

We chose K = 3.3N, equal to the experimentally measured maximum value of
F; that our subjects attained. The spring slips only when the angle of the endcap
with respect to the horizontal exceeds the friction angle (~ 0.5 radians). We solved
for & and ﬁ so that the average of the undesired equilibria (that represents friction
angle; solid red curve in Figure 2.8 on Page 46) for the range of experimentally
observed Fy was equal to 0.5 and the least value of this representative friction
angle was 0.4 (80% of the friction angle). We found & = 0.006855 and 3 = 0.2766.
Note that the bifurcation diagram shown in Figure 2.8 and the equilibria given
by Equation (2.7) do not depend on the exact values of «, 5 and ~, but only on
the ratios, a/v and [3/7. Therefore, we will postpone the determination of the
numerical value of v, hence a and 3 to Chapter 3.

4The stability of any equilibrium point of the dynamical system described by
Equation (2.5) can be found by easily by looking at the direction of flow of trajec-
tories in Figure 2.6.
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Figure 2.8: This bifurcation diagram shows the loci of both stable (green solid
curves) and unstable (red dashed curves) equilibria for the thumb+spring+nervous
system’s closed loop dynamics without noise or time-delays as the spring is com-
pressed. This figure is a succinct description of the underlying deterministic (no
time-delays / noise) dynamics of the subcritical pitchfork bifurcation’s normal form
equation. Say, Fy = 2.0 N, there is a region (shown in cyan, bounded by the red
dashed curves) around 6 = 0 (the endcap orientation we want to stabilize), in
which the endcap is attracted toward 8 = 0. If the endcap strays too far outside
this region, then it will be rapidly attracted toward the points far out (solid red
curves, close to 0.5 rad), which is representative of a spring slip. In other words,
the cyan region in the center of the figure bounded by red dashed curves on either
side is the “domain of attraction” for the closed-loop system at Fy = 2.0 N.
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2.4 Results

The results presented below are a comparison of experimental data (see Fig-
ure 2.3 on Page 29 for the experimental setup) with the one-dimensional mathe-
matical model shown in Equation (2.5) on Page 44 and Figure 2.8 on Page 46. Tt
is also important to remember that “performance” is quantified by F; and a lower
value of F, necessarily means a less challenging task that is more stable in the
sense of being more tolerant to external perturbations (from the thumbpad itself
or otherwise).

2.4.1 Dimensional collapse at the edge of instability

Three types of analyses were performed to test our first hypothesis that the
spatiotemporal dynamics of the endcap rotation in our experimental data are well
represented by a one-dimensional nonlinear dynamic model (Equation (2.5) on
Page 44 and Figure 2.8 on Page 46). For this analysis, data from all trials on Day 2
(with/without vision/thumbpad sensation) were pooled together, since if our claim
that the low-order model can capture the dominant dynamics of manipulation at
the edge of instability is true, it must be able to do so independently of the sensory
channels available.

Over 90% of endcap rotation was along a single axis

We found that dynamics at the edge of instability were nearly one-dimensional,
thus experimentally validating the use of a low - order normal form. We used prin-
cipal components analysis (PCA) on the Cartesian coordinates of the unit normal
vector to the spring’s endcap to determine if the rotation of the endcap could be
meaningfully described by just one variable (endcap rotation from horizontal, i.e.,
the elevation angle). Keep in mind that even if a single variable suffices, PCA
cannot estimate the order of the dynamics of this variable, e.g., whether a first- or
second-order differential equation is a better fit. PCA of the spring’s endcap rota-
tion revealed that the system’s dynamics was indeed restricted primarily along one
dimension, partially justifying® our choice of the one-dimensional subcritical pitch-
fork bifurcation normal form. The first principal component alone explained 94.5%
of the variance in motion of the unit normal vector (99.9% confidence interval =
[91.2%,96.6%]). Physically, this means that rotation about a single fixed axis was
sufficient to describe almost 95% of the rotation of the endcap when at the edge of
instability. A weaker, but physically meaningful way to test the one-dimensional
nature of the endcap rotation is to examine the “eccentricity” of the motion of the
unit normal vector. We defined “eccentricity” as the ratio of the range of motion
of the unit normal vector along the first vs. second principal components. Mean
eccentricity was 2.93 (mean > 1, p< le — 6, Figure 2.9). Hence, not only was the

°It is only a partial justification since we are yet to see the results of analyzing
how the range of endcap rotation scaled with Fj.
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variance predominantly along one direction, but the complete range of motion was
also predominantly along one direction, albeit to a smaller amount since a single
outlier can bias the eccentricity drastically.

Mean eccentricity = 2.93
99% Confidence interval = (2.34,3.67)

18 s

Number of trials / bin
o

— o™ N [ (@)
| | I | |
o o < O [o0]

Eccentricity of endcap rotation

10-11

Figure 2.9: Eccentricity is the ratio of range of endcap rotation projected along
the first vs. the second principal component. Mean eccentricity (= 2.93) was
statistically significantly greater than 1 (p < le—6) as shown by its 99% confidence
interval. This provides preliminary support for our modeling approach since the
endcap dynamics seem to be restricted primary along one dimension.

Endcap rotation along first principal component agrees with model pre-
dictions

The endcap dynamics did not show any sustained periodic oscillations and
we captured all the relevant spatiotemporal dynamics of the endcap that depend
on the compressive spring force F; by restricting our model to the first principal
component. The data-range for endcap rotation along the first principal component
agreed with our subcritical pitchfork bifurcation normal form. For a given value of
F;, the central region around # = 0 bounded by the red dashed curves in Figure 2.8
on Page 46 (e.g., the blue region at Fy = 2.0 N in Figure 2.8) is the domain of
attraction of § = 0, i.e., it is the normal form’s prediction for the data-range
for endcap rotation that will not destabilize the system at that value of F;. The
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relationship is readily found using Equation (2.7) on Page 45 to be,

. N\ 2
Orange = 2 é — (g) + &(F; — K) (2.8)
where, @, B are parameters that we obtained using the frictional constraints of the
problem and K represents the maximum load that subjects could reach.

To test the validity of our normal form model, we independently estimated
Q, B and K from experimental data using a non-negative nonlinear least squares
regression. The experimentally obtained dependence of the range of endcap rota-
tion on F; along the first principal component (solid blue regression curve in Fig-
ure 2.10, Gegtimate = 0.0017, Bestimate = 0.11, Kegtimate = 3-45 , R = 0.32) closely
resembled our normal form model’s prediction (dashed red curve in Figure 2.10,
destimate = 000697 ﬁestimate = 0287 Kestimate = 33)

O  Experimental data

Nonlinear Regression fit (R2 =0.32)
— = Predicted domain of attraction

Ke]

o
o)
o

Range of rotation of endcap along
first principal component (rad)

o o

- w

Figure 2.10: The dynamics (range of endcap rotation) along the first principal
components is nearly identical to model prediction for a subcritical pitchfork bi-
furcation (see Figure 2.8 on Page 46). The low R? means that the system is very
noisy, but the highly significant slope supports the reliability of the regression fit.

Endcap rotation along second principal component showed no associa-
tion with Fj

Our model is further validated by the result that a linear regression of the range
of endcap rotation along the second principal component showed no association
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with F, (Figure 2.11; slope = 0, p = 0.96, R? =~ 0). That is, variance in range of
rotation of the endcap along the second principal component cannot be explained
by variance of the compressive spring force Fj.

o Experimental data
= |inear Regression fit
= = Zero slope line — model assumption
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Figure 2.11: The lack of association between F; (slope indistinguishable from 0)
and the dynamics (range of endcap rotation) along the second principal component
further supports our one-dimensional model.

2.4.2 Strength independent limit of sensorimotor perfor-
mance

The variability in the sensorimotor ability to sustain maximal compression of
the spring across subjects was much smaller than variability in hand strength.
Moreover, the limit of sensorimotor ability was independent of hand strength.
We measured maximal isometric key and opposition pinch strength in the sub-
jects using a pinch meter. We found that the coefficient of variation (COV =
mean/standard deviation) of pinch strength (mean = 99.41 N, COV = 13.8%)
was almost three times greater than that of for normal sensibility on day 2 (mean
= 2.99 N, COV = 5.2%). Note that F; is < 5% of pinch strength. Based on a
non-significant linear multiple regression analysis of Fj for all treatment conditions
on day 2 vs. static pinch strength (key and opposition; p = 0.969, and p = 0.338
respectively, multiple regression R? = (0.66,), we conclude that thumb strength did
not correlate with Fj.
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2.4.3 Lack of measurable safety-margin

Subjects did not maintain any consistent “safety-margin” while reaching for
their maximal sustainable Fy, indicating that they were truly at their sensorimotor
limit when sustaining maximal compression of the spring. When we compared
the change in performance between trials when the spring slipped and when it did
not for all four sensory occlusion conditions we found no significant difference in Fj
between such trials (p>0.530, Table 2.1). We also compared the difference (change)
in maximum compressive spring force (Fiax) between successful compressions and
unsuccessful (slipped) compressions to account for the fact that the endcap might
have slipped because of a rapid increase in compressive force just before slipping.

Once again, we found no significant difference in F},,, between slipped and non-
slipped trials (p>0.197, Table 2.1).

Table 2.1: Statistical post-hoc planned comparisons of Fy(sustained load) and
Fax(maximal load) for trials when the spring slipped vs. when the spring did not
slip. The above values are all for Day 2. These results indicate that subjects did
not maintain a “safety margin” during the successful (i.e., no-slip) performance of
this dynamic manipulation task. The ANOVA across conditions, was significant
with p<0.0001. Note that AF, o max = F2UP Froslie in the table.

sor max 1 s or max

Subject Condition AF;in N | p-value | AF, . in N | p-value
Normal 0.01 0.912 0.03 0.708
No vision 0.15 0.530 -0.07 0.688
Nerve-blocked 0.05 0.667 0.12 0.197
No vision, Nerve-blocked -0.01 0.900 0.03 0.700

2.4.4 No measurable effect of training

There was no significant learning effect after rehearsing the task numerous times
over two days. All sensory channels were intact throughout the training phase as
well as during performance measurements made before and after training. On day
1, we tested subjects before and after 100 trials of training. On day 2, we did not
give the subjects any additional training before measuring their performance. We
found that training on day 1 did not cause any significant increase in Fy(AFP»! =
Fpost-train - prpre-train — () 08 N, p = (.248). The performance before any additional
training on day 2 was once again not statistically different from either before or
after training on day 1. At the start of day 2, F; was on average, in between
performance on day 1 (greater by 0.05 N and lower by 0.03 N than the start and
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end of training on day 1, respectively). See Figure 2.12 for a summary of these
results.

AF_=0.03 N, p =0.641

AFs =0.08N,p=0.248

3.2+
3.02N
30 2.99 N
(2 294N
EV]
2.84
2.6- Whiskers represent min. and max. values
L A J
Day 1 Day 1 Day 2
Before training After training Initial

Figure 2.12: Box-plot showing the effect of training. On Day 2 we measured the
initial performance before any additional exposure to the task, labeled as “Initial”
in the figure above. The horizontal mid-line shows the sample median, the notches
its robust 95% confidence interval and the box itself shows the 25th and 75th
percentiles. The whiskers show the minimum and maximum values to indicate
any outliers on this plot. None of the differences in F; calculated using planned
comparisons from repeated measures ANOVA is significant at a significance level
of 0.025.

2.5 Discussion

Our novel use of bifurcation theory of nonlinear dynamical systems allowed the
creation of a mechanics-based low-order model whose spatiotemporal dynamics
was indistinguishable from experimental measurements at the edge of instability
for the complex nonlinear behavior of dynamic manipulation. We also found that
the sensorimotor limit of performance at submaximal forces was independent of
pinch strength. Finally, our data supported our hypothesis that during dynamic
manipulation there is no safety-margin.

We found that the spatiotemporal dynamics of the endcap rotation lay pri-
marily along one spatial dimension at the edge of instability, indicating that the
dominant dynamics at the limit of performance had undergone a dimensional col-
lapse as predicted by bifurcation theory. This enabled the use of a low-order normal
form to model this high-dimensional system of dynamic manipulation. Two other
important results strongly reinforce the validity of this novel modeling approach.
(i) The dependence of the range of motion along the first principal component
on compressive force was indistinguishable from that of the normal form and, (ii)
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the endcap dynamics along the second principal component of the eccentric spa-
tial dynamics had no association with compressive force, indicating that the one-
dimensional model was indeed sufficient to capture the dominant dynamics at the
edge of instability. It is worth noting the ability of our nonlinear low-order model
to reproduce the spatiotemporal dynamics of the task at the limit of performance
of a system as complex as dynamic manipulation. Importantly, all parameters were
obtained from basic frictional constraints and experimentally observed maximum
compressive load.

We found no relationship between dynamical performance (i.e., Fy) and pinch
strength. The fact that our experimental paradigm focuses on very low forces
(Fy < 5% of pinch strength) allows us to conclude that we are investigating the limit
of hand sensorimotor integration, independently of muscle strength. Importantly,
we found that the limit of performance in our task was much more consistent (lower
COV) than pinch strength.

The independence from pinch strength, the submaximal nature of the limit of
performance (in terms of force production capability), and the consistent limit of
performance across people, are all insightful results. For example, in everyday life
we sometimes find that even a weak (low muscular strength) individual can be much
more “dexterous” than a strong person — a 10 year old could twirl a pen much
better than a professional rock climber. On the flip side, with sufficient training,
both the 10 year old and the rock climber may become equally adept at twirling
a pen using the fingers. This heuristic and lay-person notion of “dexterity” seems
to possess (at least qualitatively), the same features as our choice of a definition
for dexterity, namely, the ability to regulate fingertip force and motion in order to
control an instability, independently of muscle strength.

Subjects did not have a measurable safety-margin when compressing the spring,
contrary to the current dominant thinking for static manipulation (Cole and Abbs,
1988; Johansson and Birznieks, 2004; Eliasson et al., 1995; Cole et al., 1998; Jo-
hansson et al., 1992a; Augurelle et al., 2003; Monzee et al., 2003). In other words,
when instructed to dynamically compress the spring to the best of their ability,
subjects did not simply stop short of the force at which the spring had slipped pre-
viously. Instead, they compressed the spring to a force that was indistinguishable
from the load at which the spring had slipped before. For example, when vision
was absent, the mean value of Fj,.x (maximum spring force) was in fact higher
than when the spring slipped. This provides strong evidence that subjects were
able to detect an imminent slip before actually reaching their maximal instability,
possibly using methods similar to those previously reported by other authors in
either abstract dynamical systems or physical / chemical systems (Alvarado et al.,
1994; Chen et al., 2000; Kim and Abed, 2000; Moreau et al., 2003; Rico-Martinez
et al., 2003; Wiesenfeld, 1985; Wiesenfeld and McCarley, 1990; Wiesenfeld and
Moss, 1995)5. This ability to detect an imminent slip using feedback is vital to ev-

6Several of these methods rely on the (often counter-intuitive) response of non-
linear dynamical systems at the edge of instability when subjected to noisy exci-
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eryday dynamical sensorimotor function. When walking on a slippery surface (say
ice), it is important to know when one is going to slip to prevent a fall, without
actually falling down. Similarly, while handling objects and performing dynamic
or fine manipulation, it is important to know when the object is prone to fall,
without actually dropping it. A more detailed, but speculative discussion of the
ramifications of this experimental finding is presented in Chapter 5.

Finally, it is intriguing that training had no effect on performance in healthy
adults. However, investigating why we could not measure any effect of learning
warrants a separate study by itself and beyond the scope of this thesis. Some
possible explanations for the apparent lack of any effect of training are: (i) our
task was mechanically so similar to everyday object manipulation that subjects
were already fully trained, (ii) training was insufficient to detect improvement in
performance, (iii) change in performance was in some aspect of the sensorimotor
control strategy that our metric could not detect, or (iv) the changes with training
were so slight that trial-to-trial variability in task performance might have washed
out any small systematic changes in performance with training. This is by no
means an exhaustive list of possible explanations, but can provide a starting point
for future studies on sensorimotor development, training and rehabilitation using
this dynamic manipulation task.

2.6 Conclusions

The main messages to take away from the results presented in this chapter are
the following:

1. The average spatiotemporal dynamics of the task of dynamic manipulation
at the edge of instability closely resemble that of a subcritical pitchfork bi-
furcation. Given the facts that our choice of subcritical pitchfork bifurcation
model was motivated by the mechanics of the task and parameters found
solely using frictional properties/experimentally measured best-performance,
we have strong reason to believe that our model truly reflects the dominant
dynamics of manipulation at the edge of instability.

2. The lack of a safety-margin under all sensory occlusion conditions provide
evidence that our subjects could detect an impending instability, and more
importantly this detection did not rely only on thumbpad sensation or vision.
This suggests that sensory channels other than digital sensors (i.e. belonging
to the thumb) or vision — which we will refer to henceforth as non-digital
sensors — provided useful information about the dynamics of the buckling
spring to the nervous system.

tation. Specifically, these studies find characteristic ‘signatures’ for different types
of incipient bifurcations by examining the power-spectral density of the specific
outputs of the dynamical system when subjected to continuous noisy inputs.



Chapter 3
Task optimal multisensory integration

during dynamic manipulation
3.1 Introduction

Why is it that we usually handle objects effortlessly without looking at them,
but rely heavily on vision if our fingers are numb? This contextual use of vision
is a phenomenon of potentially great clinical and neurological importance! that
is observed everyday and also in several psychophysical experiments (Cole and
Abbs, 1988; Monzee et al., 2003; Augurelle et al., 2003). However, no one has
provided any mathematical explanation beyond heuristic word-arguments to ex-
plain this phenomenon. This phenomenon begs a mathematical explanation in the
framework of the theories of optimal state estimation. Here, we provide a model-
based explanation for this apparently selective reliance on vision depending on the
availability (or quality) of digital cutaneous sensors.

In this chapter, we present novel results to reveal how task-optimal multisen-
sory integration emerging from the combined effect of sensorimotor noise and time-
delays explains this important neurophysiological phenomenon. We start with the
same experimental task and mathematical model developed in Chapter 2 and in-
corporate time-delays and noise into our normal form equation. We saw in the
previous chapter how our model’s spatiotemporal dynamics were indistinguish-
able from experimental measurement. We also reviewed in Chapter 1 on Page 8
that current understanding of multisensory integration in the nervous system is
restricted to examining only the effects of noise and cannot address the effect of
time-delays. Using the nonlinear dynamic manipulation task at the edge of insta-
bility that we developed in Chapter 2, we will present evidence in this chapter that
provides support for our hypothesis that hitherto unexplored effects of time-delays
on multisensory integration and previously known effects of noise together explain
why people rely on vision during dexterous manipulation only when the fingerpads
become numb. We will end this chapter with a brief discussion about how this
model-based explanation sheds light on why we drop objects more often when we
are old or cold!

!This common observation gains gravity with the realization that several pe-
ripheral and central neuropathies such as carpal tunnel syndrome or multiple scle-
rosis adversely affect the quality of cutaneous receptors. One other common “con-
dition” which is technically not a disease, but can adversely affect lifestyle, is aging.
Aging is thought to affect the quality of cutaneous sensors and sensorimotor pro-
cessing (Cole et al., 1998, and references therein).

95
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3.1.1 Background — recapitulation of Bayesian inference

In the framework of optimal feedback control and for the broad area of sen-
sorimotor control in general, gaining insight into factors that influence multisen-
sory integration during dynamic sensorimotor tasks is very important (Ernst and
Bulthoff, 2004; Knill and Pouget, 2004, and references therein). Two main elements
that affect the quality of sensory information and hence influence multisensory in-
tegration are sensorimotor noise and time-delays. Both noise and time-delays are
pervasive in the nervous system (Beuter, 2003; Harris and Wolpert, 1998; Kelso,
1995; van Beers et al., 2002; Wolpert et al., 1995), and it is known that both affect
sensorimotor control (Beuter, 2003; Cabrera and Milton, 2002; Collins and Deluca,
1994). Previous studies on multisensory integration (Ernst, 2004; Ernst and Banks,
2002a,b; Ernst and Bulthoff, 2004; Kording and Wolpert, 2004; Knill and Pouget,
2004; Kuo, 1995, 2005; Safstrom and Edin, 2004; Sober and Sabes, 2003, 2005;
van Beers et al., 2002; van der Kooij et al., 1999; Wolpert et al., 1995) have not
revealed or quantified the expected effect of time-delays (Clark and Yuille, 1990),
but rather focused on the effect of noise. We previously saw that these studies
are restricted to examining the effects of noise either because they used static task
goals (see Section 1.1.3) or used optimal estimators that could robustly compensate
for time-delays using internal forward models (see Section 1.1.3). Hence, there is
a need for studies that can examine the combined effects of noise and time-delays
on multisensory integration during dynamic sensorimotor behavior.

3.1.2 Why bother about time-delays?

As we saw in Section 1.1.3, optimal feedback controllers explicitly or implicitly
represent the forward dynamics of the system being controlled and hence can
compensate for time-delays in sensory feedback. Given the remarkable success
of optimal feedback control as a succinct theory to explain human sensorimotor
control, a natural question arises, “why bother about time-delays if an optimal
feedback controller can compensate for time-delays”? Section 1.1.3 contains a
more detailed answer to this question. However, for sake of completeness of the
preamble to the work presented in this chapter, we repeat some of the points
mentioned earlier.

Time-delays become important in the context of sensorimotor control because:
(i) sensorimotor control is regarded highly for its remarkable performance at the
limit of performance (at least compared to robotic controllers) and disease is re-
garded as devastating because of the dramatic loss of ability to reach previously
achievable limits of performance, and (ii) given the unavoidable and ubiquitous na~
ture of sensorimotor noise, any time-delay compensation techniques are rendered
ineffective at the edge of instability. Although optimal controllers are capable of
compensating for time-delays, this ability is not robust to noise when the closed-
loop system (controller + body + world) is close to instability (Stein, 2003), which
is typically the case when the sensorimotor system is at its limit of performance
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(with the exception of static activities like producing maximum force).

3.1.3 Hypotheses

We hypothesized that a task-optimal sensory weighting strategy emerging from
the combined effect of noise and time-delays is used by humans during dynamic ma-
nipulation of objects. The rationale for this hypothesis rests on theories of Bayesian
inference for state estimation in humans, which have been very successful at ex-
plaining effects of noise on multisensory integration during static tasks. We tested
our hypothesis by measuring the consequence of sensory occlusion (thumbpad sen-
sation/vision) when subjects performed the experimental task of compressing a
slender spring that is explained in detail in Chapter 2 on page 31. We then used
our model of dynamic manipulation at the edge of instability to test whether nu-
merical optimization to find performance maximizing sensory weights could repli-
cate our experimental results. Additionally, to quantify the hitherto unexplored
effects of time-delays on multisensory integration, we compared task-optimal sen-
sory weights (that incorporate the effects of both time-delays and noise) vs. sensory
weights that minimize the effect of noise alone.

We proposed and tested this hypothesis to explain the prevalent and neuro-
physiologically important observation of the selective use of vision during object
manipulation depending on the quality (and presence) of digital cutaneous sensors.

3.2 Computational model

The mathematical model developed in Chapter 2 is a deterministic model with
no noise or time-delays. Moreover, it is a model of the thumb + spring + nervous
system at the edge of instability, with no clear separation between the constituent
elements of this fused dynamic system. However, for testing the consequences of
sensory noise and time-delays, three extensions to the model are necessary:

1. Separation of “controller” (nervous system) from “plant” (thumb
+ spring). To achieve this separation, we will make simplifying assumptions
as outlined below, while ensuring that the closed-loop dynamics still resemble
that of the normal form equation for a subcritical pitchfork bifurcation.

2. Inclusion of multiple sensory channels. To incorporate multiple sensory
channels, we need some mechanism of combining or ‘integrating’ the signals
from multiple sensory channels before using them to apply a control action
on the plant.

3. Inclusion and calculation of sensory noise and time-delays. Finally,
we need to incorporate noise and time-delays in each sensory channel, since
that is the central portion of the work presented here. Once again, some
simplifying assumptions about the nature of noise and time-delays will be
made.
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3.2.1 Separating “controller” from “plant”

In a low-order model of the type developed by us, it is not always clear how to
separate the controller from the plant. The main reason for that is the distinction
between the different approaches to model a system — emergent/dynamical vs.
goal-oriented (see Section 1.4 on Page 18). The low-order model of a subcritical
pitchfork bifurcation is a close approximation to the dominant dynamics of the
entire thumb + spring + nervous system that emerge at the edge of instability.
From that point of view, this model does not distinguish between controller and
plant. However, theories of sensorimotor control and most descriptions of sensori-
motor control in contemporary literature separate the nervous system as a distinct
module from the body and the outside world. This leads to sensorimotor con-
trol as a goal-oriented behavior, where the nervous system implements strategies
for achieving a desired goal through the interaction of the body and the world.
Although we are interested in such goal-oriented behavior, we resorted to an emer-
gent dynamical model for the sake of mathematical tractability. This puts us in
the quandary of how to separate controller and plant, since there is no unique or
obvious/natural way to perform this separation.

First, we present the normal form equation for the subcritical pitchfork bifur-
cation once again to help read this thesis without frequently turning pages (which
incidentally is an incredible achievement of dexterous manipulation!). The deter-
ministic, no time-delay model that we developed in Chapter 2 is,

0 = a(F, — K)0 + 36° — v6° (3.1)

where, 6 represents the rotation angle of the endcap from the desired orientation
(0 =0), K =3.3, a/y = 0.006855 and, /vy = 0.2766. Remember that we are yet
to determine the value of 7, since so far, none of the results presented using this
model depended on the value of ~.

As a first approximation, we chose to perform this separation by treating K as
the representative of the controller. In other words, this equation can be rewritten
as,

thumb + spring dynamics  feedback

O = aF0+B0°—~0° + u(f)
u(é) O-/K(edesired - é)

Oaesicea = 0 without loss of generality

where, 0 is the sensed angle of the spring’s endcap. Note that we recover our
original normal form Equation (3.1) if § = 0. In Equation (3.3), K represents
“control strategy” in response to the perceived error in endcap orientation, i.e., to
a first approximation, the complicated action of the nervous system through the
thumbpad is assumed to resemble constant proportional feedback?. If there were

2A basic concept obtained from automatic feedback control theory is the enor-
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no time-delays or noise and if perfect (unbiased, i.e., accurate on average) state
estimation were possible, then § = 6. However, in a real sensory system 0 is noisy
and time-delayed at the least and could also be biased (different from 6 even on
average). Below we will represent 0 as a noisy, time-delayed, unbiased estimate of
6 by combining multiple sensory channels.

A note on the assumption of constant proportional feedback is warranted
here. A little thought reveals that using low bandwidth actuators (viscoelastic
thumbpad-endcap contact that is actuated by low-bandwidth muscles) and a soft
finger contact to emulate constant proportional feedback control is no easy feat
in terms of either engineering implementation or mathematical analysis. This is
because, to mimick proportional control entails moving the effective center of pres-
sure on the endcap sufficiently rapidly and in an appropriate manner. Since we
do not permit macroscopic slips in our experiment, this can only be achieved by
“rolling” the thumbpad on the endcap. The technical challenges in either imple-
menting or analyzing a rolling digit contact can form the basis of an entire study
and so will not be covered here. It suffices to realize that the apparently simple
separation of controller and plant that we carried out above is not simple in either
its implementation or analysis (Bicchi, 2000; Murray et al., 1994; Yoshikawa, 1990,
and several references cited therein).

3.2.2 Multisensory feedback and linearly weighted sensor
fusion

Now that we have separated the controller and plant in our low-order normal
form, we are ready to incorporate multisensory integration with noise and time-
delays. We will use a minimal model of noisy time-delayed sensors by assuming that
each sensor is polluted by additive white Gaussian noise and has a constant time-
delay. Our model reflects the experiments and includes three sensory channels,
namely, thumpad sensors® (sensor 1), non-digital sensors* (sensor 2) and vision
(sensor 3), as shown in Figure 3.1. The signals from all three sensory channels are

mous advantage of using derivative control action in addition to proportional con-
trol, especially when time-delays are inherent in the system (Ogata, 2002; Doyle
et al., 1992). However, for a multitude of reasons that are outlined in Section 5.2
on Page 93, we have chosen to restrict our attention to a proportional controller.

3SThumbpad sensors refers to cutaneous mechanoreceptors such as fast- and
slow-adapting cutaneuous pressure sensors.

4Non-digital sensors refers to cutaneous mechanoreceptors present outside of
the digit, Golgi tendon organs, muscle spindles, etc.
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Figure 3.1: A block diagram showing feedback control using three sensory modal-
ities, namely, (1) thumbpad sensation, (2) non-digital sensors and, (3) vision. The
mathematical model is a specific implementation of this block diagram that uses
simple proportional feedback control and the entire closed-loop dynamics of this

system is modeled as a subcritical pitchfork bifurcation.

Time-delays (7) and

noise (v) are explicitly labeled only for the sensory branches since for the purpose
of this study, only the sensory time-delays and noise affect the relative usefulness

of various modalities.
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combined using a linear weighted sum to obtain é, ie.,

state estimate with multiple delays noisy, time-delayed, unbiased sensors
7\

A =1
Ot t—rt—mt—73) = 3 w; (0t —7)+owi(t) (3.4)
3
v~ N;(0,1)
N——

Gaussian white noise processes

where, w; are the sensory weights that will be optimized to maximize F in the
model. We also assumed that all sensors are unbiased estimators of 6, i.e., in
steady state (if € was constant), the mean value of each sensory signal is equal to
the actual value of 6.

3.2.3 Noise and time-delay estimates

I first present a general discussion of various aspects that were considered in
estimating the noise and time-delays associated with each sensory channel. Sec-
tions 3.2.4 and 3.2.5 (see below) will then provide detailed estimates for the relevant
parameters, including citations to existing experimental measurements of sensory
variances and time-delays.

To estimate sensory variance (0?) for each sensation, we resorted to neurophys-
iological data reported in the literature. However, the data are not reported in
terms of ability to distinguish rotation of a planar object (which is what we are in-
terested in). For variance of vision, we took data on visual acuity reported in terms
of angle subtended on the retina and converted it first to discrimination ability of
spatial displacement for a known viewing distance. We then converted this to an
equivalent rotation of the spring’s endcap based on the geometry of the endcap.
We used a similar procedure for determining variance in tactile discrimination of
endcap rotation. Tactile discrimination ability is ususally reported in terms of the
ability to distinguish closely spaced pressure points on the thumbpad. We asked
one consenting subject to “roll” their thumbpad on a flat surface attached to a
6-axis load cell (model 20E12A-125. JR3, Inc., Woodland, CA) while they were
pressing down with a near constant 3N vertical force. By simultaneously recording
translation of the center of pressure on the flat surface and the angle of “roll” of the
thumbpad, we were able to use reported center of pressure discrimination ability
to find the equivalent endcap rotation angle discrimination ability. There are ad-
mittedly limitations to this process of estimating variance of thumbpad sensation.
However, as we shall see below, this leads to physiologically tenable values for the
variance. Finally, since we could not find any data that could be used to calcu-
late the variance of non-digital sensors we used the reported fact that non-digital
sensors were much less reliable (more noisy) that digital cutaneous sensors during
slip-grip tasks (Macefield and Johansson, 1996; Héager-Ross and Johansson, 1996)
to estimate sensory variance for non-digital sensors.
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3.2.4 Sensory variance estimates

Human visual acuity is known to be at least 1" arc at a viewing distance of
250 mm (Liang and Westheimer, 1993; Saunders and Knill, 2003, 2004). Subjects
were typically at a distance of 100-170 mm in our experiment. Together with an
endcap radius of 40 mm, we estimated the standard deviation of visual sensation
of endcap rotation to be g3 = 0.0009 rad. We estimated the standard deviation
of thumbpad sensation based on reported tactile discrimination ability (Wheat
et al., 1995, 2004) to be o1 = 0.0007 rad. (almost half the variance of vision).
This agrees with the fact that tactile discrimination is typically considered to be
more precise than vision (Cole and Abbs, 1988; Johansson and Birznieks, 2004;
Johansson et al., 1992b). To account for the higher variance and hence lesser
reliability of non-digital mechanoreceptors (Macefield and Johansson, 1996; Hager-
Ross and Johansson, 1996), we used g5 = 0.003 rad (10x the variance of vision).

3.2.5 Sensory time-delay estimates

Neurophysiological data is more readily available for sensor time-delays and
nerve-conduction time-delays than for time-delays arising out of neural sensory pro-
cessing (see Figure 3.1). The time-delays arising from sensor and nerve-conduction
delays for the three sensory channels are, 77 = 65ms (thumbpad sensors: Cole and
Abbs, 1988; Johansson and Birznieks, 2004; Johansson et al., 1992b; Eliasson et al.,
1995), 75 = 65ms (non-digital sensors: Gandevia and McCloskey, 1976; McCloskey,
1978; Kandel et al., 2000), 73 = 120ms (vision: van Beers et al., 2002; Paillard,
1996; Prablanc and Martin, 1992; Day and Brown, 2001). However, non-digital
sensors are not only known to be noisy, but Hager-Ross and Johansson (1996) and
Macefield and Johansson (1996) suggested that the response to object slip using
only non-digital sensors might be as slow as 120ms. They do not state any rea-
son for why this might be the case. However, their experimental results indicate
the possibility that non-digital sensors might have greater time-delays than just
sensor and nerve-conduction delays. This could be due to extra time-delay from
sensory processing of noisy and non-collocated sensors that are distributed across
different muscles/tendons and different patches of non-digital skin. We will discuss
the potential sources for additional time-delays in more detail at the end of this
chapter.

To account for the possibility of extra time-delays in non-digital sensors, we let
Ty be a free parameter in our model that could vary from 65ms (minimum delay
arising from sensor and nerve-conduction delays) to 120ms (the largest proposed
delay by past studies). We tuned this parameter so that task-optimal performance
of the model agreed best with experimentally measured effects of occluding both
thumbpad sensation and vision (see Section 3.3).
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3.2.6 Metrics for stability: “Survival times” and “Success
rates”

We now define stability for the noisy, time-delayed model so that it agrees with
the experimental notion of stability, namely, a compression was successful so long
as it did not slip for a finite period of time. Stability in linear and nonlinear
deterministic dynamical systems is a well-defined notion, either in the sense of
asymptotic or Lyapunov stability (Doyle et al., 1992; Ogata, 2002; Guckenheimer
and Holmes, 1983). For example, defining stability in the local sense (near a spe-
cific state of the system) is easily done for a hyperbolic fixed point® if the system
under consideration is described either by ordinary differential equations (Doyle
et al., 1992; Ogata, 2002; Guckenheimer and Holmes, 1983) or by delayed differ-
ential equations (i.e., systems with time-delay) (Kolmanovskii and Nosov, 1986;
Kolmanovskii and Myshkis, 1999; Engelborghs et al., 2000, 2002). However, when
there is some source of noise in the dynamic system, stability is often defined in
terms of stationary distributions, i.e., using steady-state distributions of time spent
in various parts of the phase space of the dynamical system. For some dynamical
systems that are modeled using stochastic differential equations, the stationary
distribution can be analytically derived using the Fokker-Planck equations (Soize,
1994). However, for most complex dynamical systems, the true distributions are
approximated using statistical histograms that are obtained through large ensem-
ble simulations of the given stochastic dynamic system. For example, one could
define stability for a noisy system based on distributions of the time spent by tra-
jectories of a stochastic system in different parts of its phase space (Arnold, 1998).
Numerically, this could be calculated by simulating large ensembles of the noisy
dynamic system and thus obtaining histograms of time spent in different regions (if
these distributions converge to stationary distributions). Peaks in the distribution
(i.e., “representative” locations) can then be called as “stable” points in the phase
space of the dynamical system.

However, in the context of our system, there is an alternate “natural” definition
of stability that arises from the task requirement for subjects in the experiments.
We called the experimental behavior as “stable” or “successful” if the subjects
could prevent the spring from slipping for a finite time period (7s). This definition
of “success” in our task naturally lends itself to “be studied in the context of a
survival, or first passage, time problem” (Cabrera and Milton, 2004a), terms that
we define below.

’The term hyperbolic refers to the requirement that none of the eigenvalues
of the linearization near the fixed point of interest lie on the imaginary axis. In
other words, the system can be stable or unstable in different directions, but not
marginally stable in any direction.
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Definitions of success rate and survival time

The first observation is that if a trajectory (time-series of #) leaves the domain
of attraction (region enclosed by dashed red curves in Figure 2.8 on Page 46) and
never returns inside it during the 7s period (let us name it 7), then it almost
certainly reached one or the other undesirable stable fixed points (at 6 ~ 0.5rad,;
solid red curves in Figure 2.8) and thus, the spring “slipped”. So, we can define
‘success-rate’ as the probability that the time (f.y) at which the 0 trajectory exits
the domain of attraction (to never return again) is greater than 7™ (the desired
duration of the hold phase, namely 7s).

b = min {Tss.t. 6(t > T) ¢ [6 — 66,6+ 06]} (3.5)
DPsuccess — p(texit > T*)

where, 00 defines the domain of attraction and pguccess 18 the ‘success-rate’. The
time o is called the ‘survival time’. Based on experimental data that after
training subjects slipped in approximately 20% of the trials, we chose a nominal
value of p* = 0.8 for the success-rate to define a “successful compression” in our
model. The utilization of p* in our model will become clear when we define Fj
below. However, it is important to note that in our simulations we calculate pguccess
using large ensembles of simulations and calculating the fraction of the ensemble
that are ‘stable’ (Psuccess) in the sense that e, > T,

Definition of F, in the model

For given sensory weights, the success rate (Psuccess) depends on the value of Fj.
Symbolically, Psuccess = Psuccess(Fs)|(wrwzws)- NOW, we can define F; for a successful
compression in our model as the solution to the ‘root finding’ problem,

psuccess<Fs) ‘(wl,wg,wg) = p* (37)

Numerically, we implemented this root finding problem using an adapted version
of the Newton-Raphson method. Note that by defining Fy in this manner, it
is implicitly (through the definition of pguecess) an expected value, i.e., a metric of
average performance and not single-trial performance. We have thus explained how
F; is defined. We will explain how to calculate sensory weights (i.e., (w1, w2, ws))
that maximize F in Section 3.2.7 below.

Estimating v

Using the definition of success rate as stated above, we estimated the last
remaining parameter in our model — v — so that when all sensory modalities were
intact, the task-optimal performance (sensory weights that maximize Fj) for a
success rate of 80% (p*) was similar to experimental measurement.
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Numerical integration of stochastic delay differential equations

Numerical integration of the one-dimensional stochastic delay differential equa-
tion (SDDE) was carried out using a simple Euler integration scheme (Kiichler and
Platen, 2000). As shown by Kiichler and Platen (2000), for the case of additive
noise, the Euler integration scheme has a strong order of convergence 1.0. The
term ‘strong order’ just refers to the fact that if the ‘true’ solution to the SDDE
was known for a specific instance of the noisy processes in the system, then, with
smaller and smaller time-steps, the numerically integrated solution converges to
the true solution. This is different from weakly convergent numerical techniques,
where the average of some function of the solution converges to the ‘true’ value, but
each individual solution might itself not converge. We will not say more about nu-
merical techniques for integrating SDDEs since the paper by Kiichler and Platen
(2000) and the references cited by them provide a good reference for numerical
integration of SDDEs.

3.2.7 Numerical optimization: sensory weights that maxi-
mize Fi

We now outline the numerical optimization procedure used to compute task-
optimal sensory weights. As we saw in Section 3.2.2 and Figure 3.1, there are
only three sensory weights that need to be found by our optimization routine that
maximizes Fy. Given the additional constraint that the sum of the sensory weights
is one, the optimization problem reduces to a 2-parameter optimization problem,
namely,

3
max Fyst. > w; =1 and pauccess(Fs)|wr wrws = 0.8 (3.8)
w1,w2,w3 i—1
This is amenable to a global parameter search. We discretized the plane defined by
w1 +wy + w3 = 1 in the positive octant of the space of sensory weights using a fine
grid and numerically calculated Fj at each grid point. Thus, we found task-optimal
performance and sensory weights for every sensory occlusion condition.

3.2.8 Sensory weights that minimize the effects of noise
alone

To quantify the impact of time-delays on sensory weighting, we performed
simulations using noise-minimizing sensory weights in addition to task-optimal
sensory weights (that emerge from the combined effect of noise and time-delays;
outlined in Section 3.2.7). Any deficit in performance (Fy) and deviation from
experimental measurements that arise from using sensory weights that minimize
the effects of noise alone can then be attributed to time-delays. The sensory weights
that minimize the effect of noise alone are obtained using the same equation as
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that of Bayesian inference in static tasks (see Section 1.1.3, Page 10), i.e.,

> (1/a2)

J

3.2.9 Best-fit vs. Baseline simulations

As stated earlier in Section 3.2.5, we allowed the time-delay for non-digital
sensors to be a free parameter. We varied its value in Sms increments from 65ms
to 120ms and performed the numerical optimization described in Section 3.2.7 at
each increment.

The task-optimal performance with 100ms total time-delay for non-digital sen-
sors (i.e., 35 ms extra delay beyond sensing and conduction delays) best reproduced
the experimentally measured performance of combined loss of thumbpad sensation
and vision. Henceforth, we will refer to this simulation with 100ms total time-delay
in non-digital sensors as the Best-fit simulation.

We will refer to the simulation with no extra time-delay, i.e., total time-delay
of 65ms for sensing and conduction delays of non-digital sensors as the Baseline
simulation.

3.3 Experimental methods

The experimental setup, protocol and statistical analyses are already outlined
in Section 2.2 on Page 31. Here, we will provide only the details of how we
occluded thumbpad sensation and vision. Recall that the experimental protocol
involved testing subjects over two days. The first day was the training phase that
consisted of over 100 trials in all. Hence, all experimental data we report in this
chapter are from the second day (post-training) unless otherwise stated.

3.3.1 Sensory occlusion

On the second day, we measured subjects’ performance with normal thumbpad
sensibility, both with and without vision. We blocked vision by asking subjects
to wear goggles with opaque black tape pasted over them. Even in blinded trials,
subjects could use vision until they placed their thumbpad on the spring’s endcap.
Then, an experienced hand surgeon® administered 5cc of 1% Lidocaine solution on
the ulnar and radial sides of the base of the thumb (just below the metacarpopha-
langeal — MCP-joint of the thumb) to obtain a digital nerve-block without affecting
any musculature (and associated sensors) that actuate the thumb. Cutaneous sen-
sation proximal to the thumb MCP joint was also unaffected. We regarded the

We acknowledge here the critical support provided by Dr. Stephanie Roach,
M.D.



67

nerve-block as complete when vision occluded subjects could not detect a 10 g
load randomly applied using a pointed tip anywhere on their thumbpad or moved
across their thumbpad. However, subjects were still able to detect large loads ap-
plied using the pointed tip. Subjects were also able to detect the small pointed
projection at the center of the spring’s endcap by pressing their thumbpad force-
fully against the endcap and used that to place their thumbpad suitably. We then
measured performance after the occlusion of digital cutaneous sensation, both with
and without vision.

Note that we did not measure maximal pinch strength after administering the
nerve-block to prevent accidental damage to joints or soft tissue in the thumb from
excessive force production since subjects could not feel pain once the nerve-block
was effective.

3.4 Results

We found that with only one free-parameter (time-delay for non-digital sensors)
and neurophysiologically tenable values for the remaining time-delays and noise
variances, task-optimal behavior of our Best-fit simulation closely resembled the
experimentally observed effects of sensory occlusion namely:

1. Occlusion of vision had no impact on performance if thumbpad sensation was
intact.

2. Occlusion of thumbpad sensation caused a large drop in performance.

3. Loss of vision caused a further drop in performance when thumbpad sensation
was absent.

Task-optimal sensory weights replicated experimental results of sensory occlu-
sion much better than noise minimizing sensory weights alone. Moreover, un-
like the relatively robust task-optimal sensory weights, noise minimizing sensory
weights yielded performance that was extremely sensitive to the exact parame-
ter value chosen for non-digital time-delays. This is of importance because we
faithfully incorporated experimentally reported uncertainty in the time-delay for
non-digital sensors (Héger-Ross and Johansson, 1996; Macefield and Johansson,
1996). Since our model, like all others, is only a cartoon of reality, i.e., an approx-
imation to reality, contrasting the high parameter sensitivity of noise minimizing
sensory weights to the robustness (to parameter variability) of task-optimal sen-
sory weights lends further credibility to our conclusion that the selective use of
vision is best explained by the combined effect of noise and time-delays.

3.4.1 Experimental results of sensory occlusion show selec-
tive use of vision

Loss of thumbpad sensation was severely detrimental to experimentally mea-
sured performance. When vision was present, loss of thumbpad sensation caused a
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significant drop in F, (Frermal — poumb — (18N p = 0.021; Figure 3.3.1). Loss of
thumbpad sensation caused an even larger drop in F, when vision was also absent
(fpormal _ pmumb — () 57N p < 0.0001; Figure 3.2).

AFg =0.57 N, p < 0.0001

AFs=0.07 N, p = 0.423
' " AFs=0.18 N, p = 0.021

' AFs=0.31N,p < 0.0001

3.2 1
3.06 N
299N
= 281N
£ 57 E g
(%]
L
i 250N
2.2 Whiskers represent min.and max. values
Without vision With vision With vision Without vision
No nerve-block No nerve-block Nerve-blocked Nerve-blocked

Figure 3.2: This box plot summarizes the experimental results of sensory occlu-
sion. The horizontal bars inside the box plots is the median, the notches are its
robust 95% confidence interval, the boxes are bounded by the 75th percentile and
25th percentile, the numeric values next to each box is the sample mean, and the
whiskers represent the entire range of the data. The differences in F; shown in
magenta are significant at a level of 0.025.

Visual occlusion did not affect performance when thumbpad sensation was
present ([FYision — fblind — 0 (7N, p = 0.423; Figure 3.2). However, visual oc-
clusion caused a large drop in performance when thumbpad sensation was absent
(Fyision _ pblind — () 31N, p < 0.0001; Figure 3.2) suggesting that non-digital sensors
were not very effective in compensating for the loss of vision.

3.4.2 Combined effects of noise and time-delays drive the
selective use of vision

We present the results of our numerical simulations in two parts. In the first
part, we present the performance (Fy) arising from task-optimal sensory weights for
both Baseline and Best-fit simulations. In the second part, we present the perfor-
mance arising from noise minimizing sensory weights for both Baseline and Best-fit
simulations. This will help examine the effect of additional “computational” time-
delay for non-digital sensors and the effect of time-delays in addition to noise on
performance. The results from both sections are summarized in Figure 3.3. The
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sensory weights used to obtain the results shown in Figure 3.3 are given in Ta-
ble 3.4.2. Keep in mind that the Best-fit simulation had an additional time-delay
of 3bms for non-digital sensors over and above known sensor and nerve-conduction
delays of 65ms.

Table 3.1: Task-optimal and noise minimizing sensory weights for all sim-
ulation results. The columns of sensory weights in this table correspond

to the columns in Figure 3.3.

Baseline simulation

Vision Blind Seeing Seeing Blind
Thumbpad Intact Intact Numb Numb
Strategy® TO NM | TO NM | TO NM | TO =NM
Digital (w;) 0.96 095|096 0.65| - - -
Non-digital (ws) | 0.04 0.05 | 0.04 0.03 | 0.35 0.09 1
Visual (w3) - - 0 0.32]065 091 —
Best-fit simulation

Digital (w;) 099 095|095 0.65| - - -
Non-digital (w9) | 0.01 0.05| 0 0.03]0.27 0.09 1
Visual (w3) - - 10.06 0.32]0.73 0.91 -

$ TO = Task-Optimal; NM = Noise minimizing

Task-optimal sensory weights

The results relevant to this part are shown in blue markers (‘O’ and '+’ data
markers) in Figure 3.3.

Much like the experimental results, both the Best-fit and Baseline simulations
showed little or no effect of loss of vision if thumbpad sensation was present (Fig-
ure 3.3: AF; between columns 1 and 2 for blue ‘O’ and ‘4’ markers). Interestingly,
when thumbpad sensation was present, there was no difference in F between the
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sensors in Baseline simulation. L
. Large drop in Fg due tonoise 3 — — — O + T
£ 774 andadditional “computational” (@)
i time-delay in non-digital
sensors in Best-fit simulation. - — — — — — — — — — — — _ ()
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Without vision With vision With vision Without vision
No “nerve-block” No “nerve-block”  “Nerve-blocked”  “Nerve-blocked”
Strategy that minimizes only the effect of noise -l- o
Task-optimal strategy that considers both time-delays and noise = (o)
Baseline Best-fit

simulation  simulation

Figure 3.3: This figure shows the effect of time-delays in addition to noise on
task-optimal multisensory integration. Only simulations with no additional “com-
putational” time-delay for non-digital sensors (Baseline simulation, ‘+) and with
35ms of extra “computational” time-delay for non-digital sensors that best repli-
cated experimental data (Best-fit simulation, ‘O) are shown above. The task-
optimal strategy yields better performance (larger Fy) than the noise minimizing
strategy demonstrating the effect of time-delays on multisensory integration. Base-
line simulation (crosses) fails to agree with experimental results in the absence of
thumbpad sensation (Nerve-blocked), since an additional loss of vision (cf. 3rd
vs. 4th columns) has either a very small effect on performance (blue cross), or
an unrealistic increase in performance (magenta cross). The Best-fit simulations
(circles) that includes computational time delay for non-digital mechanoreceptors
agree with experimental data (again, cf. 3rd vs. 4th columns). Note that when
both thumbpad sensation and vision are absent there is no multisensory integra-
tion required since only the non-digital mechanoreceptors modality remains, hence
the cross and circle with two colors. The task-optimal sensory weights used in the
simulations are listed in Table 3.4.2.
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Best-fit and Baseline simulations. Moreover, numerical simulations yielded F
values very similar to experimentally measured performance.

When tactile sensation was blocked in our simulations (i.e., w; = 0), both the
Best-fit and Baseline simulations showed a large drop in F (Figure 3.3: AF} be-
tween columns 2 and 3 for blue ‘O’ and ‘+” markers), much like in our experimental
results. Importantly, task-optimal Fy for the Best-fit simulation closely resembled
experimental results (Best-fit simulation: Fy = 2.80N, Experimental result: mean
F, = 2.81N).

Finally, both the Best-fit and Baseline simulations showed a further drop in
performance if vision was lost in addition to thumbpad sensation. However, the
decrease in Fj for the Baseline simulation was only 0.08N (from 2.97N to 2.89N) in
contrast to a decrease of 0.27N (from 2.80N to 2.53N) for the Best-fit simulation.
The additional decrease in F; for the Best-fit simulation is due to the inclusion
of 3bms additional time-delay for non-digital sensors. Importantly, experimentally
measured drop in F; was very close to that of the Best-fit simulation (Experimental:
mean AF; = 0.31N, Best-fit: AF; = 0.27N).

In summary, task-optimal sensory weights for the Best-fit simulation closely
reproduced experimental results. Although the Baseline simulation was not as
successful as the Best-fit simulation in reproducing experimental data, it showed
the same qualitative trends, namely the selective dependence on vision based on
the availability of thumbpad sensation.

Noise minimizing sensory weights

We now present the results of simulations using noise minimizing sensory
weights to examine whether the selective use of vision shown by task-optimal
sensory weights is driven by noise, time-delays or the combined effect of both
time-delays and noise. Simulation results using noise minimizing sensory weights
are summarized in Figure 3.3 as pink ‘O’ and pink ‘+’ data markers for Best-fit
and Baseline simulations, respectively and the corresponding sensory weights are
given in Table 3.4.2.

With intact thumbpad sensation, noise minimizing sensory weights yielded
performance that was indistinguishable from task-optimal performance although
the underlying sensory weights in these simulations were different (Table 3.4.2:
columns 1 and 2). The dominance of thumbpad tactile sensation is once again re-
inforced by the observation that noise minimizing sensory weights also found that
the lack of vision did not affect F; when thumbpad sensation was intact (Figure 3.3:
columns 1 vs. 2, pink ‘O’ and '+’ markers).

Once thumbpad sensation is lost, the similarities in the results between task-
optimal and noise minimizing sensory weights are lost. For the Baseline simulation,
noise minimizing sensory weights yield Fs comparable to experimental results (Ex-
perimental: mean Fy; = 2.81N, Baseline simulation: F, = 2.84N). Similarly, Fj
after loss of thumbpad sensation was comparable to experimental results for the
Best-fit simulation also, when using noise minimizing weights ( Best-fit simulation:
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Fy = 2.74N).

However the loss of vision over and above thumbpad sensation yields the un-
realistic effect of an increase in F, from 2.84N to 2.89N for the Baseline simula-
tion using noise minimizing sensory weights. This is because the noise-minimizing
strategy (by definition) ignores the impact of time-delays on performance. As a
consequence, when vision is available, it over-weights vision with no regard for the
larger visual time-delay relative to non-digital sensors. However, for the Best-fit
simulation using noise minimizing sensory weights, occluding vision in addition to
thumbpad sensation did cause a decrease in Fy (from 2.74N to 2.53N), albeit not
in as good agreement with experimental results like task-optimal sensory weights.
In the Best-fit simulation, the time-delay for non-digital sensors is comparable to
vision (although still smaller), thus when the noise-minimizing strategy disregards
the effect of time-delays, we find unrealistic outcomes like observed in the Baseline
simulation. Importantly, the effect on performance with loss of vision in addi-
tion to thumbpad sensation for noise minimizing sensory weights showed a severe
dependence on the time-delay for non-digital sensors, going from an unrealistic
increase in Fy to a smaller than experimental decrease in Fj.

In summary, noise minimizing sensory weights do not agree as well with experi-
mental results as task-optimal sensory weights. Moreover, the selective dependence
on vision based on availability of thumbpad sensation may or may not exist for
noise minimizing sensory weights depending on the exact value of the time-delay
for non-digital sensors. This lack of robustness for noise minimizing weights, but
not for task-optimal weights leads us to conclude that the selective use of vision is
best explained by the combined effects of both noise and time-delays.

Fitness landscape representation of simulation results

The results of the global optimization are shown as contour plots for both
the Baseline (Figure 3.4) and Best-fit (Figure 3.5) simulations as an alternate
representation of the data shown in Figure 3.3 and Table 3.4.2. The triangular
planar surface in the contour plots are the set of feasible sensory weights, i.e.,
sensory weights that satisfy both the constraints w; + ws + w3 = 1 and w; > 0
for i« = 1,2,3. The color coding depicts F according to the definition given in
Equation (3.7) on Page 64 at each point on the plane.

3.5 Discussion

Experimental results of sensory occlusion exhibited the expected and commonly
observed selective use of vision that we originally sought to explain. Numerical
simulations closely resembled experimental measurements, and provided evidence
that the selective use of vision is best explained by task-optimal performance that
considers the combined effect of both noise and time-delays. Thus, we provide
a model-based insight for multisensory integration during dynamic manipulation.
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Figure 3.4: Results of the global optimization using the Baseline simulation. The
edges corresponding to the no vision and no thumbpad sensation conditions are
marked in the figure. Note how tactile sensation dominates the landscape when
it is available (dark red region). Keep in mind that the vertices of the triangular

planar surface of feasible sensory weights are the case when one sensory channel is
used exclusively.
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Figure 3.5: Results of the global optimization using the Best-fit simulation. Note
how the peak in F for the no thumbpad sensation condition shifts slightly closer

to the “vision corner” for the Best-fit simulation compared the Baseline simulation
(Figure 3.4).
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Importantly, the novel results we have presented in this chapter bring together pre-
viously disparate results from dexterous manipulation in humans and the optimal
control hypothesis of sensorimotor control.

Our model revealed that a task-optimal sensory weighting strategy indeed ex-
plains the selective reliance on vision depending on the quality of digital cutaneous
receptors. As we saw in the previous chapter, our novel use of bifurcation theory of
nonlinear dynamical systems allowed the creation of a mechanics-based low-order
model whose spatiotemporal dynamics was indistinguishable from experimental
measurements at the edge of instability for the complex nonlinear behavior of dy-
namic manipulation. Numerical optimization of this model closely replicated our
experimental results of sensory occlusion. It revealed that task-optimal sensory
weights emerging from the combined effect of time-delays and noise better ex-
plained experimental data than noise minimizing sensory weights. Our results also
lend support to the applicability of optimal state estimation to understand hu-
man sensorimotor control. Finally, the Best-fit simulation required an additional
time-delay for non-digital mechanoreceptors over and above known sensory and
conduction latencies. This naturally leads to the physiological interpretation that
computational time-delays arising from sensory processing of noisy, non-collocated
sensors such as non-digital mechanoreceptors could be significant to neuromuscular
performance.

We found that sensory noise in non-digital sensors alone could not account for
the large drop in performance if vision was lost in addition to thumbpad sensation,
but an additional time-delay of at least 35ms together with large noise could ac-
count for this large drop. Since this additional time-delay is over and above known
sensory and nerve-conduction latencies for non-digital sensors (Gandevia and Mc-
Closkey, 1976; McCloskey, 1978), it can only be due to a “computational” time-
delay (Figure 3.1). Thus, we propose that sensory processing of non-collocated
and noisy sensors like non-digital mechanoreceptors in our experiment could re-
sult in physiologically tenable (Johansson and Birznieks, 2004; Cole et al., 1998;
Héger-Ross and Johansson, 1996; Macefield and Johansson, 1996) computational
time-delays.

With the available data, we can only speculate about the source of this ad-
ditional time-delay. It could likely arise from computations needed to transform
signals from distributed sensors into an aggregate state estimate. The delay might
also be a consequence of the excessive noisiness of non-digital sensors. For in-
stance, Johansson and Birznieks (2004) reported that processing of noisy tactile
signals from fingerpads to correctly discriminate the external sensory cue using
a probabilistic inference procedure caused a small but measurable time-delay. It
is possible that some variant of this might be involved in continuous-time state-
estimation using noisy non-digital sensory signals. Finally, it is also possible that
sensory processing of noncollocated non-digital sensors might involve areas of the
nervous system other than the spinal cord, namely areas of the cerebral cortex,
cerebellum, etc. In that case there will be significant increase in transmission de-
lays and thus lead to the extra time-delay. Nevertheless, it remains that the data



75

from this study cannot conclusively state that an extra time-delay exists or point
to its source.

Independent of the exact value or existence of this extra time-delay we saw
that task-optimal sensory weights always lead to a selective dependence on vision.
Thus, any uncertainty related to the time-delay for non-digital sensors does not
affect the primary result of the work presented in this chapter. See Chapter 5 for a
more detailed discussion of whether this extra-time delay could just be an artifact
of our simple model and how we can test that experimentally.

It is worth noting the ability of our nonlinear low-order model to capture both
the effects of sensory occlusion (results presented in this chapter) and the spa-
tiotemporal dynamics (results from Chapter 2) of the task at the limit of perfor-
mance of a system as complex as dynamic manipulation. Importantly, our model
had only one free parameter (time-delay for non-digital sensors) and all other pa-
rameters were obtained from basic frictional constraints and previously reported
neurophysiological data for sensory time-delays and noise variances. In fact, the
one free parameter was itself chosen based on the physiologically tenable and previ-
ously suggested (Cole and Abbs, 1988; Cole et al., 1998; Héger-Ross and Johansson,
1996; Macefield and Johansson, 1996) rationale that sensory processing from noisy,
non-collocated sensors might result in onerous computational time-delays.

3.6 Conclusions

Our results lead us to conclude that during dynamic sensorimotor behavior at
the edge of instability, small changes in the underlying system produce measurable
and mathematically tractable changes in performance without compromising the
complexity of the task or oversimplifying the analysis. Specifically, time-delays do
have the predicted effect on multisensory integration in addition to the previously
known effects of noise. We also propose that computational time-delays in sensory
processing have measurable consequences to task performance.

Another relevant observation about our modeling approach and sensory weight-
ing is the fact that the task-optimal sensory weights that balance the effects of both
time-delays and noise do not emerge from some form of multiobjective optimiza-
tion. In other words, we do not try to manually define cost functions that weigh
the relative impact of time-delays and noise to task performance. The relative
impact of time-delays and noise are captured by a scalar performance metric (Fj)
thus enabling us to solve an unambiguously defined optimization problem.

3.6.1 Do we better understand the effects of growing old
or cold?
Finally, we end this chapter with a brief discussion about the ramification of

the results we found to the question of “why we drop objects more often when we
grow old or cold”.
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Let us first address the question of growing cold. If you stepped out during
the winter or washed your hands in cold water and immediately tried to do some
fine manipulation task, you will most probably fail. Coming back home on a
cold winter day and fumbling with the keys and even dropping them is a familiar
sight for people that live sufficiently far from the equator! When your hands
grow cold, cutaneous sensors on your fingerpads don’t respond to stimuli, similar
to our experimental setup where we numbed the thumbpad by administering a
local anesthetic. It is not immediately apparent if cooling down cutaneous sensors
“pollutes” them by injecting significant sensor latencies, making them more erractic
(noisy), or simply desensitizing them like a local anesthetic. However, as we saw
in this chapter, either or both of these mechanisms could render these sensors
less effective. The outcome would then be a greater reliance on vision and more
importantly, higher sensory variance. A larger number of redundant sensors helps
reduce the variance of the net estimate of the measured sensory cue (so long as the
noise processes polluting the sensors are independent). Hence, loss of one sensor
increases the net “noise-level” in the sensory system. In the context of our model,
the increase in noise-level will decrease the ‘success-rate’ for a specific level of F§. In
other words, greater noise in the system will lead to a greater probability for slips.
No doubt this explanation is speculative and heuristic, but it provides some useful
insight into how sensor “quality” might influence dynamic manipulation demands
of everyday life. In additional to the effect on sensor efficacy, a low temperature
will undoubtedly affect several other electrochemical and mechanical properties of
biological tissues such as muscles, tendons, ligaments, etc.

With that discussion on the effect of cold hands, the consequence of aging is
apparent. Aging degrades sensors in the body and also causes overall “neural”
slowing in the CNS (Cole et al., 1998, and references therein). Hence, replacing
‘cold’” by ‘old” in the previous paragraph provides insight into why aging could
impair our dexterous manipulation ability and make us drop objects more often.



Chapter 4

Clinical implications
4.1 Introduction

This chapter deals with a clinical application of the techniques developed so
far in this thesis to reveal possible reasons behind the effectiveness of an upcoming
treatment for osteoarthritis. There are some medical terms that will be frequently
used in this chapter. To avoid repeated use of long phrases, I will resort to ab-
breviations. An effort has been made to minimize area-specific terminology and
abbreviations to ease the burden on the reader. However, some terminology and
abbreviations are unavoidable. I present a short list of abbreviations that will be
used in this chapter together with a brief explanation of each term and relevant
citations from the literature.

OA Osteoarthritis: is a degenerative! joint disease (Altman et al., 1986) that is
almost inevitable in the elderly population (it is estimated that 80% of the
population in the U.S. over 65 years will have OA; Green, 2001).

CMC Carpometacarpal: joint is the name for a joint that lies at the base of the
thumb (Santos and Valero-Cuevas, 2006; Valero-Cuevas et al., 2003a) and is
often the victim of OA.

HA Hyaluronic acid or Hyaluronan: is a carbohydrate polymer (Meyer, 1950b,a;
Meyer and Fellig, 1950) ubiquitous in the fluid medium (called ‘matrix’) that
is prevalent around cells in most tissues of our body. It provides lubrication
for articulating joints (Fraser et al., 1997) among the myriad physiological
functions it is purported to serve.

DASH Disabilities of arm, shoulder and hand: is a 30-question questionnaire used
to evaluate upper-extremity function in clinics (Hudak et al., 1996; Amadio,
1997; Navsarikar et al., 1999). The questionnaire asks about the patient’s
symptoms as well as ability to perform certain activities using the upper
extremity, which has to be answered based on the patient’s condition over
the past week. Each response is assigned a score from 1 to 5 — mildest to
worst symptom or intact function to severe dysfunction, as appropriate to
the question asked. The average score from all 30 questions is converted to
a 0-100 scale, where a higher score means a greater disability.

VAS Visual analog scale (for pain): is a tool used to assess the level of pain a
person feels (Carlsson, 1983; Ohnhaus and Adler, 1975; Price et al., 1983). It
is simply a 100mm (10cm) long line segment, where the lower/left end rep-
resents “no pain” and the upper/right end represents “the worst imaginable

LA degenerative disease will progressively worsen over time, unlike an infectious
disease can improve over time.

7
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pain”. In a clinic, a patient would mark off the location on this line that
they think best represents the pain they feel. The clinician who administers
this test for pain would record the distance in mm (cm) from the no-pain
end to score the level of pain as a number between 0 and 100 (10).

We will examine the effect of a specific treatment (intra-articilar HA injection)
on patients diagnosed with OA of the CMC joint of the thumb. Specifically, we test
our hypothesis that the self-reported (using the DASH questionnaire) improvement
in hand function after treatment is primarily because of pain relief and not because
of any improvement in innate sensorimotor capability. Importantly, this study
takes us one crucial step toward having a clinical tool for mechanically meaningful
quantitative assessment of hand function.

4.1.1 Why does hand function improve in CMC OA pa-
tients after treatment with intra-articular HA injec-
tion?

Osteoarthritis is a very prevalent disease in the elderly. It is a degenerative
disease that can affect any joint in the body in theory, but most commonly affects
joints of the hand, feet, hips, knees and spine. A characteristic of OA is the wear
and thinning of the cartilage that cover and form the articulating surfaces of a
joint. As the cartilage wears over time (e.g., as a person ages), the bone surfaces
become less protected, make direct contact and this results in “joint pain”, which
is often excruciating given the rich innervation of the periosteum. Hence, not
surprisingly, the most common symptom of OA is chronic pain. Unfortunately,
there is no evidence of a definitive cure for OA so far (Brandt et al., 2000).

4.1.2 Intra-articular HA — a potential treatment for CMC
OA

There is much evidence for beneficial effects of intra-articular HA injection to
patients suffering from knee OA (Brandt et al., 2000; Fraser et al., 1997; Listrat
et al., 1997; Peyron, 1993; Wobig et al., 1998) although the efficacy and mechanism
are still hotly debated. There are also some preliminary reports that intra-articular
HA injection might improve manipulation ability in patients suffering from CMC
OA of the thumb (Fuchs et al., 2006; Venkadesan et al., 2005; Wei et al., 2002).
It has been suggested by several studies that injecting HA into the intra-articular
space (the joint space between articulating surfaces of the bones) might have bene-
ficial effects (Altman and Moskowitz, 1998; Brandt et al., 2000; Fuchs et al., 2006;
Listrat et al., 1997; Peyron, 1993; Stahl et al., 2005; Wei et al., 2002; Wobig et al.,
1998) by achieving two important goals — alleviating pain and improving “func-
tion”. Note that most studies of effectiveness of OA treatment using HA have
been restricted to the knee, with very little evidence for effects of treatment on
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CMC OA patients. There are of course several other established and customary
treatments for OA that range from surgical intervention at one extreme to intra-
articular steroid injections, over-the-counter nonsteroidal anti-inflammatory drugs
(Green, 2001) such as Advil™ or even simply splinting. However, HA is consid-
ered to be more than just a symptomatic treatment due to its ubiquitous natural
presence in healthy joints and empirically observed decline in concentration in OA
joints (Fraser et al., 1997). It suffices to say that it has been often reported that
HA is effective in pain reduction in the short term at the least (Brandt et al.,
2000) and some studies claim that HA might cause beneficial changes in articular
surface properties (Listrat et al., 1997) and might provide long term pain reduction
(Altman and Moskowitz, 1998; Brandt et al., 2000; Listrat et al., 1997; Wei et al.,
2002; Wobig et al., 1998). Critics of HA indicate that local administration of HA
may have mostly a placebo effect because HA remains in the joint space for a few
days at most (Brandt et al., 2000).

These past results on using HA to treat knee OA are the motivation for us to
try and explain if and why DASH scores (self-reported improvement in physical

function) improve in CMC OA patients treated with intra-articular HA injections?®.

4.1.3 Existing outcome measures do not quantify impair-
ment and recovery of dynamic manipulation

There have been some studies (Fuchs et al., 2006; Stahl et al., 2005), includ-
ing the precursor to the work presented in this chapter (Venkadesan et al., 2005)
that have reported improvement in hand “function” after intra-articular HA in-
jection. With the exception of Venkadesan et al. (2005) the other studies relied
solely on indirect “dexterity” evaluation tests such as the DASH (Hudak et al.,
1996; Amadio, 1997; Navsarikar et al., 1999), maximal pinch strength (Fess, 1995;
Mathiowetz et al., 1985; Totten and Flinn-Wagner, 1992), Purdue Pegboard Test,
Jebsen-Taylor Hand Function Test (Fess, 1995; Totten and Flinn-Wagner, 1992),
clinical evaluation of the fingers (e.g., range of motion) (Jones, 1989), etc., which
are limited in their ability to quantify thumb function as we shall see below.

Everyday manipulation tasks are dynamic and typically involve low forces, thus
the validity of maximal pinch strength as an indication of manipulation ability is
doubtful. In fact, we have reported earlier that maximal pinch strength cannot
even distinguish between people with CMC OA and those with healthy hands
(Valero-Cuevas et al., 2003b).

Tests of hand-eye or reach-to-grasp coordination such as the Purdue Pegboard
Test or the Jebsen Taylor Test are not specific to finger function and involve

2The work reported in this Chapter was carried out in collaboration with re-
searchers and clinicians at the Hospital for Special Surgery, New York, NY. The
researchers at New York that were instrumental to this study are, Dr. Lisa Mandl,
Dr. Sherry Backus, Dr. Stephen Lyman, Dr. Robert Hotchkiss, Alison Swigart, Dr.
Margaret Peterson and, Lily Ariola.
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the entire upper extremity, thus being susceptible to compensatory and adaptive
strategies that can mask hand impairment.

Clinical evaluation of the fingers such as range of motion or subjective ques-
tionnaires that rely on verbal reports of hand function such as the DASH do not
quantify the sensorimotor ability of object manipulation using the fingers.

4.2 Hypotheses

As part of the first RCT on the use of HA for CMC OA, we proposed two
working hypotheses?®:

1. We hypothesized that HA injection would lead to self-reported improvement
in hand function and pain relief, but not improve dynamic manipulation
ability at low forces.

2. We also hypothesized that the self-reported improvement in hand function
is primarily due to pain relief; and patients with better current dynamic
manipulation ability at low forces will benefit more from pain relief. In other
words, dynamic manipulation ability is a predictor of treatment effectiveness
of HA injection for CMC OA patients, provided there is pain relief.

The rationale for our hypotheses rests on past studies which reported positive
results of HA injection using subjective questionnaires. From Section 4.1.1, recall
that chronic pain is the clinical hallmark of CMC OA and past studies have re-
peatedly found consistent short and long term pain relief after HA treatment (VAS
score) and consistent improvement in function according to self-reported function
(DASH score). However, these studies report inconsistent improvement in objec-
tive metrics of manipulation ability (using methods such as pinch meters, range
of motion of the thumb, etc.) and we saw in Section 4.1.3 that these past studies
did not use any objective, finger-specific metrics of dynamic manipulation abil-
ity. Finally, since chronic and severe pain could restrict CMC OA patients from
exploiting their innate sensorimotor control ability to the fullest, and HA seems
to provide short and long term pain relief, we hypothesized that: (i) after HA
treatment, DASH scores (self-reported function) would improve primarily due to
pain relief and not because the innate dexterous manipulation ability improved,
and (ii) since pain could mask the innate sensorimotor control ability, patients
with better dynamic manipulation ability at low forces should function better af-
ter treatment, i.e., report higher DASH scores after achieving some pain relief due
to HA injection.

3The work to test these hypotheses was carried out at the Hospital for Spe-
cial Surgery, New York, NY, under the supervision of Dr. Lisa Mandl and was
supported by, grants from NIH R21-HD048566, NSF 0237258 and the Whitaker
Foundation to Dr. Francisco Valero-Cuevas and grants from NIH K23-AR50607
and Wyeth Pharmaceuticals to Dr. Lisa Mandl.
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Notice that we repeatedly stress the need for “low forces” when referring to
dynamic manipulation ability. This is because we are interested in quantifying the
innate sensorimotor control ability of the hand for tasks of daily living, independent
of pain. For patients with degraded joint surfaces, higher forces that result in higher
joint contact forces will likely lead to greater pain.

An alternate explanation for self-reported improvement in DASH scores after
treatment with HA is as follows. It is possible that degradation of CMC joint artic-
ular surfaces due to OA could cause not only pain, but loss of sensorimotor control
ability because some (unknown) aspect of the joint mechanics could have altered
due to the articular surface degradation. Hence, it is possible that if HA improves
articular surface properties (Listrat et al., 1997), it could result in improvement
of self-reported hand function because the innate sensorimotor control ability im-
proved and not just because of pain relief. However, given the tentative nature of
the evidence for any mechanism for lasting change in articular surface properties
due to HA injection (Brandt et al., 2000), we expected that the innate sensorimo-
tor control ability is not affected by HA injection treatment and the self-reported
improvement in hand function is primarily due to pain relief. Moreover, existing
research on biomechanics of the thumb do not shed any light on the relationship
between articular surface properties and sensorimotor function.

We tested our hypotheses using the method of quantifying dynamic manipu-
lation that we have presented in the previous chapters of this thesis. The results
shown below have been presented at a conference (Venkadesan et al., 2005).

4.3 Methods

In our study, 32 consenting patients with CMC OA received intra-articular
injection of Hylan G-F 20 for 3 consecutive weeks after approval by the Institutional
Review Board at the Hospital for Special Surgery, New York, NY, U.S.A., where
the study was conducted under the supervision of Dr. Lisa Mandl. Functional
evaluation at baseline (prior to 1Ist injection), and 26 weeks later included VAS
for pain; DASH Questionnaire; key and opposition pinch strength; and the mean
sustained maximal load during the task of compressing a slender spring, i.e., Fy —a
metric of dynamic manipulation ability at low forces. The dynamic manipulation
task was nearly identical to that presented in Chapters 2 and 3, using the same
spring and setup used by us previously. It consisted of compressing a slender spring
prone to buckling using the thumbpad to maximize vertical compressive load, and
holding it for 5 seconds (see Figure 2.3 on Page 29). We chose to set a holding
time of bs instead of 7s that we used previously since the thumbs of the patients we
tested could become painful and we were trying to minimize patient discomfort,
while garnering useful information at the same time. Given the time constraints
in the clinic and because our past studies showed no significant effect of training,
we did not impose beyond 10 compressions of the spring on any patient.
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4.4 Statistical Analyses

At the time of analysis of the data, only 19 patients had completed the 26 week
followup and one patient did not compress the spring slowly and long enough to
provide reliable data. The average age of the patients was 64 years (range 46-79),
with 22 females and 10 males. We always verified the necessary assumption for
parametric statistics that the residual values should be independently, identically
and normally distributed.

4.4.1 Testing Hypothesis 1: Change in metrics of hand
function after treatment

We first tested to see if any of the outcome measures, namely — DASH, VAS,
key pinch strength, opposition pinch strength or, F; changed from baseline (before
first injection) to final-followup (after 26 weeks).The comparisions were performed
as five paired two-sided t-tests.

4.4.2 Testing Hypothesis 2: Multiple linear regression

To test whether the variance in observed improvement of DASH scores after
treatment with HA injection could be explained by improvement in pain and innate
sensorimotor control ability, we performed a multiple linear regression analysis.
Specifically, we posed the linear model for this statistical test as follows:

ADASH = a;(AVAS) + ay(FPaseine) 4 ¢ (4.1)

where, ADASH is positive if the DASH score decreased after treatment, since a
lower DASH score means better upper extremity function; AVAS was defined to
be positive if there was pain relief since a lower VAS score means lesser pain; €
is the residual error term, which satisfied assumptions for parametric statistics,
namely, normality, independence and identical distribution. Note that oy and as
— the slopes of the regression equation — need to be significantly different from 0
in order for us to accept the hypothesis that change in pain and baseline dynamic
manipulation ability are associated with the self-reported change in function. If
both are not only different from 0, but greater than 0, then we can conclude that
our data provide support for Hypothesis 2.

It is important to note that we do not include an intercept in our model and
force the regression place defined by Equation (4.1) to pass through origin. The
reason for this becomes apparent by noting that FP®eiin® = () means that the
person’s ability was at manipulation was so poor that they could not compress
the spring even as well as a small (say, < IN) dead weight, and no change in
pain just lends further credibility to our assumption that the regression plane
passes through the origin. In other words, we assumed that (no pain-relief) +
(completely dysfunctional thumb) = (no effect of treatment). We verified the
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validity of this assumption by performing a separate multiple linear regression
analysis that allowed for a non-zero intercept. We found that our data could
not provide support for a non-zero intercept and the intercept obtained from the
regression was not statistically different from 0 (p=0.743).

4.4.3 Stepwise linear regression

The test for Hypothesis 2 outlined above cannot rule out the possibility that the
variance in ADASH can be better explained by including other outcome measures
such as pinch strength, etc. in addition those stated above. To further strengthen
our test of Hypothesis 2, we performed a stepwise regression analysis. Stepwise
regression analysis is a data-mining procedure to explore and compare alternate
choices for linear regression models to determine how best to explain a data set.
To understand this further, we outline below, the details of the stepwise linear
regression analysis for our data set.

A stepwise regression analysis is similar to a standard linear regression analysis
in all regards but for how the independent or predictor variables (regressors) are
treated. A standard regression analysis uses a fixed number of predetermined in-
dependent regressors based on the researcher’s insight about the problem at hand.
A stepwise regression analysis, however, performs additional statistical testing to
find the least number of independent variables that possess meaningful explana-
tory power. Specifically, a stepwise regression procedure starts with a master-set
of independent variables as potential candidates and eliminates all but those vari-
ables that possess significant explanatory power, i.e., independent variables with
non-zero partial R? and a slope significantly different from 0 (p-value less than pre-
set threshold). So, a stepwise procedure finds the minimal subset of the master-set
that we started with so that every independent variable that belongs to the subset
explains some non-zero variance in ADASH with statistical significance greater
(i.e., p-value smaller) than a preset threshold (typically, ~ 0.20). Remember that
both DASH and VAS scores numerically decrease with improvement. Hence, they
were defined as (baseline — final) so that an improvement yields a positive number
for ADASH or AVAS.

For our study, the dependent variable was ADASH that could depend on several
factors. We list below in Table 4.1 a list of the seven factors that we measured
and considered as potential candidates for the master-set of our stepwise regression
analysis.
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Table 4.1: This table gives a list of potential factors that could explain any im-
provement in DASH scores after treatment with intra-articular HA injection.

Predictor Explanation for inclusion

AVAS Intra-articular HA injection is presumed to provide
pain relief. Moreover, the DASH questionnaire has
several questions that explicitly ask the patient to
rate the severity of pain that they feel in different

parts of the upper extremity.

AF; If sensorimotor control ability improved with treat-
ment then it is very likely that patients will report
improvement in upper extremity function using their

DASH questionnaire.

A(KEY or OPP) Using the same reasoning as AFj, if pinch strength
improves, it is possible that subjects might report

better “function”, since they feel stronger!

[Jrbascline Pain impairs manipulation ability. Since HA is pre-
sumed effective in pain relief, we expected that pa-
tients with innately better sensorimotor ability (Fj
at baseline) will report greater improvement in func-
tion, since they are less limited once pain relief allows

them to utilize their innate ability.

(KEY or OPP)Paseline | Similar to FPaelin® having higher pinch strength at
baseline could lead to better self-reported improve-

ment with treatment if the musculature is not yet

affected by pain-driven disuse or atrophy.
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In summary, our statistical model using the master-set was,

ADASH = a, (AVAS)

+ o+ o+

+ ¢ (4.2)

where, A(DASH,VAS) = (DASH,VAS)Pascline _ (DASH VAS)ial and the other
quantities (pinch strengths — KEY or OPP, Fy) were defined as (final — baseline).
Once again, ¢, the model residue needs to satisfy the assumption € ~ iid N (0, 0?),
i.e., it should be independently, identically, normally distributed.

4.4.4 Pairwise correlation analysis

A necessary and crucial assumption for stepwise regression analysis is the mu-
tual independence of predictor variables (the right-hand side of Equation (4.2)).
We tested this assumption by calculating pairwise Spearman correlation coefficients
for all pairs of the independent variables listed above. We found that KEYPaseline
showed significant correlation with AVAS, AKEY and OPPP®¢li"e - AVAS is critical
to test our hypothesis and we can substitute KEYP#i"® with baseline opposition
pinch strength (OPP*¢™¢) I fact, we found that KEYP*" strongly positively
correlated with OPPP®¢in® (Table 4.2; p = 0.705, p=0.001). Hence, we dropped
KEY"*m from our stepwise regression analysis since it becomes redundant. We
also found that AF, significantly correlated with FPaseline. However, to leave open
the possibility that genuine improvement in dynamic manipulation ability might
have led to the improved DASH score, we performed two separate stepwise regres-
sion analyses — with and without the inclusion of AF;. The results of the pairwise
correlation analysis are presented in Table 4.2.

4.5 Results and Discussion

We found that only DASH and VAS improved significantly (statistically and
clinically) after treatment with intra-articular HA injection. Importantly, the im-
provement in DASH was explained only by improvement in VAS and baseline
F,. In other words, patients who got the most pain relief reported the greatest im-
provement in hand function and patients with innately better sensorimotor control
ability had greater benefits from pain relief.
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Table 4.2: Results of pairwise Spearman correlation for all the predictors from the
master-set in the stepwise regression model. For each row, the number on the top
is the Spearman correlation coefficient (p) and the number in the bottom is the
p - value for this correlation coefficient. If the p - value was < 0.05, we regarded
that correlation as significant. For want of space, the ‘baseline’ superscript for
all variables has been replaced by ‘0’, for example F? in the table below refers to

Fsbaseline_
AVAS AF, AKEY AOPP  F? KEY? OPP’
AVAS
AF, | -0.334
(0.175)
AKEY | 0.342 0.001
(0.165)  (0.997)
AOPP | 0.033 0.425 0.364
(0.897)  (0.079)  (0.137)
FO 0.272  -0.688  -0.206  -0.237
(0.275)  (0.002) (0.412)  (0.845)
KEY" | -0.492  0.026  -0.492  0.024  0.041
(0.038) (0.919) (0.089) (0.925) (0.870)
OPPY | -0.169 0.200 0274 -0.342  0.126  0.705
(0.503)  (0.427)  (0.272) (0.165) (0.618) (0.001)
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4.5.1 DASH and VAS are the only metrics that showed
improvement after treatment

Similar to what was found in past studies on HA injection for patients with
CMC OA, we found that patients had good long-term pain relief (VAS) and good
self-reported improvement in hand function (DASH). In support of our first hy-
pothesis, we found that treatment did not improve either pinch strength (both key
and opposition) or sensorimotor control ability (Fs). See Table 4.3 for a summary
of the results of our t-tests.

Table 4.3: DASH score and VAS for pain are the only metrics that showed a
significant change 26 weeks after the first HA injection. The data are reported as
mean + standard deviation in the table. Statistically significant differences are
bold and italicized.

Baseline Week 26 p-value
(N=32) (N=19) | Baseline-Week 26
DASH score 29.1£16.5 | 149+ 13.5 0.011
VAS for pain 6.2+1.8 42+2.3 0.022
Key pinch strength (N) | 13.6+5.6 | 14.1+5.3 0.379
Opp pinch strength (N) | 10.6 £53 | 11.6 £5.5 0.204
F, (N) 2.66 4+ 0.26 | 2.65 +0.27 0.754

4.5.2 Patients with better initial sensorimotor control abil-
ity benefited more from pain-relief
The multiple linear regression found that change in VAS and FPaseline had sig-

nificant explanatory power for change in DASH. Specifically, the linear model that
we found by the multiple linear regression was:

ADASH = 3. 11N ! phaseline 1 4 45 AVAS +¢; R? = 0.81 (4.3)
p=0.025 p=0.0009

The regression revealed that change in VAS and baseline F could explain more
than 80% of the variance in change in DASH. Moreover, the change in DASH had a
statistically significant positive regression slope with both baseline F; and change in
VAS. This provides support for our hypothesis that the primary source of improve-
ment in function is from pain relief and those with innately better sensorimotor
control ability showed greater improvement.
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4.5.3 Only pain relief and baseline F; could explain self-
reported improvement

Both the stepwise regressions — with or without including AFy; — found only
AVAS and FPaseline could significantly explain variance in ADASH. An automatic
data-mining approach such as a stepwise regression analysis is frequently criticized
for proposing unrealistic models, i.e., they sometimes select physically unrealistic
or unreasonable predictors. In light of this nature of stepwise regressions, our find-
ing that the only predictor variables automatically selected by this data-mining
approach agree with Hypothesis 2 lends strong support to the validity of our con-
clusion that, pain relief and innate dynamic manipulation ability suffice to explain
self-reported improvement.

4.5.4 Static pinch strength is not informative of any aspect
of functional improvement

In agreement with our past study on OA (Valero-Cuevas et al., 2003b) we found
that neither key nor opposition pinch strength changed with treatment. Moreover,
neither metric of strength possessed any predictive power of improvement in hand
function (change in DASH). This indicates that unlike sensorimotor control ability
(Fy), patients with higher strength do not necessarily show greater improvement
with treatment.

4.6 Conclusions

The results of this preliminary study lend support to our hypothesis that self-
reported improvement in hand function is primarily due to pain relief. Importantly,
patients with innately better sensorimotor control ability showed greater improve-
ment, while greater pinch strength did not mean greater improvement. This leads
to three implications of clinical importance:

1. Dynamic manipulation ability at the edge of instability is predictive of treat-
ment outcome using HA. This provides a useful clinical tool for assessing
treatment outcome.

2. The force required to perform the dynamic manipulation task is very low
(< 3N), thus probably making it less influenced by pain due to joint contact
forces and stimulation of the periosteum. This provides a useful window into
the innate dexterity of patients without any confounding effects of pain.

3. Pinch strength should likely be removed from the customary battery of tests
administered to the OA hand. For humane reasons, testing maximal pinch
strength and inducing pain is unnecessary given that pinch strength has little
clinical predictive value.
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These data are only preliminary and, because we did not collect any data about
the motion of the spring during the compression, we have no way to verify if pa-
tients were indeed at the edge of instability. This is of some concern since with
painful thumbs, motivation for maximizing task performance could be compro-
mised. Regardless, the spring compression was more informative than any other
currently preferred objective outcome measure. Importantly, despite such poten-
tial confounding factors, we found supporting evidence for our hypotheses. In fact,
refining our experimental methods to use motion capture and provide feedback to
the clinical tester about proximity to the edge of instability (based on established
dimensional collapse at the edge of instability — Chapter 2) can only help further
strengthen the results and conclusions of the study presented in this chapter.

Specifically, our results suggest that HA provides self-reported improvement
in function primarily due to pain relief. This provides better-defined directions
for future studies to examine the physiological mechanisms behind the apparent
benefits of intra-articular HA injections. Finally, this study is the first crucial step
to develop a quantitative assessment of hand function and importantly, a means
to quantify changes in hand function as part of any randomized controlled trial.



Chapter 5
Future Work and Conclusions

This chapter forms the concluding part of this thesis. It is organized into two
parts based on the level of specificity of the proposed future work. The first part
will examine the main results of this thesis in a critical manner. Specifically, it
will examine the scope, generalizability and limitations of the main conclusions
of the work presented in this thesis. I will then present some short-term goals
based on the preceding critical evaluation. These short-term goals aim to provide
refinements to broaden the scope of this work and also to assess the generalizability
of some of our results. The second part of this chapter consists of speculative
proposals for long term goals based on some of the results of this thesis. Specifically,
it presents an approximate road-map for future exploration of new directions in
optimal feedback control of complex high-dimensional systems, be they machines
or biological organisms.

5.1 Refinement of the normal form model

The low-dimensional model of dynamic manipulaion at the edge of instability
that we have developed is very effective and useful in exploring problems related
to sensorimotor control and even capable of generating experimentally testable
hypotheses (for example, see Sections 5.3 and 5.4). However there are several
possible refinements to the model that can make it more representative of the
underlying physics of the real system it tries to approximate. Below is a list of
some such refinements.

5.1.1 Inclusion of “imperfections”

The normal form equation we used for modeling the transition to instability in
the thumb + spring + nervous system is generic only in the class of systems that
have an inherent symmetry. However, we already saw in Section 2.3.2 on Page 44
that because the rotational buckling is preceded by the lateral buckling, an ‘im-
perfection’ is introduced into the endcap rotational bifurcation. We however chose
not to include an additional free parameter into our model to keep the model as
simple as possible. Moreover, the spring is not perfectly symmetric either because
of both a non-zero helix angle and manufacturing imperfections. Importantly, with
near certainty, the subjects placed their thumb with a finite offset from the geo-
metric center of the spring. There are several other symmetry-breaking® aspects

!The usage of the phrase “symmetry-breaking” in this context should not be
confused with the symmetry-breaking feature of certain bifurcations. For exam-
ple, the pitchfork bifurcation is sometimes referred to as a “symmetry-breaking”
bifurcation. However, we use this term here purely in the physical sense of parity
that is introduced in the thumb + spring + nervous system as a consequence of

90
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that could be listed. Let us resort to the nomenclature used in the literature of
solid mechanics and call these symmetry breaking features as imperfections. These
imperfections can then be represented in the normal form equation by a lumped-
parameter approximation, that we will refer to as the imperfection parameter. For
the pitchfork bifurcation, the normal form equation that includes an imperfection is
sometimes referred to a ‘versal unfolding’ of the pitchfork bifurcation normal form
(Guckenheimer and Holmes, 1983). The imperfect subcritical pitchfork bifurcation
normal form is,

0= a(F,— K)§+ (6% —~0° + ¢ (5.1)

where the only new parameter € is a lumped representation of all sources of im-
perfection. We have shown an example of a bifurcation diagram for a small value
of the imperfection parameter in Figure 5.1. Note that the normal form equation
given in Equation (5.1) is an example of a 2-parameter normal form that exhibits
both codimension - 1 and codimension - 2 bifurcations. Both F; and € control the
nature of bifurcations that occur in this system. The normal form equation that
we used in the work presented in this chapter (e.g., Equation (3.1) on Page 58)
then becomes a special case of Equation (5.1) with ¢ = 0. In fact, when the
constraint of symmetry is removed, the bifurcation that happens at Fy; = K and
€ = 0 is a codimension-2 bifurcation, that can be achieved only by fine-tuning two
parameters (F; and €) simultaneously.

With this discussion about the unfolding of the subcritical pitchfork bifurcation
normal form, it becomes apparent that the unfolding is a better representation of
the experiment. However, we avoided using the more general form of the equa-
tion in an attempt to keep the model simple by minimizing the number of free
parameters.

Nevertheless, there is an important feature of the experiment that could be
revealed by the inclusion of this imperfection parameter. That is, an explanation
for the trial-to-trial variability that we observed in F;. One way to address this
variability is by making the imperfection parameter a random variable. Namely,
we can hypothesize that the effective imperfection in the system is primarily a
consequence of placement of the thumb on the endcap. Much like the studies on
finger-pointing (e.g., Kérding and Wolpert, 2004), we could quantify the distribu-
tion of errors in effective center of pressure that subjects commit when asked to
press down at a specified point on a flat surface. We can then test our hypothesis
that the imperfection parameter and in turn, trial-to-trial variability is primar-
ily driven by errors in thumb placement by making the imperfection parameter a
random variable that is drawn from the experimentally measured distribution of
thumb center-of-pressure. This way, we can address trial-to-trial variability with-
out introducing any additional free parameters in our model. Going a little further,
it is readily seen that the increase in variability of F§ after loss of thumbpad sen-
sation has a potential explanation in terms of multisensory integration — loss of
redundant sensors naturally increase noisiness of state estimates!

manufacturing and loading offsets.
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Imperfect subcritical pitchfork bifurcation
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Figure 5.1: The bifurcation diagram of a subcritical pitchfork bifurcation with the
inclusion of a small imperfection. It is seen that the figure looks somewhat like the
no-imperfection bifurcation diagram, but there is no longer a well-defined pitchfork
bifurcation at F; = K. The pitchfork bifurcation that was present for ¢ = 0 now
appears “blurred”. It is also seen that the desired stable configuration (f = 0) now
loses stability a little sooner than if there was no imperfection.
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To address the imperfection introduced due to the precedence of a lateral buck-
ling is a harder proposition. To estimate the effective imperfection due to the
lateral buckling requires modeling both the lateral and rotational buckling using
more sophisticated models than a 1D differential equation. A possible approach
to model this could be using discrete approximations of a buckling spring such as
an inverted triple-pendulum with viscoelastic joints. Other uses of a more sophis-
ticated model are outlined in Section 5.5 on Page 101. However, the development,
calibration and analyses of more sophisticated models is beyond the intended scope
of this thesis and better suited for future studies to explore.

5.1.2 Trial-specific parameter estimation

Since the validity of a low-dimensional model on average has already been es-
tablished in the work presented in this thesis, we can now turn our attention to
expanding the utility of this modeling approach as a sophisticated tool for quan-
tifying dynamic manipulation ability in able and impaired populations. Instead
of trying to predict average behavior using the low-order model, we can use it as
a tool to quantify individual behavior. Specifically, instead of calculating the pa-
rameters K, «, 3, v and € (if we include imperfections) like we did in Chapters 2
and 3, we can use time-series analysis techniques to estimate these parameters for
individual trials, for individual subjects, or for various clinical conditions.

It is not immediately apparent how best to pose or carry out this parameter
estimation problem. However, future work could explore the possibility of trying
to use techniques such as extended Kalman filters, maximum likelihood estimators,
quasi maximum likelihood estimators, or even genetic algorithms (Alcock and Bur-
rage, 2004; Bishwal, 2003; Hurn and Lindsay, 1999; Hurn et al., 2003; McDonald
and Sandal, 1999; Nielsen et al., 1999; Singer, 2002; Timmer, 2000).

Developing robust parameter estimation techniques and appropriate experi-
mental methods (appropriate for parameter estimation) can then create a very
useful way to quantify dynamic manipulation. Although a scalar metric like Fj is
an attractive option, a multidimensional metric might be more sensitive to and pro-
vide more robust tools for quantifying dynamic manipulation ability. For example,
although we did not find any change in F after training, it might be the case that
training caused a systematic change in some facet of dynamic manipulation ability
that is not sensitively measured by F,. Such multidimensional metrics if developed
could also find a useful application in clinical diagnosis of hand impairments.

5.2 Proportional-derivative feedback controllers

In Chapter 3 we explicitly defined a “controller” in order for us to explore the
effects of sensory noise and time-delays on multisensory integration. As an initial
attempt, and to keep our model simple, we chose a constant proportional feedback
controller. We also discussed in Section 3.2.1 how the physical /robotic implemen-
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tation of a constant proportional feedback control action can be a non-trivial effort.
However, the use of a simple proportional controller with no derivative control ac-
tion can be construed as an over-simplification of the controller, especially in the
presence of time-delays in the system. This is because a proportional-derivative
(PD) feedback controller can provide some degree of time-delay compensation, i.e.,
anticipatory-like control because of the derivative action (Doyle et al., 1992; Ogata,
2002). Clearly, a PD controller cannot predictively control the system since it is
still reliant on sensory feedback, but the derivative control action can resemble
predictive control, at least on short time-scales. Despite this apparent advantage
and validity of using a PD controller, there are several reasons why we resorted to
a purely proportional controller. Here, we outline some of those reasons:

1. As we discussed in some detail in Section 3.2.1 on Page 58, there is unfor-
tunately no ‘natural’ way to separate the controller from the plant in our
normal form model. This separation is probably best carried out in a de-
tailed model of the experimental task (namely, spring compression using the
thumbpad), which is not within the scope of this thesis. However, we used the
language of ‘controller’ and ‘plant’ solely to provide a physical interpretation
for the entry of noise and time-delays in our model. In fact, the proportional
controller can be regarded as a 2-term Taylor series truncation of a more
generalized controller, while the PD controller is a 3-term truncation. In
summary, the important message is that the work presented in this thesis
does not aim to identify or dwell on the structure of the controller used by
the nervous system, but aims only to identify the effect of sensory noise and
time-delays on multisensory integration.

2. The second reason for not using a PD controller is because of additional un-
known / unmeasurable / non-estimable free parameters that are introduced
in the model. The spirit of this thesis is to develop models with the least
possible free parameters (in fact, just one free parameter) without sacrificing
explanatory power of the model at the same time. Extra free parameters not
only make the model more complex, but can restrict the generality of our
results, thus casting doubt on the validity of the model itself. The burden
of unknown or non-estimable parameters associated with a PD controller
will become self-evident in the simulation results that we present below in
Section 5.2.1.

3. It is tempting to include a PD controller and to estimate any unknown pa-
rameters as part of the proposed future work. However, we go even further in
Section 5.5 on Page 101 and outline the steps needed to develop an optimal
feedback controller for the task of spring compression. In light of the discus-
sion on optimal feedback control for sensorimotor integration in Section 1.1
starting on Page 1, the necessity for further pursuing a PD controller be-
comes superfluous. Importantly, an optimal feedback controller is a superset
of a PD controller.
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Notwithstanding the three reasons cited above for using only a proportional
controller and not a PD controller, we performed a preliminary investigation of
the effect of using a PD controller. The details of this preliminary investigation
and its results are presented below. This preliminary investigation revealed the
following salient aspects of a PD controller:

1. Our original finding (Chapter 3) that a task-optimal multisensory integration
strategy automatically leads to a selective use of vision depending on the
availability of thumbpad sensors remained unchanged.

2. The model parameters that best agreed with experimental data led to an
extra time-delay for non-digital sensors over and above neurophysiologically
known sensor activation and nerve-conduction delays. The exact value of
this additional time-delay was 40ms, not very different from our previous
finding of a 35ms time-delay using a proportional feedback controller.

3. There were at least two additional free parameters that were introduced,
despite several simplifying assumptions made in order to minimize extra
free parameters. This led to a total of three free parameters in our model.
However, the results did not show any dramatic qualitative change for a wide
range of values of these free parameters. It should be noted that the exact
values for these free parameters were chosen by hand-tuning them.

5.2.1 Proportional-derivative control model

Introducing a PD controller without the addition of too many new free param-
eters required a few simplifying assumptions as listed below:

1. We assumed that each of the three sensory channels — thumbpad sensors,
nondigital mechnoreceptors, and vision — could sense ‘angular velocity’ (6)
in addition to the angle (@) of the endcap.

2. To prevent the addition of three additional sensory weights for combining
the three velocity signals, we assumed that the weights used for combining
the velocity signals from the three sensory channels are the same weights
used to combine the angular sensory signals from them. To put it simply, we

assumed that w8 el — a8l Thig helped us restrict the optimization

problem for finding task-optimal sensory weights to a 2D parameter-space
and thus enabling a global parameter search.

3. Since, it is not possible to estimate noise variances associated with the ve-
locity sensory signals and these parameter values were not found in existing
literature, we opted to assume that the velocity signals were noise-free. How-
ever, the presence of noise in the angle sensation causes the true dynamics of
the system (and not just the sensory signals) to still remain noisy. Neverthe-
less, it is important to recognize that by assuming noise-free velocity sensors,
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we bias the results to show a greater beneficial effect of including the deriva-
tive control action. If we had allowed for noise in the velocity sensations as
well, then the relative beneficial impact of the derivative control action can
only become lesser, since derivative control amplifies noise. Thus, it is safe
to conclude that we do not bias the results of the PD control simulations to
be close to the proportional control simulations by simply disregarding noise
in velocity sensation.

The PD control model that we developed using the above assumptions is shown
in Equation (5.2) below (compare this to the proportional controller in Equa-
tion (3.3) on Page 58):

thumb + spring dynamics PD control action
7\
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where the only new parameter introduced into the system is the derivative control
gain, namely, Kp. However, caution is called for when introducing derivative
control in a first-order dynamical system. The need for caution is readily seen if
we examine the equations above in the absence of noise and time-delays. Then, the
only effect of the derivative control action would be to scale the parameters «, (3
and v by a factor of 1/(1 4 Kp). This observation was used as a guiding principle
in tuning the parameters of this model so that the results of sensory occlusion
resembled experimental measurements.

5.2.2 Parameter values for proportional-derivative control
model

We used the same values for the parameters & = a/~, B = B/v, K, 7, and
o; (i = 1,2,3) as used previously in Chapter 3: & = 0.006855, & = 0.2766,
K = 3.3, 1 = 65ms, 75 was allowed to between 65ms and 120ms (the only free
parameter with a proportional controller), 73 = 120ms, o7 = 0.0007, oo = 0.0031
and g3 = 0.0009.
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However, Kp and « are now additional free parameters. It is clear why Kp is a
free parameter — we determined the proportional control gain (K') based solely on
the maximum observed compressive load in our experiments, but this is not possi-
ble for the derivative control gain. Hence, we made this a tunable, free parameter.

We saw above that if we disregarded time-delays and noise, the introduction of
Kp causes the previous value of v = 385 to be scaled by a factor of 1/(1 + Kp).
The parameter v is representative of the time-scale of the unstable dynamics in
the system. Thus, reducing v in effect renders the system more robust to noise and
time-delays, which would in turn lead to model performance (Fj) that is unrealis-
tically better than experimental data. To counter this effect of a derivative control
action, we tuned ~ to be sufficiently high so that the results of our simulations
were comparable to experimental data.

By hand-tuning Kp and 7 to best replicate experimental data, we found the
following values for them: Kp = 0.6 and v = 565. With this elaborate preamble,
we are now ready to examine the results of using numerical optimization on this
model to find task-optimal sensory weights and the resultant performance, i.e., Fj.

5.2.3 Results of Best-fit simulations

The time-delay for non-digital mechanoreceptors (73) that yielded results in
best agreement with experimental data, was 105ms, i.e., an additional 40ms time-
delay over and above well-known sensor-activation and nerve-conduction delays
for non-digital mechanoreceptors. Table 5.1 summarizes results of the Best-fit
simulation using a PD controller. It is readily seen that vision is selectively useful
only if thumbpad sensation was absent.

Table 5.1: This table presents results of the Best-fit simulations using a PD con-
troller. The results reveal that a task-optimal strategy explains multisensory in-
tegration during dynamic manipulation. The last three columns show the task-
optimal sensory weights for each sensory occlusion condition. The Best-fit simu-
lations required fine tuning of three free parameters — 7, Kp and ~ as explained
in Section 5.2.2 on Page 96.

Sensory state F, w1 Wo w3

No vision, No nerve-block | 3.26 | 0.95 | 0.05 | -
With vision, No nerve-block | 3.26 | 0.97 | 0 | 0.03

With vision, Nerve-block | 291 | — | 0.17 | 0.83

No Vision, Nerve-block 2.52 | — 1 -

It must be emphasized that the close numerical agreement with experimental
measurements (See results shown in Figure 3.2 on Page 68) is due to fine-tuning
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all three free parameters in this model. This is unlike the proportional control
model, where where we tuned only one free parameter. It is not readily apparent
how these additional free parameters can be independently estimated to verify and
validate the generality and impact of the results obtained using a PD controller.
Nevertheless, it is worth mentioning that the selective use of vision was not affected
by allowing the parameters Kp and ~ to vary, although the results no longer nu-
merically match experimental measurements (data not shown). This result serves
to further strengthen our previous conclusion in Chapter 3, namely, task-optimal
sensory weighting robustly explains multisensory integration strategies used by the
nervous system during dynamic manipulation. Needless to say, an exhaustive as-
sessment of the model’s sensitivity to parameter values can and should be carried
out.

5.3 “Computational” time-delay — artifact or real?

We now turn our attention from refining the model to the capability of the
model to generate testable hypotheses. We saw in Chapter 3 that our model
had one free parameter that was tuned to find a Best-fit simulation that best
reproduced experimental data quantitatively. However, this free parameter was
not without physical interpretation. This free parameter represented the uncer-
tainty in past experimental measurements of time-delay associated with non-digital
sensors. Specifically, we posited that the value of this free parameter represented
time-delays over and above well-known sensor and nerve-conduction time-delays for
non-digital sensors. Recall that non-digital sensors is a term we used to describe all
sensors that are not located in the thumb, which included, muscle spindles, Golgi
tendon organs, and cutaneous receptors in areas of the skin outside the thumb.
Specifically, we noted that the non-digital sensors were non-collated with respect
to the thumbpad-object interface and might involve extra neural computation com-
pared to collocated senors like thumbpad tactile sensors or vision. Specifically, we
noted that the combination of being non-collocated and being more noisy than
other sensors might cause sensory processing of non-digital sensory information
to incur significant “computational” time-delays. In agreement with our admit-
tedly heuristic reasoning, we found that the free parameter reflected an additional
35ms computational time-delay for non-digital sensors. Interestingly, we saw that
this extra delay is a neurophysiologically tenable value, falling within the range of
time-delays reported by other researchers who examined slip-grip responses after
administering a digital nerve-block. Nevertheless, it remains to be seen if this ex-
tra time-delay is purely an artifact of our simple model or if it has any physical
correlate.

We propose here a potentially simple experiment to test a prediction of our
model that relies on the presence of this extra time-delay. We predict that if the
time-delay for visual feedback is artificially increased by 20ms, then the present
experimental observation of selective use of vision will almost disappear. The
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rationale for this hypothesis is based on additional simulations we carried out using
the same approach as in Chapter 3. The only difference was, we set the time-delay
for vision in the visual-delay simulation to be 73 = 140ms, an additional 20ms
time-delay over what was used by us previously. The results of this simulation
are summarized in Table 5.2. Hence, we can see that the model predicts that the

Table 5.2: This table presents testable predictions of our model to determine
whether “computational” time-delays really exist for non-digital sensors. These
are the results of numerical optimization if vision was further delayed artificially
by 20ms. The last three columns show the task-optimal sensory weights for each
sensory occlusion condition. It is readily seen that after introducing 20ms extra
time-delay for vision, the occlusion of vision no longer has any impact on perfor-
mance.

Sensory state F, w1 Wo w3

No vision, No nerve-block | 3.23 | 0.96 | 0.04 | —
With vision, No nerve-block | 3.24 | 0.95 | 0.03 | 0.02

With vision, Nerve-block 2551 — 1091 |0.09

No Vision, Nerve-block 2.54 | — 1 -

absence of vision has almost no impact on performance if we somehow delayed
vision externally. This can be achieved externally by providing visual feedback
by use of 3D LCD display goggles whose video inputs are delayed signals from
miniature cameras that could be attached to the subject. Thus, we can relatively
cleanly evaluate whether the “computational” time-delay is real or a model artifact.

5.4 Carpal tunnel syndrome vs. multiple sclerosis

To parallel the testable neurophysiological hypothesis we presented above, the
model of multisensory integration can also be used to generate testable hypotheses
pertaining to certain neurological diseases. Specifically, we predicted that patients
with two debilitating neurological diseases that share very similar symptoms in
their early stage, but have completely different pathophysiologies — multiple scle-
rosis vs. carpal tunnel syndrome — will possess measurably different effects of
sensory occlusion in our experimental task.

Multiple sclerosis (MS) is a devastating neuro-degenerative disease that causes
loss of the myelin sheath around axons of neurons in the brain and spinal cord
(Compston and Coles, 2002; McDonald, 1999; Kandel et al., 2000), leading to
severe sensorimotor dysfunction, cognitive dysfunction or even death in some cases.
However, the principal effect of demyelination even in the early stages of the disease
is a slowing down of nerve-conduction, leading to larger time-delays everywhere in
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the nervous system. Interestingly, one of the earliest symptom of multiple sclerosis
is poor “coordination” that manifests itself as clumsiness in handling objects and
occasionally an increased propensity of loss of balance (Compston and Coles, 2002;
Lassmann, 1999; Lublin and Reingold, 1996; McDonald and Ron, 1999; Namerow,
1968; Smith and McDonald, 1999).

Carpal tunnel syndrome (CTS) is a prevalent impairment of the hand (Atroshi
et al., 1999) caused by compression of the median nerve at the wrist leading to
pain, numbness and in its advanced stages, weakness of the hand (Kandel et al.,
2000; Atroshi et al., 1999; Katz and Simmons, 2002). In contrast to MS, the
effects of CTS are preipheral, localized to the hand, and not as devastating as
MS although in advanced stages of CTS, the impact on lifestyle can be severe.
CTS unfortunately is a broad term for a variety of clinical symptoms caused by
compression of the median nerve. Consequently, there is still no consensus on
how best to clinically define CTS (Katz and Simmons, 2002; Rempel et al., 1998).
However, what is undeniable is the immediate and early consequence of median
nerve compression — it affects tactile sensory signals from all but the 5th digit
(commonly known as the “little finger”). Specifically, due to nerve compression,
both the noisiness and time-delay of tactile sensory signals are affected (Katz and
Simmons, 2002; Rempel et al., 1998).

Based on these known pathophysiologies of the two diseases, we carried out
simulations using our model of multisensory integration. For MS, we added 20%
extra time-delay for all sensory channels (recall that our model does not even
consider motor noise / time-delays) to reflect the overall significant slowing of
nerve-conduction, especially in the faster nerves of sensory channels such as tac-
tile / visual or non-digital sensors (Kandel et al., 2000). To simulate CTS, we
left untouched all but thumbpad sensors in our model. For thumbpad sensors,
we increased the variance by 3 and the time-delay by 20%. Keep in mind that
these numbers are by no means accurate or constant across all patients, but a
first-attempt at modeling the functional consequences of these diseases. By simu-
lating these two conditions and examing the effect of sensory occlusion, we found
astounding differences between MS and CTS. The results, i.e., testable model pre-
dictions are summarized in Table 5.3. We find that when all sensory channels are
intact, CTS causes loss of performance compared to unimpaired subjects. But,
the finding of greatest interest is the qualitative difference between the effect of
MS and CTS. The CTS model predicts the same selective use of vision that we
observed in unimpaired subjects, but the MS model predicts that this trend will
vanish. In other words, much like our visual delay model, the MS model predicts a
severe degradation in the usefulness of vision. It is very important to note that in
addition to the increased propensity to drop objects, another hallmark of MS is the
clinical observation that vision appears to degrade the most during the early stages
of the disease (Compston and Coles, 2002; Lublin and Reingold, 1996; McDonald
and Ron, 1999).

We end this section by noting that a recent statistical followup study found that
“physical function” as quantified by clinical measures of balance control was an
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Table 5.3: This table summarizes testable model predictions for the functional
consequences of MS vs. CTS. The notation for the performance metric and sensory
weights remain unchanged from before.

Sensory MS CTS
State F w1 Wa w3 F, w1 Wo w3
Blind, Intact | 3.22 | 0.97 0.03 - 3.14 1094 0.06 —

Seeing, Intact | 3.22 | 0.97 0.03 0 3.15 | 0.74 0.06 0.20
Seeing, Numb | 2.08 | - 099 0.01| 280 | - 021 0.79

Blind, Numb | 2.08 | - 1 - 258 | - 1 -

excellent predictor of whether or not a person would be a victim of dementia and
Alzheimer disease (Wang et al., 2006). Much like our task of dynamic manipulation
during spring compression, balance control is a dynamic sensorimotor control task,
with a primary goal of avoiding instabilities. Hence, it will be useful to study if
performance in our task is a good predictor of degenerative conditions and systemic
neurological diseases such as Alzheimer’s disease, Parkinson’s disease or dementia.

5.5 Optimal feedback control

So far, we have not discussed the possibility of developing a detailed model of
this experiment — a “first-principles” model according to the definition we used
earlier in the thesis. Clearly, current knowledge about either the nervous system
or even the mechanics of the thumb are too incomplete to attempt including a
detailed model of them. But, we can model the mechanics of the spring fairly well
based on known mechanics of spring buckling. There are several excellent treatises
that present detailed derivations of dynamical equations of spring buckling, typ-
ically using numerical techniques or partial differential equations to describe the
dynamics of equivalent columns (Becker et al., 2002; Becker and Cleghorn, 1992;
Chassie et al., 1997; Haringx, 1948, 1949a,b,c,d,e; Timoshenko, 1961; Wahl, 1963).
Importantly, we can rely on the experimental observation of the mode of spring
buckling that is encountered when subjects are asked to maximize compressive
spring force to develop a suitable discretization of the spring. Specifically, for the
fixed-guided buckling mode that is observed, an inverted triple pendulum with
viscoelastic joints will suffice to capture the dynamics of the task. The parameters
of this reduced order model of spring buckling can be estimated using experi-
ments that can be performed on the real spring by compressing it using known
end-condition and loads on the endcap. The Southwell method of calculating true
buckling loads for elastic structures is an example of such experimental techniques



102

(Southwell, 1932; Haringx, 1949e).

It is important to emphasize the need for caution when using such low order
models of elastic (in)stability. For example, consider the lowest order approxi-
mation of a buckling column — an inverted simple pendulum with a viscoelastic
pivot joint at the base. Under a dead-load, this 1-link approximation undergoes
a pitchfork bifurcation much as the case for a buckling column under a dead-load
(see Section 2.3.1 on Page 37). However, under a follower load, a real column
would undergo a Hopf bifurcation and start ‘fluttering’ as the magnitude of the
load increases, but paradoxically, the 1-link approximation would be stable even
for arbitrarily large loads so long as it is a perfect follower load. This paradox of
the 1-link approximation is called the Pfliiger’s paradox (Lobas et al., 2002; Lobas
and Lobas, 2004). It was subsequently shown that this paradox is an error that
arises from the 1-link simplification and a 2-link model can exhibit both a pitchfork
and a Hopf bifurcation.

To summarize, we have reliable ways of experimentally quantifying the overall
dynamical behavior of the thumb + spring + nervous system, and have a reliable
way of modeling the spring as an inverted triple pendulum with viscoelastic joints.
Importantly, we can adopt optimal feedback control as a working hypothesis to
represent the output of the nervous system. We can then approximate the action
of the thumbpad on the spring’s endcap using a point force whose location and
direction with respect to the endcap can be moved in a band-limited way (i.e., with
finite bandwidth of actuation). This places us in a unique situation of being able
to test whether a specific choice of control strategy can mimic the overall behavior
that is measured experimentally. Hence, we can seek to develop a well-posed
optimal feedback control problem, say as an iterative linear quadratic Gaussian
regulator (Todorov et al., 2005) for the simple first-principles model of dynamic
manipulation at the edge of instability.

It is tempting and desirable to extend the above proposed work of optimal
feedback control to include more complicated models with thumb-like kinematic
models to actuate the spring instead of a point load. However, even with the
simplified model described above, the state space is 6-dimensional and pushing the
boundaries of technological limitations in using numerical discretization methods
for designing optimal feedback controllers. That is because, designing an optimal
feedback controller entails the ‘curse of dimensionality’ (Bellman, 1961; Basar,
2001, a term coined by Richard E. Bellman), because, for an optimal feedback
controller we want to find the optimal path from everywhere in the phase space of
the system to the desired (goal) location. For example, to discretize a 3-dimensional
phase space with 100 points along each dimension would entail a total of 10° grid
points. However, for a 6-dimensional phase space, this number balloons into 10!
grid points! This is called the (formidable) curse of dimensionality. Recently,
some alternative methods using hierarchical controllers have been proposed that
turn out to be nearly-optimal in numerical simulations. Below, we outline some
potential implications of our work to this emerging view of hierarchical nearly-
optimal feedback controllers.



103

5.6 Hierarchical nearly-optimal feedback control

This is the concluding section of this thesis and is the most speculative compo-
nent of this chapter. It aims to provide approximate research directions for some
problems in optimal feedback control that face severe technical challenges because
of the curse of dimensionality.

Hierarchical control is a phrase used to describe a specific structure of the
controller — namely the presence of multiple levels of controllers. Let us consider
an example of a neural control system in a human. Sensorimotor control occurs
simultaneously at many levels. ‘Lower-level’ neural circuits in the spinal cord and
brainstem receive sensory input from the periphery and generate motor commands
before other areas of the brain have had time to react to that input. The ‘higher-
level’ areas of the brain then interact with this fused system of the lower-level
controllers + periphery + world. This notion of hierarchical control is particularly
relevant to neural control systems and there is a large body of evidence that neural
control might be organized hierarchically (Collins and Stewart, 1993; Darian-Smith
et al., 1999; Li et al., 2004; Loeb et al., 1999; Todorov et al., 2005; d’Avella and
Bizzi, 2005; Scott, 2004; Full and Koditschek, 1999; Dickinson et al., 2000) in a
manner similar to our simple allegory above.

Recently hierarchical control has been suggested as a means to overcome the
curse of dimensionality in optimal feedback control (Li et al., 2004; Todorov et al.,
2005). Hierarchical control can help reduce the dimensionality of the control by
breaking up the problem of optimal feedback control into two parts according to
Todorov et al. (2005). The first part is a low-level controller that receives the state
of the plant (body + world, say, ) and generates a task-relevant low-dimensional
representation of x that it transmits to a high-level controller. The high-level
controller then computes and transmits control action that could be optimal in the
low-dimensional representation of x. This can be roughly understood as follows.
The high-level controller plans and “optimizes” the control action in terms of
relevant task-features alone. The low-level controller is a “dumb” controller that
just performs stereotypical transformations from sensory signals to low-dimensional
task-relevant features as well as transformations from high-level control commands
to detailed motor-unit commands to implement the high-level control action.

This low-dimensional representation of only task-relevant features is motivated
by the observation that optimal feedback control minimally intervenes, i.e., an op-
timal feedback controller responds to disturbances only if it affects task-relevant
features. There are a large number of names assigned to this low-dimensional
representation — template, task-relevant feature, task-relevant subspace, high-
level task goal, task feature, feature, etc. (e.g., Dickinson et al., 2000; Full and
Koditschek, 1999; Li et al., 2004; Loeb et al., 1999; Todorov et al., 2005). All of
those names refer to the fact there is some low-dimensional aspect of the entire
system that the high-level controller is interested in “optimally” controlling. None
of these researchers claim that this form of hierarchical control is optimal in any
way, but some numerical examples have found that this form of hierarchical control
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can be nearly-optimal, if the task-relevant low-dimensional subspace is appropri-
ately chosen. This is the point where the work presented in this thesis has the
potential to make a significant contribution in the future. Below, we put forth a
proposal for automatically choosing generic? low-level “feature extraction” meth-
ods or “anchors” that transform the slew of high-dimensional sensory feedback into
a low-dimensional task-relevant representation.

We saw in Section 2.4.3 on Page 51 that the nervous system is adept at detect-
ing incipient instabilities. This motivates us to propose that the nervous system
is particularly adept at, and has in-built or learned mechanisms at the level of
the spinal cord or the brain-stem (given the short time-scales of the responses) for
detecting when the dynamics of body + world is close to a bifurcation. Techniques
for bifurcation detection are reasonably well established mathematically (Aguirre
and Torres, 2000; Alvarado et al., 1994; Chen et al., 2000; Kim and Abed, 2000,
2001; Moreau et al., 2003; Rico-Martinez et al., 2003) and even in use for detecting
voltage collapse and blackouts in power electric systems (Alvarado et al., 1994).
These techniques are often based on the sometimes counter-intuitive effects of noise
in nonlinear dynamical systems close to a bifurcation (Collins et al., 1995, 1996;
Jaramillo and Wiesenfeld, 2000; Jeffries and Wiesenfeld, 1985; Jung and Wiesen-
feld, 1997; Moss and Wiesenfeld, 1995; Wiesenfeld, 1985; Wiesenfeld and McCarley,
1990; Wiesenfeld and McNamara, 1986; Wiesenfeld and Moss, 1995). Given the
ubiquitous nature of low-dimensional dynamics that ensue near a bifurcation point,
a natural choice for a method to extract “task-relevant” low-dimensional features is
based on detection of these bifurcations and using possibly stereotypical responses
to control or avoid specific bifurcations. This heuristic and speculative proposal of
ours gains larger applicability from two other observations.

1. Feedback control and specifically task-optimal feedback control becomes par-
ticularly important only when trying to perform a task at the edge of insta-
bility. In fact, Stein (2003) argues that the real challenge in engineering
control system design lies in controlling inherently unstable plants that op-
erate at their limit of performance. This brings a very large number of
performance-critical control tasks into a regime where low-dimensional task-
feature extraction using bifurcation detection techniques and nearly-optimal
hierarchical feedback control become applicable.

2. It has been observed in experiments of stick balancing that the nervous sys-
tem chooses to poise itself close to an instability (Cabrera and Milton, 2002,
2004b) and the authors suggest that there are benefits to doing this since a
nearly unstable system is sensitive to errors in control, thus enabling better
sensory monitoring of the system. They propose other advantages to pos-
ing the system at the edge of instability such as on-off intermittency, that
enables desirable control actions at time-scales shorter than feedback delays

2We call our proposal generic in the sense that it relies on ubiquitous phenom-
ena that are found in most nonlinear dynamical systems.
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in the system. In yet another context, Milton et al. (2004) speculate that
“cortical neural networks exist on the edge between epileptic seizures on the
one hand, and quiescence on the other”. Once again, it is apparent that
these observations pertaining to neural control and neural systems enhance
the applicability of our proposal.

Hence, we call for designing experiments and mathematical models to test
the applicability of nearly-optimal hierarchical feedback controllers that rely on
bifurcation detection techniques for extracting low-dimensional features. If such
capability is indeed present in biological systems, that might help partially explain
the present gap in performance between robotic and biological systems.

5.7 Conclusion

Starting from an apparently simple effort to unambiguously define and quantify
“dexterity”, we found several intriguing results that are mathematically, neuro-
physiologically and clinically interesting, novel and critical. Going further, we saw
how several short term goals that build upon the work presented here can provide
rewards both in terms of better scientific appreciation of and insight into complex
dynamical systems as well as vital tools for clinical use. Finally, we provided a
admittedly speculative, but plausible proposition that can have far reaching effects
to not just sensorimotor control, but robotic and general engineering control sys-
tems as well. I conclude this thesis reiterating that “living on the edge” does have
its benefits!
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