
Math 6310, Fall 2019

Homework 1

1. Let H and K be subgroups of a group G. Recall that

HK := {hk | h ∈ H, k ∈ K}.

(a) Give an example in which H ∪K is not a subgroup of G.

(b) Give an example in which HK is not a subgroup of G.

(c) Show that the following statements are equivalent.

i. HK = 〈H ∪K〉.

ii. HK is a subgroup of G.

iii. HK = KH.

(d) Show that if H ⊆ NG(K) then HK = KH.

(e) Show that the converse to (1d) does not hold.

(f) Suppose H and K are both normal in G and H ∩K = {1}. Show that hk = kh for
all h ∈ H, k ∈ K.

2. Let (I,≤) be a partially order set such that for any i, j ∈ I there exists k ∈ I such that

i ≤ k and j ≤ k.

Let {Gi}i∈I be a family of subgroups of a group G such that if i ≤ j then Gi ⊆ Gj .

(a) Show that in this case
⋃

i∈I

Gi ≤ G.

(b) Let µn be the group of n-th roots of unity in C. Deduce that

µ∞ :=
⋃

n≥1

µn

is a subgroup of S1.

3. (a) Let A,B,C be subgroups of a group D such that B,C ED and A = B ∩ C. Use
the isomorphism theorems to show that

D/B

C/A
∼=

D/C

B/A
.

First explain why each quotient makes sense.

(b) Let F be a field and n a positive integer. If necessary, look up the definition of the
projective general and projective special linear groups

PGL(n,F) and PSL(n,F).

Let
(F×)(n) := {x ∈ F

× | there is y ∈ F
× such that x = yn}

be the groups of n-th powers in F
×. Deduce that

PGL(n,F)/PSL(n,F) ∼= F
×/(F×)(n).
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4. (a) The second isomorphism law states that if H normalizes N , then

H/H ∩N → HN/N, h(H ∩N) 7→ hN

is an isomorphism. Describe the inverse isomorphism explicitly.

(b) Describe the isomorphism in the Butterfly Lemma explicitly.

5. Let G be a finite group.

(a) Let f ∈ End(G). Prove that, for n sufficiently large, the subgroups N := Ker(fn)
and H := Im(fn) are independent of n and satisfy

G = NH and N ∩H = {1}.

(This says that G is the semidirect product of N and H.) Moreover, f induces an
automorphism of H.

(b) Deduce that if G cannot be decomposed as a semidirect product in a nontrivial
way, then every endomorphism either is nilpotent (i.e., some power of it is trivial)
or is an automorphism.

6. Consider the dihedral group of order 2n.

(a) When n is even, find two subnormal series of length 2 for which Z2 is one of the
slices, but it appears first in one series and last in the other.

(b) Are there such series when n is odd?

7. Let G be a group with a composition series and H EG.

(a) Show that G has a composition series in which H is one of the terms. Deduce that
H and G/H have composition series.

(b) The length of some (every) composition series of G is denoted ℓ(G). Show that
ℓ(G) = ℓ(H) + ℓ(G/H).

(c) If K is another normal subgroup of G, show that

ℓ(HK) = ℓ(H) + ℓ(K)− ℓ(H ∩K).

8. (a) Let ρ = (a1, . . . , ar) be an r-cycle and σ a permutation in Sn. Show that

σρσ−1 =
(

σ(i1), σ(i2), . . . , σ(ir)
)

.

(b) Describe the conjugacy classes in Sn.

9. (a) Compute the conjugacy classes in A5.

(b) Prove that A5 is simple.

10. Let Ω be a set. An Ω-group is a group G together with a map

Ω×G → G, (ω, g) 7→ ωg

such that
ω(gh) = ωg ωh

for all ω ∈ Ω, g, h ∈ G. Note that this is equivalent to a map Ω → End(G), where End(G)
denotes the set of all homomorphisms G → G. Thus, G is a group with a collection of
endomorphisms indexed by Ω. An Ω-group is also called a group with operators.
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(a) Define suitable notions of Ω-subgroup and homomorphism of Ω-groups.

(b) An Ω-subgroup of an Ω-group G is normal if it is normal as a subgroup of G. Let N
be such a subgroup. Show that G/N is an Ω-group in such a way that the canonical
projection G ։ G/N is a homomorphism of Ω-groups.

(c) Briefly review the isomorphism laws and note that they hold in the context of
Ω-groups.

(d) An Ω-group G is simple if it is nontrivial and the only normal Ω-subgroups are {1}
and G. An Ω-composition series of G is a subnormal series whose slices are simple
Ω-groups. Review the Butterfly Lemma, Schreir’s Refinement Theorem, and the
Jordan-Hölder Theorem, and note that they hold in the context of Ω-groups.

11. Let G be a group.

(a) Show that in each of the following cases, G is an Ω-group.

i. Ω = ∅ (with no operators).

ii. Ω = G, with gh := ghg−1.

iii. Ω = Aut(G), with σh := σ(h).

(b) In each of the previous cases, describe explicitly the notions of Ω-subgroup and
normal Ω-subgroup.

(c) In each of the previous cases, describe the notion of isomorphism of Ω-groups in
terms of the groups Aut(G) and Inn(G).

(d) In case ii, an Ω-composition series is called a chief series. Describe this notion
explicitly.

12. Let V be a vector space over a field F. Let G be the additive group of V and Ω = F.

(a) Note that G is an Ω-group with λv := λ · v for λ ∈ F and v ∈ V .

(b) What is an Ω-subgroup of G? What is a homomorphism of Ω-groups G → H, if
both G and H arise from vector spaces V and W over F as above?

(c) When is G a simple Ω-group? What is an Ω-composition series of G?

(d) Deduce from Exercise 7c (for Ω-groups) a familiar result from linear algebra about
dimensions of subspaces.

Note: a module M over a ring R similarly gives rise to an R-group structure on the
additive group of M . The Jordan-Hölder Theorem for Ω-groups yields in this manner
the Jordan-Hölder Theorem for modules.

13. Let G be an Ω-group. Prove the following statements, or give a counterexample.

(a) The commutator subgroup [G,G] is an Ω-subgroup.

(b) The center Z(G) is an Ω-subgroup.

14. Let x, y and z be integers such that x divides z. Prove that

lcm
(

x, gcd(y, z)
)

= gcd
(

lcm(x, y), z
)

.

15. (a) Give an example of two nonisomorphic groups with isomorphic composition factors.
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(b) Let S1, . . . , Sn be a collection of simple groups (not necessarily nonisomorphic).
Construct a group with those groups for composition factors.

16. Let G be a group whose only subgroups are {1} and G. Show that G is either trivial or
cyclic of prime order.

17. Let G be a finite abelian group and p a prime divisor of |G|. Prove that G contains an
element of order p, without appealing to the structure theorem for finite abelian groups.

Hint: choose a proper nontrivial subgroup (when possible) and argue by induction.

This exercise proves a result we will use in class when discussing p-groups. Cauchy’s

Theorem says that the result holds for all finite groups, not just the abelian ones. In
class we will deduce Cauchy’s Theorem from the Sylow Theorems.
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