Math 6310, Fall 2019 Homework 1

1. Let H and K be subgroups of a group G. Recall that

$$HK := \{hk \mid h \in H, \ k \in K\}.$$

- (a) Give an example in which $H \cup K$ is not a subgroup of G.
- (b) Give an example in which HK is not a subgroup of G.
- (c) Show that the following statements are equivalent.
 - i. $HK = \langle H \cup K \rangle$.
 - ii. HK is a subgroup of G.
 - iii. HK = KH.
- (d) Show that if $H \subseteq N_G(K)$ then HK = KH.
- (e) Show that the converse to (1d) does not hold.
- (f) Suppose H and K are both normal in G and $H \cap K = \{1\}$. Show that hk = kh for all $h \in H, k \in K$.
- 2. Let (I, \leq) be a partially order set such that for any $i, j \in I$ there exists $k \in I$ such that

$$i \leq k$$
 and $j \leq k$

Let $\{G_i\}_{i\in I}$ be a family of subgroups of a group G such that if $i \leq j$ then $G_i \subseteq G_j$.

- (a) Show that in this case $\bigcup_{i \in I} G_i \leq G$.
- (b) Let μ_n be the group of *n*-th roots of unity in \mathbb{C} . Deduce that

$$\mu_{\infty} := \bigcup_{n \ge 1} \mu_n$$

is a subgroup of S^1 .

3. (a) Let A, B, C be subgroups of a group D such that $B, C \leq D$ and $A = B \cap C$. Use the isomorphism theorems to show that

$$\frac{D/B}{C/A} \cong \frac{D/C}{B/A}.$$

First explain why each quotient makes sense.

(b) Let \mathbb{F} be a field and n a positive integer. If necessary, look up the definition of the projective general and projective special linear groups

$$\operatorname{PGL}(n, \mathbb{F})$$
 and $\operatorname{PSL}(n, \mathbb{F})$.

Let

$$(\mathbb{F}^{\times})^{(n)} := \{ x \in \mathbb{F}^{\times} \mid \text{ there is } y \in \mathbb{F}^{\times} \text{ such that } x = y^n \}$$

be the groups of *n*-th powers in \mathbb{F}^{\times} . Deduce that

$$\operatorname{PGL}(n, \mathbb{F})/\operatorname{PSL}(n, \mathbb{F}) \cong \mathbb{F}^{\times}/(\mathbb{F}^{\times})^{(n)}.$$

4. (a) The second isomorphism law states that if H normalizes N, then

$$H/H \cap N \to HN/N, \quad h(H \cap N) \mapsto hN$$

is an isomorphism. Describe the inverse isomorphism explicitly.

- (b) Describe the isomorphism in the Butterfly Lemma explicitly.
- 5. Let G be a finite group.
 - (a) Let $f \in \text{End}(G)$. Prove that, for *n* sufficiently large, the subgroups $N := \text{Ker}(f^n)$ and $H := \text{Im}(f^n)$ are independent of *n* and satisfy

$$G = NH$$
 and $N \cap H = \{1\}.$

(This says that G is the semidirect product of N and H.) Moreover, f induces an automorphism of H.

- (b) Deduce that if G cannot be decomposed as a semidirect product in a nontrivial way, then every endomorphism either is nilpotent (i.e., some power of it is trivial) or is an automorphism.
- 6. Consider the dihedral group of order 2n.
 - (a) When n is even, find two subnormal series of length 2 for which \mathbb{Z}_2 is one of the slices, but it appears first in one series and last in the other.
 - (b) Are there such series when n is odd?
- 7. Let G be a group with a composition series and $H \leq G$.
 - (a) Show that G has a composition series in which H is one of the terms. Deduce that H and G/H have composition series.
 - (b) The length of some (every) composition series of G is denoted $\ell(G)$. Show that $\ell(G) = \ell(H) + \ell(G/H)$.
 - (c) If K is another normal subgroup of G, show that

$$\ell(HK) = \ell(H) + \ell(K) - \ell(H \cap K).$$

8. (a) Let $\rho = (a_1, \ldots, a_r)$ be an *r*-cycle and σ a permutation in S_n . Show that

$$\tau \rho \sigma^{-1} = (\sigma(i_1), \sigma(i_2), \dots, \sigma(i_r)).$$

- (b) Describe the conjugacy classes in S_n .
- 9. (a) Compute the conjugacy classes in A_5 .
 - (b) Prove that A_5 is simple.
- 10. Let Ω be a set. An Ω -group is a group G together with a map

0

$$\Omega \times G \to G, \quad (\omega, g) \mapsto {}^{\omega}g$$

such that

$$\omega(gh) = \omega g \omega h$$

for all $\omega \in \Omega$, $g, h \in G$. Note that this is equivalent to a map $\Omega \to \text{End}(G)$, where End(G) denotes the set of all homomorphisms $G \to G$. Thus, G is a group with a collection of endomorphisms indexed by Ω . An Ω -group is also called a group with operators.

- (a) Define suitable notions of Ω -subgroup and homomorphism of Ω -groups.
- (b) An Ω -subgroup of an Ω -group G is *normal* if it is normal as a subgroup of G. Let N be such a subgroup. Show that G/N is an Ω -group in such a way that the canonical projection $G \to G/N$ is a homomorphism of Ω -groups.
- (c) Briefly review the isomorphism laws and note that they hold in the context of Ω -groups.
- (d) An Ω -group G is simple if it is nontrivial and the only normal Ω -subgroups are {1} and G. An Ω -composition series of G is a subnormal series whose slices are simple Ω -groups. Review the Butterfly Lemma, Schreir's Refinement Theorem, and the Jordan-Hölder Theorem, and note that they hold in the context of Ω -groups.
- 11. Let G be a group.
 - (a) Show that in each of the following cases, G is an Ω -group.
 - i. $\Omega = \emptyset$ (with no operators).
 - ii. $\Omega = G$, with ${}^{g}h := ghg^{-1}$.
 - iii. $\Omega = \operatorname{Aut}(G)$, with ${}^{\sigma}h := \sigma(h)$.
 - (b) In each of the previous cases, describe explicitly the notions of Ω -subgroup and normal Ω -subgroup.
 - (c) In each of the previous cases, describe the notion of isomorphism of Ω -groups in terms of the groups $\operatorname{Aut}(G)$ and $\operatorname{Inn}(G)$.
 - (d) In case ii, an Ω -composition series is called a *chief* series. Describe this notion explicitly.
- 12. Let V be a vector space over a field \mathbb{F} . Let G be the additive group of V and $\Omega = \mathbb{F}$.
 - (a) Note that G is an Ω -group with $^{\lambda}v := \lambda \cdot v$ for $\lambda \in \mathbb{F}$ and $v \in V$.
 - (b) What is an Ω -subgroup of G? What is a homomorphism of Ω -groups $G \to H$, if both G and H arise from vector spaces V and W over \mathbb{F} as above?
 - (c) When is G a simple Ω -group? What is an Ω -composition series of G?
 - (d) Deduce from Exercise 7c (for Ω -groups) a familiar result from linear algebra about dimensions of subspaces.

Note: a module M over a ring R similarly gives rise to an R-group structure on the additive group of M. The Jordan-Hölder Theorem for Ω -groups yields in this manner the Jordan-Hölder Theorem for modules.

- 13. Let G be an Ω -group. Prove the following statements, or give a counterexample.
 - (a) The commutator subgroup [G, G] is an Ω -subgroup.
 - (b) The center Z(G) is an Ω -subgroup.
- 14. Let x, y and z be integers such that x divides z. Prove that

 $\operatorname{lcm}(x, \operatorname{gcd}(y, z)) = \operatorname{gcd}(\operatorname{lcm}(x, y), z).$

15. (a) Give an example of two nonisomorphic groups with isomorphic composition factors.

- (b) Let S_1, \ldots, S_n be a collection of simple groups (not necessarily nonisomorphic). Construct a group with those groups for composition factors.
- 16. Let G be a group whose only subgroups are $\{1\}$ and G. Show that G is either trivial or cyclic of prime order.
- 17. Let G be a finite abelian group and p a prime divisor of |G|. Prove that G contains an element of order p, without appealing to the structure theorem for finite abelian groups.

Hint: choose a proper nontrivial subgroup (when possible) and argue by induction.

This exercise proves a result we will use in class when discussing *p*-groups. *Cauchy's Theorem* says that the result holds for all finite groups, not just the abelian ones. In class we will deduce Cauchy's Theorem from the Sylow Theorems.