Math 6310, Fall 2019
Homework 1

1. Let H and K be subgroups of a group G. Recall that

(a)
(b)
()

(d)
(e)
(f)

HK :={hk |he€H, ke K}

Give an example in which H U K is not a subgroup of G.
Give an example in which H K is not a subgroup of G.
Show that the following statements are equivalent.

i. HK = (H UK).

ii. HK is a subgroup of G.

iii. HK = KH.
Show that if H C Ng(K) then HK = KH.
Show that the converse to (1d) does not hold.

Suppose H and K are both normal in G and H N K = {1}. Show that hk = kh for
alhe H, ke K.

2. Let (I, <) be a partially order set such that for any ¢, € I there exists k € I such that

1<k and j<k.

Let {G;}ier be a family of subgroups of a group G such that if ¢ < j then G; C Gj.

(a)
(b)

Show that in this case U G; <@.
i€l
Let p,, be the group of n-th roots of unity in C. Deduce that

Hoo = U Hn

n>1
is a subgroup of S*.

Let A, B,C be subgroups of a group D such that B,C <D and A = BN C. Use
the isomorphism theorems to show that

D/B _ D/C
/A~ B/A

First explain why each quotient makes sense.

Let F be a field and n a positive integer. If necessary, look up the definition of the
projective general and projective special linear groups

PGL(n,F) and PSL(n,F).

Let
(FX)(H) :={x € F* | there is y € F* such that z = y"}

be the groups of n-th powers in F*. Deduce that

PGL(n,F)/PSL(n,F) = F* /(F*)™.



4. (a) The second isomorphism law states that if H normalizes N, then
H/HNN —- HN/N, h(HNN)w~— hN
is an isomorphism. Describe the inverse isomorphism explicitly.
(b) Describe the isomorphism in the Butterfly Lemma explicitly.
5. Let G be a finite group.

(a) Let f € End(G). Prove that, for n sufficiently large, the subgroups N := Ker(f")
and H := Im(f™) are independent of n and satisfy

G=NH and NNH=({1}.

(This says that G is the semidirect product of N and H.) Moreover, f induces an
automorphism of H.

(b) Deduce that if G cannot be decomposed as a semidirect product in a nontrivial
way, then every endomorphism either is nilpotent (i.e., some power of it is trivial)
or is an automorphism.

6. Consider the dihedral group of order 2n.

(a) When n is even, find two subnormal series of length 2 for which Zs is one of the
slices, but it appears first in one series and last in the other.

(b) Are there such series when n is odd?
7. Let GG be a group with a composition series and H < G.

(a) Show that G has a composition series in which H is one of the terms. Deduce that
H and G/H have composition series.

(b) The length of some (every) composition series of G is denoted ¢(G). Show that
UG)={¢H)+(G/H).
(¢) If K is another normal subgroup of G, show that

((HK)=/(H)+{K)—-({HNK).
8. (a) Let p = (ay,...,a,) be an r-cycle and o a permutation in S,. Show that
opot = (0(ir),0(is),...,o(iy)).
(b) Describe the conjugacy classes in S,,.

9. (a) Compute the conjugacy classes in As.
(b) Prove that Aj is simple.

10. Let € be a set. An Q-group is a group G together with a map
OxG—G, (w,g9)—“g

such that
“(gh) =“g“h
forallw € Q, g,h € G. Note that this is equivalent to a map 2 — End(G), where End(G)

denotes the set of all homomorphisms G — G. Thus, G is a group with a collection of
endomorphisms indexed by €2. An Q-group is also called a group with operators.



(a) Define suitable notions of {2-subgroup and homomorphism of -groups.

(b) An Q-subgroup of an 2-group G is normal if it is normal as a subgroup of G. Let N
be such a subgroup. Show that G/N is an Q-group in such a way that the canonical
projection G — G/N is a homomorphism of {2-groups.

(c¢) Briefly review the isomorphism laws and note that they hold in the context of
Q-groups.

(d) An Q-group G is simple if it is nontrivial and the only normal Q-subgroups are {1}
and G. An Q-composition series of G is a subnormal series whose slices are simple
Q-groups. Review the Butterfly Lemma, Schreir’s Refinement Theorem, and the
Jordan-Holder Theorem, and note that they hold in the context of Q-groups.

11. Let G be a group.

(a) Show that in each of the following cases, G is an Q-group.
i. © =0 (with no operators).
ii. Q =G, with 9%h := ghg™'.
iii. Q = Aut(G), with °h := o(h).

(b) In each of the previous cases, describe explicitly the notions of Q-subgroup and
normal 2-subgroup.

(¢) In each of the previous cases, describe the notion of isomorphism of Q-groups in
terms of the groups Aut(G) and Inn(G).

(d) In case ii, an Q-composition series is called a chief series. Describe this notion
explicitly.

12. Let V be a vector space over a field F. Let GG be the additive group of V and Q2 = F.

(a) Note that G is an Q-group with *v := \-v for A€ Fand v € V.

(b) What is an Q-subgroup of G?7 What is a homomorphism of Q-groups G — H, if
both G and H arise from vector spaces V and W over [ as above?

(¢) When is G a simple Q-group? What is an Q-composition series of G?

(d) Deduce from Exercise 7c (for Q-groups) a familiar result from linear algebra about
dimensions of subspaces.

Note: a module M over a ring R similarly gives rise to an R-group structure on the
additive group of M. The Jordan-Ho6lder Theorem for 2-groups yields in this manner
the Jordan-Hoélder Theorem for modules.

13. Let G be an Q-group. Prove the following statements, or give a counterexample.

(a) The commutator subgroup [G, G| is an Q-subgroup.
(b) The center Z(G) is an Q-subgroup.

14. Let x,y and z be integers such that x divides z. Prove that
lem(z, ged(y, 2)) = ged(lem(z,y), 2).

15. (a) Give an example of two nonisomorphic groups with isomorphic composition factors.



16.

17.

(b) Let Sy,...,S, be a collection of simple groups (not necessarily nonisomorphic).
Construct a group with those groups for composition factors.

Let G be a group whose only subgroups are {1} and G. Show that G is either trivial or
cyclic of prime order.

Let G be a finite abelian group and p a prime divisor of |G|. Prove that G contains an
element of order p, without appealing to the structure theorem for finite abelian groups.
Hint: choose a proper nontrivial subgroup (when possible) and argue by induction.

This exercise proves a result we will use in class when discussing p-groups. Cauchy’s
Theorem says that the result holds for all finite groups, not just the abelian ones. In
class we will deduce Cauchy’s Theorem from the Sylow Theorems.



