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Preface

Synopsis

The goal of this monograph is to study the interplay between various algebraic,
geometric and combinatorial aspects of real hyperplane arrangements. The text
contains many new ideas and results. It also gathers and organizes material from
various sources in the literature, sometimes highlighting previously unnoticed con-
nections. We briefly outline the contents below. They are explained in more detail
in the main introduction.

We provide a detailed discussion on faces, flats, chambers, cones, gallery in-
tervals, lunes, the support map, the case and base maps, and other geometric
notions associated to real hyperplane arrangements. We show that any cone can
be optimally decomposed into lunes. We introduce the category of lunes. This
beautiful structure is intimately related to the substitution product of chambers (a
generalization of the classical associative operad). The classical case is obtained by
specializing to the braid arrangement. We give several generalizations of the classi-
cal identity of Witt from Coxeter theory under the broad umbrella of descent and
lune identities. The topological invariant involved here is the Euler characteristic of
a relative pair of cell complexes. We generalize a well-known factorization theorem
of Varchenko to cones, and also initiate an abstract approach to distance functions
on chambers.

The main algebraic objects are the Birkhoff monoid and the Tits monoid, and
their linearized algebras. The former is commutative and its elements are the flats
of the arrangement, while the latter is not commutative and its elements are the
faces. A module whose elements are chambers also plays a central role. Both
monoids carry natural partial orders. The Birkhoff monoid is a lattice and its
product is the join operation in the lattice. One may think of the Tits monoid as
a noncommutative lattice. Its abelianization is the Birkhoff monoid, via the map
that sends a face to the flat which supports it. We introduce the Janus monoid
which is built out of the Tits and Birkhoff monoids.

We initiate a noncommutative Möbius theory of the Tits monoid and relate
it to the representation theory of its linerization which is the Tits algebra. The
central object is the lune-incidence algebra, which is a certain reduced incidence
algebra of the poset of faces. It contains noncommutative zeta functions charac-
terized by lune-additivity, and noncommutative Möbius functions characterized by
the noncommutative Weisner formula. This theory lifts the usual Möbius theory
for lattices, where the central object is the incidence algebra of the lattice of flats.

We introduce Lie and Zie elements. The latter belong to the Tits algebra, and
the former to the module of chambers. The space of Zie elements is a right ideal
of the Tits algebra. Any special Zie element defines an idempotent operator on

ix
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x PREFACE

chambers whose image is the space of Lie elements. To any generic half-space, we
associate a special Zie element called the Dynkin element. Its action on chambers
generalizes the left bracketing operator in classical Lie theory. We define a substi-
tution product and establish a presentation of Lie. This generalizes the familiar
presentation of the classical Lie operad. Antisymmetry is encoded in the notion of
orientation of the rank-one arrangement and the Jacobi identity in the form of a
linear relation among chambers obtained by “unbracketing” lines of the rank-two
arrangements. This is same as saying that the space of Lie elements is isomorphic,
up to orientation, to the top cohomology of the lattice of flats. This generalizes
a celebrated theorem due to the combined work of Joyal, Klyachko and Stanley.
We introduce the Lie-incidence algebra and show that it is isomorphic to the Tits
algebra. This is intimately connected to the two-sided Peirce decomposition of
the Tits algebra. The latter can be understood in terms of left and right Peirce
decompositions of chambers and Zie elements respectively.

The Birkhoff algebra is split-semisimple. For the Tits algebra, complete systems
of primitive orthogonal idempotents are in correspondence with algebra sections of
the support map. We obtain many interesting characterizations of such sections.
This aspect of the theory generalizes the classical theory of Eulerian idempotents.
Noncommutative zeta and Möbius functions, and special Zie families are among
the various concepts in correspondence. For reflection arrangements, there is a
similar theory for the subalgebra of the Tits algebra invariant under the action of
the Coxeter group. (The opposite of this algebra is the Solomon descent algebra.)

Precedents

This work benefits from and builds on some important recent developments.
For the representation theory of the Tits algebra, we mention work of Brown, Dia-
conis and Saliola propelled by a landmark paper of Bidigare, Hanlon and Rockmore.
(Older work of Solomon on the descent algebra has also been influential.) Some
of these results are given in the generality of left regular bands and even bands.
Further generalizations of this kind appear in work of Steinberg. For Lie theory,
we mention work of Barcelo, Bergeron, Björner, Garsia, Patras, Reutenauer and
Wachs. Saliola’s work also implicitly contains elements of Lie theory. Explicit
references to Lie are made only for the braid arrangement and the reflection ar-
rangement of type B. The work of Joyal, Klyachko and Stanley relating Lie to
order homology is for the braid arrangement. On the other hand, related results on
order homology in the literature are usually given in the generality of arrangements
or beyond. There have been several other contributors; most of them are mentioned
in the main introduction. Two new entrants are the mathematicians Janus and Zie.

Organization

The text is organized in two parts. In Part I, the emphasis is on set-theoretic
objects associated to hyperplane arrangements such as posets, monoids and the
action of monoids on sets. In Part II, the emphasis is on linear objects such as
algebras and their modules. There is a Notes section at the end of each chapter
where detailed references to the literature, including discussions on alternative ter-
minology and notation, are provided. Background information on topics such as
Möbius functions, incidence algebras, representation theory of algebras and bands
is provided in Appendices at the end of the main text. A notation index and a
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PREFACE xi

subject index are provided at the end of the book. Pictures and diagrams form
an important component of our exposition which has a distinct geometric flavor.
Numerous exercises are interspersed throughout the book.

The text is not meant to be read linearly from start to finish. We encourage
readers to take up a particular chapter or section of their interest and backtrack as
necessary. As an aid, the diagram of interdependence of chapters and appendices
is displayed below.

1

2

3

5 7 8 9 10 4

11

12 13 14 15

16

A

B

C

D

E

1,2,7

1,2,3,4

1,15,16

9,11,12,13,16

1,8

A directed path from i to j indicates that some basic familiarity with Chapter i is
necessary before proceeding to Chapter j. A dashed arrow from i to j means that
the dependence of Chapter j on Chapter i is minimal, that is, restricted to some
section or example.

Chapter 6 is not shown in the above diagram. It discusses the braid arrange-
ment, the reflection arrangement of type B and other examples. They are employed
frequently in later chapters for illustration.

Readership

We have strived to keep the text self-contained and with minimum prerequisites
with the objective of making it accessible to advanced undergraduate and begin-
ning graduate students. We hope it also serves as a useful reference on hyperplane
arrangements to experts. The book touches upon several fields of mathematics such
as representation theory of monoids and associative algebras, posets and their in-
cidence algebras, lattice theory, random walks, invariant theory, discrete geometry,
algebraic and geometric combinatorics, and algebraic Lie theory.

Scope

The theory of hyperplane arrangements has grown enormously in several differ-
ent directions in the past two decades. The text is not meant to be a comprehensive
survey of the entire theory. For instance, topics such as singularities, integral sys-
tems, hypergeometric functions and resonance varieties find no mention in the book.
For these, one may look at [15, 113, 114, 127, 164, 313, 394] and references
therein.
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xii PREFACE

Future directions

Our constructions are all based on the choice of a real hyperplane arrangement.
It is apparent, moreover, that a central role is played by the Tits monoid of faces of
the arrangement. It is tempting to try to extend the theory to more general classes
of monoids, particularly bands and left regular bands. We have kept our focus on
arrangements, although such generalizations offer a promising line of research. We
also mention the Janus monoid, the category of lunes and noncommutative Möbius
functions as important objects worthy of further study. Our choice of topics has
mainly been guided by applications to the theory of species, operads and Hopf
algebras which we plan to develop in future work.
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Introduction

Part I

Arrangements. (Chapter 1.) A hyperplane arrangement A is a set of hyperplanes
(codimension-one subspaces) in a fixed real vector space. We assume that the
number of hyperplanes is finite and all of them pass through the origin. The
intersection of all hyperplanes is the central face. The rank of an arrangement
is the dimension of the ambient vector space minus the dimension of the central
face. An arrangement has rank 0 if it has no hyperplanes, rank 1 if it has one
hyperplane, and rank 2 if it has at least two hyperplanes and all of them pass
through a codimension-two subspace.

Flats and faces. (Chapter 1.) Subspaces obtained by intersecting hyperplanes
are called the flats of the arrangement. We let Π[A] denote the set of flats. It is a
graded lattice with partial order given by inclusion. The minimum element is the
central face and the maximum element is the ambient space. The codimension-one
flats are the hyperplanes. Each hyperplane divides the ambient space into two half-
spaces. Their intersection is the given hyperplane. Subsets obtained by intersecting
half-spaces, with at least one half-space chosen for each hyperplane, are called the
faces of the arrangement. We let Σ[A] denote the set of faces. It is a graded poset
under inclusion. The central face is the minimum element. However, there is no
unique maximum face, so Σ[A] is not a lattice. A maximal face is called a chamber.
We let Γ[A] denote the set of chambers. The linear span of any face is a flat. This
defines a surjective map

s : Σ[A] ։ Π[A].
We call this the support map. It is order-preserving.

Birkhoff monoid and Tits monoid. (Chapter 1.) We view the lattice of flats
Π[A] as a (commutative) monoid with product given by the join operation. We
call this the Birkhoff monoid. For flats X and Y, their Birkhoff product is X ∨ Y.
The poset of faces Σ[A] is not a lattice. Nonetheless, it carries a (noncommutative)
monoid structure. We call this the Tits monoid. It is an example of a left regular
band (since it satisfies the axiom xyx = xy). For faces F and G, we denote their
Tits product by FG. The set of chambers Γ[A] is a left Σ[A]-set, that is, for F a face
and C a chamber, FC is a chamber. The support map is a monoid homomorphism.

Janus monoid. (Chapter 1.) A bi-face is a pair (F, F ′) of faces such that F and
F ′ have the same support. Let J[A] denote the set of bi-faces. The operation

(F, F ′)(G,G′) := (FG,G′F ′)

xiii
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xiv INTRODUCTION

turns J[A] into a monoid. We call it the Janus monoid. 1 It is the fiber product
of the Tits monoid Σ[A] and its opposite Σ[A]op over the Birkhoff monoid Π[A].
This can be pictured as follows.

Janus monoid

Tits monoid opposite Tits monoid

Birkhoff monoid

The Janus monoid is a band (since every element is idempotent) which is neither
left regular nor right regular in general.

Arrangements under and over a flat. (Chapter 1.) From a flat X of an arrange-
ment A, one may construct two new arrangements: AX, the arrangement under X,
and AX, the arrangement over X. The former is the arrangement obtained by
intersecting the hyperplanes in A with X, while the latter is the subarrangement
consisting of those hyperplanes which contain X. For flats X ≤ Y, the arrangement
under Y in AX is the same as the arrangement over X in AY. We denote this
arrangement by AY

X.

Cones. (Chapter 2.) Subsets obtained by intersecting half-spaces (with no restric-
tion) are called the cones of the arrangement. In particular, faces and flats are
cones. (A hyperplane is the intersection of the two half-spaces it bounds.) Let
Ω[A] denote the set of all cones. It is a lattice under inclusion. The support map
extends to an order-preserving map

c : Ω[A]→ Π[A].
We call this the case map. It sends a cone to the smallest flat containing that
cone. The case map is the left adjoint of the inclusion map Π[A]→ Ω[A]. There is
another order-preserving map

b : Ω[A]→ Π[A]
which we call the base map. It sends a cone to the largest flat which is contained
in that cone. The base map is the right adjoint of the inclusion map. Note that
the base and case of a flat is the flat itself.

Cones whose case is the maximum flat are called top-cones. The poset of top-
cones is a join-semilattice which is join-distributive, and in particular, graded and
upper semimodular (Theorems 2.55, 2.57 and 2.59).

Lunes. (Chapters 3 and 4.) A cone is a lune if it has the property that for any
hyperplane containing its base, the entire cone lies on one side of that hyperplane.
Faces and flats are lunes. In general, any cone can be optimally cut up into lunes
by using hyperplanes containing the base of the cone (Theorem 3.27). Finer de-
compositions can be obtained by using hyperplanes containing a fixed flat lying
inside the base (Proposition 3.22). For instance, it is possible to cut a lune itself
into smaller lunes. The optimal decomposition of a flat X is X itself (since it is a
lune). An instance of a finer decomposition is to write X as a union of faces having
support X.

1Janus Bifrons is a Roman god with two faces.
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INTRODUCTION xv

Lunes which are top-cones are called top-lunes. The poset of top-lunes under
inclusion is graded (Theorem 4.9). We consider two partial orders on lunes. The
first partial order is the inclusion of lune closures (and is the restriction of the
partial order on cones), while the second is the inclusion of lune interiors. Both
extend the partial order on top-lunes and are graded (Theorems 4.12 and 4.26).

Lunes can be composed when the case of the first lune equals the base of the
second lune. This yields a category whose objects are flats and morphisms are lunes.
We call it the category of lunes. It is internal to posets under the second partial order
on lunes (Proposition 4.31). It also admits a nice presentation (Proposition 4.42).
A lune with base X and case Y is the same as a chamber in the arrangement AY

X.
Using this, composition of lunes can be recast as follows. For any flat X, there is a
map

Γ[AX]⊗ Γ[AX]→ Γ[A].
We call this the substitution product of chambers, see (4.18).

Braid arrangement. (Chapters 5 and 6.) The braid arrangement is the motivat-
ing example for many of our considerations. The key observation is that for this
arrangement, geometric notions of faces, flats, top-cones, and so on can be encoded
by combinatorial notions of set compositions, set partitions, partial orders and so
on. This correspondence between geometry and combinatorics is summarized in
Table 6.2. The braid arrangement is an example of a reflection arrangement whose
associated Coxeter group is the group of permutations. In the Coxeter case, one
can define face-types and flat-types. Face-types are orbits of the set of faces under
the Coxeter group action. Similarly, flat-types are orbits of the set of flats. For the
braid arrangement, face-types and flat-types correspond to integer compositions
and integer partitions.

Descent equation and lune equation. (Chapter 7.) Fix chambers C and D.
The descent equation is HC = D. In other words, we need to solve for faces H such
that the Tits product of H and C equals D. (This is related to descents of permuta-
tions in the case of the braid arrangement which motivates our terminology.) More
generally, we can fix faces F and G, and consider the equation HF = G. In fact,
one can do the following. For any left Σ[A]-set h, the descent equation is H ·x = y,
where x and y are fixed elements of h, the variable is H, and · denotes the action of
Σ[A] on h. Apart from finding the solutions, there is also interest in computing the
sum

∑
(−1)rk(H) as H ranges over the solution set, with rk(H) denoting the rank

of H. For this, we attach to the solution set a relative pair (X,A) of cell complexes
whose Euler characteristic is the given sum, see (7.32). By construction X is either
a ball or sphere, but the topology of A is complicated in general. In our starting
examples h is either Γ[A] or Σ[A]. In these cases, A also has the topology of a ball
or sphere. This leads to explicit identities, see (7.10) and (7.11a).

Fix a face H and a chamber D. The lune equation is HC = D. The difference
is that now we need to solve for C. For a solution to exist H must be smaller
than D. Assuming this condition, the solution set is precisely the set of chambers
contained in some top-lune (which explains our terminology). More generally, an
arbitrary lune can be obtained as the solution set of the equation HF = G for some
fixed H and G. Since lunes have the topology of a ball or sphere, we can again
compute

∑
(−1)rk(F ) explicitly, see (7.12a). An analysis with relative pairs, similar
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xvi INTRODUCTION

to the one for the descent equation, can be carried out for right Σ[A]-sets h, see
(7.41). The lune equation in this case is x · F = y, with x, y ∈ h.

Distance function and Varchenko matrix. (Chapter 8.) A hyperplane sep-
arates two chambers if they lie on its opposite sides. The distance between two
chambers is defined to be the number of hyperplanes which separate them. Fix a
scalar q, and define a bilinear form on the set of chambers Γ[A] by

〈C,D〉 := qdist(C,D).

Here C and D are chambers and dist(C,D) denotes the distance between them.
The determinant of this matrix factorizes with factors of the form 1−qi, see (8.41).
In particular, the bilinear form is nondegenerate if q is not a root of unity.

More generally, assign a weight to each half-space, and define 〈C,D〉 to be
the product of the weights of all half-spaces which contain C but do not contain
D. Setting each weight to be q recovers the previous case. A factorization of the
determinant of this matrix was obtained by Varchenko (Theorem 8.11). (He worked
in the special case when the two opposite half-spaces bound by each hyperplane
carry the same weight.) Lunes play a key role in the proof. The Varchenko matrix
can be formally inverted using non-stuttering paths, see (8.30).

It is fruitful to consider a more general situation where we start with an ar-
bitrary top-cone, and restrict the Varchenko matrix to chambers of this top-cone.
The determinant of this matrix also factorizes. This more general result is given in
Theorem 8.12. Specializing the top-cone to the ambient space recovers the previ-
ous situation. The special case of weights on hyperplanes is given in Theorem 8.22.
This latter result has been obtained recently by Gente independent of our work.

Part II

Birkhoff algebra and Tits algebra. (Chapter 9.) The linearization of a monoid
over a field k yields an algebra. Let Π[A] denote the linearization of Π[A], and
Σ[A] denote the linearization of Σ[A] over k. We call these the Birkhoff algebra
and the Tits algebra, respectively. These are finite-dimensional k-algebras (since
the original monoids are finite). The linearization of Γ[A], denoted Γ[A], is a left
module over Σ[A]. One can linearize the support map as well to obtain an algebra
homomorphism s : Σ[A] ։ Π[A].

The Birkhoff algebra Π[A] is isomorphic to kn, where n is the number of flats.
In other words, Π[A] is a split-semisimple commutative algebra (Theorem 9.2). (By
a result of Solomon, this holds for any algebra obtained by linearizing a lattice.)
The coordinate vectors of kn yield a unique complete system of primitive orthogonal
idempotents of Π[A]. We denote them by QX, as X varies over flats. The simple
modules over Π[A] are all one-dimensional, and given by QX · Π[A]. Further, any
module h is a direct sum of simple modules. More precisely, we have the Peirce
decomposition 2

h =
⊕

X

QX · h,

2A decomposition of a module using an orthogonal family of idempotents is called a Peirce

decomposition.
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and the simple module QX · Π[A] occurs in the summand QX · h with multiplicity
equal to its dimension (Theorems 9.7 and 9.8). As a consequence, the action of any
element of Π[A] on any module h is diagonalizable (Theorem 9.9).

The largest nilpotent ideal of an algebra A is called its radical, denoted rad(A).
The Birkhoff algebra has no nonzero nilpotent elements, so rad(Π[A]) = 0. In con-
trast, the Tits algebra has many nilpotent elements. In fact, rad(Σ[A]) is precisely
the kernel of the (linearized) support map s, hence

Σ[A]/ rad(Σ[A]) ∼= Π[A].
This was proved by Bidigare. We say that Σ[A] is an elementary algebra since
the quotient by its radical is a split-semisimple commutative algebra. The simple
modules over Σ[A] coincide with those over Π[A] (since rad(Σ[A]) is forced to act
by zero on such modules). However, a module of Σ[A] does not split as a direct sum
of simple modules in general. (An example is provided by the module of chambers
Γ[A].) Similarly, the action of an element of Σ[A] on a module h is not diagonalizable
in general. Nonetheless, by taking a filtration of h, one can gain detailed information
about the eigenvalues and multiplicities of the action (Theorem 9.42). This result
for h := Γ[A] was first obtained by Bidigare, Hanlon and Rockmore (Theorem 9.44);
their motivation for considering this problem came from random walks. The above
line of argument was given by Brown.

Any left module h over the Tits algebra has a primitive part which we denote
by P(h). It consists of those elements of h which are annihilated by all faces
except the central face (which acts by the identity). Dually, any right module h

has a decomposable part which we denote by D(h). The duality is made precise in
Proposition 9.58.

Janus algebra. (Chapter 9.) Let J[A] denote the linearization of J[A]. We call
this the Janus algebra. Just like the Tits algebra, the Janus algebra is elementary,
and its split-semisimple quotient is the Birkhoff algebra. Interestingly, the Janus
algebra admits a deformation by a scalar q. When q is not a root of unity, the q-
Janus algebra is in fact split-semisimple, that is, isomorphic to a product of matrix
algebras over k. There is one matrix algebra for each flat X, with the size of the
matrix being the number of faces with support X (Theorem 9.70). As a consequence,
the q-Janus algebra, for q not a root of unity, is Morita equivalent to the Birkhoff
algebra (Theorem 9.71). This is completely different from what happens for q = 1.

Eulerian idempotents. (Chapter 11.) Let us go back to the Tits algebra Σ[A].
An Eulerian family E is a complete system of primitive orthogonal idempotents of
Σ[A]. Eulerian families are in correspondence with algebra sections Π[A] →֒ Σ[A]
of the support map s. The construction of such sections is the idempotent lifting
problem in ring theory. For elementary algebras, lifts always exist and any two
lifts are conjugate by an invertible element in the algebra. For each X, we let EX
denote the image of QX under an algebra section, thus, s(EX) = QX. The EX are
called Eulerian idempotents and constitute the Eulerian family E. Apart from being
elementary, the Tits algebra is also the linearization of a left regular band. This
allows for many interesting characterizations of Eulerian families (Theorems 11.20,
11.40 and 15.40). A highlight here is a construction of Saliola which produces an
Eulerian family starting with a homogeneous section of the support map. (A ho-
mogeneous section is equivalent to an assignment of a scalar uF to each face F such
that for any flat X, the sum of uF over all F with support X is 1.) This construction
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employs the Saliola lemma (Lemma 11.12), which is an important property of any
Eulerian family. For a good reflection arrangement, we give cancelation-free for-
mulas for the Eulerian idempotents arising from the uniform homogeneous section
(Theorem 11.53).

Diagonalizability. (Chapter 12.) An element of an algebra is diagonalizable if it
can be expressed as a linear combination of orthogonal idempotents. All elements
of the Birkhoff algebra are diagonalizable. However, that is not true for the Tits
algebra. For instance, no nonzero element of the radical of Σ[A] is diagonalizable.
Following another method of Saliola, one can characterize diagonalizable elements
using existence of eigensections (Corollary 12.15). Examples include nonnegative
elements (Theorem 12.20) and separating elements (Theorem 12.17). The separat-
ing condition was introduced by Brown. For separating elements, there is a formula
for the eigensection (arising from the Brown-Diaconis stationary distribution for-
mula (12.6)), and a formula for the Eulerian idempotents due to Brown, see (12.12)
and (12.13). Apart from these families, we also consider diagonalizability of specific
elements such as the Takeuchi element (12.23) and the Fulman elements (12.32).
For the braid arrangement, these include the Adams elements; their diagonalization
is given in (12.43).

Lie elements and JKS. (Chapters 10 and 14.) Recall that the Tits algebra Σ[A]
acts on the space of chambers Γ[A]. We put

Lie[A] := P(Γ[A]),

the primitive part of Γ[A]. This is the space of Lie elements. We refer to this
description of Lie[A] as the Friedrichs criterion. There are other characterizations
of Lie[A] such as the top-lune criterion and the descent criterion. In the case of
the braid arrangement, Lie[A] is the space of classical Lie elements (the multilinear
part of the free Lie algebra). The top-lune criterion extends a classical result of
Ree for the free Lie algebra, while the descent criterion extends a result of Garsia.
The top-lune criterion says the following: A Lie element is an assignment of a
scalar xC to each chamber C such that the sum of these scalars in any top-lune
(containing more than one chamber) is zero. In fact, by cutting a top-lune into
smaller top-lunes, it suffices to restrict to top-lunes whose base is of rank 1. The
dimension of Lie[A] equals the absolute value of the Möbius number of A. There
are many ways to deduce this, see for instance (10.24) or (11.63). There are also
many interesting bases for Lie[A]. We discuss the Dynkin basis (which depends on
a generic half-space) and the Lyndon basis (which depends on a choice function).

For any flat X, there is a map

Lie[AX]⊗ Lie[AX]→ Lie[A].

We call this the substitution product of Lie, see (10.28). It is obtained by restricting
the substitution product of chambers. All Lie elements of A can be generated by
repeated substitutions starting with Lie elements of rank-one arrangements (which
incorporate antisymmetry), subject to the Jacobi identities in rank-two arrange-
ments (Theorem 14.35). Antisymmetry can be visualized as follows.

( 1 1 )
+

( 11 )
= 0.
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(By convention, 1 denotes −1.) The two vertices are the two chambers of a rank-
one arrangement. The Jacobi identity for the hexagon and octagon (which are the
spherical models of rank-two arrangements of 3 and 4 lines, respectively) are shown
below. The figures show the coefficients of each chamber in a Lie element.
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The Ree criterion says that the sum of the scalars in any semicircle is 0.
A closely related object to Lie[A] is the order homology of the lattice of flats

Π[A]. The latter is a well-studied object. The order homology is nonzero only
in top rank and has dimension equal to the absolute value of the Möbius number
of A. Again, there are many bases for this space. We discuss the Björner-Wachs
basis and the Björner basis. One of our main results, the Joyal-Klyachko-Stanley
theorem, or JKS for short, states that up to the one-dimensional orientation space
of A, there is a natural isomorphism between Lie[A] and the top-cohomology of
Π[A] (Theorem 14.32). We write this as

Htop(Π[A])⊗ Eo[A] ∼= Lie[A].
The special case of the braid arrangement is a classical result due to separate work
by Joyal, Klyachko and Stanley. Under the JKS isomorphism and the duality
between homology and cohomology, the Dynkin basis corresponds to the Björner-
Wachs basis (Corollary 14.33) while the Lyndon basis corresponds to the Björner ba-
sis (Propositions 14.45 and 14.46). The latter correspondence was used by Barcelo
to give the first combinatorial proof of the classical JKS.

Zie elements. (Chapter 10, 11 and 14.) Consider the left action of the Tits algebra
Σ[A] on itself, and put

Zie[A] := P(Σ[A]),
the primitive part of Σ[A]. This is the space of Zie elements (defined using the
Friedrichs criterion). In analogy with Lie[A], we also have other criteria such as the
lune and descent criteria. A Zie element is a particular element of the Tits algebra.
It is called special if its coefficient of the central face is 1. The space Zie[A] is
a right ideal of Σ[A] generated by any special Zie element (Lemma 10.21). Any
special Zie element is an idempotent. In fact, an element of the Tits algebra is a
special Zie element iff it is an idempotent whose support is Q⊥ (Lemma 10.24). The
first Eulerian idempotent E⊥ of any Eulerian family is a special Zie element, and
conversely every special Zie element arises in this manner (Lemma 11.42). More
generally, the higher Eulerian idempotent EX (of any Eulerian family) yields a
special Zie element of the arrangement AX over X. This leads to a characterization
of Eulerian families in terms of families of special Zie elements (Theorem 11.40).
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For any left Σ[A]-module h, a special Zie element projects h onto its primitive part
P(h) (Proposition 10.35).

Given any generic half-space of A, the alternating sum of faces contained in that
half-space yields a special Zie element. We call this the Dynkin element (Proposi-
tion 14.1). It projects the module of chambers Γ[A] onto its primitive part which
is Lie[A]. This generalizes the classical Dynkin operator (left nested bracketing) in
the case of the braid arrangement. Under this projection, the images of chambers
in the half-space opposite to the given generic half-space yields a basis of Lie[A].
This is precisely the Dynkin basis mentioned earlier (Proposition 14.16).

Loewy series and Peirce decompositions. (Chapter 13.) The primitive series
of a left Σ[A]-module h is a specific filtration of h with the primitive part P(h)
as the first nontrivial term from the bottom. Dually, the decomposable series of a
right Σ[A]-module h is a specific filtration of h with the decomposable part D(h)
as the first nontrivial term from the top. The primitive series and decomposable
series are both examples of Loewy series (Propositions 13.4 and 13.6). By general
theory, they are trapped between the radical and socle series; see Lemmas 13.8 and
13.18. The left module of chambers is rigid, that is, its radical, primitive and socle
series coincide (Theorem 13.63). The right module of Zie elements is also rigid
(Theorem 13.78).

For any left Σ[A]-module h, we have the left Peirce decomposition

h =
⊕

X

EX · h.

This depends on the choice of the Eulerian family E. However, the summand
indexed by the minimum flat ⊥ is independent of this choice. More precisely,

E⊥ · h = P(h),
see Proposition 13.21. This is consistent with the earlier statement that a special
Zie element projects h onto P(h). In general, the components EX·h are related to the
primitive series of h (Proposition 13.22). Similarly, one can relate the components
of the right Peirce decomposition of a right Σ[A]-module to its decomposable series
(Proposition 13.24).

The components of the left Peirce decompositions of Γ[A] and Σ[A] relate to
Lie and Zie elements as follows.

EX · Γ[A] ∼= Lie[AX] and EX · Σ[A] ∼= Zie[AX].

See Lemmas 13.26 and 13.30. The former yields an algebraic form of the Zaslavsky
formula, see (13.8). Similarly, the components of the right Peirce decompositions
of Zie[A] and Σ[A] relate to Lie and chamber elements as follows.

Zie[A] · EY ∼= Lie[AY] and Σ[A] · EY ∼= Γ[AY].

See Lemmas 13.42 and 13.40. The latter is present in work of Saliola. Combining
these decompositions yields a vector space isomorphism

EX · Σ[A] · EY ∼= Lie[AY
X].

See Proposition 13.49 and Table 13.1. These are components of the two-sided Peirce
decomposition of Σ[A]. By taking direct sum over all X ≤ Y, we obtain an algebra
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isomorphism

Σ[A] ∼=
⊕

X≤Y

Lie[AY
X].

In the rhs, elements in the (X,Y)-summand are multiplied with elements in the
(Y,Z)-summand by substitution; the remaining products are all zero. This isomor-
phism is given in Theorem 13.53. As an application, we obtain the quiver of the
Tits algebra (Theorem 13.68). This is a result of Saliola, who proved it by linking
the Tits algebra to the top-cohomology of the lattice of flats.

Lune-incidence algebra and noncommutative zeta and Möbius functions.
(Chapter 15.) A nested flat is a pair of flats (X,Y) with Y ≥ X. Let Iflat[A] denote
the incidence algebra of the poset of flats Π[A]. We call it the flat-incidence algebra.
It consists of functions f on nested flats, with the product of f and g given by

(fg)(X,Z) =
∑

Y:X≤Y≤Z

f(X,Y)g(Y,Z).

The zeta function ζ ∈ Iflat[A] is defined to be identically 1. It is invertible and
its inverse is the Möbius function µ ∈ Iflat[A]. The Möbius function satisfies the
Weisner formula, and in fact is completely characterized by it. A standard way to
prove this formula is to use the split-semisimplicity of the Birkhoff algebra.

We propose a noncommutative version of this theory with Π[A] replaced by
Σ[A]. A nested face is a pair of faces (A,F ) with F ≥ A. Let Iface[A] denote
the incidence algebra of Σ[A]. We call it the face-incidence algebra. It consists of
functions f on nested faces, with the product of f and g given by

(fg)(F,H) =
∑

G:F≤G≤H

f(F,G)g(G,H).

We say two nested faces (A,F ) and (B,G) are equivalent if AB = A, BA = B,
AG = F and BF = G. Equivalence classes are indexed by lunes (Proposition 3.13).
Let Ilune[A] denote the subalgebra of Iface[A] consisting of those f which take the
same value on equivalent nested faces. In particular, Ilune[A] has a basis indexed by
lunes. It is an example of a reduced incidence algebra. We call it the lune-incidence
algebra. It can also be interpreted as the incidence algebra of the category of lunes
(Proposition 15.6).

We define noncommutative zeta functions ζ and noncommutative Möbius func-
tions µ as particular elements of the lune-incidence algebra. They are no longer
unique; zeta functions are characterized by lune-additivity (15.23) and Möbius func-
tions by the noncommutative Weisner formula (15.27). They correspond to each
other under taking inverses in the lune-incidence algebra (Theorem 15.27). We re-
late this result to the representation theory of the Tits algebra. This circle of ideas
is summarized in the important Theorem 15.40, which states in particular that
noncommutative zeta and Möbius functions are in bijection with Eulerian families.
Also see Table 15.1.

The flat-incidence algebra and lune-incidence algebra are both elementary and
their quivers are acylic with vertices indexed by flats (Proposition 15.1 and Theo-
rem 15.2, and Proposition 15.9 and Theorem 15.13).
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Lie-incidence algebra. (Chapter 15.) We introduce the Lie-incidence algebra
ILie[A]. It is a subalgebra of the lune-incidence algebra (Proposition 15.46). It
is isomorphic to the Tits algebra (Theorem 15.51). We also introduce additive
and Weisner functions on lunes. These are linear subspaces of the lune-incidence
algebra which respectively contain noncommutative zeta and Möbius functions as
affine subspaces. Further, they are right and left modules respectively over ILie[A]
with action induced from the product of Ilune[A] (Propositions 15.57 and 15.61).
Moreover, they are isomorphic to the right and left regular representations of ILie[A]
(Propositions 15.58 and 15.62).

Invariant objects. (Chapter 16.) In the discussion so far, the arrangement A and
the field k have been arbitrary. Suppose now that A is a reflection arrangement with
associated Coxeter group W , and the characteristic of k does not divide the order
of W . Here W acts on both Σ[A] and Π[A] giving rise to the invariant subalgebras
Σ[A]W and Π[A]W . We call these the invariant Tits algebra and invariant Birkhoff
algebra, respectively. The former is elementary, and the latter is its split-semisimple
quotient. They have a basis indexed by face-types and flat-types. Complete sys-
tems of primitive orthogonal idempotents of Σ[A]W (also called invariant Eulerian
families) can be characterized in a manner similar to Σ[A] (Theorem 16.48). (The
hypothesis on the characteristic of k is clarified by Lemma 16.42.) The Garsia-
Reutenauer idempotents are the Eulerian idempotents which arise by specializing
to the braid arrangement and taking the invariant homogeneous section to be uni-
form. By linking the invariant Tits algebra to invariant Lie elements, one can obtain
information on the quiver of the invariant Tits algebra. The related result given in
Proposition 16.55 is due to Saliola.

The Coxeter group acts on the lune-incidence algebra giving rise to the invariant
lune-incidence algebra. This algebra can also be viewed as a reduced incidence
algebra of the poset of face-types. It has a basis indexed by lune-types. For those
noncommutative zeta and Möbius functions which belong to this algebra, lune-
additivity and the noncommutative Weisner formula can be reformulated using
face-types, see (16.41) and (16.42). The structure constants of the invariant Tits
algebra intervene in this description.

There is an injective map from the Tits algebra to the space indexed by pairs
of chambers. Taking invariants induces an injective map from Σ[A]W to W (the
group algebra ofW ). The image of this map is a subalgebra of W which is known as
the Solomon descent algebra. This induces an isomorphism between the invariant
Tits algebra and the opposite of the Solomon descent algebra (Theorem 16.8). This
was proved by Bidigare. Invariant Eulerian families of the Solomon descent algebra
appeared in work of Bergeron, Bergeron, Howlett and Taylor (Theorem 16.43).

Projective objects. Every arrangement carries a symmetry of order 2 given by
the opposition map (which sends a point to its negative). The projective Tits
algebra is the subalgebra of the Tits algebra which is invariant under the opposition
map. It is elementary with the Birkhoff algebra as its split-semisimple quotient
(Proposition 9.25). Its quiver is given in Theorem 13.70. A complete system of
the projective Tits algebra is a projective Eulerian family. Its characterizations
in terms of projective analogues of noncommutative zeta and Möbius functions,
homogeneous sections and so on are summarized in Theorem 15.42. These results
assume that the field characteristic is not 2.
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CHAPTER 1

Hyperplane arrangements

Some basic geometric objects associated to a hyperplane arrangement are sum-
marized below.

cone

gallery interval

lune

face half-flat flat

chamber panel half-space hyperplane ambient space

center

The diagram is to be read as follows. The most general object is a cone. Every
gallery interval is a cone, and every lune is a gallery interval. Faces, half-flats
and flats are lunes. Chambers and panels are faces, a half-space is a half-flat,
hyperplanes and the ambient space are flats, and the center is both a face and a
flat. Some other important objects which are not seen in the diagram are bi-faces,
nested faces, charts, dicharts and partial-flats.

In this chapter, we discuss

• faces, chambers, flats and bi-faces,
• Tits monoid, Birkhoff monoid and Janus monoid,
• minimal galleries and gate property,
• arrangements under and over a flat of an arrangement,
• other operations on arrangements such as adjoint and cartesian product,
• enumerative aspects such as Möbius functions and characteristic polyno-

mial.

Cones, gallery intervals, lunes, charts, dicharts and partial-flats are discussed in
Chapters 2 and 3.

Many of the sets that we consider, such as the set of faces, carry the structure
of a poset. All our posets are finite. For posets, we will employ the terminology
given in Section B.1. Note in particular that ‘smaller than’ means ≤ and ‘greater
than’ means ≥. Graded posets are reviewed in Section B.2.

Convention 1.1. An arrangement is usually denoted by A. To show the depen-
dence of an object on A, we use [A]. For instance, Σ[A] denotes the set of faces of
A and Π[A] denotes the set of flats of A. When A is understood from the context,
we may simply write Σ, Π, and so on.

3
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4 1. HYPERPLANE ARRANGEMENTS

1.1. Faces

We briefly review hyperplane arrangements, and discuss the poset of faces.

1.1.1. Hyperplanes and half-spaces. Let V be a finite-dimensional vector space
over R. A codimension-one affine subspace of V is called a hyperplane. A half-space
is a subset of V which lies on one side of some hyperplane. The bounding hyperplane
is the boundary of the half-space. By convention, a half-space is closed, that is, it
contains its boundary. The interior of the half-space is the half-space minus its
boundary. Each hyperplane has two associated half-spaces which lie on its two
sides.

The picture on the left shows a hyperplane in R2 which is the same as a line, while
the one on the right shows a half-space.

1.1.2. Hyperplane arrangements. A hyperplane arrangement A is a finite set
of hyperplanes in a finite-dimensional real vector space V . The latter is called the
ambient space of A. The arrangement is central if all its hyperplanes pass through
the origin. Unless stated otherwise, all our arrangements are assumed to be central.
The center of A is the subspace obtained by intersecting all hyperplanes of A. The
arrangement is essential if its center is the zero subspace.

The rank of A, denoted rk(A), is the difference between the dimensions of the
ambient space and the center. In particular, the rank of an essential arrangement
equals the dimension of the ambient space.

The arrangement on the left consists of three lines in R2, while the one on the right
consists of four lines in R2 (passing through the origin). Both are essential and
have rank 2.

Both the above arrangements consist of three planes in R2. The one on the left is
not essential and has rank 2, while the one on the right is essential and has rank 3.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society
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1.1.3. Faces. A half-space of an arrangement A is a half-space of the ambient
space V whose bounding hyperplane belongs to A. A face of A is a subset of V
obtained by intersecting half-spaces of A, with at least one associated half-space
chosen for each hyperplane. The interior of a face F is the subset of F obtained
by intersecting F with the interiors of those half-spaces used to define F whose
boundary does not contain F . Every point in the ambient space belongs to the
interior of a unique face. In other words, the interiors of all faces partition the
ambient space. The center of A is a face. We call it the central face and denote it
by O. The interior of the central face is the central face itself.

Let Σ[A] denote the set of all faces. It is a graded poset under inclusion, with
the central face O as its minimum element. Each face F has a dimension, and the
rank of F is the dimension of F minus the dimension of O. We write this as

rk(F ) = dim(F )− dim(O).

The rank of the poset Σ[A] equals the rank of A. A maximal face of Σ[A] is called
a chamber . We denote the set of chambers by Γ[A]. A rank-one face is called a
vertex , a rank-two face is called an edge, while a corank-one face is called a panel .

Let us return to the arrangement of three lines (hyperplanes) in the plane
passing through the origin. The partition of the plane by face interiors is illustrated
on the right. There are 13 faces: six edges or chambers (sectors), six vertices or
panels (rays) and the central face (the origin). The Hasse diagram of the poset
of faces is shown below. It has rank 2. The minimum element is the origin, the
rank-one elements are the rays, and the rank-two elements are the sectors.

Faces of an arrangement will generally be denoted by the letters F , G, H and
K, chambers by the letters C, D and E, and vertices by the letters P and Q. We
will also employ the letter E to denote edges.

The intersection of two faces is a face, so meets exist in Σ[A]. We denote the
meet of F and G by F ∧ G. In contrast, joins may not exist. We denote the join
of F and G by F ∨G (whenever it exists). It exists precisely when F and G have
a common upper bound. In particular, the join of two distinct chambers cannot
exist. In summary, Σ[A] is a graded meet-semilattice; it is not a lattice unless the
rank of A is 0.
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6 1. HYPERPLANE ARRANGEMENTS

We say F is a face of G if F ≤ G. A vertex of G is a rank-one face of G.
Similarly, F is a panel of G if F is a corank-one face of G, that is, F ⋖G.

A face is the meet of all chambers greater than that face. Similarly, a face is
the join of all its vertices. This follows from the fact that a face is the convex hull
of its vertices.

1.1.4. Opposition map. Every face F has an opposite face, denoted F , which is
given by

F := {−x | x ∈ F}.
The opposition map on faces

(1.1) Σ[A]→ Σ[A], F 7→ F

sends every face to its opposite. It is an order-preserving involution. That is,

F = F and F ≤ G ⇐⇒ F ≤ G.
Since chambers are maximal faces, the opposition map restricts to an involution on
the set of chambers Γ[A]. Thus, every chamber C has an opposite chamber C.

Every half-space h also has an opposite half-space, denoted h, which is given by

h := {−x | x ∈ h}.
Note that the bounding hyperplanes of h and h coincide.

Exercise 1.2. For any face F , check that F = F iff F = O. Deduce that the
number of faces in any arrangement is odd.

1.1.5. Projective faces. A projective face is an unordered pair consisting of a
face and its opposite. We denote a projective face by {F, F}. The number of
projective faces equals half the number of noncentral faces plus 1.

Similarly, a projective chamber is an unordered pair consisting of a chamber
and its opposite. It is denoted by {C,C}. The number of projective chambers
equals half the number of chambers (assuming A has rank at least one).

1.1.6. Isomorphism of arrangements. We consider two notions of isomorphism
of arrangements, called gisomorphism and cisomorphism. The former is stronger
than the latter.

We say two arrangements A and A′ are geometrically isomorphic, or gisomor-
phic for short, if there is a linear isomorphism between their ambient spaces which
induces a bijection between the two sets of hyperplanes. We refer to any such
isomorphism as a gisomorphism.

We say two arrangements A and A′ are combinatorially isomorphic, or ciso-
morphic for short, if the poset of faces Σ[A] and Σ[A′] are isomorphic. We refer to
any such isomorphism as a cisomorphism.

It is clear that gisomorphic implies cisomorphic. But the converse is not true.

1.1.7. Essentialization. If an arrangement A is not essential, then we can make
it essential by taking quotient of the ambient space by its center. This is the
essentialization of A. This construction loses information about the dimension of
the center, however it does not affect the poset of faces. Similar remark applies to
the poset of flats, and other posets that we will encounter later.

If an arrangement is not essential, then its essentialization is cisomorphic but
not gisomorphic to the original arrangement (since the two ambient spaces have
different dimensions).
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Consider the arrangement of three planes in R3 passing through the z-axis
discussed in Section 1.1.2. Its essentialization is gisomorphic to an arrangement of
three lines in R2.

1.1.8. Cell complex of an arrangement. Regular cell complexes are reviewed
in Section A.1. The poset of faces Σ[A] has the structure of a regular cell complex.
Further, this cell complex is pure, of the same rank as Σ[A], and is homeomorphic to
the sphere of dimension one lower than the rank. The construction goes as follows.

We assume that A is essential. (If not, we repeat the following on the essential-
ization of A.) Put a norm on the ambient space, cut the arrangement by the unit
sphere, and identify faces of the arrangement with cells on the sphere to obtain the
cell complex. This is illustrated below on the arrangement of 3 lines in the plane.

so we see

The central face O = {0} is not visible in the spherical model; it corresponds to
the unique face of rank 0 of the cell complex.

Another illustration for an arrangement of four planes in R3 is given below.
The spherical model is shown on the right.

This construction explains the motivation for calling rank-one faces as vertices;
they are indeed vertices of the associated cell complex, though they are rays in the
original arrangement. Similar comment applies to edges.

As far as notation goes, from now on, we will use Σ[A] to denote faces of the
arrangement (linear model) as well as faces of the associated cell complex (spherical
model).

1.1.9. Simplicial arrangements. An essential arrangement is simplicial if each
chamber is a simplicial cone, that is, a cone over a simplex (of the same rank as A)
with the origin as the cone-point. In general, an arrangement is said to be simplicial
if its essentialization is simplicial. Equivalently, an arrangement is simplicial iff its
associated cell complex is a pure simplicial complex.

We refer to faces of a simplicial arrangement as simplices. Any interval in the
poset of faces of a simplicial arrangement is Boolean.
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8 1. HYPERPLANE ARRANGEMENTS

1.2. Arrangements of small rank

We look at arrangements of small rank, starting from rank zero and going up
to rank three. Arrangements up to rank 2 are easy to classify up to cisomorphism.
They are all simplicial.

1.2.1. Rank 0. An arrangement has rank 0 iff it has no hyperplanes. All these ar-
rangements are clearly cisomorphic. There is only one arrangement of rank 0 which
is essential, namely, the arrangement whose ambient space is zero-dimensional.

1.2.2. Rank 1. An arrangement has rank 1 iff it has exactly one hyperplane. All
these arrangements are cisomorphic. An arrangement of rank 1 is essential iff its
ambient space is one-dimensional (with the origin as the unique hyperplane). This
is illustrated below.

O

CC

There are two chambers (rays) which we will usually denote by C and C.

1.2.3. Rank 2. An arrangement has rank 2 iff it has at least two hyperplanes
and they all pass through a codimension-two subspace of the ambient space. An
essential arrangement of rank 2 consists of n lines through the origin in a two-
dimensional space, with n ≥ 2. The arrangement of three lines and four lines in
the plane discussed in Section 1.1.2 are examples with n = 3 and n = 4. Any
two rank-two arrangements with the same number of lines are cisomorphic. When
the lines are equally spaced, the arrangement is called dihedral . Any two dihedral
arrangements with the same number of lines are gisomorphic.

Exercise 1.3. Show that all arrangements of 3 lines in the plane (passing through
the origin) are gisomorphic.

1.2.4. Rank 3. The figure below shows the spherical model of an arrangement of
rank 3 consisting of five hyperplanes. A hyperplane in this case is the same as a
great circle. Only one half of the arrangement is visible in the picture, the other
half being on the backside.

The chambers are either triangles or quadrilaterals, so the arrangement is not sim-
plicial. Three of the hyperplanes pass through the north and south poles. Note
that the region between two adjacent longitudes contains either 3 or 4 chambers.
The fact that these numbers can differ is of importance.

Rank-three arrangements can be visualized in this manner, and are very useful
to develop a geometric feel for notions that we discuss. These arrangements abound;
to classify even the simplicial ones is nontrivial.
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1.3. FLATS 9

1.2.5. Smallest nonsimplicial arrangement. Let us go back to the arrange-
ment of five hyperplanes discussed above. Removing one of the hyperplanes (passing
through the north and south poles) gives an arrangement with four hyperplanes.
This is also a nonsimplicial arrangement, and it is the smallest such in terms of
number of hyperplanes. It has 14 chambers of which 8 are triangles and 6 are
quadrilaterals. A standard way to picture this arrangement is shown below.

The outer circle is not a part of the arrangement. The four hyperplanes are those
that pass through the four sides of the central quadrilateral.

1.3. Flats

We discuss flats, the support map from faces to flats, and a combinatorial
approach to flats.

1.3.1. Flats. A flat of an arrangement A is a subspace of the ambient space
obtained by intersecting some subset of hyperplanes of A. In particular, a flat has
a dimension. Let Π[A] denote the set of flats. It is a graded poset under inclusion,
with the center as the minimum element, and the ambient space as the maximum
element. (The center is the only subset which is both a face and a flat.) The rank
of a flat X is the dimension of X minus the dimension of the center. Intersection
of two flats is a flat, so meets exist in the poset of flats. Further, since there is a
maximum element, joins exist as well. Thus Π[A] is a lattice.

We will use the letters X, Y, Z and W to denote flats. The minimum and
maximum flats will be denoted ⊥ and ⊤, respectively. We denote the meet of X
and Y by X ∧Y and the join by X ∨ Y. We write [X,Z] for the interval consisting
of all flats which lie between X and Z. Observe that X∧Y is the intersection of the
hyperplanes which contain X and the hyperplanes which contain Y, while X∨Y is
the intersection of the hyperplanes which contain both X and Y.

The Hasse diagram of the poset of flats for the arrangement of 3 lines in the
plane is shown below. It has rank 2. It consists of the minimum flat ⊥ (center),
the three lines (hyperplanes), and the maximum flat ⊤ (ambient space).

The intersection of a face and a flat is a face. For a face F and flat X, we write
F ∧ X for their intersection. This can be interpreted as a meet in a larger poset
which includes both faces and flats. This is the poset of cones, which is discussed
in Chapter 2.

1.3.2. Support map. The support of a face F is the smallest flat which contains
F . It is the intersection of all flats which contain F , or equivalently, the intersection
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10 1. HYPERPLANE ARRANGEMENTS

of all hyperplanes which contain F , or equivalently, the linear span of F . The
support map

(1.2) s : Σ[A] ։ Π[A]
sends a face to its support. It is surjective and order-preserving.

We say a flat X supports a face F if s(F ) = X, that is, the support of F is
X. The minimum flat ⊥ supports exactly one face, namely, the central face O.
Any rank-one flat supports two vertices, which are opposite to each other. The
maximum flat ⊤ supports chambers.

Exercise 1.4. Meets exist in both Σ[A] and Π[A]. Give an example to show that
the support map does not preserve meets in general.

Exercise 1.5. Show that an arrangement of rank n has at least n hyperplanes, at
least n rank-one flats, and at least 2n vertices.

1.3.3. Combinatorial flats. A face F is a top-dimensional face of a flat X if X
supports F . Note that a flat is the union of its top-dimensional faces. (For instance,
a line through the origin is the union of its two opposite rays starting at the origin.)
This suggests the following alternative approach to flats.

A combinatorial flat is a subset of Σ[A] consisting of all faces with the same sup-
port. In other words, a combinatorial flat precisely consists of the top-dimensional
faces of some flat.

For a combinatorial flat X, define its closure to be

Cl(X) = {F ∈ Σ[A] | F ≤ G for some G ∈ X}.
This is the set of all faces contained in X viewed as a geometric flat (subset of the
ambient space). Equivalently, it is the set of faces whose support is smaller than
X. It follows that

X ≤ Y ⇐⇒ Cl(X) ⊆ Cl(Y)

and

Cl(X ∧Y) = Cl(X) ∩ Cl(Y).

Since a flat and a combinatorial flat are equivalent notions, we will usually just say
a “flat” with the context determining which notion is being used.

1.4. Tits monoid and Birkhoff monoid

The lattice of flats carries a commutative monoid structure given by the join
operation. We call this the Birkhoff monoid. The poset of faces also carries a
monoid structure whose product can be viewed as a “noncommutative join”. (Recall
that joins of faces may or may not exist.) We call this the Tits monoid. Further,
the support map from faces to flats is a morphism of monoids.

1.4.1. Sign sequences. For a hyperplane H, let us denote its two associated half-
spaces by H+ and H−. The choice of + and − is arbitrary but fixed. It is convenient
to let H0 := H. Observe that H0 = H+∩H−. In this notation, a face of A = {Hi}i∈I
is a subset of the ambient space of the form

F =
⋂

i∈I

Hǫii ,
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1.4. TITS MONOID AND BIRKHOFF MONOID 11

where ǫi ∈ {+, 0,−}. Different choices of ǫi can yield the same face. However, there
is a canonical way to write F in this form, namely,

F =
⋂

i∈I

H
ǫi(F )
i ,

where ǫi(F ) is 0 if F lies in Hi, it is + if the interior of F lies in the interior of H+
i ,

and it is − if the interior of F lies in the interior of H−
i . We refer to

(ǫi(F ))i∈I

as the sign sequence of F .
A possible selection of sign sequences for the arrangement of three lines is

shown below. Note very carefully that not all sign sequences occur. For instance,
no chamber has sign sequence +−+.

000

+ + +

− + +

−− +

−−−

+ −−

+ + −

+ + 0

0 + +− 0 +

−− 0

0 −− + 0 −

Let us return to the general case. The central face is the unique face F for
which ǫi(F ) = 0 for each i, while a chamber is a face F for which ǫi(F ) 6= 0 for each
i. The sign sequence of F is obtained by reversing each sign in the sign sequence
of F :

(1.3) ǫi(F ) = −ǫi(F ).

Observe that

(1.4) F ≤ G ⇐⇒ ǫi(F ) = ǫi(G) whenever ǫi(F ) 6= 0.

In other words, F ≤ G iff the sign sequence of F is obtained from that of G by
replacing some + and − by 0.

1.4.2. Tits monoid. For faces F and G, define the face FG by

(1.5) ǫi(FG) :=

®
ǫi(F ) if ǫi(F ) 6= 0,

ǫi(G) if ǫi(F ) = 0.

We refer to FG as the Tits product of F and G. The product has a geometric
meaning: if we move from an interior point of F to an interior point of G along
a straight line then FG is the face that we are in after moving a small positive
distance. Hence, we also say that FG is the Tits projection of G on F .

An example in the arrangement of three lines is shown below: F is a vertex
(ray), C is an edge (sector) and FC is another edge (sector) which has F as a
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12 1. HYPERPLANE ARRANGEMENTS

vertex.

F

CFC

F

CFC

More illustrations of the Tits product in the spherical model of a rank-three ar-
rangement are shown below.

F
FG

G

F

FG

G

The Tits product is associative, that is,

F (GH) = (FG)H

for any faces F , G and H. Further, the central face is the identity element for the
product. This follows from (1.5). Thus, the set of faces Σ[A] is a monoid. We call
this the Tits monoid .

For any faces F and G, we have

(1.6) FF = F and FGF = FG.

This follows from (1.5). The first identity is a special case of the second obtained
by setting G = O.

For any faces F and G,

(1.7) FG = F G.

This follows from (1.3) and (1.5). Thus, the opposition map (1.1) is an automor-
phism of the Tits monoid.

For any faces F and G, a hyperplane contains FG iff it contains both F and
G. In other words,

(1.8) ǫi(FG) = 0 ⇐⇒ ǫi(F ) = 0 and ǫi(G) = 0

for all i ∈ I. This follows from (1.5).

1.4.3. Ideal of chambers. Let C be a chamber. Then for any face F , the faces
FC and CF are both chambers, and in fact CF = C. Thus, the set of chambers
Γ[A] is a two-sided ideal of Σ[A]. An illustration follows.

F

FC

C
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1.4.4. Tits monoid and poset of faces. The partial order on faces is completely
determined by the Tits product: For any faces H and F ,

(1.9a) HF = F ⇐⇒ H ≤ F,

(1.9b) HF = F ⇐⇒ H = F.

This follows from (1.3), (1.4) and (1.5). In particular, for any face F ,

(1.10) FF = F.

Some further interactions between the product and the partial order are sum-
marized below.

Lemma 1.6. The following properties hold for any faces F , G, H and K.

(1) If G ≤ H, then FG ≤ FH. In particular, F ≤ FG.
(2) If FG = K and F ≤ H ≤ K, then HG = K.
(3) FG ∧ FG = F . In particular, G ∧G = O.
(4) F ∧G = FG ∧G = FG ∧GF .
(5) F ≤ H and G ≤ H imply FG ≤ H.

Proof. For (1), we can employ (1.9a). We are given G ≤ H, that is, GH = H.
Then (FG)(FH) = FGH = FH, that is, FG ≤ FH. We used associativity and
(1.6). Alternatively, one can also directly use (1.4) and (1.5).

The remaining assertions can be verified in a similar manner. �

Exercise 1.7. Use Lemma 1.6, item (3) to deduce the result of Exercise 1.2.

Exercise 1.8. Show that FG =
∧
FC, with the meet taken over over all chambers

C which are greater than G. What happens when F = G?

Exercise 1.9. Show that in any arrangement of rank at least one, the assertion
G ≤ H =⇒ GF ≤ HF is false in general.

1.4.5. Birkhoff monoid. Recall the lattice of flats Π[A]. It has the structure of
a monoid: the product of X and Y is defined to be X ∨Y. The unit element is the
minimum flat ⊥. We call this the Birkhoff monoid . It is commutative.

The motivation for using the join (as opposed to the meet) for defining the
product is explained below.

1.4.6. Support map. Recall the support map from faces to flats defined in (1.2).
For any faces F and G,

(1.11) s(FG) = s(F ) ∨ s(G).

This follows from (1.8). Further, s(O) = ⊥. Thus, the support map is a homomor-
phism from the Tits monoid to the Birkhoff monoid.

Observe that FG and GF always have the same support. In particular, if
GF = G, then FG and G have the same support. Similar useful observations are
given below.

(1.12) GF = G ⇐⇒ s(F ) ≤ s(G).

Either of these conditions is equivalent to the condition

ǫi(G) = 0 implies ǫi(F ) = 0 for all i ∈ I.
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14 1. HYPERPLANE ARRANGEMENTS

It follows that

(1.13) FG = F and GF = G ⇐⇒ s(F ) = s(G).

Either of these conditions is equivalent to the condition

ǫi(F ) = 0 iff ǫi(G) = 0 for all i ∈ I.
To summarize: The relation

(1.14) F ∼ G ⇐⇒ FG = F and GF = G

is an equivalence relation on the set of faces whose equivalence classes correspond
to flats. In fact, note that the equivalence classes are precisely combinatorial flats
(Section 1.3.3).

Lemma 1.10. The Birkhoff monoid is the abelianization of the Tits monoid with
the support map being the abelianization map.

Proof. To construct a commutative quotient of the Tits monoid, at the very
least, we need to identify FG and GF . When F and G have the same support, by
(1.13), FG = F and GF = G, so we must identify F and G. Since these forced
identifications yield the Birkhoff monoid, it is the largest commutative quotient. �

Exercise 1.11. Show that FGF ′ = FG whenever s(F ) = s(F ′).

Exercise 1.12. Show that

HF = G and FH = F ⇐⇒ HF = G and s(F ) = s(G).

Exercise 1.13. Suppose F and G have the same support. Show that: If F ≤ K,
then GK is a face greater than G of the same support as K. In contrast, if K ≤ F ,
then there may not exist a face H ≤ G of the same support as K.

Exercise 1.14. A hyperplane contains F iff it contains F . Thus, F and F have
the same support. Deduce this fact as a formal consequence of (1.13) and (1.10).
Further deduce that FG and FG have the same support for any F and G.

Exercise 1.15. Suppose X ≤ Y and F is a face with support X. Show that there
exists a face G with support Y such that F ≤ G.
1.4.7. Bands. Bands are reviewed in Section E.1. By the first identity in (1.6),
every element of the Tits monoid is idempotent, so it is a band. Further, the second
identity in (1.6) says that it is a left regular band. Also, we see from (1.9a) that
the partial order (E.2) coincides with the partial order on faces.

Every band has a support lattice. The support lattice of the Tits monoid is
precisely the lattice of flats. Compare (1.13) with (E.4). Also note that the Birkhoff
monoid arises from the lattice of flats via the construction of Example E.2.

1.4.8. Closures of combinatorial flats. Closures of combinatorial flats can be
characterized using the Tits product as follows.

Proposition 1.16. Let A be any set of faces of A. Then A is the closure of a
combinatorial flat iff the following properties hold.

(1) O ∈ A.
(2) If G ∈ A and GF = G, then F ∈ A.
(3) If F ∈ A and G ∈ A, then FG ∈ A.
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Proof. Forward implication: Suppose A = Cl(X) for a combinatorial flat X. It
consists of all faces with support smaller than X. Property (1) holds since s(O) = ⊥,
the minimum flat. Property (2) follows from (1.12) and (3) from (1.11).

Backward implication: By property (1), A is nonempty. By property (3), the
largest faces in A are obtained by multiplying all the faces in A in different orders.
By (1.11), they are all of the same support, say X. We claim that A = Cl(X). It is
clear that A ⊆ Cl(X). For the reverse inclusion, if F has support smaller than X,
then pick a G ∈ A with support X and use property (2) to conclude that F ∈ A. �

1.4.9. Join of faces. We say that two faces F and G are joinable if their join
exists in Σ[A], or equivalently, if there is a face greater than both F and G.

Proposition 1.17. Distinct subfaces of a face have distinct supports.

Proof. Suppose F and G are distinct subfaces of a face K. Then by (1.4), ǫi(F ) =
ǫi(K) whenever ǫi(F ) 6= 0, and ǫi(G) = ǫi(K) whenever ǫi(G) 6= 0. Thus, the set
of hyperplanes Hi for which ǫi(F ) = 0 differs from the one for which ǫi(G) = 0.
So by the sign sequence condition given after (1.13), the supports of F and G are
distinct. �

Proposition 1.18. Two faces F and G are joinable iff FG = GF . In this situa-
tion,

F ∨G = FG = GF.

In particular, faces with the same support are joinable iff they are equal.

Proof. Any face which contains F and Gmust contain FG and GF by Lemma 1.6,
item (5). Since FG and GF have the same support, the only way a face can be
greater than both of them is if FG = GF . All claims follow. �

G GF

FG

F

FH

H

HF

In the figure, the vertices F and G are joinable, the edge connecting them is their
join. On the other hand, the vertices F and H are not joinable since the edges FH
and HF are distinct.

Proposition 1.18 suggests that one may view Σ[A] as a “noncommutative lat-
tice” in which the role of the join is played by the Tits product (which is noncom-
mutative in general). This suggestion is further substantiated by (1.11).

Proposition 1.19. For any faces F and G, the faces FG and FG are joinable iff
FG = FG = F . In particular, G and G are joinable iff G = G = O.

Proof. By Exercise 1.14, FG and FG have the same support. Hence, by Propo-
sition 1.18, they are joinable iff they are equal. In this case, by Lemma 1.6, item
(3), both must also equal F . �

Exercise 1.20. Show that: Any face is the Tits product of all its vertices (with
the product taken in any order).

Exercise 1.21. Show that: Suppose G ≤ K. Then F and G are joinable with
F ∨G = K iff FG = K.

Exercise 1.22. Show that: If H1F = G and H2F = G, then H1 and H2 are
joinable and (H1 ∨H2)F = G.
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16 1. HYPERPLANE ARRANGEMENTS

1.5. Bi-faces and Janus monoid

We introduce the Janus monoid indexed by bi-faces. It is the fiber product of
the Tits monoid and its opposite over the Birkhoff monoid. The Tits monoid is a
left regular band and hence its opposite is a right regular band. However, since the
Janus monoid involves both of them, it is a band which is neither left regular nor
right regular in general. Its support lattice is the lattice of flats.

1.5.1. Janus monoid. A bi-face is a pair (F, F ′) of faces such that F and F ′ have
the same support. Let J[A] denote the set of bi-faces. The binary operation

(1.15) (F, F ′)(G,G′) := (FG,G′F ′)

turns J[A] into a monoid. The unit element is (O,O). We call it the Janus monoid .
Since each element is an idempotent, it is a band. However, it is neither left regular,
nor right regular.

Observe that the Janus monoid J[A] is the fiber product of the Tits monoid
Σ[A] and its opposite Σ[A]op over the Birkhoff monoid Π[A]. We express this by

J[A] = Σ[A]×Π[A] Σ[A]op.

In particular, we have a commutative diagram of monoids

(1.16)

J[A] //

��

Σ[A]op

s

��

Σ[A]
s

// Π[A]

with s being the support map, and the maps from J[A] being the projections on
the two coordinates respectively.

We also deduce that the Janus monoid is canonically isomorphic to its opposite
monoid via

J[A]→ J[A]op, (F, F ′) 7→ (F ′, F ).

This can be taken as one motivation for reversing the order of the product in the
second coordinate in definition (1.15).

Exercise 1.23. Check that Σ[A] and Σ[A]op cannot be isomorphic if A has rank
at least one.

Exercise 1.24. Check that the abelianization of the Janus monoid is the Birkhoff
monoid.

1.5.2. Support lattice. Recall that every band has a partial order as well as a
support lattice (Section E.1). For the Janus monoid, this works as follows.

Lemma 1.25. For the Janus monoid, the partial order (E.1) is given by

(F, F ′) ≤ (G,G′) ⇐⇒ F ≤ G and F ′ ≤ G′.

Its support lattice is the lattice of flats, with the support map being the composite
map in diagram (1.16).
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Proof. Employing (E.1) both for the Janus monoid and the Tits monoid, we
obtain:

(F, F ′) ≤ (G,G′) ⇐⇒ (FG,G′F ′) = (G,G′) = (GF,F ′G′)

⇐⇒ FG = G = GF and G′F ′ = G′ = F ′G′

⇐⇒ F ≤ G and F ′ ≤ G′.

Similarly, employing (E.4) both for the Janus monoid and the Tits monoid, we can
deduce that two bi-faces (F, F ′) and (G,G′) have the same support iff F , F ′, G
and G′ all have the same support. So the support lattice of the Janus monoid is
the lattice of flats. �

1.5.3. Presentation.

Lemma 1.26. The Janus monoid has a presentation given by generators eF , one
for each face F , subject to the relations

eO = id, eF eF = eF , eGeF = eGF eFG,

for all F and G, and

eHeGeF = eHeF

whenever F , G and H have the same support.

Proof. Let us work with the presentation. For any faces F , G and H,

eHeGeF = eHeGF eFG = eHGF eGFHeFG = eHGF eGFHeFGH = eHGF eFGH .

We repeatedly used the third relation till all faces subscripting e had the same sup-
port, and then used the last relation to remove the intermediate e. More generally,
by the same method, for any faces F1, . . . , Fk,

eF1
. . . eFk

= eF1...Fk
eFk...F1

.

(The special case k = 1 is covered by the second relation.) Thus, any word in the
generators, say w, can be written in the form eF eF ′ , with F and F ′ of the same
support. Further, F and F ′ are unique, namely, F is the product of the faces in w in
the order in which they appear, while F ′ is the product of the faces in w in reverse
order. (This is because in any relation u = v, the two products for u respectively
equal the two products for v. For instance, in the relation eGeF = eGF eFG, the
products on both sides are GF and FG respectively. Hence, whenever we use a
relation to replace a word by another, the products remain the same.) Thus, we
can view eF eF ′ as a normal form for w. It remains to see how words in normal
form multiply. Observe that

(eF eF ′)(eGeG′) = eFGeG′F ′ .

Now identify eF eF ′ with the bi-face (F, F ′). �

Exercise 1.27. Deduce the relations eGeF = eG when F ≤ G, and eF eGeF = eFG
for any F and G.
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1.5.4. Rank one. Consider the set {id, e, f, ef, fe} with following monoid struc-
ture. All elements are idempotent, and they are multiplied using the relations
efe = e and fef = f . This is precisely the Janus monoid of the rank-one arrange-
ment (with chambers C and C). The identification is done as follows.

id↔ (O,O), e↔ (C,C), f ↔ (C,C), ef ↔ (C,C), fe↔ (C,C).

In this case, the Tits monoid is given by the set {id, e, f} of idempotents with
ef = e and fe = f . The opposite Tits monoid is the same set but with ef = f and
fe = e. The Birkhoff monoid consists of two idempotent elements, namely, id and
e = f .

1.6. Order-theoretic properties of faces and flats

We now discuss some order-theoretic properties of the poset of faces and the
lattice of flats. Semimodular and geometric lattices are reviewed in Section B.3.
Strongly connected posets are reviewed in Section B.4.

1.6.1. Semimodularity. For flats Y and Y′, let Y+Y′ denote their linear span.
Note very carefully that Y+Y′ may not be a flat. For example, Y and Y′ could be
two lines in a three-dimensional essential arrangement, but the plane determined
by Y and Y′ may not be a hyperplane of the arrangement. Thus, in general, Y+Y′

is only a subspace of Y ∨ Y′. For a concrete example, take Y and Y′ to be the
one-dimensional subspaces, respectively, passing through two non-adjacent vertices
of a square in the nonsimplicial arrangement of Section 1.2.4. It follows that:

Lemma 1.28. The lattice of flats Π[A] is lower semimodular, that is, for any flats
Y and Y′,

(1.17) rk(Y′) + rk(Y) ≤ rk(Y′ ∧Y) + rk(Y′ ∨Y).

Equality holds iff Y+Y′ = Y ∨Y′.
In addition, the poset opposite to Π[A] is atomic (that is, every flat can be

expressed as the meet of corank-one flats (hyperplanes)), and hence is a geometric
lattice.

Note also that Π[A] contains no 3-element intervals consistent with Proposi-
tion B.3.

1.6.2. Modular complements. We say that flats Y and Y′ are modular comple-
ments if

Y′ ∧Y = ⊥, Y′ ∨Y = ⊤ and rk(Y′) + rk(Y) = rk(A).
Equivalently, the last two conditions can be replaced by the condition Y′ +Y = ⊤.
In this situation, we say that Y′ is a modular complement of Y. More generally,
we say that Y and Y′ are modular complements in the interval [X,Z] if

Y′ ∧Y = X, Y′ ∨Y = Z and rk(Y′) + rk(Y) = rk(X) + rk(Z).

Lemma 1.29. Every flat has a modular complement. More precisely:

• The minimum flat ⊥ has a modular complement, namely, the maximum
flat ⊤.
• If X is a flat and H a hyperplane not containing X, then X has a modular

complement contained in H.
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Proof. The first case is clear. For the second case, we induct on the rank of A.
Suppose that X is a flat and H a hyperplane not containing X. Using (1.17), we
obtain rk(X) ≤ rk(X ∧H) + 1. In fact, equality must hold since X ∧H < X. Thus,
X ∧ H is of codimension one in X. By induction hypothesis, X ∧ H has a modular
complement, say Y, in the arrangement AH under H. (Arrangements under flats
are defined in Section 1.7.1.) Then Y is a modular complement of X in A which is
contained in H. �

Proposition 1.30. Suppose X and Y are modular complements of each other.
Then the following are equivalent.

(1) Every hyperplane contains either X or Y.
(2) Y is the unique modular complement of X.
(3) X is the unique modular complement of Y.

Proof. It suffices to show that (1) and (2) are equivalent.
(1) =⇒ (2). Suppose Z is a modular complement of X. Then Z is obtained by

intersecting a set of hyperplanes none of which contain X. By hypothesis, all these
hyerplanes contain Y implying Z ≥ Y. Hence Z = Y (since the two flats have the
same rank).

(2) =⇒ (1). Suppose H is a hyperplane which does not contain X. Then
by the second part of Lemma 1.29, X has a modular complement contained in H,
which by uniqueness must be Y. Hence H contains Y. �

1.6.3. Strong connectivity. We now show that the poset of faces and the lattice
of flats are strongly connected.

Lemma 1.31. For any arrangement A, the poset of faces Σ[A] with a top element
adjoined is the face lattice of a convex polytope.

Proof. See [75, Example 4.1.7], [427, Corollary 7.18] or [98, Appendix]. �

Lemma 1.32. Let A be any arrangement. The poset of faces Σ[A] with a top ele-
ment adjoined is strongly connected. In particular, Σ[A] is also strongly connected.

Proof. This follows from Lemma 1.31 and Lemma B.7. �

When A is simplicial, any interval in the face poset of A is Boolean, which is
both lower semimodular and upper semimodular. So in this case, one may also use
Lemma B.8 to deduce that Σ[A] is strongly connected.

Lemma 1.33. For any arrangement A, the lattice of flats Π[A] is strongly con-
nected.

Proof. This follows from Lemma 1.28 and Lemma B.8. �

1.7. Arrangements under and over a flat

A flat of an arrangement gives rise to two smaller arrangements. The new
arrangements single out the portions of the old arrangement under and over the
given flat. We discuss these constructions and their combination, which focuses on
the portion comprised between two flats. We also discuss the notion of star and
top-star of a face. Faces of the arrangement over a flat X correspond to the star
of any face of support X. Faces of the arrangement under X correspond to faces
contained in X.
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1.7.1. Under a flat. Let X be any fixed flat of A. The arrangement under X is

AX = {H ∩X | H ∈ A, X 6⊆ H}.

It is a hyperplane arrangement with ambient space X. Its hyperplanes are obtained
by intersecting X with hyperplanes in A not containing it. Its center is the same
as that of A. An example follows.

X

A
AX

The arrangement under a rank-two flat in a rank-three arrangement is illus-
trated below. It has eight vertices, four of which are visible in the picture.

The arrangement AX singles out the portion of A below X. Faces, chambers
and flats of AX are as follows.

Σ[AX] = {F ∈ Σ[A] | s(F ) ≤ X},
Γ[AX] = {F ∈ Σ[A] | s(F ) = X},
Π[AX] = {Y ∈ Π[A] | Y ≤ X}.

For any face K, let AK := As(K).

1.7.2. Over a flat. Let X be any fixed flat of A. The arrangement over X is

AX = {H ∈ A | X ⊆ H}.

It is a hyperplane arrangement with the same ambient space as A. It consists of
the hyperplanes of A which contain X. The center is X. An example follows.

X

A AX

The essentialization of AX (up to gisomorphism) is shown on the far right.
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The arrangement over a rank-one flat of a rank-three arrangement is illustrated
below. It consists of the three red lines.

Roughly, the arrangement AX singles out the portion of A above X. Flats of AX

are flats of A which contain X. Faces and chambers are in canonical correspondence
with faces and chambers of A that contain any fixed face F of support X.

Σ[AX] ∼= {G ∈ Σ[A] | F ≤ G},
Γ[AX] ∼= {C ∈ Γ[A] | F ≤ C},
Π[AX] = {Y ∈ Π[A] | X ≤ Y}.

We elaborate on this below.

1.7.3. Stars and top-stars. For a face F , let Σ[A]F denote the set of faces of A
which are greater than F . This is the star of F . For clarity, we denote elements
of Σ[A]F by K/F , where K is a face greater than F . The star of a chamber is a
singleton consisting of the chamber itself, while the star of the central face is the
set of all faces. Let Γ[A]F denote the set of chambers of A which are greater than
F . This is the top-star of F .

F F

The star of F is illustrated above in rank three. In the picture on the left, F is
an edge and its top-star consists of two chambers, while in the picture on the right,
F is a vertex and its top-star consists of six chambers.

Lemma 1.34. The star Σ[A]F is the right ideal of Σ[A] generated by F . It is also
a monoid in its own right with unit element F . Further, it is a left regular band.
The associated partial order (E.2) is the restriction of the partial order on faces.

Proof. The right ideal generated by F consists of elements of the form FG. Using
(1.9a) and Lemma 1.6, item (1), we see that these are precisely faces in the star of
F . To see that F is the unit, we need F (FG) = FG and (FG)F = FG. This holds
by (1.6). Since the product is obtained by restricting the Tits product of Σ[A], the
rest follows. �

Lemma 1.35. When F and G have the same support, we have an isomorphism

Σ[A]F
∼=−→ Σ[A]G, K/F 7→ GK/G

of monoids, and hence of posets. The inverse is given by

Σ[A]G
∼=−→ Σ[A]F , H/G 7→ FH/F
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Further, it restricts to a bijection

Γ[A]F
∼=−→ Γ[A]G, C/F 7→ GC/G.

Proof. Let us denote the first map by f and the second by g. For faces K and
K ′ both greater than F ,

f(K)f(K ′) = (GK)(GK ′) = GKK ′ = f(KK ′).

The second step used associativity and (1.6). (In the above calculation, we did not
write K/F , K ′/F and so on to avoid cumbersome notation.) Thus, f is a monoid
homomorphism. By symmetry, g is also a monoid homomorphism. For K greater
than F ,

(gf)(K) = g(GK) = FGK = FK = K.

We used associativity, (1.9a) and (1.13). Thus, gf = id, and by symmetry, fg = id.
Thus, f and g are inverses. It is also clear that they restrict to inverse bijections
between the top-stars of F and G. �

Lemma 1.36. Let X be a flat. Then for any face F with support X, there is an
isomorphism

Σ[A]F
∼=−→ Σ[AX]

of monoids and hence of posets. Further, when F and G both have support X, the
diagram

Σ[A]F //

$$❍
❍❍❍

❍
Σ[A]G

zz✈✈✈
✈✈

Σ[AX]

commutes.

Proof. We make use of some ideas from Chapter 3. The element K/F is the same
as a nested face (F,K). It gives rise to the combinatorial lune s(F,K) with base X.
The latter is the same as a face of AX (Lemma 3.2). This explains the map from the
star of F to the set of faces of AX. It is a bijection by (3.15). It is straightforward
to check that it is also a monoid homomorphism. The commutativity of the above
diagram says s(F,K) = s(G,GK). This is contained in Proposition 3.13 (since
(F,K) ∼ (G,GK)). �

For any face F , let AF := As(F ). Thus, there is no distinction between AF and
AG when F and G have the same support. However, for book-keeping purposes,
we would like to keep them apart. Hence, we identify faces of AF with the star
of F , and chambers with the top-star of F . Thus, K/F and C/F denote a face
and chamber of AF . In this notation, the opposite of a face K/F of AF is the face
FK/F . Also note that rk(K/F ) = rk(K)− rk(F ).

Exercise 1.37. Check that: For any faces F and G,

F ≤ G ⇐⇒ Γ[A]G ⊆ Γ[A]F .
More generally,

Γ[A]F ∩ Γ[A]G =

®
Γ[A]FG = Γ[A]GF if F and G are joinable,

∅ otherwise.

In particular, distinct faces with the same support have disjoint top-stars (since
they are not joinable by Proposition 1.18).
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All of the above results hold with Γ[A] replaced by Σ[A].
Exercise 1.38. For any face F , describe the left ideal generated by F in the Tits
monoid Σ[A]. Show that it is two-sided, and in particular, contains the star of F .
Say explicitly what happens when F is the central face and when F is a chamber.

1.7.4. Between flats. The preceding constructions can be combined. Let X be
a flat contained in another flat Y, that is, X ≤ Y. Then X corresponds to a
flat of AY, and Y to a flat of AX. Thus, one may first consider the arrangement
under Y and within it the arrangement over X, or the other way around. The
resulting arrangements (AY)X and (AX)

Y are the same. We use AY
X to denote this

arrangement. Flats of AY
X correspond to flats of A which lie between X and Y. In

other words,

Π[AY
X] = [X,Y].

We will also use the notations AX
F (when support of F is smaller than X) and

AGF (when F ≤ G). We identify their faces with faces of A which are greater than
F and of support smaller than X.

Exercise 1.39. Put r = rk(A). Let ⊥ = X0⋖X1⋖· · ·⋖Xr = ⊤ be a maximal chain
of flats. Show that: There exists a maximal chain of faces O = F0 ⋖ F1 ⋖ · · ·⋖ Fr
such that s(Fi) = Xi for each i. (See Exercise 1.15.) Further, there are exactly 2r

maximal chains of faces with this property.

1.8. Cartesian product of arrangements

We review cartesian product of arrangements. An arrangement is prime if
it cannot be expressed as a cartesian product of arrangements of strictly smaller
rank. Every arrangement can be uniquely expressed as a cartesian product of prime
arrangements. Modular complements play an important role in this discussion.

1.8.1. Cartesian product. Given two arrangements A and A′, one can form
their cartesian product A × A′. Its ambient space is V ⊕ V ′, where V and V ′ are
the ambient spaces of A and A′. Its hyperplanes are codimension-one subspaces of
the form H⊕V ′ and V ⊕H′, where H and H′ are hyperplanes of A and A′. Observe
that

rk(A×A′) = rk(A) + rk(A′).

The cartesian product of the rank-one arrangement and the rank-two arrange-
ment of 4 lines is shown below.

The operation of taking cartesian product is associative and commutative (up
to gisomorphism). The essential arrangement of rank 0 serves as the unit. In
general, taking cartesian product with a rank-zero arrangement has the effect of
fattening up the center.
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1.8.2. Faces and flats. A face of A×A′ is the same as a pair (F, F ′), where F
is a face of A and F ′ is a face of A′. In other words,

Σ[A×A′] = Σ[A]× Σ[A′].

This identification is an isomorphism of monoids, that is,

(1.18) (F, F ′)(G,G′) = (FG,F ′G′).

One way to see this is to note that the sign sequence of (F, F ′) can be identified
with the sign sequence of F followed by the sign sequence of F ′. Either directly or
as a formal consequence of (1.9a),

(F, F ′) ≤ (G,G′) ⇐⇒ F ≤ G and F ′ ≤ G′.

A chamber of A×A′ is the same as a pair (C,C ′), where C is a chamber of A
and C ′ is a chamber of A′. Thus,

Γ[A×A′] = Γ[A]× Γ[A′].

A flat of A×A′ is the same as a pair (X,X′), where X is a flat of A and X′ is
a flat of A′. Thus,

Π[A×A′] = Π[A]×Π[A′].

This identification is an isomorphism of posets, that is,

(1.19) (X,X′) ≤ (Y,Y′) ⇐⇒ X ≤ Y and X′ ≤ Y′.

Let ⊥′ and ⊤′ denote the minimum and maximum flats of A′. Under the above
identification, a hyperplane of A×A′ is either (H,⊤′) with H an hyperplane of A
or (⊤,H′) with H′ an hyperplane of A′. Also note that the flats (⊥,⊤′) and (⊤,⊥′)
are modular complements.

1.8.3. Under and over a flat of a product. For a flat (X,X′) of A×A′,

(A×A′)(X,X
′) = AX × (A′)X

′

and (A×A′)(X,X′) = AX ×A′
X′ .

Specializing to the flat (⊤,⊥′) of A×A′, we get

(A×A′)(⊤,⊥
′) ∼= A and (A×A′)(⊤,⊥′)

∼= A′.

A similar remark applies to the flat (⊥,⊤′). Thus, A and A′ may both be seen as
arrangements under and over a flat of A×A′, up to cisomorphism.

1.8.4. Factors. Roughly, a factor of an arrangement A is a flat X for which A can
be expressed as a cartesian product of AX and AX. This notion can be formalized
using modular complements, as follows.

A flat is a factor of an arrangement if it has a unique modular complement.
Suppose X is a factor. By Proposition 1.30, its unique modular complement, say
Y, is also a factor. We say that Y is the complementary factor of X. Since X is also
the complementary factor of Y, we say that X and Y are complementary factors
of each other. Note that ⊥ and ⊤ are complementary factors. We call these the
trivial factors .

Proposition 1.40. Let X and Y be complementary factors of an essential arrange-
ment A. Then there is a canonical gisomorphism

(1.20) A = AX ×AY.

Similarly, there is a canonical gisomorphism

(1.21) AY = AX ×Y0,
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where Y0 denotes the rank-zero arrangement with ambient space Y. In particular,
AX is the essentialization of AY.

Proof. This can be deduced from Proposition 1.30, condition (1). �

The isomorphism (1.21) is illustrated below in a rank-three arrangement with
4 hyperplanes.

AX

AY

Y

X

The flat Y is the vertical line, and AY consists of three planes passing through Y.
The flat X is the horizontal plane, and AX consists of three lines passing through
the origin.

Proposition 1.41. For complementary factors X and Y in any arrangement A
(not necessarily essential), there are cisomorphisms

(1.22) A ∼= AX ×AY and AY
∼= AX.

In particular, for any factor X, there is a cisomorphism

(1.23) A ∼=−→ AX ×AX.

Under this identification, X maps to (X,X).

The difference with the previous result is that here we not assuming the ar-
rangement to be essential. So we only get cisomorphisms instead of gisomorphisms.

Lemma 1.42. Let A and A′ be two arrangements. Then (X,X′) is a factor of
A × A′ iff X is a factor of A, and X′ is a factor of A′. More precisely, (X,X′)
and (Y,Y′) are complementary factors of A × A′ iff X and Y are complementary
factors of A, and X′ and Y′ are complementary factors of A′.

Proof. This is a straightforward observation. �

As an easy consequence: The flats (⊤,⊥′) and (⊥,⊤′) are complementary
factors of A×A′. Equivalently, they are the unique modular complements of each
other.

Lemma 1.43. If X and Y are factors, then so are X ∨Y and X ∧Y.

Proof. Let X and Y be two factors of A. Let us denote the map (1.23) by ϕX.
Put (Y1,Y2) := ϕX(Y). Then by Lemma 1.42, Y1 is a factor of AX, and Y2 is a
factor of AX. Observe that

ϕX(X ∨Y) = (X,X) ∨ (Y1,Y2) = (X,Y2).

Since X is a (trivial) factor of AX, and Y2 is a factor of AX, again by Lemma 1.42,
it follows that X ∨Y is a factor of A. Similarly,

ϕX(X ∧Y) = (X,X) ∧ (Y1,Y2) = (Y1,X).

By the same reasoning, X ∧Y is a factor of A. �
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Lemma 1.44. Suppose X is a factor of A. The factors of AX correspond to factors
of A which are contained in X. Similarly, the factors of AX correspond to factors
of A which contain X.

Suppose X and Z are factors with X ≤ Z. The factors of AZ
X correspond to

factors of A which lie between X and Z.

Proof. The second part follows by combining the two statements in the first part.
For the first part, we proceed as in the previous proof. If Y is a flat contained in
X, then ϕX(Y) = (Y,X). Since X is a trivial factor of AX, by Lemma 1.42, Y is a
factor of A iff Y is a factor of AX. This proves the first statement. Similarly, for the
second statement, we use that if Y is a flat containing X, then ϕX(Y) = (X,Y). �

1.8.5. Prime arrangements. A factor is prime if it is not the minimum flat and
it cannot be written as a join of two distinct nontrivial factors. The convention
that the minimum flat is not prime is analogous to the convention that 1 is not a
prime number.

Proposition 1.45. For an arrangement A, the following conditions are equivalent.

• The maximum flat is prime.
• A has rank at least one and no nontrivial factors.
• A has rank at least one and is not cisomorphic to a cartesian product of
two arrangements both of nonzero rank.

Proof. The equivalence of the first two conditions is clear. For the equivalence
of the last two conditions, use that: Complementary factors yield a factorization
(1.20), and conversely, a cartesian productA×A′ has complementary factors (⊤,⊥′)
and (⊥,⊤′). �

An arrangement is prime if any of the above equivalent conditions hold. By
convention, an arrangement of rank 0 is not prime.

Observe that the notion of factors, prime factors, and hence primeness of an
arrangement only depends on its lattice of flats. In particular, an arrangement A
is prime iff the essentialization of A is prime. Note that any rank-one arrangement
is prime.

Lemma 1.46. Suppose X is a factor of A. The prime factors of AX correspond to
prime factors of A which are contained in X.

Suppose X and Y are complementary factors of A. The prime factors of A
correspond to disjoint unions of prime factors of AX and prime factors of AY.

Proof. The first claim follows from the first statement in Lemma 1.44. The second
claim can be deduced from the first using (1.20). �

Proposition 1.47. Let X1, . . . ,Xk denote the prime factors of an essential ar-
rangement A. Then there is a gisomorphism

(1.24) A =
k×
i=1

AXi .

For an arbitrary arrangement A (not necessarily essential), there is a cisomorphism
as in (1.24).

Proof. We induct on the rank of A. The result is clear if A is prime. So suppose X
and Y are nontrivial complementary factors of A. Now start with the factorization
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(1.20) and apply the induction hypothesis to both AX and AY to get a factorization
of A into primes. Further, by Lemma 1.46, all prime factors of A appear in this
factorization. Thus, we obtain (1.24). �

We refer to (1.24) as the prime decomposition of A. Note that the arrangements
AXi that appear in the decomposition are prime.

Corollary 1.48. The set of factors of A under inclusion is a Boolean poset on the
set of prime factors of A. Further, it is a sublattice of the lattice of flats.

Proof. Consider the prime decomposition (1.24). By Lemma 1.42 (extended to k-
fold cartesian products), a factor of A corresponds to a k-tuple consisting of factors
of each AXi . But AXi being prime has only the two trivial factors. The first claim
follows. The second claim is a restatement of Lemma 1.43. �

Any decomposition of an essential arrangement as a cartesian product neces-
sarily arises from the prime decomposition (1.24) by partitioning the set of prime
factors into two parts.

1.8.6. Irreducible arrangements. An arrangement is irreducible if it is not gi-
somorphic to a cartesian product of two arrangements both with nonzero ambient
space.

An irreducible arrangement is necessarily essential. Also, an arrangement A of
rank at least one is prime iff the essentialization of A is irreducible.

The essential rank-zero and rank-one arrangements are irreducible. For n ≥ 2,
the essential rank-two arrangement of n lines is irreducible iff n > 2. For n = 2, this
arrangement is reducible being the cartesian product of two rank-one arrangements.

A rank-three arrangement is irreducible iff it is not gisomorphic to the cartesian
product of the rank-one arrangement and the rank-two arrangement of n lines for
some n ≥ 2.

Exercise 1.49. Give an example of an arrangement A and a flat X where A is
prime but AX is not prime. Similarly, give an example where A is prime but AX is
not prime.

1.9. Generic hyperplanes and adjoints of arrangements

Every arrangement A has an adjoint arrangement “A. Chambers of “A corre-
spond to hyperplanes which are generic wrt A (under an appropriate notion of
equivalence).

1.9.1. Generic hyperplane. Let A be any arrangement of rank at least 1 with
ambient space V . A generic hyperplane wrt A is a codimension-one subspace of V
which contains the central face O but does not contain any vertex of A. A generic
half-space wrt A is a half-space of V whose bounding hyperplane is generic wrt A.

Adding a generic hyperplane, say H, to A yields a new arrangement A′. Let
us compare the set of faces of the two arrangements. We say H cuts a face F of A
if there are points of F which lie strictly on both sides of H. A face F of A which
is cut by H splits into three distinct faces of A′: one face consists of those points
of F which lie on H, while the remaining two consist of those points of F which lie
on either side of H. In contrast, a face of A which is not cut by H remains a face
of A′.
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An illustration is given below.

H

The figure shows a rank-three arrangement A consisting of five hyperplanes (great
circles in this case). Only one half of the arrangement is visible in the picture, the
other half being on the backside. The hyperplane H, shown as a dotted line, does
not contain any vertex of A, so it is generic. Observe that an edge which is cut by
the dotted line gives rise to two edges and one vertex in the new arrangement A′.
Similarly, a chamber which is cut by the dotted line gives rise to two chambers and
one edge. Edges and chambers not cut by the dotted line remain unchanged.

We say two generic half-spaces are equivalent if they contain the same set of
vertices. Recall that a face is the convex hull of its vertices. Hence, a face is
contained in a generic half-space h iff all its vertices are contained in h. As a
consequence, two generic half-spaces are equivalent iff they contain the same set of
faces.

1.9.2. Adjoint of an arrangement. For each subspace X of a vector space V ,
let

X⊥ = {f ∈ V ∗ | f(x) = 0 for all x ∈ X}

be the orthogonal space. It is a subspace of the dual space V ∗.
Let A be an arrangement with ambient space V and center O. For a rank-one

flat X of A, X⊥ is a hyperplane in O⊥. Letting X run over all rank-one flats of A,
we obtain a hyperplane arrangement “A with ambient space O⊥. This is called the
adjoint of A.

The arrangement “A is always essential. Indeed, if A has rank 0, then O⊥ is
the zero space. Otherwise, choose a chamber C of A and consider its vertices. The
flats X that support them are of rank 1 and span V (the support of C), hence the
corresponding orthogonal spaces X⊥ intersect trivially.

A non-generic hyperplane H wrt A corresponds to a line H⊥ in V ∗ contained in
one of the hyperplanes X⊥. A generic hyperplane wrt A therefore corresponds to a
line in the complement of the arrangement in V ∗. Similarly, a generic half-space h
wrt A corresponds to a ray h⊥ in the complement of the arrangement in V ∗. This
is defined by

h⊥ = {f ∈ H⊥ | f(v) > 0},

where H is the boundary of h and v is any vector in h.
Observe that:

Lemma 1.50. Two generic half-spaces h1 and h2 wrt A are equivalent iff the rays

h⊥1 and h⊥2 are contained in the same chamber of “A. Thus, equivalence classes of

generic half-spaces wrt A correspond to chambers of “A.
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1.10. Separating hyperplanes, minimal galleries and gate property

Recall that an arrangement has an associated cell complex, so concepts related
to cell complexes can be applied to arrangements. We now focus on minimal gal-
leries and the gate property (Section A.2). This is intimately connected to the
notion of separating hyperplanes.

1.10.1. Separating hyperplanes. We say that a hyperplane separates two faces
if they lie on opposite sides of that hyperplane. In terms of sign sequences, the
hyperplane Hi separates faces F and G if ǫi(F ) and ǫi(G) have opposite signs, that
is, one is + and the other is −. Note:

• A hyperplane separates F and F iff that hyperplane does not contain F .
This follows from (1.3). In particular, every hyperplane separates C and
C.
• If H ≤ F and H ≤ G, then a hyperplane separating F and G necessarily

contains H. This follows from (1.4).

A schematic illustration is shown in the picture below on the left; the hyper-
plane H separates chambers C and D, while H′ does not separate C and D. The
same is shown in the picture on the right in a concrete rank-three arrangement.

C
D

H

H′

C D

H

H′

Lemma 1.51. Suppose H ≤ D and C is a chamber. The following are equivalent.

• HC = D.
• If a hyperplane separates C and D, then it does not contain H.
• If a hyperplane contains H, then it does not separate C and D.

Proof. This can be deduced from (1.5). The third statement is the contrapositive
of the second. �

Exercise 1.52. Check that: A hyperplane H separates chambers C and D iff
FC 6= FD for any panel F with support H.

1.10.2. Minimal galleries. The cell complex of an arrangement A is gallery con-
nected. This can be deduced, for instance, from Lemma 1.32 and Lemma B.6. (Use
the coatom connectedness property.) So we can talk of minimal galleries. A mini-
mal gallery from C to D is shown in the picture below. In each step, we move from
a chamber to an adjacent chamber along a panel.

C
D
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A key observation is that minimal galleries can be handled using separating
hyperplanes:

(1.25) C --E --D ⇐⇒ If a hyperplane separates C and E,
then it also separates C and D.

Recall that the lhs means that there is a minimal gallery from C to D which passes
through E.

Consider the following pictures.

C
D

C E
D

C

E′

D

Four hyperplanes separate C and D. They are highlighted in the first picture.
Exactly two of these separate C and E and hence C --E --D. This is shown in the
second picture. Three hyperplanes separate C and E′, but one of them does not
separate C and D. So C --E′ --D fails. This is shown in the third picture.

The characterization (1.25) gives an algorithm to produce minimal galleries:
Suppose we are given chambers C and D. Starting with C, at each step move
to an adjacent chamber along a panel whose support separates C and D and this
hyperplane has not been crossed before. By this procedure, we will eventually reach
D via a minimal gallery. Further, any minimal gallery from C to D arises by this
procedure.

Proposition 1.53. For any face H and chamber C, there exists a minimal gallery
HC --C --HC. In particular, for any chambers C and D, we have C --D --C. In
other words, any minimal gallery starting at a chamber C can to extended to end
at its opposite C.

Proof. We employ (1.25). Suppose Hi separates C and HC. This means that
ǫi(C) and ǫi(H) have opposite signs. Thus, ǫi(H) and ǫi(H) have opposite signs,
and Hi separates HC and HC. This proves the first statement. To get the second
statement, take H to be a chamber. �

The opposition map preserves minimal galleries. That is,

C --D --E ⇐⇒ E --D --C.

This is because a hyperplane separates two chambers iff that hyperplane separates
their opposites.

Lemma 1.54. The Tits projection preserves minimal galleries. That is, for any
face K,

(1.26) C --D --E =⇒ KC --KD --KE.

Proof. We employ (1.25). Suppose Hi separates KC and KD. This means that
ǫi(K) = 0, and ǫi(C) and ǫi(D) have opposite signs. Since C --D --E, we deduce
that ǫi(C) and ǫi(E) also have opposite signs, and hence so do ǫi(KC) and ǫi(KE).
So Hi separates KC and KE. �
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Corollary 1.55. Suppose C --D --E, and K is a face of E such that KC = E.
Then KD = E.

The picture below on the left illustrates Lemma 1.54, while the one on the right
illustrates Corollary 1.55.

C

D

E
K

KC

KD

KE K

C

D

E

1.10.3. Gallery distance. The gallery distance dist(C,D) is the minimum length
of a gallery connecting C and D. It is equal to the number of hyperplanes which
separate C and D. It verifies the familiar properties of a metric:

dist(C,D) ≥ 0 with equality iff C = D,(1.27a)

dist(C,D) = dist(D,C),(1.27b)

dist(C,E) ≤ dist(C,D) + dist(D,E) with equality iff C --D --E.(1.27c)

The maximum gallery distance is dist(C,C). It is independent of C and equal to
the number of hyperplanes in the arrangement.

Two chambers C and D are adjacent iff dist(C,D) = 1 iff there is a unique
hyperplane which separates C and D.

More generally: For any faces F and G, define dist(F,G) to be the number of
hyperplanes which separate F and G. Some simple observations are listed below.

(1.28) dist(F,G) = dist(FG,GF ).

(1.29) dist(F,G) = 0 ⇐⇒ FG = GF.

If F and G have the same support, and F ≤ C, then
(1.30) dist(F,G) = dist(C,GC).

For a fixed flat X, dist(F,G), as F and G vary over faces with support X, is
maximum when G = F . This maximum value is the number of hyperplanes which
do not contain X.

In the picture below on the left, dist(F,G) = 3, while in the picture on the
right, dist(F,G) = 2.

C

GC

F

G

C

GC

F
G

Warning. Faces F and G with the same support, say X, correspond to chambers
of the arrangement AX under X. However, dist(F,G) is in general not the gallery
distance between F and G in AX but larger than it. Intuitively, this is because
there is more room to move in A than in AX.
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1.10.4. Chamber graph. The chamber graph of an arrangement A is the graph
which has chambers for vertices, and edges between adjacent chambers.

The chamber graph of A is connected. This is a reformulation of the fact that
A is gallery connected. In addition, the chamber graph is bipartite. To see this, fix
a chamber C, and put all chambers at an even distance from C in one part, and all
chambers at an odd distance in the other. This works since two chambers both at
an even (or odd) distance from C cannot be adjacent. The bipartition can also be
characterized as follows: D and D′ belong to the same part iff dist(D,D′) is even.

A bipartite graph is balanced if the two parts have the same cardinality.

Exercise 1.56. Show that the chamber graph of an arrangement with an odd
number of hyperplanes is a balanced bipartite graph. (Use the opposition map.)
The result is false in general for arrangements with an even number of hyperplanes.
For instance, for the smallest nonsimplicial arrangement, the eight triangles are in
one part, while the six quadrilaterals are in the other part.

A related result is given in Exercise 5.7 with further considerations in Sec-
tion 8.2.2.

1.10.5. Gate property. The following fact is of fundamental importance:

Proposition 1.57. For chambers C and D, and H any face of D, there exists a
minimal gallery C --HC --D.

Proof. We employ (1.25). Suppose Hi separates C and HC. This means that
ǫi(C) and ǫi(H) have opposite signs. Since H is a face of D, ǫi(H) and ǫi(D) have
the same sign. Thus, Hi separates C and D. �

A schematic illustration is shown below.

HCD

C

H

A concrete illustration in a rank-three arrangement is shown below.

H

C
D

HC

As a consequence: The cell complex of A satisfies the gate property (Defini-
tion A.4). The gate of the top-star of H wrt C is the chamber HC. In other words,
HC is the chamber closest to C in the gallery metric having H as a face, and more
precisely

(1.31) dist(C,D) = dist(C,HC) + dist(HC,D)

for any chamberD greater thanH. This is another way to understand the geometric
meaning of the Tits product.
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Exercise 1.58. For H ≤ D, there exists a minimal gallery from C to D passing
through HC. However, a minimal gallery from C to D does not necessarily have
to pass through HC. Give an example.

Exercise 1.59. By Proposition A.2, top-stars in an arrangement are also gated
wrt each other. Describe all gate pairs.

1.10.6. Minimal galleries for faces. Minimal galleries also make sense for faces
with the same support (by working in the arrangement under that support). Sup-
pose F , G and H are faces with the same support, say X. Then F --G --H denotes
a minimal gallery in AX.

Proposition 1.60. There exists a minimal gallery HG --GH --GH --HG for any
faces G and H. In particular, when G and H have the same support, we have
H --G --H.

Proof. First note that as required all faces involved in the gallery have the
same support. So we may assume that they are all chambers. Apply Proposi-
tion 1.53 with C = GH, to get HG --GH --HG. By the gate property, we have
GH --GH --HG. Now refine the first using the second. �

For faces F , G and H with the same support, and for any face K,

(1.32) F --G --H ⇐⇒ FK --GK --HK.

One can prove this using (1.25). The key observation is that a hyperplane separates
F and G iff it separates FK and GK.

Exercise 1.61. Show: For any face K, F --G --H implies KF --KG --KH.

1.10.7. Properties of separating hyperplanes. For chambers C and D, let
g(C,D) denote the set of hyperplanes which separate C andD. Note that g(C,D) =
g(D,C). For any chambers C, D and E and hyperplane H,

(1.33) H ∈ g(C,E) ⇐⇒ Either H ∈ g(C,D) and H 6∈ g(D,E),

or H 6∈ g(C,D) and H ∈ g(D,E).

Also,

(1.34) g(C,D) ⊆ g(C,E) ⇐⇒ C --D --E ⇐⇒ g(C,D) ⊔ g(D,E) = g(C,E).

The first equivalence is a reformulation of (1.25). The second can be deduced from
the first by using (1.33).

Similarly, for chambers C and D, let r(C,D) denote the set of half-spaces which
contain C but do not contain D. In other words, h ∈ r(C,D) iff C lies in h while
D lies in h. It follows that

h ∈ r(C,D) ⇐⇒ h ∈ r(D,C).
In contrast to the previous situation, the order in which C and D are written is
crucial now. For any chambers C, D and E and half-space h,

(1.35) h ∈ r(C,E) ⇐⇒ Either h ∈ r(C,D) and h 6∈ r(D,E),

or h 6∈ r(C,D) and h ∈ r(D,E).

Also,

(1.36) r(C,D) ⊆ r(C,E) ⇐⇒ C --D --E ⇐⇒ r(C,D) ⊔ r(D,E) = r(C,E).
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Note that g(C,D) consists of hyperplanes bounding the half-spaces in r(C,D).
Similarly, r(C,D) consists of half-spaces containing C whose bounding hyperplanes
are in g(C,D).

Basic properties of the sets r(C,D) are listed below.

Proposition 1.62. For any chamber C,

(1.37a) r(C,C) = ∅.
For any chambers C and D, and faces F and G with the same support,

(1.37b) r(FC,GC) = r(FD,GD).

For any minimal gallery C --D --E,

(1.37c) r(C,E) = r(C,D) ⊔ r(D,E).

For any C, and G a face of D,

(1.37d) r(C,D) = r(C,GC) ⊔ r(GC,D).

For any D, and F a face of C,

(1.37e) r(C,D) = r(C,FD) ⊔ r(FD,D).

For any chambers C and D, and faces F and G with the same support,

(1.37f) r(FC,FD) = r(GC,GD).

For any chambers C and D,

(1.37g) r(C,D) = r(D,C).

The situation in (1.37b) and (1.37f) is illustrated below.

D

C

FC

FD

F
GC

GD

G

Proof. Identity (1.37a) is clear. For (1.37b), note that

h ∈ r(FC,GC) ⇐⇒ The bounding hyperplane of h separates F and G,

with h containing F and h containing G ⇐⇒ h ∈ r(FD,GD).

(1.37c) is contained in (1.36). For (1.37d) and (1.37e): By the gate property, for
any face G of D, there exists a minimal gallery C --GC --D, and for any face F
of C, there exists a minimal gallery C --FD --D. Now apply (1.37c). For (1.37f),
note that for h to belong to either side, its bounding hyperplane must contain both
F and G. Further, in this situation, FC lies in h iff GC lies in h, and similarly,
FD lies in h iff GD lies in h. For (1.37g), note that h contains C iff h contains C,
and similarly, h contains D iff h contains D. �
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Proposition 1.62 is also true with ‘r’ replaced by ‘g’ everywhere.

1.11. Combinatorially isomorphic arrangements

Recall that two arrangements are combinatorially isomorphic, or cisomorphic,
if their posets of faces are isomorphic. Let us look at this notion in more detail.

Proposition 1.63. Let A and A′ be arrangements, and ϕ : Σ[A] → Σ[A′] be any
bijection between their sets of faces. Then ϕ is an isomorphism of posets iff ϕ is
an isomorphism of monoids.

Proof. Let ψ denote the inverse of ϕ. Backward implication. Suppose F ≤ G.
Then G = FG. Hence ϕ(G) = ϕ(FG) = ϕ(F )ϕ(G). So ϕ(F ) ≤ ϕ(G). Thus, ϕ is
order-preserving. By symmetry, ψ is also order-preserving.

Forward implication. First observe that ϕ and ψ send adjacent chambers to
adjacent chambers, so they preserve galleries. This implies that they are both non-
increasing wrt gallery distance. So in fact, they preserve gallery distances. Now
let F be a face and C a chamber. The chambers greater than F are in bijection
with chambers greater than ϕ(F ). Hence, from the gate property (1.31), we deduce
that ϕ(FC) = ϕ(F )ϕ(C). Thus, ϕ preserves Tits projection of chambers. For the
general case, we employ Exercise 1.8 and the fact that ϕ preserves meets:

ϕ(FG) = ϕ(
∧
FC) =

∧
ϕ(FC) =

∧
ϕ(F )ϕ(C) = ϕ(F )ϕ(G).

Also ϕ preserves the central face since it is the minimum element. So ϕ is a
morphism of monoids, and by symmetry, so is ψ. �

Corollary 1.64. Two arrangements are cisomorphic iff their Tits monoids are
isomorphic.

Observe that a morphism of monoids ϕ : Σ[A]→ Σ[A′] induces a commutative
diagram of monoids

Σ[A] ϕ
//

s
��

Σ[A′]

s
��

Π[A]
ϕ

// Π[A′].

Further, if ϕ is an isomorphism, then so is ϕ. In conjunction with Proposition 1.63,
we obtain:

Corollary 1.65. A cisomorphism of arrangements induces an isomorphism be-
tween their posets of flats (and hence a bijection between the two sets of hyper-
planes).

Corollary 1.66. A cisomorphism preserves gallery distances, and more generally,
distances between faces. It also preserves opposite faces.

Proof. Let ϕ be a cisomorphism. In the proof of Proposition 1.63, we saw that
ϕ preserves gallery distances. To see that ϕ preserves distances between faces: Say
F and G have same support and F ≤ C. Then ϕ(F ) ≤ ϕ(C), and ϕ(F ) and ϕ(G)
have the same support. Employing (1.30),

dist(ϕ(F ), ϕ(G)) = dist(ϕ(C), ϕ(G)ϕ(C)) = dist(ϕ(C), ϕ(GC))

= dist(C,GC) = dist(F,G).
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For arbitrary faces F and G, we employ (1.28) and apply the above result to FG
and GF (which have the same support). The last claim also follows since opposite
faces are the farthest apart within their support. �

1.12. Partial order on pairs of faces

Fix an arrangement A. Recall the set of faces Σ[A], the set of chambers Γ[A],
and the set of flats Π[A]. We now define partial orders on pairs of chambers, pairs
of faces, and on pairs of flats.

1.12.1. Pairs of chambers. We begin with the partial order on pairs of chambers.
We say that (C1, D1) ≤ (C2, D2) in Γ[A]× Γ[A] if

(i) D1 = D2 = D (say),
(ii) C2 --C1 --D.

This is illustrated below.

C2

C1

D

D = D1 = D2

Lemma 1.67. For a face G, and chambers E, E′ and D with G ≤ D and G ≤ E′,

(E′, D) ≥ (E,D) ⇐⇒ (GE′, D) ≥ (GE,D).

E′

E

E′

DGE

GE′G
G

Proof. The forward implication follows from (1.26) by projecting E′ --E --D on
G. We now prove the backward implication. We are given GE′ --GE --D. Since
GE′ and E′ are opposite chambers in the star of G, by Proposition 1.53, the
minimal gallery can be extended to GE′ --GE --D --E′. By restricting, we have
GE --D --E′. Now since E′ and E′ are opposite chambers, we have E′ --E --E′.
Since G is a face of E′, by the gate property, this refines to E′ --E --GE --E′.
Combining this with GE --D --E′, we obtain E′ --E --D as required. �

1.12.2. Pairs of faces. We now define a partial order on pairs of faces which
extends the partial order on chambers. We say that (H1,K1) ≤ (H2,K2) in Σ[A]×
Σ[A] if

(i) K1 = K2 = K (say),
(ii) H2H1 = H2 and KH1 = KH2,
(iii) H2K --H1K --KH2.

It is clear from (ii) above that H2K, H1K and KH2 all have the same support; so
condition (iii) makes sense.
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H1K
H2K

F

H1

H2

K

K = K1 = K2

F = KH1 = KH2

Let us check that this is indeed a partial order. Reflexivity and transitivity are
clear. To check antisymmetry, suppose (H1,K) ≤ (H2,K) and (H2,K) ≤ (H1,K).
Then H1 and H2 have the same support, and H1K = H2K. So by Proposition 1.17,
H1 = H2.

Lemma 1.68. For any faces G, H, H ′ and K with G ≤ K and G ≤ H ′,

(H ′,K) ≥ (H,K) ⇐⇒ (GH ′,K) ≥ (GH,K).

H′ GH′

G
G

H GH

K

Proof. Let us first look at condition (ii) for the lhs and for the rhs. Since G ≤ H ′,
we deduce that H ′ and GH ′ have the same support. It contains the support of H
iff it contains the support of GH. Next, since G ≤ K, we have KH = KGH and
KH ′ = KGH ′. Hence KH = KH ′ iff KGH = KGH ′.

To check condition (iii), we may assume that H, H ′ and K are chambers. In
this case, the claim reduces to Lemma 1.67. �

Lemma 1.69. Let G, H, F and K be any faces with G ≤ H. Then

(F,K) ≥ (H,K) ⇐⇒
(GF,GK) ≥ (H,GK), FG = F, and

FK --GFK --GKF --KF.

GF

F

KF

G GK

H

K

Proof. The conditions in the lhs can be explicitly written as

(a) KF = KH, s(H) ≤ s(F ), FK --HK --KF.

Similarly, the conditions in the rhs can be explicitly written as

GKH = GKF, s(H) ≤ s(GF ) = s(F ),

GFK --HK --GKF, FK --GFK --GKF --KF.

The two minimal galleries can be combined as FK --GFK --HK --GKF --KF ,
which by the gate property is equivalent to FK --HK --KF . Also the support
condition can be simplified to s(H) ≤ s(F ). So conditions in the rhs can be rewritten
as

(b) GKH = GKF, s(H) ≤ s(F ), FK --HK --KF.
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It is clear that (a) implies (b). For the reverse implication, apply Corollary 1.55 to
FK --HK --KF with C = FK, D = HK and E = KF to deduce KF = KH. �

For any face A, we use ≤A to denote the restriction of the above partial order
to faces greater than A. Using convexity of stars, one can see that this agrees with
the partial order on pairs of faces in AA. Lemma 1.68 may be reformulated as
follows.

Lemma 1.70. For any faces G, H and K (all greater than A) with G ≤ K, there
is a bijection between the sets

{H ′ | (H ′,K) ≥A (H,K), AG ≤ H ′} −→ {H ′′ | (H ′′,K) ≥G (GH,K)}.

It sends H ′ to GH ′, and the inverse sends H ′′ to AGH ′′.

1.12.3. Faces and chambers. There are two more interesting posets that lie
between the poset on pairs of chambers and the poset on pairs of faces. They are
obtained by taking faces in one coordinate and chambers in the other coordinate.
Explicitly, the partial orders are as follows.

We say that (H1, D1) ≤ (H2, D2) in Σ[A]× Γ[A] if
(i) D1 = D2 = D (say),
(ii) H2H1 = H2,
(iii) H2D --H1D --D.

We say that (C1,K1) ≤ (C2,K2) in Γ[A]× Σ[A] if
(i) K1 = K2 = K (say),
(ii) KC1 = KC2 = D (say),
(iii) C2 --C1 --D.

The inclusion maps in the commutative diagram

Γ[A]× Γ[A] //

��

Γ[A]× Σ[A]

��

Σ[A]× Γ[A] // Σ[A]× Σ[A]

are all order-preserving.

1.12.4. Pairs of flats. We now define a partial order on pairs of flats. We say
that (X1,Y1) ≤ (X2,Y2) in Π[A]×Π[A] if

(i) Y1 = Y2 = Y (say),
(ii) X1 ≤ X2, and Y ∨X1 = Y ∨X2,
(ii’) X1 ≤ X2 ≤ Y ∨X1.

Conditions (ii) and (ii’) are equivalent.
For any flat Z, we use ≤Z to denote the restriction of the above partial order

to flats greater than Z.

Exercise 1.71. Check that the map s× s : Σ[A] × Σ[A] ։ Π[A] × Π[A] is order-
preserving.
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1.13. Characteristic polynomial and Zaslavsky formula

We now look at some enumerative aspects of arrangements. A key role is played
by the Möbius function. This is conveniently encoded in a polynomial called the
characteristic polynomial. The value of this polynomial at −1 is (up to sign) the
number of chambers in the arrangement. This is known as the Zaslavsky formula.
We also discuss the Whitney numbers of the first kind which are obtained as coef-
ficients of the characteristic polynomial.

The Möbius function of a poset is reviewed in Section C.1.

Notation 1.72. For any arrangementA, let c(A) denote the number of chambers in
A. Recall that there are a number of arrangements associated to A such as AF ,AX,
and so on. If A is understood from the context, then we will allow ourselves to
write cF instead of c(AF ), cX instead of c(AX), and so on.

1.13.1. Euler characteristic. Recall that faces of an arrangement A are cells in
a regular cellular decomposition of a sphere of dimension rk(A)−1. Taking reduced
Euler characteristics (A.1), we obtain

(1.38)
∑

F∈Σ[A]

(−1)rk(F ) = (−1)rk(A).

For any flat X,

(1.39)
∑

Y:Y≤X

(−1)rk(Y)cY = (−1)rk(X),

where cY is the number of faces of support Y.
The two identities are equivalent. Applying the first to AX yields the second,

while applying the second to X = ⊤ yields the first.

Recall the notion of Eulerian poset from Section C.1.6. The poset of faces Σ[A]
of any arrangement A is Eulerian, that is,

(1.40) µ(H,G) = (−1)rk(G)−rk(H)

for H ≤ G. This is clear for a simplicial arrangement since each interval in the
poset of faces is Boolean. For the general case, we can use Lemma 1.31.

Proposition 1.73. In any arrangement, for faces O < F ≤ G,
∑

H:HF=G

(−1)rk(H) = 0.

Proof. Any interval in the poset of faces is a lattice. Apply the Weisner formula
(C.7a) to the lattice [O,G] with z := G to obtain

∑

H:H∨F=G

µ(O,H) = 0.

(The lattice [O,G] consists of all faces smaller than G.) Now use Exercise 1.21 and
(1.40). �

As a special case: For any face G,

(1.41)
∑

F :F≤G

(−1)rk(F ) =

®
1 if G = O,

0 otherwise.
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Proposition 1.74. In any arrangement of rank at least 1,

(1.42)
∑

Y∈Π[A]

(−1)rk(Y) cYcY = 0 or equivalently
∑

F

(−1)rk(F )cF = 0.

Proof. Using the definition of cF and (1.41),
∑

F

(−1)rk(F )cF =
∑

C

∑

F :F≤C

(−1)rk(F ) = 0.

(The assumption on the rank ensures that C 6= O.) The fact that the inside sum
is zero can also be seen from the Eulerian property (1.40) and (C.5b). �

1.13.2. Möbius number. For any arrangement A, define
µ(A) := µ(⊥,⊤).

We refer to this as the Möbius number of A. It is the value of the Möbius function
on the largest interval in the lattice of flats Π[A].
Proposition 1.75. Suppose Y > ⊥. Then for any flat Z,

(1.43a)
∑

X:Y∨X=Z

µ(AX) = 0.

Suppose Y < ⊤. Then for any flat Z,

(1.43b)
∑

X:Y∧X=Z

µ(AX) = 0.

Proof. This is the Weisner formula (Proposition C.4) specialized to the lattice of
flats. �

Proposition 1.76. For any arrangement A,
(1.44) (−1)rk(A)µ(A) = |µ(A)| 6= 0.

In other words, the Möbius number of an arrangement is nonzero and its sign
is the same as the parity of its rank.

Proof. In view of Lemma 1.28, this is a special case of Proposition C.6. �

1.13.3. Zaslavsky formula. The Zaslavsky formula counts the number of cham-
bers in an arrangement in terms of the absolute values of the Möbius function of
the lattice of flats. It is given as follows.

Theorem 1.77. For any arrangement A,
(1.45)

∑

X∈Π[A]

|µ(X,⊤)| =
∑

X∈Π[A]

|µ(AX)| = c(A),

where c(A) is the number of chambers of A.
Proof. For each flat X, put

f(X) := (−1)rk(X)cX,

where cX is the number of faces of support X. Then, by (1.39),

g(Y) :=
∑

X:X≤Y

f(X) =
∑

X:X≤Y

(−1)rk(X)cX = (−1)rk(Y).
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Now, by Möbius inversion (C.12),

f(⊤) =
∑

X

g(X)µ(X,⊤).

The result now follows by applying Proposition 1.76 to each AX. �

There is a similar formula for face enumeration which is given below.

Corollary 1.78. For any arrangement A,

(1.46)
∑

X≤Y

|µ(X,Y)| =
∑

X≤Y

|µ(AY
X)| = d(A),

where d(A) is the number of faces of A. (The sum is over both X and Y.)

Proof. Each face is a chamber of the arrangement under its support. So the result
follows by applying the Zaslavsky formula (1.45) to AY for each flat Y. �

Exercise 1.79. Show that
∑

rk(Y)=i,X≤Y

|µ(X,Y)|

equals the number of faces of rank i. The sum is over both X and Y with i fixed.

Lemma 1.80. We have

(1.47) µ(A) =
∑

T

(−1)|T |,

where the sum is over all subsets T of the set of hyperplanes such that the intersec-
tion of the elements in T is the minimum flat.

Proof. The formula is clear if A has no hyperplanes. So assume that A has rank
at least one. The alternating sum as in the rhs above but taken over all subsets is
zero. Now apply induction to AX for each flat X > ⊥, and use (C.5b). �

For instance, for the smallest nonsimplicial arrangement A of four hyperplanes,
the intersection of any three or all four hyperplanes is the minimum flat, hence
µ(A) = (−1)4 + 4(−1)3 = −3.

Theorem 1.81. For any arrangement A,

(1.48) c(A) =
∑

T

(−1)d(T ),

where the sum is over all subsets T of the set of hyperplanes, and d(T ) is the
cardinality of T minus the codimension of the flat obtained by intersecting elements
in T . (If T is the empty subset, then d(T ) = 0.)

Proof. From (1.44) and (1.47), we see that (1.48) is equivalent to the Zaslavsky
formula (1.45). �

We refer to (1.48) as the Winder formula.
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1.13.4. Characteristic polynomial. For any arrangement A, define a polyno-
mial with integer coefficients in the variable t by

(1.49) χ(A, t) :=
∑

Y

µ(Y,⊤) trk(Y).

This is the characteristic polynomial of A. Its degree equals the rank of A.
If A has rank 0, then χ(A, t) = 1, independent of t.

Let us now consider the values t = 0, 1,−1. For t = 0, only the summand for
Y = ⊥ contributes to the rhs of (1.49). Thus,

(1.50a) χ(A, 0) = µ(A).
For t = 1, using (C.5a) and (C.5b),

(1.50b) χ(A, 1) =
®
1 if A has rank 0,

0 otherwise.

The case t = −1 is nontrivial. Using (1.44) and the Zaslavsky formula (1.45),

(1.50c) χ(A,−1) = (−1)rk(A)c(A),
where c(A) is the number of chambers in A.

Lemma 1.82. For any flat Z of an arrangement A,

(1.51) trk(Z)χ(AZ, t) =
∑

X:X∨Z=⊤

χ(AX, t).

Proof. The rhs can be manipulated as follows.
∑

X:X∨Z=⊤

χ(AX, t) =
∑

X:X∨Z=⊤

∑

Y:Y≤X

µ(Y,X) trk(Y)

=
∑

Y

trk(Y)
∑

X:X∨Z=⊤,X≥Y

µ(Y,X).

Now split this sum into two, depending on whether Y ≥ Z or not. The second sum
is zero by the Weisner formula (1.43a): Use ⊤ for Z, Y for ⊥, and Y ∨ Z for Y. In
the first sum, since Y ≥ Z, X is forced to be ⊤, and so the sum becomes

∑

Y:Y≥Z

µ(Y,⊤) trk(Y) = trk(Z)χ(AZ, t)

as required. �

1.13.5. Whitney numbers of the first kind. For any arrangement A and any
integer 0 ≤ k ≤ rk(A), define

(1.52) wy(A, k) :=
∑

X: rk(X)=k

µ(X,⊤) =
∑

X: rk(X)=k

µ(AX).

These are the Whitney numbers of the first kind .

Lemma 1.83. The number wy(A, k) is the coefficient of tk in the characteristic
polynomial χ(A, t).
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This follows from the definitions. In the sum (1.52), observe from (1.44) that
all summands have the same sign, namely, (−1)rk(A)−k. The Whitney numbers are
positive or negative depending on this sign. Also note that

wy(A, 0) = µ(A),(1.53a)

wy(A, rk(A)) = 1,(1.53b)
∑

k

wy(A, k) = 0 for rk(A) > 0,(1.53c)

∑

k

(−1)kwy(A, k) = (−1)rk(A)c(A).(1.53d)

The last identity follows from Lemma 1.83 and (1.50c).

1.13.6. Examples. The Möbius number and characteristic polynomial of an ar-
rangement only depend on its lattice of flats. Hence, cisomorphic arrangements
have the same Möbius number and characteristic polynomial.

For the rank-one arrangement, we have

(1.54) c(A) = 2, d(A) = 3, µ(A) = −1, χ(A, t) = t− 1.

For the rank-two arrangement of n lines, with n ≥ 2, we have

(1.55)

c(A) = 2n,

d(A) = 4n+ 1,

µ(A) = n− 1,

χ(A, t) = t2 − nt+ n− 1.

Exercise 1.84. For rank-two arrangements, verify formulas (1.42), (1.48) and
(1.51) directly.

Notes

Arrangements. Hyperplane arrangements are treated by Abramenko and Brown [2,
Chapter 1], Orlik [308, 309], Orlik and Terao [312] and Stanley [381]. Among earlier
references, we mention [201], [420], [103] and [229]. Short introductions can be found in
[8, Sections 1.1 and 1.2], [19, Section 6], [96, Appendix A], [202, Chapter 18] and [382,
Section 3.11]. Information related to classification of rank-three arrangements can be
found in the survey article [203] by Grünbaum. Oriented matroids and convex polytopes
are two notions closely related to hyperplane arrangements. The standard reference for
oriented matroids is [75]. For convex polytopes, see [202, 295, 427].

The Tits product appeared in the work of Tits on Coxeter complexes and buildings
[396, Section 2.30]. He used the notation projF G instead of FG, since he viewed this
operation as a geometric tool rather than as a product. The associativity and Lemma 1.6,
item (1) is given in [397, Proposition 1]. Bland considered this product in the context of
oriented matroids [80, Section 5, page 62]. Also see [312, Definition 2.21 and Proposi-
tion 2.22] and [2, Section 1.4.6]. The fact that the Tits monoid is a LRB was first observed
by Brown [96]. Subsemigroups of the Tits monoid are studied in [287].

An arrangement of hyperplanes has an associated matroid. The arrangements un-
der and over a flat correspond to the matroid operations of contraction and restriction,
respectively. There is no uniform terminology or notation in the literature for these oper-
ations at the level of arrangements. The term localization is sometimes used for AX [113].
Several authors use restriction for AX, including Orlik and Terao [312, Definition 1.13]
(even though this conflicts with the usage in matroid theory).
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44 1. HYPERPLANE ARRANGEMENTS

The lattice of flats is often called the intersection lattice in the literature. Many
authors order flats by reverse inclusion, contrary to our convention. More precisely, we
view flats as subsets of the ambient space and order them by inclusion. Many authors
view them instead as closed subsets of the ground set of the associated matroid (the set of
hyperplanes in the arrangement), and order them by inclusion as such. The two choices
lead to opposite partial orders, with the latter resulting in a geometric lattice. Chambers
are often called regions. They are also called topes in the oriented matroid literature.

The fact that the chamber graph is bipartite goes back to Eberhard [155], for affine
arrangements of lines in the plane. See also [364, 200].

Partial order on chambers. For each chamber D, one can define a partial order on
the set of chambers: C1 ≤ C2 if C2 --C1 --D. This is often called the weak order in the
literature. Phrased in terms of separating hyperplanes, it appears in work of Edelman
[157]. In the more general context of oriented matroids, it appears in Mandel’s thesis
[285]. For reflection arrangements, the weak order on chambers corresponds to the weak
order on the Coxeter group. For the latter, see (5.8) and for more details [73, Chapter
3]. For simplicial arrangements, Björner, Edelman and Ziegler [74] showed that this poset
is always a lattice; also see [75, Proposition 4.4.5]. For further results, see [334, 335,

293]. The weak order is a connected component of the poset of pairs of chambers in
Section 1.12.1. The latter is considered in [8, Definition 5.2.2]. Lemma 1.67 is [8, Fact
7.3.1]. The partial order on pairs of faces dates back to the same time.

Characteristic polynomial. Information on the characteristic polynomial can be found
in [381] and [19, Section 6.2]. Two important results discussed in those references but
not here are the deletion-contraction recurrence and the finite field method. See also [18].

Information on the Whitney numbers of the first and second kind of a graded poset is
given in [13, Pages 155-156]. It follows from Proposition 1.76 that the Whitney numbers
of the first kind of an arrangement alternate in sign. An expression for these quantities
in terms of volumes is given in [243, Theorem 5]. The absolute values of the Whitney
numbers of the first kind constitute a log-concave sequence. This long-standing conjecture
has been settled in recent years by Huh [221] and extended to matroids in [222] and [3].

Zaslavsky formula. Enumeration of faces in arrangements has a long history going back
at least to Steiner [387]. See [201, page 46] for a more complete list of references.

Theorem 1.77 (and Corollary 1.78) as well as its proof is due to Zaslavsky [420,
Theorem A]. The proof has its origins in work of Buck [100]. The result was discovered
independently by Las Vergnas in the more general context of oriented matroids [256,
Proposition 8.1] or [259, Theorem 3.1]. The Zaslavsky formula is also discussed in [75,
Theorem 4.6.1], [312, Theorem 2.68] or [381, Theorem 2.5]. Zaslavsky also considered
very general topological dissections. His fundamental theorem of dissection theory is given
in [419, Theorem 1] or [421, Theorem 1.2]. For related recent work, see [162, Theorems
3.6 and 3.11] and [136, Theorems 4.6 and 4.9]. The latter paper also presents a nice
survey.

Formula (1.48) is due to Winder [414]. Formula (1.47) is given in [312, Lemma
2.35]. It is a special case of the Crosscut Theorem [382, Corollary 3.9.4], also see [382,
Proposition 3.11.3].

More references related to the Zaslavsky formula are given in the notes to Chapter 6
in connection with graphic arrangements.
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CHAPTER 2

Cones

Cones form a nice general class of objects which encompass many other objects
associated to hyperplane arrangements. For instance, faces, flats and half-spaces
are examples of cones. Cones are related to the geometric notion of convexity. Each
cone has a convexity dimension. Cones of convexity dimension either 1 or 2 are
called gallery intervals. The support map on faces extends to cones. We call it the
case map. Top-cones are cones whose case is the maximum flat. There is another
map from cones to flats which we call the base map. The poset of top-cones is join-
distributive, and in particular, upper semimodular and graded. We also discuss
charts and dicharts and relate them to flats and cones, respectively. Finally, we
introduce the notion of a partial-flat as an interpolating object between faces and
flats. Partial-flats are also cones.

Adjunctions between posets play an important role in this chapter. Our exam-
ples include adjunctions between faces and top-cones, between cones and flats, be-
tween flats and charts, between charts and dicharts and between cones and dicharts.
Background information on adjunctions is given in Section B.5.

2.1. Cones and convexity

We begin with cones. Cones bear to half-spaces the same relation that flats
bear to hyperplanes. They can be characterized by using a combinatorial notion of
convexity involving minimal galleries.

2.1.1. Cones. A cone of an arrangement A is a subset of the ambient space which
can be obtained by intersecting some subset of half-spaces in the arrangement.

Let Ω[A] denote the set of all cones. It is a poset under inclusion. The center
of A is the minimum element. Since the intersection of two cones is a cone, meets
exist in this poset. Further, it has a maximum element, namely, the ambient space,
so joins exist as well, and Ω[A] is a lattice. Explicitly, the join of two cones is
the intersection of those half-spaces which contain both of them. We will usually
denote cones by V and W; we will denote their meet by V∧W and join by V∨W.

Recall the poset of faces Σ[A]. Every face is a cone. Further, if a cone V is
smaller than a face G, that is, if V ≤ G, then V is necessarily a face. It follows
that Σ[A] is a convex subposet of Ω[A]. Hence the inclusion Σ[A] →֒ Ω[A] always
preserves meets. It preserves joins whenever they exist in Σ[A]. This makes the
notations F ∨ G and F ∧ G unambiguous. Note very carefully that F ∨ G is in
general only a cone (and not a face).

Recall the lattice of flats Π[A]. Every flat is a cone. This yields a map Π[A] →֒
Ω[A]. This is a lattice homomorphism. This makes the notations X ∨ Y and
X ∧ Y unambiguous. We point out that Π[A] is not a convex subposet of Ω[A] in

45
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46 2. CONES

general: the ambient space and the center are both flats, but clearly not everything
in-between is a flat.

2.1.2. Combinatorial cones. Recall that every point in the ambient space lies
in the interior of a unique face. Suppose V is a cone. If a point lies in V, then
it follows that the corresponding face also lies in V. Thus every cone is a union
of faces. Also observe that if faces F and G lie in V, then FG also lies in V. By
multiplying all the faces lying in V in different orders we obtain the “largest” faces
lying in V. They are all of the same support. We call these the top-dimensional
faces of V. Since faces are closed by convention, we obtain:

Proposition 2.1. A cone is the union of its top-dimensional faces.

This allows us to take a combinatorial approach to cones, generalizing what we
did for flats.

A combinatorial cone is a subset of the set of faces consisting of precisely the
top-dimensional faces of some cone. A combinatorial cone and a cone are equivalent
notions but they are different kinds of objects. The former is a set of faces (all of
the same dimension) while the latter is a subset of the ambient space.

2.1.3. Top-cones. A cone has a dimension, namely, the dimension of any of its
top-dimensional faces. A cone of maximum dimension is called a top-cone.

Proposition 2.2. For a cone V, the following are equivalent.

• V is a top-cone.
• V contains at least one chamber.
• The top-dimensional faces of V are chambers.
• No hyperplane contains V.

A combinatorial top-cone is a combinatorial cone which consists of chambers.
This notion is equivalent to that of a top-cone.

The figure on the left shows a top-cone with four chambers, while the figure on the
right shows a top-cone with eight chambers (three of which are only partly visible).

Let ÛΩ[A] denote the set of all top-cones. It is a poset under inclusion. It is an
upper set in the poset of all cones, and hence a join-semilattice. The ambient space
is the maximum element, while each chamber is a minimal element. Note that the
meet of two distinct chambers does not exist in this poset.

2.1.4. Convexity. In any pure regular cell complex which is gallery connected,
one has the notion of convexity (Section A.2.2).

Proposition 2.3. Let A be a nonempty set of chambers. Then the following are
equivalent.

(1) A is a combinatorial top-cone.
(2) A is convex.
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2.1. CONES AND CONVEXITY 47

(3) For any C,D ∈ A and F ≤ C, we have FD ∈ A.
(4) For any C,D ∈ A and F a panel of C, we have FD ∈ A.

Proof. (1) implies (2). This is a consequence of (1.25). We could also do this
argument in two steps. First use (1.25) to deduce that a combinatorial half-space
is convex. Next use that intersection of convex sets is convex.

(2) implies (3). This follows from the gate property (Proposition 1.57).
(3) implies (4). Clear.
(4) implies (1). Let C and E be adjacent chambers such that C belongs to A

but E does not belong to A, and let h be the half-space which contains C but does
not contain E. Let V be the cone obtained by intersecting all half-spaces h which
can be obtained in this manner. We claim that A is the set of chambers contained
in V.

For the purpose of argument, let B denote the set of chambers contained in V.
We claim that any chamber in A is contained in any of the chosen half-spaces h:
Let h, C and E be as above, and let F be the common panel of C and E. Suppose
D ∈ A. Since E 6∈ A, we have FD 6= E. Thus FD = C, and D belongs to h.
Hence, A is a subset of B. For the reverse containment, observe that if C belongs
to A, and D is adjacent to C and belongs to B, then in fact D belongs to A. Since
B is a combinatorial cone, it is convex and hence gallery connected. It follows that
A equals B, as required. �

By passage to arrangements under flats, Proposition 2.3 yields a characteriza-
tion of all combinatorial cones:

Proposition 2.4. Let A be a set of faces all with the same support, say X. Then
the following are equivalent.

(1) A is a combinatorial cone.
(2) A is a convex set of chambers in AX.
(3) For any G,H ∈ A and F ≤ G, we have FH ∈ A.

Exercise 2.5. A subset of a real vector space is convex if it is closed under nonnega-
tive linear combinations of vectors. Let A be any set of chambers in an arrangement,
and X be the corresponding subset of the ambient space. Show that A is convex
iff X is convex.

Exercise 2.6. Show that the convex closure of a set of chambers is their join in
the poset of top-cones.

2.1.5. Closure of combinatorial cones. For a combinatorial cone V, define its
closure to be

(2.1) Cl(V) = {F ∈ Σ[A] | F ≤ G for some G ∈ V}.
This is the same as the set of faces contained in the corresponding (geometric) cone.
It follows that

(2.2) V ≤W ⇐⇒ Cl(V) ⊆ Cl(W)

and

(2.3) Cl(V ∧W) = Cl(V) ∩ Cl(W).

Compare the above with the discussion on combinatorial flats in Section 1.3.3.
The following characterization parallels Proposition 1.16.
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Proposition 2.7. Let A be any set of faces of A. Then A is the closure of a
combinatorial cone iff the following properties hold.

(1) O ∈ A.
(2) If G ∈ A and F ≤ G, then F ∈ A.
(3) If F ∈ A and G ∈ A, then FG ∈ A.

Proof. The necessity of the properties is clear. For sufficiency: By property (1),
A is nonempty. By property (3), the largest faces in A are obtained by multiplying
all the faces in A in different orders. They are all of the same support. It remains
to show that this set is a combinatorial cone. This follows from the characterization
given in Proposition 2.4. �

Exercise 2.8. Let F be a face and V be a cone. Then F belongs to the closure of
V iff all vertices of F belong to the closure of V.

Exercise 2.9. If V and W are combinatorial top-cones with nonempty intersection,
that is, there is a chamber common to both, then V∧W is a top-cone and V∧W =
V ∩W.

2.1.6. Faces and top-stars. Recall from Section 1.7.3 the top-star Γ[A]F of a
face F . It consists of chambers greater than F . Applying Proposition A.5, we
deduce that it is convex. Combining with Proposition 2.3, we obtain: Any top-star
is a combinatorial top-cone.

Consider the maps

(2.4) ϕ : Σ[A]→ ÛΩ[A], F 7→ Γ[A]F
and

(2.5) ψ : ÛΩ[A]→ Σ[A], V 7→
∧

C∈V

C.

Both maps are order-reversing. Further, for any face F and top-cone V,

V ≤ ϕ(F ) ⇐⇒ F ≤ ψ(V).

Both sides are equivalent to the statement that all chambers of V are greater than
F . Also ψϕ = id. In particular, ϕ is injective, while ψ is surjective.

By reversing the partial order on either Σ[A] or ÛΩ[A], both ϕ and ψ become
order-preserving and define an adjunction (Section B.5). Since left (right) adjoints
preserve joins (meets) whenever they exist, we deduce the following. For joinable
faces F and G, and any top-cones V and W,

ϕ(F ∨G) = ϕ(F ) ∧ ϕ(G) and ψ(V ∨W) = ψ(V) ∧ ψ(W).

The first identity is the same as the second identity in Exercise 1.37. Facts relevant
to the second identity: The poset of top-cones is a join-semilattice, while the poset
of faces is a meet-semilattice.

The maps ϕ and ψ induce inverse bijections between the set of faces and the
set of top-stars. In fact, the poset of faces is isomorphic to the dual of the poset of
top-stars, viewed as a subposet of top-cones. This is a specialization of (B.4). The
above fact is also given in the first identity in Exercise 1.37.
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2.1.7. Walls of a cone. Let V be a combinatorial top-cone. A wall of V is a
hyperplane H for which there exist adjacent chambers C and D whose common
panel has support H, and such that C belongs to V but D does not belong to V.
This notion extends to any cone: use this definition in the arrangement under the
flat which supports the top-dimensional faces of the given cone.

Proposition 2.10. A cone is determined by its walls. More precisely, for a cone V,

V =
⋂

Hǫ,

where the intersection is over all walls H of V, and Hǫ denotes the half-space con-
taining V whose bounding hyperplane is H. Further, this expression of V is minimal.
That is, if V is the intersection of some half-spaces, then the bounding hyperplanes
of these half-spaces must include the walls of V. (The half-spaces and hyperplanes
are in the arrangement under a flat.)

Proof. This follows from the proof of Proposition 2.3. �

In the picture below, the top-cone on the left has three walls (indicated by the
thick lines), while the one on the right has two.

We note some other simple examples.

• Any chamber C is a top-cone. The walls of C are precisely the supports
of the panels of C.
• Let F be a face. A wall of the top-star Γ[A]F is precisely a wall of some
chamber E greater than F which does not contain F .
• The ambient space has no walls. More generally, a flat has no walls. In
fact, a cone has no walls iff that cone is a flat.

2.1.8. Opposition map on cones. Recall that every half-space h has an opposite
half-space h (Section 1.1.4). More generally, every cone V has an opposite cone,
denoted V, which is given by

V := {−x | x ∈ V}.
This is the cone obtained by intersecting the half-spaces opposite to those that
define V. If V is a face, then V is precisely its opposite face. In other words, the
opposition map (1.1) extends to

(2.6) Ω[A]→ Ω[A], V 7→ V.

It continues to be an order-preserving involution. In particular,

V ∧W = V ∧W and V ∨W = V ∨W.

Proposition 2.11. Suppose V is a cone. Then V is a flat iff V = V. In particular,
for any cone V, the cones V ∧V and V ∨V are flats.
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Proof. The forward implication is clear, since a flat is a subspace of the ambient
space. For the backward implication: V is an intersection of some subset of half-
spaces. For any such half-space h, V must be contained in h as well as in h, so
it is contained in the boundary of h. Thus V is an intersection of some subset of
hyperplanes and hence a flat. Alternatively: Suppose F is any top-dimensional
face of V. Then so is F , by hypothesis. By Proposition 1.60, F --G --F for any
face G with the same support as F , hence by Proposition 2.4, all such G are top-
dimensional faces of V. So V is a flat. �

Exercise 2.12. Show that: Cones V and V are either equal, or do not have any
top-dimensional faces in common.

Exercise 2.13. Show that: Cones V and V have the same set of walls. In partic-
ular, chambers C and C have the same set of walls.

A projective cone is an unordered pair consisting of a cone and its opposite.
We denote a projective cone by {V,V}. The number of projective cones equals the
number of flats plus half the number of cones which are not flats.

2.2. Case and base maps

The support map from faces to flats extends to a map from cones to flats. We
call it the case map. It is the left adjoint to the inclusion from flats into cones. The
inclusion map also has a right adjoint which we call the base map. The case of a
cone is the join of that cone with its opposite, while the base of a cone is the meet
of that cone with its opposite.

2.2.1. Case map. We extend the support map on faces to cones. The support or
case of a cone V is the smallest flat which contains V. It is the meet of all flats
which contain V, or equivalently, the intersection of all hyperplanes which contain
V. The case map

(2.7) c : Ω[A] ։ Π[A]
sends a cone to its case. It is order-preserving.

Lemma 2.14. For any cone V,

(2.8) c(V) = V ∨V.

In particular, c(V) = c(V).

Proof. This follows from two facts. A flat which contains V necessarily contains
V, and V ∨V is a flat (Proposition 2.11). �

By Proposition 2.1, the case of V is the support of any of its top-dimensional
faces.

The case of a face is its support. In particular, the case of any chamber is the
maximum flat, and the case of a panel is a hyperplane. The case of any flat is the
flat itself. Note that a cone is a top-cone iff its case is the maximum flat.

By construction, for any cone V and flat X,

c(V) ≤Π[A] X ⇐⇒ V ≤Ω[A] X.
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Thus, the case map and the inclusion map define an adjunction, with the case map
being the left adjoint of the inclusion map, see (B.2). As a formal consequence, the
case map preserves joins:

c(V ∨W) = c(V) ∨ c(W).

It does not preserve meets in general. For instance, consider two cones with the
same case X 6= ⊥ whose meet is ⊥. Or, consider two top-cones whose meet is not
a top-cone.

Exercise 2.15. Show that: The case of V is the smallest subspace of the ambient
space which contains V.

2.2.2. Base map. The base of a cone V is the largest flat contained in V. It is
the join of all flats contained in V. The base map

(2.9) b : Ω[A] ։ Π[A]
sends a cone to its base. It is order-preserving.

Lemma 2.16. For any cone V,

(2.10) b(V) = V ∧V.

In particular, b(V) = b(V).

Proof. This follows from two facts. A flat which is contained in V is necessarily
contained in V, and V ∧V is a flat (Proposition 2.11). �

The base of any face is the minimum flat, the base of any flat is the flat itself,
and the base of a half-space is its bounding hyperplane. We deduce that a flat is
contained in a half-space iff it is contained in the base of that half-space. (For the
forward implication, apply the base map.)

By construction, for any cone V and flat X,

X ≤Ω[A] V ⇐⇒ X ≤Π[A] b(V).

Thus, the base map and the inclusion map define an adjunction, with the base map
being the right adjoint of the inclusion map, see (B.2). As a formal consequence,
the base map preserves meets:

b(V ∧W) = b(V) ∧ b(W).

It does not preserve joins in general. For instance, consider a noncentral face and
its opposite.

Proposition 2.17. The base of a cone V is the intersection of the bases of any set
of half-spaces which define V. In particular, the base of a cone is the intersection
of its walls.

Proof. Let A be any set of half-spaces whose intersection is V. Let X denote
the intersection of the bases of the half-spaces in A. Then X is a flat and it is
contained in V, hence it is contained in b(V). Conversely: Since V is contained in
the half-spaces in A, b(V) is contained in their bases, and hence in X. Therefore
X = b(V).

For the second part: The base of a cone remains unchanged if we pass to the
arrangement under the case of the cone. Now apply Proposition 2.10. �
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Exercise 2.18. Let V be a cone. Show that b(V) is the minimum flat iff Cl(V)
does not contain a pair of opposite vertices. Give an example of a top-cone which
is not a chamber but whose base is the minimum flat.

Exercise 2.19. Show that if the base of a cone is a hyperplane then it is either a
half-space or a hyperplane.

Exercise 2.20. Show that: The base of V is the largest subspace of the ambient
space which is contained in V.

2.2.3. Rank one. The poset of cones for the rank-one arrangement has four ele-
ments, namely, the minimum and maximum flats and the two chambers. The case
and base maps are illustrated below.

c b

The case map takes both chambers to the maximum flat, while the base map takes
them to the minimum flat. Both maps preserve the minimum and maximum flats.

2.2.4. Half-flats. We introduce the notion of a half-flat which generalizes the
notion of a half-space.

A half-flat is a cone V such that b(V) is a codimension-one subspace of c(V),
that is, b(V)⋖ c(V) in the poset of flats. Equivalently, a cone is a half-flat iff it can
be written in the form X ∧ h, where X is a flat and h is a half-space whose base
does not contain X. For any flat X, half-flats with case X correspond to half-spaces
in the arrangement AX.

Vertices of A are half-flats: their base has rank 0 while their case has rank 1.

2.2.5. Subarrangements. Let A′ be a subarrangement of A, that is, the set of
hyperplanes in A′ is a subset of the set of hyperplanes in A. It follows that the set
of flats (cones) of A′ is contained in the set of flats (cones) of A. Further, these
containments are compatible with the inclusion, base and case maps. That is, the
following diagrams commute.

Ω[A′] // Ω[A]

Π[A′] //

i

OO

Π[A]

i

OO
Ω[A′]

c

��

// Ω[A]
c

��

Π[A′] // Π[A]

Ω[A′]

b

��

// Ω[A]

b

��

Π[A′] // Π[A]
To see this, view all sets as subsets of the power set of the ambient space. The first
diagram is clear, while the remaining two follow from Exercises 2.15 and 2.20.

Exercise 2.21. Let A′ be a subarrangement of A. Show that: A top-cone in A′

is also a top-cone in A with the same set of walls. Conversely, a top-cone in A is a
top-cone in A′ iff all its walls belong to A′.

Exercise 2.22. Show that: Given any cone V of A, there exists a subarrangement
A′ which has V as a face. There will be many choices for A′ in general.

2.3. Topology of a cone

In the spherical model, a cone has the topology of either a ball or a sphere. We
also discuss related notions of boundary and interior of a cone.
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2.3.1. Boundary and interior of a cone. Let V be a combinatorial cone. A
face F in the closure of V is in the boundary of V if it is contained in some wall of
V, else it is in the interior of V. We write

(2.11) Cl(V) = Vo ⊔Vb,

where Vo is the set of faces in the interior, and Vb is the set of faces in the boundary.
Note that the top-dimensional faces of V belong to Vo. Recall that flats are

precisely those cones which have no walls. Hence, for a cone V,

V is a flat ⇐⇒ O ∈ Vo ⇐⇒ Cl(V) = Vo.

Proposition 2.23. Let V be a combinatorial cone and H be a face. Then:

• If s(H) ≤ b(V) and G ∈ Vb, then HG ∈ Vb.
• If H ∈ Cl(V) and G ∈ Vo, then HG ∈ Vo.

Proof. Suppose s(H) ≤ b(V) and G ∈ Vb. So G is contained in some wall, say
H, of V. Since H is contained in the base, it is contained in every wall, and in
particular in H. Therefore HG is contained in H, and hence it belongs to the
boundary.

Suppose H ∈ Cl(V) and G ∈ Vo. If HG belonged to the boundary, then it
would be contained in some wall of V, which would then force G to belong to this
wall, and hence belong to the boundary. Thus HG belongs to the interior. �

Exercise 2.24. Let V be a combinatorial top-cone and H be a face. Show that
the following are equivalent.

• H ∈ Vo.
• All chambers greater than H belong to V.
• There exists a chamber D greater than H such that D and HD both

belong to V.
• For some flat X containing H, all faces greater than H and with support

X belong to Vo.

For example: Any chamber of V lies in the interior of V. A face F always lies in
the interior of its top-star ΓF .

Exercise 2.25. Show that: For cones V and W,

Cl(V) ⊆ Cl(W) ⇐⇒ Either Vo ⊆Wo or Cl(V) ⊆Wb.

Note that the two conditions in the rhs are mutually exclusive. In particular, if V
and W have the same support, then Cl(V) ⊆ Cl(W) iff Vo ⊆Wo.

2.3.2. Topology of a cone. Put a norm on the ambient space of an arrangement.
If the arrangement has at least one hyperplane, then the intersection of any chamber
C with the unit sphere is a topological ball: This is well-known in the essential case.
In the general case, the intersection is the join of a sphere and a ball, which is a
ball. (The sphere comes from the center, and the ball from the essential part of the
arrangement.)

Proposition 2.26. Put a norm on the ambient space of an arrangement. The
intersection of any cone V of the arrangement with the unit sphere is either a
topological ball or sphere. The latter happens iff V is a flat.

We adopt the convention that the empty set is the sphere of dimension −1.
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Proof. We may assume that V is a top-cone. If V equals the ambient space, then
the intersection is clearly a topological sphere. Assume that this is not the case.
Consider the subarrangement whose hyperplanes are the bases of the half-spaces
which define V. Its center is b(V), while V is a chamber of this subarrangement
(which has rank at least one). So the intersection is a topological ball. �

Thus:

Proposition 2.27. In the spherical model, a cone V of an arrangement is either
a topological ball or sphere. The latter happens iff V is a flat.

The dimension of the sphere or ball is dim(V)−dim(O)−1. If the arrangement
is essential, then this is simply dim(V)− 1.

For any cone V, there is a cell complex whose cells correspond to faces in Cl(V).
By taking negative of its reduced Euler characteristic (A.1), we obtain: For any
cone V,

(2.12)
∑

F∈Cl(V)

(−1)rk(F ) =

®
(−1)dim(V)−dim(O) if V is a flat,

0 otherwise.

We have encountered special cases of this identity before when V is either a flat or
a face, see (1.38), (1.39) and (1.41).

2.4. Cutting and separating hyperplanes and gated sets

We discussed separating hyperplanes for chambers in Section 1.10. We now
extend these ideas to top-cones.

2.4.1. Cutting and separating hyperplanes. Recall that a hyperplane sepa-
rates two chambers if they lie on opposite sides of that hyperplane. We say that
a hyperplane cuts a top-cone if it separates some two chambers contained in that
top-cone. The two extremes cases are noted below. For a top-cone V,

V is a chamber ⇐⇒ no hyperplane cuts V,(2.13a)

V is the ambient space ⇐⇒ all hyperplanes cut V.(2.13b)

We say that a hyperplane separates two top-cones if it separates every chamber
in one top-cone from every chamber in the other top-cone. Equivalently, H separates
V and W if V lies on one side of H and W on the other side.

Lemma 2.28. Let V be a top-cone and C a chamber not contained in V. Then
there exists a hyperplane which separates V and C.

Proof. Consider all half-spaces which contain V. Since their intersection is V, at
least one of them, say h, does not contain C. The bounding hyperplane of h then
separates V and C. �

Exercise 2.29. Prove the following generalization of Lemma 2.28. Let V be a
top-cone, and let W be a top-cone made up of two (adjacent) chambers C and D
neither of which is contained in V. Then there exists a hyperplane which separates
V and W.
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Exercise 2.30. It is clear that top-cones which can be separated by a hyperplane
cannot have any common chamber. Show that the converse is false. In other
words, give an example of two top-cones which do not have any common chamber
and which cannot be separated by a hyperplane.

Lemma 2.31. Let V be a top-cone. Then:

• A hyperplane cuts V iff it cuts V.
• A hyperplane does not cut V iff it separates V and V.

Proof. The first claim holds because a hyperplane separates C and D iff it sepa-
rates C and D. For the second claim: A hyperplane H does not cut V means that
V lies on one side of H. In this case, V lies on the other side of H which means that
H separates V and V. �

More generally, we say that: A hyperplane cuts a cone if it separates some two
top-dimensional faces contained in that cone. A hyperplane separates two cones if
it separates every top-dimensional face in one cone from every top-dimensional face
in the other cone.

2.4.2. Gated sets. Recall the notion of gated sets from Section A.2.4.

Lemma 2.32. Let C be a chamber in a top-cone V, and D a chamber in a top-cone
W. Then the following are equivalent.

(1) V and W are gated with (C,D) as a gate pair.
(2) A hyperplane separates V and W iff it separates C and D.

Proof. We employ (1.25).
(1) implies (2). Suppose H separates C and D. By hypothesis, D is the gate of

W wrt C, so C --D --E for any E ∈W. Thus H separates C and W. By symmetry,
H separates D and V. Combining the two, H separates V and W.

(2) implies (1). Suppose H separates C andD. Then by hypothesis, H separates
V and W. In particular, H separates C and E for any E ∈ W. Thus, C --D --E,
and D is the gate of W wrt C. By symmetry, C is the gate of V wrt D. �

Exercise 2.33. By Proposition A.1, a gated set of chambers is convex and hence
a combinatorial top-cone. Show that the converse is false. In other words, give an
example of a top-cone V and a chamber C such that V is not gated wrt C.

2.4.3. Case and base maps. We now record an interesting result involving sep-
arating hyperplanes that connects the case and base maps.

Proposition 2.34. Let A be a simplicial arrangement. Then for any chambers
C and D, the support of C ∧ D equals the intersection of all hyperplanes which
separate C and D. In other words, by Proposition 2.17,

s(C ∧D) = b(C ∨D).

The join C ∨D is in the poset of top-cones.

Proof. Let X(C,D) denote the intersection of all hyperplanes which separate C
and D. We do an induction on the distance of D from C. The base step is C = D.
In this case, no hyperplane separates C and D, so X(C,D) is equal to the maximum
flat, which is the same as the support of C ∧D = C.

For the induction step, suppose C --D --E, with D strictly between C and
E. Put F := C ∧ D and K := D ∧ E. By hypothesis, s(F ) = X(C,D) and
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s(K) = X(D,E). By convexity of stars, if a face is common to C and E, then it
will also be common to C and D. Hence, C∧E ≤ C∧D. Similarly, C∧E ≤ D∧E,
and we deduce that C ∧ E = F ∧K. Since X(C,E) = X(C,D) ∧ X(D,E), we are
reduced to showing that s(F ∧K) = s(F )∧ s(K). This holds because F and K are
faces of D, and D is a simplex. This completes the induction step. �

More generally:

Proposition 2.35. Let A be a simplicial arrangement. Suppose V and W are
top-cones which are gated wrt each other. Then

(2.14) c(V ∧W) = b(V ∨W).

The rhs is the same as the intersection of all hyperplanes which separate V and W.

Proof. Let F be any face contained in V ∧ W. Then any hyperplane which
separates V and W must contain F . This shows that the lhs is contained in the
rhs. This is true in general, and does not require the gated assumption. For
the reverse inclusion: Let (C,D) be a gate pair. By Lemma 2.32, a hyperplane
separates C and D iff it separates V and W. Hence the rhs is the intersection of all
hyperplanes which separate C and D. By Proposition 2.34, this is s(C ∧D), which
is contained in the lhs. �

Exercise 2.36. Show that Proposition 2.34 fails in general for nonsimplicial ar-
rangements.

Exercise 2.37. Give an example of top-cones V and W in a simplicial arrangement
for which (2.14) fails.

Exercise 2.38. Show that (2.14) holds for any cones V and W which are opposite
to each other. This hypothesis is different from the gated hypothesis in Proposi-
tion 2.35.

2.5. Gallery intervals

In a pure regular cell complex which is gallery connected, one can talk of
gallery intervals (Section A.2.3). We now discuss gallery intervals for hyperplane
arrangements. They are examples of cones.

2.5.1. Gallery intervals. A set of chambers is a gallery interval if it can be
expressed in the form

[C :D] := {E | C --E --D}.
Gallery intervals also make sense for faces with the same support. If F and G have
the same support, then

[F :G] := {H | F --H --G}.
Note that [C : C] is the set of all chambers. More generally, [F : F ] is the

set of all faces whose support equals the support of F . In other words, it is a
combinatorial flat. We write

s(F ) = [F :F ].

We now show that all gallery intervals are combinatorial cones.
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Proposition 2.39. For any chambers C and D, the gallery interval [C : D] is
convex and hence a combinatorial top-cone. In other words, [C :D] is the convex
closure of {C,D}. More generally: For faces F and G with the same support, [F :G]
is a combinatorial cone.

C E′

C′

D′

D

Proof. We prove the first part. Let C ′ and D′ be any chambers in [C :D]. Let
E′ be a chamber such that C ′ --E′ --D′. We want to show that E′ lies in [C :D].
We employ (1.33) and (1.34). Suppose H ∈ g(C,E′). It is not possible that both
H ∈ g(C ′, E′) and H ∈ g(D′, E′). Hence, either H ∈ g(C,C ′) or H ∈ g(C,D′).
Since C --C ′ --D and C --D′ --D, in either case we deduce H ∈ g(C,D). Hence
C --E′ --D as required.

The second part follows by applying the first part to an arrangement under a
flat. �

Proposition 2.40. Let V be a top-cone, and C and D be chambers in V. Then
the following are equivalent.

(1) V is a gallery interval with V = [C :D].
(2) A hyperplane cuts V iff it separates C and D.
(3) A hyperplane separates V and V iff it separates C and D.
(4) V and V are gated wrt each other with (C,D) as a gate pair.

Proof. There are different ways in which one can proceed with the implications.
(1) implies (2). Suppose H separates C and D. Then clearly it cuts V. Con-

versely, suppose H cuts V. Let C ′ and D′ be chambers in V separated by H.
In other words, H ∈ g(C ′, D′). By (1.33), either H ∈ g(C,C ′) or H ∈ g(C,D′).
Since C --C ′ --D and C --D′ --D, in either case, by (1.34), H ∈ g(C,D). Thus, H
separates C and D.

(2) iff (3). Clear from Lemma 2.31.
(3) iff (4). This is a special case of Lemma 2.32.
(4) implies (1). Suppose E is a chamber in V. Then D --C --E, since C is a

gate wrt D. This implies C --E --D showing that V = [C :D]. �

An illustration is given below.

C D C D?

D?

The top-cone on the left is a gallery interval. The two hyperplanes cutting it
separate C and D. The top-cone on the right is not a gallery interval. There
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are three hyperplanes which cut it but at most two of them separate C and D, no
matter what D is. This is a top-cone whose convexity dimension is 3 (Section 2.5.3).

The result below is contained in Proposition 2.40 but worth stating separately.

Proposition 2.41. Let V be a top-cone. Then V is a gallery interval iff V and V
are gated wrt each other.

Exercise 2.42. Check that in a rank-two arrangement all top-cones are gallery
intervals. The illustration above on the right shows that this fails in rank 3.

Exercise 2.43. Verify Proposition 2.40 directly when V is the ambient space.

Exercise 2.44. Show that for any face F , its top-star ΓF is a gallery interval. In
fact, for any chamber C greater than F ,

ΓF = [C :FC].

Thus, a top-star is a nice example of a top-cone which can be realized as a gallery
interval in multiple ways.

2.5.2. Join of faces in the poset of cones. The join of two distinct chambers
does not exist in the poset of faces Σ[A]. But it exists in the poset of top-cones
ÛΩ[A] (since the latter is a join-semilattice). Explicitly, by Proposition 2.39 and
Exercise 2.6,

(2.15) C ∨D = [C :D].

We emphasize that this is an identity of combinatorial top-cones. It follows that a

top-cone V is a gallery interval iff V is the join of two minimal elements of ÛΩ[A].
If a cone contains F and G in its closure, then it also contains FG and GF . It

follows that

(2.16) F ∨G = FG ∨GF = [FG :GF ],

with the join taken in the poset of cones Ω[A]. If the join of F and G exists in
Σ[A], then

F ∨G = FG = GF

as already noted in Proposition 1.18.
The following result is contained in (2.15) and (2.16).

Lemma 2.45. If a cone V contains F and G in its closure, then [FG : GF ] is
smaller than V. In particular, if a top-cone V contains C and D, then [C :D] is
smaller than V.

Exercise 2.46. Use Proposition 2.34 to check that: In a simplicial arrangement,
for any chambers C and D,

[C ∧D :D ∧ C] = [C :D] ∧ [D :C].

The meets are taken in the poset of cones.

2.5.3. Convexity dimension. The convexity dimension of a top-cone V is the
least number k such that there exists a set of k chambers whose convex closure is V
(or equivalently, whose join is V).

Observe that a top-cone V is a gallery interval iff the convexity dimension of
V is either 1 or 2. Those of convexity dimension 1 are precisely chambers.
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2.6. Charts and dicharts

We define charts and dicharts for an arrangement. The set of charts is a
Boolean poset, and so is the set of dicharts. Further, they relate to each other
and to the lattice of flats and the lattice of cones through a commutative square of
order-preserving maps.

2.6.1. Charts. A chart in A is a subset of the set of hyperplanes in A. This is
the same as a subarrangement of A. Let G[A] denote the set of charts in A. We
partially order this set by reverse inclusion: g ≤ h if h is a subset of g. This is a
Boolean poset. The minimum element is the chart consisting of all hyperplanes,
while the maximum element is the chart with no hyperplanes.

The center of a chart g is the flat obtained by intersecting all hyperplanes in
g. A chart is connected if its center is the minimum flat. Let cG[A] denote the set
of connected charts in A. A chart is coordinate if it is connected and has size r,
where r := rk(A).

For any chart g and flat X, let gX denote the chart consisting of those hy-
perplanes in g which contain X, and let gX denote the chart in AX obtained by
intersecting the hyperplanes in g with X.

2.6.2. Dicharts. A dichart inA is a subset of the set of half-spaces inA. Let−→G[A]
denote the set of dicharts in A. We partially order this set by reverse inclusion:
r ≤ s if s is a subset of r. This is a Boolean poset. The minimum element is the
dichart consisting of all half-spaces, while the maximum element is the dichart with
no half-spaces.

2.6.3. Adjunctions. Adjunctions between posets are reviewed in Section B.5.
Recall the lattice of flats Π[A] and the lattice of cones Ω[A]. There are two com-
mutative diagrams of order-preserving maps, namely,

G[A] λ′

//
−→
G[A]

Π[A]
i

//

λ

OO

Ω[A]

~λ

OO
G[A]
ρ

��

−→
G[A]ρ′

oo

~ρ

��

Π[A] Ω[A]
b

oo

(2.17)

Maps in the first diagram are injective while those in the second diagram are surjec-
tive. Any injective map is a section of the corresponding surjective map. Further,
any corresponding pair of injective and surjective maps is an adjunction, with the
injective map as the left adjoint and the surjective map as the right adjoint. In par-
ticular, maps in the first diagram preserve joins, while those in the second diagram
preserve meets.

We have already seen the adjunction (i, b) between flats and cones in Sec-
tion 2.2.2. The map i is the inclusion map while b is the base map. Let us now
understand the rest of the picture.

2.6.4. Flats and charts. Flats and charts are related by order-preserving maps

(2.18) λ : Π[A]→ G[A], X 7→ {H | H ≥ X},
and

(2.19) ρ : G[A]→ Π[A], g 7→
⋂

H∈g

H.
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In other words, ρ(g) is the center of g. Observe that for any flat X and chart g,

λ(X) ≤ g ⇐⇒ X ≤ ρ(g).

Thus, (λ, ρ) is an adjunction between the posets Π[A] and G[A], with λ as the left
adjoint and ρ as the right adjoint. It follows that λ preserves joins, and ρ preserves
meets:

λ(X ∨Y) = λ(X) ∩ λ(Y) and ρ(g ∪ h) = ρ(g) ∧ ρ(h).

(Due to reverse inclusion, the join in G[A] is intersection, while meet is union.)

2.6.5. Charts and dicharts. We now relate charts and dicharts. Define the map

(2.20) λ′ : G[A]→ −→G[A]

which sends g to r, where r is the set of half-spaces whose base is in g. Define the
map

(2.21) ρ′ :
−→
G[A]→ G[A]

which sends r to g, where g is the set of hyperplanes which are bases of the half-
spaces in r. Both maps are order-preserving, and for any chart g and dichart r,

λ′(g) ≤ r ⇐⇒ g ≤ ρ′(r).

Thus, (λ′, ρ′) is an adjunction between the posets G[A] and −→G[A].
The map λ′ also has a left adjoint given by the order-preserving map

ρ′′ :
−→
G[A]→ G[A]

which sends r to g, where g is the set of hyperplanes both of whose associated
half-spaces are in r. Thus, (ρ′′, λ′) is an adjunction.

Observe that λ′ preserves both meets and joins, ρ′ only preserves meets (unions
by our convention), and ρ′′ only preserves joins (intersections). This is consistent
with general properties of adjunctions.

By composing adjunctions, we know that (λ′λ, ρρ′) is an adjunction between

the posets Π[A] and −→G[A]. The composite maps are

λ′λ : Π[A]→ −→G[A], X 7→ {h | b(h) ≥ X},

and

ρρ′ :
−→
G[A]→ Π[A], r 7→

⋂

h∈r

b(h).

(Recall that b(h) denotes the base or bounding hyperplane of the half-space h.)
One may also directly check that (λ′λ, ρρ′) is an adjunction.

Exercise 2.47. Show that λ is tight but not supertight is general, while λ′ is
supertight (Definition B.13).
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2.6.6. Cones and dicharts. Finally, we relate cones and dicharts. The order-
preserving maps are

(2.22) ~λ : Ω[A]→ −→G[A], V 7→ {h | h ≥ V},

and

(2.23) ~ρ :
−→
G[A]→ Ω[A], r 7→

⋂

h∈r

h.

For any cone V and dichart r,

~λ(V) ≤ r ⇐⇒ V ≤ ~ρ(r).

Thus, (~λ, ~ρ) is an adjunction between the posets Ω[A] and −→G[A], with ~λ as the left

adjoint and ~ρ as the right adjoint. It follows that ~λ preserves joins, and ~ρ preserves
meets:

(2.24) ~λ(V ∨W) = ~λ(V) ∩ ~λ(W) and ~ρ(r ∪ s) = ~ρ(r) ∧ ~ρ(s).

(Due to reverse inclusion, the join in
−→
G[A] is intersection, while meet is union.)

2.6.7. Summary. The different maps are summarized below.

λ(X) = {H | H ≥ X} ρ(g) =
⋂

H∈g H

λ′(g) = {h | b(h) ∈ g} ρ′(r) = {H | H = b(h) for some h ∈ r}
~λ(V) = {h | h ≥ V} ~ρ(r) =

⋂
h∈r h

With these definitions, it is clear that the first diagram in (2.17) commutes. By
uniqueness of adjoints, the second diagram also commutes. Explicitly, it says that
for any dichart r,

(2.25)
⋂

h∈r

b(h) = b

Å⋂

h∈r

h

ã
.

This is same as the first statement in Proposition 2.17. For a direct argument, see
the proof given there.

Exercise 2.48. Describe the (co)closure operators associated to the adjunctions
discussed in this section.

Exercise 2.49. Check that the following diagrams commute.

G[A] λ′

//

ρ

��

−→
G[A]

~ρ

��

Π[A]
i

// Ω[A]

G[A] −→
G[A]ρ′′

oo

Π[A]

λ

OO

Ω[A]

~λ

OO

c
oo

They are adjoints of each other, so commutativity of one implies that of the other.
(Here c is the case map of Section 2.2.1.)
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2.7. Poset of top-cones

Recall the poset of top-cones ÛΩ[A]. The partial order is inclusion, that is,
V ≤ W iff W contains V. We now show that this poset is join-distributive. In
particular, it is upper semimodular and hence graded. The key idea is to compare
it with the Boolean poset of dicharts.

Graded posets, semimodularity and join-distributivity are reviewed in Sec-
tions B.2 and B.3.

2.7.1. Rank function. Consider the injective order-preserving map

(2.26) ÛΩ[A]→ −→G[A], V 7→ r,

where r consists of those half-spaces that contain V. This is the restriction of the

map ~λ defined in (2.22) to top-cones. We say that r is the dichart associated to
V. Note that V = ~ρ(r), where ~ρ is the map defined in (2.23). Explicitly, V is the
intersection of the half-spaces in r. Hence, for any hyperplane, at most one (but

not both) of its associated half-spaces can belong to r. Since ~λ is injective, it is
also strictly order-preserving.

By composing (2.26) with (2.21), we obtain the order-preserving map

(2.27) ÛΩ[A]→ G[A], V 7→ g,

where g consists of those hyperplanes which do not cut V. In particular, the walls of
V belong to g. We say that g is the chart associated to V. Note that (2.27) preserves
minimum and maximum elements: A chamber maps to the chart consisting of all
hyperplanes, while the ambient space maps to the chart with no hyperplanes. This
follows from (2.13).

V V

Consider the rank-two arrangement of 4 lines. Let V be the top-cone shown
above consisting of two adjacent edges. Its associated dichart r consists of three
half-spaces which are shown on the left, while its associated chart g consists of three
lines, shown on the right. Note that these lines include the two walls of V.

Proposition 2.50. Let V be a top-cone with associated dichart r. Let s be obtained
by deleting from r a half-space whose base is a wall of V. Then W := ~ρ(s) is the
unique top-cone covering V whose associated dichart is s.

Proof. Uniqueness of W is clear since the map ~λ is injective. By Proposition 2.10,

V < W. Applying ~λ, we obtain r < ~λ~ρ(s). But ~λ~ρ(s) ≤ s. Since s covers r, we

obtain ~λ(W) = s, and we also deduce that V ⋖W. �

Proposition 2.51. Let V and W be top-cones with associated dicharts r and s,
and associated charts g and h, respectively. Then

V ⋖W ⇐⇒ r ⋖ s.

In this case: g⋖h. More precisely, h is obtained by deleting from g the unique wall
of V which cuts W.
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Proof. Forward implication. Suppose V ⋖W. By Proposition 2.10, there exists
a wall, say H, of V which cuts W. Let h be the half-space in r with base H, and r′

be the dichart obtained by deleting h from r. We have r ⋖ r′ ≤ s. Now we employ
Proposition 2.50. First applying ~ρ yields V ⋖ ~ρ(r′) ≤ W. This implies ~ρ(r′) = W.

Next applying ~λ yields r′ = s, and hence r ⋖ s.

Backward implication. Suppose r⋖ s. Applying ~ρ, we have V <W. Since ~λ is
strictly order-preserving, we further deduce that V ⋖W.

It is clear that r ⋖ s implies g ⋖ h. The last claim also follows. �

The following is an illustration of the cover relation in top-cones.

Both pictures show a top-cone W (with 5 triangles) containing a top-cone V (shown
in dark shade and containing 3 and 2 triangles, respectively). In the first picture,
V ⋖W, but this is false in the second picture.

Propositions 2.50 and 2.51 yield the following.

Corollary 2.52. Given a top-cone V, the set of top-cones which cover V are in-
dexed by walls of V.

This is illustrated below in the rank-two arrangement of 4 lines. The top-cone
V consists of two adjacent edges. It is covered by two top-cones each consisting of
three edges. They correspond to the two walls of V.

V

Two other cases to note are: If V is a half-space consisting of four edges, then it
has only one cover, namely, the ambient space and only one wall, namely, its base.
If V is the ambient space, then it has no covers and no walls.

Exercise 2.53. Let V and W be top-cones with associated charts g and h, respec-
tively. Show that: g ⋖ h implies V ⋖W is false in general.

Exercise 2.54. Recall the notion of convex closure from Section A.2.2. Let V and
W be top-cones. Show that: V⋖W iff there exists a chamber D which is not in V
but adjacent to a chamber in V such that W is the convex closure of V ∪ {D}.

By Proposition 2.51, the map (2.27) preserves cover relations. Hence composing

it with the rank function of G[A] yields a rank function for ÛΩ[A]. Thus:

Theorem 2.55. The poset of top-cones ÛΩ[A] is graded, with the rank of a top-cone
being the number of hyperplanes which cut that top-cone. In particular, the rank of
ÛΩ[A] is the number of hyperplanes in A. The map (2.27) is rank-preserving.
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The Hasse diagram of the poset of top-cones for the rank-two arrangement of
3 lines is shown below on the left.

There are 6 elements of rank 0 (chambers), 6 elements of rank 1 (pairs of adjacent
chambers), 6 elements of rank 2 (half-spaces), and 1 element of rank 3 (ambient
space). Observe that every element is the join of two rank-zero elements, in agree-
ment with Exercise 2.42. The figure on the right shows the Hasse diagram of the
subposet of all top-cones which are greater than a fixed chamber.

More generally, for the rank-two arrangement of n lines, there are 2n elements
of each rank from 0 to n− 1, and one element of rank n.

Exercise 2.56. Check that the poset of all cones for the rank-two arrangement of
n lines is not graded for n ≥ 3. (First do the case n = 3 and then generalize).

2.7.2. Semimodularity.

Theorem 2.57. Any interval in the poset of top-cones ÛΩ[A] is upper semimodular.
Equivalently, for any top-cones V and W which have a chamber in common,

rk(V) + rk(W) ≥ rk(V ∧W) + rk(V ∨W).

Proof. Let us prove the reverse inequality for the corank function of top-cones.

The corank of a top-cone V equals the cardinality of ~λ(V), which is the number of
half-spaces which contain V. This follows from Theorem 2.55 which says that the
corank of V is the number of hyperplanes which do not cut V. Note that

~λ(V ∧W) ⊇ ~λ(V) ∪ ~λ(W) and ~λ(V ∨W) = ~λ(V) ∩ ~λ(W),

The first holds since ~λ is order-preserving, and the second since it preserves joins,
see (2.24). The result now follows from the modularity of the Boolean poset. �

If every interval in a finite poset with a top element is upper semimodular,
then the poset is graded. This follows from Proposition B.2. Thus, Theorem 2.57
contains the result that the poset of top-cones is graded.

2.7.3. Join-distributivity.

Proposition 2.58. Let V ≤W. The following are equivalent.

(1) The interval [V,W] is a Boolean poset of rank k.
(2) There are exactly k top-cones in [V,W] which cover V and their join is W.

(3) ~λ(W) is obtained from ~λ(V) by deleting k distinct half-spaces whose bases
are walls of V.
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Proof. Put ~λ(V) = r and ~λ(W) = s.
(1) implies (2). Clear.

(2) implies (3). Let V1, . . . ,Vk be the k top-cones in question. Put ~λ(Vi) = ri.
By Proposition 2.51, each ri is obtained by deleting a distinct half-space from r

whose base is a wall of V. Since ~λ preserves joins and W = V1 ∨ . . . ∨Vk, we have
s = r1 ∨ . . . ∨ rk.

(3) implies (1). Let r1, . . . , rk be the dicharts obtained by deleting from r the k
half-spaces in question, one at a time. The interval [r, s] is a Boolean poset of rank
k with the ri as the join-irreducibles. By Proposition 2.50, there exist unique top-

cones Vi with ~λ(Vi) = ri. The map [V,W]→ [r, s] induced by ~λ is order-preserving

and injective (since ~λ is injective). It is also surjective since it is join-preserving
and its image contains the join-irreducibles. Hence, it is an isomorphism. �

As a consequence:

Theorem 2.59. The join-semilattice of top-cones ÛΩ[A] is join-distributive. Equiv-
alently, for any chamber C, the interval [C,⊤] is a join-distributive lattice.

Any interval in a join-distributive join-semilattice is upper semimodular (Propo-
sition B.5). Thus, Theorem 2.57 may also be deduced from Theorem 2.59.

Exercise 2.60. Show that: Given a top-cone V, there exists a top-cone W such
that the interval [V,W] is a Boolean poset of rank equal to the number of walls of V.

This is the largest interval in ÛΩ[A] with bottom element V which is a Boolean poset.

Exercise 2.61. Consider the smallest nonsimplicial arrangement in rank three
(Section 1.2.5). Deduce the following using Proposition 2.58. For any quadrilateral
C, the interval [C,⊤] in the poset of top-cones is a Boolean poset of rank 4. (First
locate the four top-cones which cover C.) For any triangle D and V a half-space
whose base is not a wall of D, the interval [D,V] is a Boolean poset of rank 3. Also
verify these facts directly.

2.7.4. Convex geometries. Join-distributive lattices are intimately connected
to convex geometries (Section B.5.5). This gives an alternative way to think about
and prove Theorem 2.59 as sketched below.

Fix a top-cone V. Consider the Boolean poset on ~λ(V), the set of all half-

spaces containing V. The map r 7→ ~λ~ρ(r) defines a closure operator on this poset.
Its closed sets are in correspondence with top-cones which are greater than V. In
addition, the result of Exercise 2.62 below precisely says that this closure operator
is a convex geometry. By Proposition B.17, the poset of convex sets is meet-
distributive. The opposite of this poset is the interval [V,⊤], which is then join-
distributive as required. Also observe that the extreme points of a top-cone W
(viewed as a convex set in this convex geometry) are the walls of W. Using this
fact, Proposition 2.58 follows from Proposition B.18.

Exercise 2.62. Fix top-cones V ≤ W. Suppose h and h′ are two distinct half-

spaces which contain V and whose base cuts W. Then h ∈ ~λ(W ∧ h′) implies
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h′ 6∈ ~λ(W ∧ h). This is illustrated below.

h′

h

The top-cone W consists of 5 triangles, while V is the triangle which is shaded in
dark. The top-cone W ∧ h′ (which has 2 triangles) is contained in h, while W ∧ h
(which has 4 triangles) is not contained in h′.

2.7.5. Möbius function. Join-distributivity which we showed in Theorem 2.59
can be used to gain information about the Möbius function of the poset of top-cones.
Specializing Lemma C.7, we obtain:

Corollary 2.63. Let V ≤W. Then

µ(V,W) =

®
(−1)rk(W)−rk(V) if [V,W] is a Boolean poset,

0 otherwise.

Equivalent formulations of the first alternative are given in Proposition 2.58.

Exercise 2.64. Work out the Möbius function of the poset of top-cones for the
rank-two arrangement of n lines.

2.8. Partial-flats

A partial-support relation is an equivalence relation on the set of faces such that
the equivalence classes are combinatorial cones (contained in combinatorial flats)
which inherit the Tits product on faces. We refer to these classes as partial-flats.
They interpolate faces and flats.

A subarrangement gives rise to a partial-support relation. Partial-support re-
lations which arise from subarrangements can be characterized by imposing an
additional geometric condition. Further, in this case, the relation is completely
determined by its restriction to the set of chambers, thus simplifying the theory.
We make this the starting point of our discussion.

Warning. Subarrangements have been called charts in Section 2.6.

2.8.1. Partial-support relations on chambers. Recall the set of chambers
Γ[A]. A partial-support relation on chambers is an equivalence relation on Γ[A],
denoted ∼, such that

(2.28) C ∼ D =⇒ FC ∼ FD.
To develop some intuition for this condition, consider the rank-two arrangement

of four lines shown below.
D

C
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Suppose C ∼ D, with C and D as shown in the figure. Then by projecting C and
D on different vertices, we can deduce that the four edges on any one side of the
line belong to the same equivalence class.

Proposition 2.65. There is a bijection between subarrangements of A and partial-
support relations on chambers of A. In addition, equivalence classes under ∼ are
in bijection with chambers of the corresponding subarrangement A′.

Proof. For a subarrangement A′ of A, define a partial-support relation on cham-
bers of A as follows:

(2.29) C ∼ D ⇐⇒ C and D are on the same side of every hyperplane in A′.

The rhs equivalently says that C and D belong to the same chamber of A′. If
C and D are on the same side of every hyperplane in A′, then so are FC and
FD, for any face F . This can be readily checked using (1.5). Thus ∼ is indeed
a partial-support relation. It is clear that distinct subarrangements give rise to
distinct partial-support relations.

Conversely, suppose ∼ is a partial-support relation. Define a subarrangement
A′ as follows. H ∈ A′ if H is the common wall of some pair of adjacent chambers
C and D which belong to different equivalence classes. For this to be the inverse
map, we need to check (2.29). Forward implication: Suppose C ∼ D, and H is a
hyperplane separating C and D. Let C ′ and D′ be any adjacent chambers with
common panel F whose support is H. Then FC = C ′ and FD = D′ (or vice-
versa), and hence C ′ ∼ D′. Then by construction, H 6∈ A′. Backward implication:
Suppose C and D are on the same side of every hyperplane in A′. Pick any minimal
gallery joining C and D. Then all chambers in this gallery lie on the same side of
every hyperplane in A′. We claim that any two adjacent chambers in this gallery
are equivalent: If not, then the support of their common panel would belong to A′.
Therefore, by transitivity, C ∼ D. �

In conjunction with the discussion in Section 2.2.5, we obtain:

Corollary 2.66. Equivalence classes wrt a partial-support relation on chambers are
combinatorial top-cones. They are closed under taking opposites, that is, if C ∼ D,
then C ∼ D. They all have the same base (equal to the center of the corresponding
subarrangement).

The first part can also be deduced directly from Proposition 2.3.

Corollary 2.67. Let ∼ be a partial-support relation on chambers. Let A ≤ C,
A ≤ D, s(A) = s(B) and C ∼ BC. Then D ∼ BD.

Proof. By (1.5), for any hyperplane H, the chambers C and BC are on the same
side of H iff D and BD are on the same side of H. The result now follows from
Proposition 2.65. �

In view of Corollary 2.66, one may use the term ∼-top-cones to refer to equiv-
alence classes wrt ∼. Let Γ∼[A] denote the set of ∼-top-cones. As a shorthand,
we will also write Γ∼ with A understood. This interpolates between two extreme
cases:

Γ[A] ։ Γ∼[A] ։ E[A],
where E[A] denotes a singleton set. It corresponds to the subarrangement with no
hyperplanes.
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The figure shows a subarrangement of three hyperplanes. Each chamber of this
arrangement is a ∼-top-cone, where ∼ is the corresponding partial-support relation.

2.8.2. Partial-support relations on faces. Recall the set of faces Σ[A]. A
partial-support relation on faces is an equivalence relation on Σ[A], denoted ∼,
which satisfies the following properties.

(2.30a) F ∼ G =⇒ s(F ) = s(G)

(2.30b) F ∼ G =⇒ FH ∼ GH

(2.30c) G ∼ G′ =⇒ FG ∼ FG′

A partial-support relation is geometric if

(2.30d) s(F ) = s(G) and FH ∼ GH for some H =⇒ F ∼ G.
We refer to an equivalence class of a partial-support relation ∼ as a partial-flat .

We denote it by letters x, y, z and w. If F ∈ x, then we say that x is the partial-
support of F . By axiom (2.30a), each partial-flat has a well-defined support. We
say a partial-flat is maximal if its support is the maximum flat.

Let Σ∼[A] denote the set of partial-flats. As a shorthand, we will also write
Σ∼ with A understood.

Example 2.68. The two canonical examples of (geometric) partial-support rela-
tions are as follows.

• F ∼ G iff F = G. That is, partial-flats are faces. Thus Σ∼[A] = Σ[A].
(We point out that checking axiom (2.30d) requires Proposition 1.17.)
• F ∼ G iff s(F ) = s(G). That is, partial-flats are flats. Thus Σ∼[A] =

Π[A].
In general, a partial-support relation lies somewhere between these two extreme
cases with maps

(2.31) Σ[A] ։ Σ∼[A] ։ Π[A].
For instance,

• F ∼ G iff either F = G, or F and G are both chambers,

is a (non-geometric) partial-support relation. In this case, a partial-flat is either
the maximum flat, or a proper face.

Some basic properties of partial-support relations are listed below.

Proposition 2.69. Let ∼ be a partial-support relation. Then, for any faces F , G,
F ′, G′ and H,

(2.32) F ≤ G and G ∼ G′ =⇒ G ∼ FG′ ∼ G′,

(2.33) G ≤ H and G ∼ G′ =⇒ H ∼ G′H,
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(2.34) F ∼ G and F ′ ∼ G′ =⇒ FF ′ ∼ GG′.

Proof. Property (2.32) follows from (2.30c), and (2.33) from (2.30b). For (2.34):
Suppose F ∼ G and F ′ ∼ G′. Then, by (2.30b), FF ′ ∼ GF ′, and by (2.30c),
GF ′ ∼ GG′. Thus, by transitivity, FF ′ ∼ GG′. �

Exercise 2.70. Show that (2.30a) and (2.33) imply (2.30b).

Exercise 2.71. Show that a partial-support relation ∼ is geometric iff

s(F ) = s(G) and FC ∼ GC for some chamber C =⇒ F ∼ G,
or equivalently,

s(F ) = s(G) and H ∼ K for some H ≥ F and K ≥ G =⇒ F ∼ G.
2.8.3. Product and partial order on partial-flats. For a partial-support re-
lation ∼, define a product on Σ∼[A] as follows. For equivalence classes x and y, let
xy be the equivalence class of FG, with F ∈ x and G ∈ y. By (2.34), the result
does not depend on the particular choice of F and G. This turns Σ∼[A] into a
monoid, with the unit element being the class of the central face. It follows from
(1.6) that for any partial-flats x and y, we have xx = x and xyx = xy, so Σ∼[A] is
a left regular band. It interpolates the Tits monoid and the Birkhoff monoid; the
maps (2.31) are morphisms of monoids.

Lemma 2.72. For partial-flats x and y, the following are equivalent.

(1) xy = y.
(2) Every face in x is smaller than some face in y.
(3) Some face in x is smaller than some face in y.

Proof. (1) implies (2). Let F ∈ x and G ∈ y. Then, by hypothesis, FG ∈ y, and
F ≤ FG.

(2) implies (3). Clear.
(3) implies (1). Suppose F ∈ x, G ∈ y and F ≤ G. Then FG = G which is in

y. Hence xy = y. �

For partial-flats x and y, we say x ≤ y if any of the equivalent conditions
of Lemma 2.72 holds. This defines a partial order on Σ∼[A]. It has a minimum
element given by the class of the central face. It follows that the maps (2.31) are
order-preserving.

Lemma 2.73. Let x and x′ be equivalence classes of a geometric partial-support
relation. Then xx′ = x′x iff x and x′ have an upper bound iff x and x′ have a join.
In this situation,

x ∨ x′ = xx′ = x′x.

Proof. Note that x ≤ xx′ and x′ ≤ x′x. So if xx′ = x′x, then this element is
an upper bound for x and x′. Conversely: Suppose x ≤ y and x′ ≤ y. Pick
F ∈ x, F ′ ∈ x′, and G,G′ ∈ y with F ≤ G and F ′ ≤ G′. Then FG′, F ′G ∈ y,
so FG′ ∼ F ′G. Now FF ′ and F ′F have the same support and FF ′ ≤ FG′ and
F ′F ≤ F ′G. Hence, by (2.30d), FF ′ ∼ F ′F , which implies xx′ = x′x. It is also
clear that this element is smaller than y, so it must be the join. �

Lemma 2.74. For a geometric partial-support relation ∼, the poset Σ∼[A] is a
meet-semilattice.
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Proof. Suppose x and y are partial-flats wrt ∼. Since Σ∼[A] has a minimum
element, x and y have a lower bound. Let z be the product of all lower bounds
of x and y (the order in which the product is taken does not matter in view of
Lemma 2.73). Suppose w is a lower bound for x and y. Then pick an expression
for z starting with w and use ww = w to deduce that wz = z. Thus z is the meet
of x and y. �

Exercise 2.75. What can one say about Lemma 2.73 if the relation is not geo-
metric?

Exercise 2.76. For a geometric partial-support relation, show that xy = yx and
z ≤ y implies xz = zx.

2.8.4. Partial-flats as cones. It is clear that a partial-support relation on faces
of A induces a partial-support relation on faces of AX and of AX.

Proposition 2.77. Partial-flats are combinatorial cones. They are closed under
taking opposites, that is, if F ∼ G, then F ∼ G. Further, partial-flats with the
same support have the same base.

Proof. A partial-flat with support X is a maximal partial-flat of the arrangement
AX. This is the same as an equivalence class wrt the restricted partial-support
relation on the chambers of AX. The result now follows from Corollary 2.66. The
first part can also be deduced from (2.32) and Proposition 2.4. �

In view of this result, one may use the term ∼-cones to refer to partial-flats
wrt ∼. For a ∼-cone x, we let x denote its opposite ∼-cone.
Proposition 2.78. Let ∼ be a geometric partial-support relation. If x and y are
∼-cones, then so is x ∧ y, with the meet being taken in the lattice of cones Ω[A].
Proof. Put V := x ∧ y. Fix F ∈ V. Then F is smaller than some face in x and
some face in y.

• Now if F ∼ G, then by Lemma 2.72, G is also smaller than some face in
x and some face in y, and hence G ∈ V. So the ∼-cone of F is a subset of
V.
• Conversely, suppose G ∈ V. Pick H ≥ F and K ≥ G such that H and K
are both in y. Then since y is a cone, by Proposition 2.4, GH also belongs
to y. By property (2.30d), we conclude that F ∼ G.

Thus V is the ∼-cone of F . �

Corollary 2.79. For a geometric partial-support relation ∼, Σ∼[A] is a subposet
of Ω[A] closed under taking meets.

Proof. Lemma 2.72, item (2) implies that Σ∼[A] is a subposet of Ω[A]. This does
not require geometric. The closure under meets follows from Proposition 2.78. �

Note that Lemma 2.74 is a consequence of Corollary 2.79.

Exercise 2.80. Show that the forward implication of (1.9b) does not hold for
partial-flats in general. How can one fix this? Which properties stated in Lemma 1.6
hold?

Exercise 2.81. Generalize Corollary 2.67 to partial-support relations on faces.
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Exercise 2.82. Show that Proposition 2.78 may fail if ∼ is not geometric.

Exercise 2.83. Suppose x and y are ∼-cones and x ≤ V ≤ y for some cone V.
Then is V necessarily a ∼-cone?
2.8.5. Geometric partial-flats and subarrangements. Note that a geometric
partial-support relation on faces restricts to a partial-support relation on chambers.
Conversely, a partial-support relation on chambers extends to a geometric partial-
support relation on faces: For s(F ) = s(G),

F ∼ G :⇐⇒ FC ∼ GC for some chamber C(2.35)

⇐⇒ FC ∼ GC for all chambers C.

(The second equivalence holds in view of Corollary 2.67.) The properties (2.30a)-
(2.30d) are straightforward to check. Further, the two constructions are inverses of
each other. So there is a bijection between partial-support relations on chambers,
and geometric partial-support relations on faces. In view of Proposition 2.65, we
obtain:

Proposition 2.84. There is a bijection between subarrangements of A and geo-
metric partial-support relations on faces of A.

Explicitly, from (2.29) and (2.35), the geometric partial-support relation asso-
ciated to a subarrangement A′ is given by:

F ∼ G ⇐⇒ F and G have the same support and

the same sign wrt every hyperplane in A′.

The rhs equivalently says that F and G have the same support and their interiors
belong to the interior of the same face of A′.

Exercise 2.85. Check directly using (1.5) that the above defines a geometric
partial-support relation.

Fix a subarrangement A′. Let ∼ denote the corresponding geometric partial-
support relation. Each face of A′ determines a unique cone of A. For the moment,
let us identify faces of A′ with cones of A. Define an operator

(2.36) Σ∼[A]→ Σ∼[A]
which sends x to the smallest face of A′ which contains x. This is a closure operator
whose closed sets are precisely the faces of A′.

The picture shows a subarrangement of three hyperplanes inside a rank-three
arrangement. The blue segment consisting of two edges is a partial-flat and its
closure is the shaded region.

Exercise 2.86. For any subarrangement A′ of A, there is a morphism of monoids

(2.37) Σ[A]→ Σ[A′]
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which sends a face F ofA to the unique face ofA′ whose interior contains the interior
of F . In terms of sign sequences, this map simply restricts the sign sequence of F
to hyperplanes in A′. Check that this map factors as

Σ[A] //

$$■
■■■

Σ[A′]

Σ∼[A]

::tttt

where ∼ is the associated geometric partial-support relation.

Exercise 2.87. Show that a partial-support relation on faces restricts to a partial-
support relation on chambers. Conversely, show that a partial-support relation on
chambers extends to a partial-support relation on faces by letting all each proper
face be a partial-flat. Is this extension geometric?

Exercise 2.88. For a geometric partial-support relation, define a partial order on
pairs of partial-flats which interpolates those on pairs of faces and on pairs of flats
given in Section 1.12.

2.8.6. Janus monoid for partial-flats. The Janus monoid can be generalized
as follows. Fix two partial-support relations, say ∼ and ∼′. A partial-bi-flat is a
pair (x, x′) such that x is a partial-flat wrt ∼, x′ is a partial-flat wrt ∼′, and x
and x′ have the same support. Let J∼,∼′ [A] denote the set of partial-bi-flats. The
operation

(x, x′)(y, y′) := (xy, y′x′)

turns J∼,∼′ [A] into a monoid. It is the fiber product of Σ∼[A] and the opposite
of Σ∼′ [A] over the Birkhoff monoid Π[A]. In particular, we have a commutative
diagram of monoids

J∼,∼′ [A] //

��

Σ∼′ [A]op

��

Σ∼[A] // Π[A]
with the bottom horizontal map and right vertical map as in (2.31), and the other
two maps being the projections on the two coordinates, respectively.

Observe that the Tits monoid, the Birkhoff monoid, and more generally the
monoid Σ∼[A] are all special cases of this construction (by taking Σ∼′ [A] = Π[A]).
By construction, there is a surjective map of monoids

J[A] ։ J∼,∼′ [A], (F, F ′)→ (x, x′),

where x is the partial-flat wrt ∼ which contains F , while x′ is the partial-flat wrt
∼′ which contains F ′.

Notes

Convexity. For Propositions 2.3, 2.7 and 2.39, see [2, Exercises 1.65, 1.68 and 1.66].
These ideas appeared in work of Tits on reflection arrangements [396, Theorem 2.19].
For the convex geometry described in Section 2.7.4, see [159, Section 3, Example I] and
references therein. For an essential arrangement, a cone whose base is the minimum flat
is often called salient .

Subarrangements. The monoid morphism (2.37) is considered in [281, Section 2.6 and
Appendix A.5], along with examples. A similar idea occurs in [28, proof of Proposition 3.1].
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CHAPTER 3

Lunes

We now study an important family of cones known as lunes. Faces, flats and
half-flats are examples of lunes. Geometrically, lunes are cones which cannot be
cut along their base. They can be identified with faces of arrangements over their
base. A nested face is a pair of faces one contained in the other. There is a support
map from nested faces to lunes which parallels the support map from faces to flats.
This allows us to study lunes using the Tits product. Lunes are gallery intervals;
in fact, they can be realized as gallery intervals in multiple ways. Lunes also serve
as building blocks of cones. More precisely, any cone can be decomposed into lunes
by cutting it along a fixed flat contained in its base. In particular, cutting along
its base yields the optimal decomposition.

We also continue the discussion on cones. Cones offer the flexibility for inter-
esting local operations, which we call restriction and extension. There is also a
notion of conjugate top-cones; an important example of conjugate pairs is provided
by top-stars and top-lunes. We also introduce top-star-lunes which are top-cones
constructed inductively by using the extension operation. Both top-stars and top-
lunes are examples of top-star-lunes. We discuss in detail the compatibility of cones,
gallery intervals and lunes with the cartesian product of arrangements.

3.1. Lunes

We begin by defining lunes geometrically as cones which cannot be cut along
their base, and then relate them to faces of arrangements over their base.

3.1.1. Lunes. Recall that a cone is a subset of the ambient space obtained by
intersecting some half-spaces. The base of a cone V, denoted b(V), is the largest
flat contained in that cone. For a hyperplane H, let H+ and H− denote its two
associated half-spaces. A lune is a cone V with the following property.

(3.1) If a hyperplane H contains b(V),

then either H+ contains V or H− contains V.

In other words, for a cone to be a lune, a hyperplane containing the base of the
cone is not allowed to cut the cone. In (3.1), it is possible that both H+ and H−

contain V in which case H = H+ ∩H− contains V.
Since lunes are cones, they have a base and a case. A top-lune is a lune whose

top-dimensional faces are chambers, or equivalently, whose case is the maximum
flat. In other words, a top-lune is a lune which is a top-cone.

Just as with cones, one can take a combinatorial approach to lunes. A combina-
torial lune is a subset of the set of faces consisting of precisely the top-dimensional
faces of some lune.

73
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The figure on the left shows two top-lunes in rank 2 in both the spherical and
the linear models. The figure on the right shows three top-lunes in rank 3 each with
a different base. In rank 3, great circles, or great semicircles (such as the longitudes)
are examples of lunes which are not top-lunes (since their case is a hyperplane).

The top-lunes (in the spherical model) in ranks 2 and 3 are described below.

Rank of the base Top-lune in rank 2 Top-lune in rank 3

0 edge chamber

1 semicircle region between adjacent semicircles

2 circle hemisphere

3 — sphere

A vertex-based lune is a lune whose base is the support of a vertex. Similar
terminology is employed for other faces. In rank 2, we have central-face-based,
vertex-based and edge-based top-lunes. The latter two are the same as panel-based
and chamber-based top-lunes. In rank 3, we have central-face-based, vertex-based,
edge-based (or panel-based) and chamber-based top-lunes. In general: A central-
face-based top-lune is a chamber (see exercise below), a panel-based top-lune is a
half-space, while a chamber-based top-lune is the maximum flat.

Let Λ[A] denote the set of all lunes, and ÛΛ[A] denote the set of all top-lunes.
Lunes will usually be denoted by the letters L, M and N.

Exercise 3.1. Let L be a lune. Show that L is a face iff b(L) is the minimum flat.

3.1.2. Arrangements under and over a flat. Lunes of A correspond to faces
and chambers of arrangements under and over various flats of A. The precise
relationship is stated below.

Lemma 3.2. There are correspondences

Lunes of A with base X ←→ Faces of AX,

Top-lunes of A with base X ←→ Chambers of AX,

Lunes of A with base X and case Y ←→ Chambers of AY
X.

Proof. We explain the first statement from which the next two follow. Recall that
a face of AX is a subset of the ambient space obtained by intersecting half-spaces
whose bounding hyperplanes contain X, with either H+ or H− or both chosen for
each H containing X. Using the defining property (3.1), we see that these are
precisely lunes with base X. �
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3.1.3. Slack of a lune. Given a lune L, define its slack by

(3.2) sk(L) = rk(c(L))− rk(b(L)).

The rhs refers to rank in the lattice of flats. Lunes of slack 0 are precisely flats.
Lunes of slack 1 are precisely half-flats. The slack of a face is its rank in the poset
of faces.

3.2. Nested faces and lunes

The top-dimensional faces of a lune (as well as its closure, interior and bound-
ary) can be described using the Tits product. In fact, lunes can be characterized
using an equivalence relation on nested faces in the same manner that flats can be
characterized using faces via (1.14). We first explain this for top-lunes and top-
nested faces, and then deduce the general case by passing to an arrangement under
a flat.

3.2.1. Top-nested faces and top-lunes. Let H be any face and D be a chamber
greater than H. We refer to the pair (H,D) as a top-nested face. We define the
support of such a top-nested face to be

(3.3) s(H,D) := {C | HC = D}.
By Lemma 1.54, this is a convex set of chambers, hence a combinatorial top-cone
by Proposition 2.3.

Recall from (2.1) the notion of closure of a combinatorial cone.

Lemma 3.3. The closure of s(H,D) is given by

(3.4) Cl(s(H,D)) = {F | HF ≤ D}.
Proof. Suppose F belongs to the closure. That is, for some C, we have HC = D,
and F ≤ C. Then HF ≤ HC, so F belongs to the rhs above. Conversely, suppose
F satisfies HF ≤ D. Then HFD = D. So FD belongs to the top-cone and F
belongs to its closure. �

The pictures below show the support of a top-nested face (H,D) in rank 3 in
the cases when H is a vertex and H is an edge.

D

H

D

H

Note that both supports are in fact top-lunes. This is true in general, as we will
see below.

Proposition 3.4. Let (H,D) be a top-nested face. Then for any chamber C,

HD --C --D ⇐⇒ HC = D.

Recall that the lhs means that there is a minimal gallery from HD to D passing
through C.
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H HD

C

H

HD

The figure illustrates the situation in rank 3 when H is a vertex.

Proof. Since HHD = HD = D, the forward implication follows from Corol-
lary 1.55. For the backward implication: Since HC = D, we have HC = HHC =
HD. Now apply Proposition 1.53. �

This shows that the support of a top-nested face is a gallery interval. More
precisely:

(3.5) s(H,D) = [D :HD].

Convexity of s(H,D) can also be deduced from Proposition 2.39.

Proposition 3.5. For any top-nested face (H,D), the support s(H,D) is a combi-
natorial top-lune. The geometric lune corresponding to s(H,D) is the intersection
of those half-spaces which contain D and whose base contains H. In particular, its
base is s(H), the support of H.

Proof. Using Lemma 1.51, we deduce that a chamber belongs to s(H,D) iff it
belongs to all half-spaces which contain D and whose base passes through H. The
defining property of a lune (3.1) can now be readily verified. The last claim follows
from Proposition 2.17. �

Corollary 3.6. Let H be a hyperplane. Then H is a wall of s(H,D) iff H contains
a panel of D which is greater than H.

Proof. Put L := s(H,D). Suppose H is a wall of L. Then by Propositions 2.17
and 3.5, H contains the face H. Suppose C and C ′ are adjacent chambers with
common panelK supported by H such that C belongs to L while C ′ does not belong
to L. Then HC = D and HK is a panel of D greater than H which is contained
in H.

Conversely, suppose H contains a panel of D, say F , which is greater than H.
Let E be the chamber adjacent to D with common panel F . Then HE = E, so E
cannot belong to L. Hence H is a wall of L. �

Recall from Section 2.3 the notion of interior and boundary of a combinatorial
cone.

Lemma 3.7. The interior and the boundary of s(H,D) are given by

(3.6) s(H,D)o = {F | HF = D} and s(H,D)b = {F | HF < D}.

The union of these two sets is the closure of s(H,D) given in (3.4).
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Proof. In view of (2.11), it suffices to prove the claim about the boundary. Sup-
pose HF < D. Then HF is a face of some panel of D, so by Corollary 3.6, HF and
hence F is contained in some wall of s(H,D). Thus F belongs to the boundary.
Conversely, if F belongs to the boundary, then by reversing these steps, we see that
HF < D. �

We now show that every top-lune is the support of a (not necessarily unique)
top-nested face.

Proposition 3.8. Let V be a combinatorial top-cone, L a combinatorial top-lune,
and H a face.

• Suppose s(H) ≤ b(V) and D is a chamber in V which is greater than H.
Then s(H,D) ⊆ V.

• Suppose s(H) = b(L). Then there exists a unique chamber D in L which
is greater than H, and further L = s(H,D).

Proof. First part: Suppose C is a chamber such that HC = D. Let h be any
half-space which contains V. Then it contains D and its base contains H. Since
HC = D, h must also contain C. So C belongs to V, as required. Alternatively:
By Proposition 2.7, item (3), the closure of a combinatorial cone is closed under
taking products. Further, s(H) is also smaller than b(V), so HD belongs to V. By
Proposition 2.3, V is convex, so it contains [D :HD] which is the same as s(H,D)
by (3.5).

Second part: We first show that D exists. For that, take any chamber C ′ in
L. Again by Proposition 2.7, item (3), D := HC ′ belongs to L, and hence is a
chamber in L which contains H. We now show that D is unique: Suppose E is
another chamber in L which contains H. Then there exists a hyperplane containing
H which separates D and E. This is not possible by the defining property of a
lune (3.1). This further implies that HC = D for any chamber C in L. Thus,
L ⊆ s(H,D). The reverse inclusion holds by the first part, so we have equality. �

Consider the following relation on the set of top-nested faces:

(3.7) (H,D) ∼ (G,C) ⇐⇒ HG = H, GH = G, HC = D and GD = C.

Using (1.13), note that (H,D) ∼ (G,C) iff H and G have the same support, and
HC = D and GD = C.

Proposition 3.9. Equivalence classes for the relation (3.7) are in one-to-one cor-
respondance with top-lunes. The class of (H,D) is the top-lune s(H,D).

This statement makes two claims. The first claim is that every top-lune is the
support of a top-nested face. This is contained in Proposition 3.8. The second
claim is that: Two top-nested faces (H,D) and (G,C) have the same support iff
(H,D) ∼ (G,C). This is proved below.

Proof. Suppose s(H,D) = s(G,C) = L (say). Then s(H) = b(L) = s(G), so H
and G have the same support. Further, C and D both belong to L, and hence
so do HC and GD. Proposition 3.8 then forces HC = D and GD = C. Thus,
(H,D) ∼ (G,C).

Conversely: Suppose (H,D) ∼ (G,C). We claim that for any chamber E,
HE = D iff GE = C. Assuming HE = D, we get GE = GHE = GD = C, and
similarly assuming GE = C, we get HE = HGE = HC = D. Thus, s(H,D) =
s(G,C). �
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The picture below shows two top-nested faces (H,D) and (G,C) in rank 3 with
the same support. The support is a hemisphere.

C

D

G

H

Try to visualize all top-nested faces with this support. They are all lined up along
the base of the hemisphere which is a great circle.

Exercise 3.10. Let H be a face with support X, F a face with support Y, and
X ∨Y = ⊤. Show that HF is a chamber and s(H,HF ) is a top-lune with base X.

3.2.2. Nested faces and lunes. Recall that any cone can be viewed as a top-
cone of an arrangement under a flat. The above study of top-lunes then directly
yields the following results.

A nested face is a pair of faces (H,G) such that H ≤ G. We define the support
of such a nested face to be

(3.8)
s(H,G) := {F | HF = G and s(F ) = s(G)}

= {F | HF = G and FH = F}.
(The second equality holds by Exercise 1.12.) This is a gallery interval, namely,

(3.9) s(H,G) = [G :HG].

Further, it is a combinatorial lune with base s(H) and case s(G). In particular, it
is a flat iff H = G. Its closure is

(3.10) Cl(s(H,G)) = {F | HF ≤ G},
with its interior and boundary given by

(3.11) s(H,G)o = {F | HF = G} and s(H,G)b = {F | HF < G},
respectively. Also note that

(3.12) sk(s(H,G)) = rk(G)− rk(H),

where sk denotes the slack of a lune (3.2).

Proposition 3.11. The combinatorial lune s(H,G) is a topological sphere if H =
G, and a topological ball if H < G. In the latter case, the boundary sphere is
s(H,G)b.

Proof. Since s(H,G) is a flat iff H = G, the first part follows from Proposi-
tion 2.27. The second part is clear. �

Proposition 3.12. Let V be a combinatorial cone, L a combinatorial lune, and H
a face.

• Suppose s(H) ≤ b(V) and K is a top-dimensional face of V which is
greater than H. Then s(H,K) ⊆ V, and in particular, s(H,K)o ⊆ Cl(V).

• Suppose s(H) = b(L). Then there exists a unique top-dimensional face K
of L which is greater than H, and further L = s(H,K).
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Consider the following relation on the set of nested faces:

(3.13) (H,G) ∼ (K,F ) ⇐⇒ HK = H, KH = K, HF = G and KG = F.

Note that (H,G) ∼ (K,F ) iff H and K have the same support, HF = G and
KG = F .

Proposition 3.13. Equivalence classes for the relation (3.13) are in one-to-one
correspondance with lunes. The class of (H,G) is the lune s(H,G).

Proposition 3.14. Given faces A and A′ with the same support, there exists a
bijection

ψ : {F : A ≤ F} → {F ′ : A′ ≤ F ′}
such that (A,F ) ∼ (A′, ψ(F )), and in particular, s(F ) = s(ψ(F )) for every F ≥ A.
Proof. Define ψ(F ) = A′F . This is the bijection in Lemma 1.35. �

Exercise 3.15. Given A ≤ F ≤ G and A′ ≤ F ′ ≤ G′,

s(A,F ) = s(A′, F ′) and s(F,G) = s(F ′, G′) =⇒ s(A,G) = s(A′, G′).

Conversely, given s(A,G) = s(A′, G′) and F between A and G, there exists a unique
F ′ between A′ and G′ such that

s(A,F ) = s(A′, F ′) and s(F,G) = s(F ′, G′).

In fact, either of the above two conditions suffices to force uniqueness of F ′. In
particular, given two distinct faces F and F ′ between A and G, we have s(A,F ) 6=
s(A,F ′) and s(F,G) 6= s(F ′, G).

3.2.3. Examples. Faces, flats and half-flats are lunes. The table below elaborates
on how they arise as supports of nested faces.

Lune Support of a nested face

Center s(O,O)

Face s(O,F )

Chamber s(O,C)

Flat s(F, F )

Half-space s(H,D) with H ⋖D

Half-flat s(H,G) with H ⋖G

Among these, chambers and half-spaces are top-lunes. Note that they are
supports of top-nested faces.

3.2.4. Opposition map on lunes. The opposition map on cones (2.6) restricts
to lunes. More precisely, the opposite of the lune s(H,G) is the lune s(H,HG). In
particular, for the relation (3.13),

(3.14) (H,G) ∼ (K,F ) ⇐⇒ (H,HG) ∼ (K,KF ).

A lune equals its opposite iff it is a flat. This is a special case of Proposition 2.11.
The picture below shows two opposite vertex-based top-lunes in a rank-three

arrangement. For proper visualization, fold the two lunes on a sphere so that the
two vertices marked H coincide at the point antipodal to H.
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HG HGG G
HH H

Let us go back to the general case. Specializing (2.10) and (2.8), we obtain

s(H,G) ∧ s(H,HG) = s(H) and s(H,G) ∨ s(H,HG) = s(G),

with meet and join taken in the poset of cones.
A projective lune is an unordered pair consisting of a lune and its opposite.

We denote a projective lune by {L,L}. The number of projective lunes equals the
number of flats plus half the number of lunes which are not flats.

3.2.5. Lunes with a fixed base. Fix a face A. By Proposition 3.12, there is a
bijection

(3.15) {F | F ≥ A} ←→ {L | b(L) = s(A)}, F 7→ s(A,F ).

The lhs consists of faces greater than A, while the rhs consists of lunes with base
s(A).

Now view both sides as posets, the lhs as a subposet of the poset of faces, and
the rhs as a subposet of the poset of cones.

Lemma 3.16. The map (3.15) is a poset isomorphism. In other words: For nested
faces (A,F ) and (A,G), we have

s(A,F ) ≤ s(A,G) ⇐⇒ F ≤ G.
Equivalently: For lunes L and M with the same base, L ≤ M iff L = s(A,F ) and
M = s(A,G) for some A ≤ F ≤ G.

A G

F

M

L

In the picture, L is the thick line, while M is the shaded region.

Proof. This follows from (2.2) and (3.10). �

Corollary 3.17. Distinct lunes with the same base and same case are incomparable
in the poset of cones. In other words, if L ≤ M, b(L) = b(M) and c(L) = c(M),
then L = M.

3.2.6. Gallery intervals. Lunes are gallery intervals. This is elaborated below.

Proposition 3.18. Lunes are gallery intervals. More precisely: Given a top-lune
L, and a face H supported by the base of L, there exists a unique chamber D
greater than H such that L = [D :HD]. More generally, given a lune L, and a face
H supported by the base of L, there exists a unique face G greater than H such that
L = [G :HG].

Proof. The first statement follows from (3.5) and Proposition 3.8. The second
follows from the first by working in an arrangement under a flat. �

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



3.3. DECOMPOSITION OF A CONE INTO LUNES 81

Thus, a lune is a nice example of a cone which can be realized as a gallery
interval in multiple ways. In fact, there are lunes which can be realized as gallery
intervals beyond the possibilities listed in Proposition 3.18. For instance, consider
the top-lune shown below. It is based at the vertices H and H. It consists of four
chambers. Apart from [D : HD], it can also be realized as a gallery interval as
[C :C ′]. In fact, this top-lune is also the top-star of the unique vertex in its interior.

H HHDD

C

C′

Such a top-lune occurs in the smallest nonsimplicial arrangement of four hyper-
planes (Section 1.2.5). A slightly more complicated example is shown below.

H HHDD

C

C′

This top-lune is not a top-star. There are three hyperplanes which cut it, and these
are precisely the hyperplanes which separate C and C ′, so it equals [C :C ′].

In general, not every gallery interval is a lune. A pair of adjacent chambers
whose base is the minimum flat is an example of a gallery interval which is not a top-
lune. For instance, take any pair of adjacent chambers in the rank-two arrangement
of n lines for n ≥ 3.

Exercise 3.19. Check: A cisomorphism of arrangements preserves cones, gallery
intervals, lunes, half-spaces and half-flats. (See the discussion in Section 1.11.)

3.3. Decomposition of a cone into lunes

We show that every cone can be optimally decomposed into lunes. In this
sense, lunes serve as building blocks of cones. More generally, every cone has a lune
decomposition over a flat contained in its base. The optimal decomposition arises
when the flat equals the base. Special cases include decomposition of the ambient
space into lunes, of a flat into lunes, of a lune into smaller lunes, and of a cone into
vertex-based lunes.

3.3.1. Decomposition of the ambient space into lunes. The support of a
top-nested face (H,D) is the (combinatorial) top-lune consisting of chambers whose
projection on H is D. Hence by fixing H and varying D, we obtain a partition of
the set of chambers by top-lunes:

(3.16) Γ[A] =
⊔

D:H≤D

s(H,D).
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Geometrically, this is a decomposition of the ambient space into top-lunes.

The figure on the left shows a decomposition of the sphere into six top-lunes.
Only those hyperplanes and faces which are relevant to the decomposition are
shown. The vertex H is shown in black and its top-star is the inner circle containing
the six chambers which index the top-lunes. In the figure on the right, H is the
thick black edge, its top-star has two chambers, so the resulting decomposition has
two top-lunes, which are hemispheres.

One can also decompose the set of all faces using lune interiors as follows.

(3.17) Σ[A] =
⊔

K:H≤K

s(H,K)o.

This follows from the definitions.
Using Proposition 3.8, the decomposition (3.16) can also be expressed as fol-

lows. For any flat X,

(3.18) Γ[A] =
⊔

L: b(L)=X

L.

The sum is over all (combinatorial) top-lunes L with base X. Thus, distinct (com-
binatorial) top-lunes with the same base are disjoint, and they partition the set of
chambers.

3.3.2. Decomposition of a flat into lunes. Let Y be a combinatorial flat. Fix
a face H of support X smaller than Y. Then

(3.19) Y =
⊔

G:H≤G, s(G)=Y

s(H,G) =
⊔

L: b(L)=X, c(L)=Y

L.

The first decomposition is clear. The second follows from Proposition 3.12. Setting
Y to be the maximum flat recovers (3.16) and (3.18).

As a consequence:

Corollary 3.20. Distinct (combinatorial) lunes with the same base and the same
case are disjoint.

This contains the result of Corollary 3.17.

3.3.3. Decomposition of a lune into smaller lunes. For any H ≤ G ≤ D, we
have

(3.20) s(G,D) =
⊔

C:H≤C,GC=D

s(H,C).

The top-lune in the lhs has base s(G) and it has been decomposed into top-lunes
with a smaller base, namely, s(H). This identity is straightforward to check. The
main point is that if a chamber E belongs to the lhs, then it belongs to the summand
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in the rhs indexed by C := HE. Note that the indexing set consists of chambers
in the top-lune s(G/H,D/H). This leads to the following result.

Proposition 3.21. For faces H ≤ G, any G-based combinatorial top-lune can be
written as a disjoint union of H-based combinatorial top-lunes indexed by chambers
of a G/H-based combinatorial top-lune.

More generally, for any H ≤ G ≤ K, we have

(3.21) s(G,K) =
⊔

F :H≤F,GF=K
s(F )=s(K)

s(H,F ).

The indexing set can be identified with s(G/H,K/H).
There is a similar decomposition of lune interiors. For any H ≤ G ≤ K, we

have

(3.22) s(G,K)o =
⊔

F :H≤F,GF=K

s(H,F )o.

The indexing set can be identified with s(G/H,K/H)o.

3.3.4. Decomposition of a cone into lunes. We now turn to arbitrary cones,
generalizing all that we have done so far.

Proposition 3.22. Let V be a combinatorial cone and X a flat with X ≤ b(V).
Then V can be written uniquely as a disjoint union of combinatorial lunes, each
with base X and case c(V). Explicitly: Let H be any face with support X. Then

(3.23) V =
⊔

K:K∈V,K≥H

s(H,K).

In other words, the sum is over all top-dimensional faces K of V which are greater
than H.

Proof. By Proposition 3.12, s(H,K) ⊆ V. Conversely, for any G ∈ V, HG must
be one of the K and hence G ∈ s(H,K). This yields the decomposition (3.23).
For uniqueness, we note that any lune contained in V with base X and case c(V)
appears in the rhs of (3.23). This follows from Proposition 3.12. �

We call (3.23) the lune decomposition of the cone V over the flat X. Suppose
X ≤ Y ≤ b(V). Then one may first decompose V over Y, and then decompose
each of the resulting lunes (with base Y) over X. By uniqueness, this is the same
as decomposing V directly over X.

An equivalent way of expressing the lune decomposition is given below.

Proposition 3.23. Let V be a combinatorial cone and X a flat with X ≤ b(V).
Then

(3.24) V =
⊔

L: b(L)=X,L≤V
c(L)=c(V)

L.

The condition L ≤ V refers to the partial order on cones.

Similar decompostion results for the interior, boundary and closure of a com-
binatorial cone are given below.
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Proposition 3.24. For V a combinatorial cone and H a face with s(H) ≤ b(V),

(3.25) Vo =
⊔

K:K∈Vo,K≥H

s(H,K)o and Vb =
⊔

K:K∈Vb,K≥H

s(H,K)o,

and

(3.26) Cl(V) =
⊔

K:K∈Cl(V),K≥H

s(H,K)o.

Proof. By Proposition 2.23, faces in Cl(V) can be classified as boundary or interior
faces by looking at their projection on H. In view of Proposition 3.12, we obtain
both identities in (3.25) and their union which is (3.26). �

We now discuss some special cases.

• In Proposition 3.22, one can always take X to be the minimum flat. Recall
that lunes whose base is the minimum flat are the same as faces, hence
the decomposition (3.23) amounts to writing V as the union of its top-
dimensional faces.
• Suppose V is the maximum flat. Then b(V) = V. So by Proposition 3.22,

each flat X gives rise to a decomposition of V. In (3.23), H is any face with
support X, and the K are chambers which contain H. This is precisely
the top-lune decomposition given by (3.16). Note that (3.26) specializes
to (3.17). More generally, an arbitrary flat V yields (3.19).

• Suppose V is a lune. Then (3.23) specializes to (3.21) while the first
identity in (3.25) specializes to (3.22). When s(H) = b(V), (3.23) is a
tautology, but (3.26) is nontrivial and can be expressed as

(3.27) Cl(s(H,G)) =
⊔

K:H≤K≤G

s(H,K)o.

The summand indexed by K = H accounts for the base of the lune. The
summand indexed by K = G accounts for the interior of the lune, while
the remaining summands account for the boundary.

3.3.5. Decomposition of a cone into vertex-based lunes.

Corollary 3.25. Let V be a combinatorial cone whose base is not the minimum
flat. Then V can be written as a disjoint union of vertex-based combinatorial lunes.
More precisely: Let H ≤ G, where H is a vertex. Then any G-based combinatorial
cone V is the disjoint union of some H-based combinatorial lunes.

Proof. By hypothesis, b(V) has rank at least 1. Apply Proposition 3.22 with
X = s(H), where H is any vertex contained in b(V). (Two vertices will yield the
same decomposition iff they are opposites of each other.) In the second formulation,
b(V) = s(G). Since H ≤ G, X = s(H) is smaller than b(V). �

A similar result which follows from (3.25) is given below.

Corollary 3.26. Let V be a combinatorial cone whose base is not the minimum
flat. Then Vo can be written as a disjoint union of the interiors of vertex-based
combinatorial lunes. More precisely: Let H ≤ G, where H is a vertex. Then the
interior of any G-based combinatorial cone V is the disjoint union of the interiors
of some H-based combinatorial lunes.
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The pictures above show two distinct decompositions of the hemisphere by
vertex-based lunes. The base of any of these lunes is the support of the vertex
shown in blue.

3.3.6. Optimal decomposition of a cone. Applying Proposition 3.23 with X :=
b(V), we obtain:

Theorem 3.27. For any combinatorial cone V,

(3.28) V =
⊔

L: b(L)=b(V),L≤V
c(L)=c(V)

L.

We refer to (3.28) as the optimal decomposition of a cone (since any other
decomposition of V involves decomposing the lunes in the optimal decomposition
of V into smaller lunes). Similarly, one can optimally decompose the interior,
boundary and closure of V by taking s(H) = b(V) in Proposition 3.24.

The figure shows the optimal decomposition of a vertex-based cone in rank 3.

Exercise 3.28. Let V be a cone. Then check that the following are equivalent.

(1) V is a lune.
(2) The optimal decomposition of V has only one lune.
(3) There is exactly one top-dimensional face of V which contains any given

top-dimensional face of b(V).

Exercise 3.29. Any cone V can be written as the union of its top-dimensional
faces. Show that this is the optimal decomposition iff b(V) is the minimum flat.

Exercise 3.30. Recall from Lemma 3.2 that a lune with base X and support
Y corresponds to a chamber of the arrangement AY

X. Show that: The optimal
decomposition of a cone with base X and support Y into lunes corresponds to
writing a top-cone of AY

X as a union of its chambers.

Exercise 3.31. Let L and M be two lunes with the same base and the same
support. Fix a top-dimensional face F of L. Define ΣL,M to be the set of all faces
G such that GF is a top-dimensional face of M. Note that ΣL,M ⊆ Cl(M). Show
that ΣL,M is the disjoint union of certain summands of the optimal decomposition
of Cl(M) given in (3.26). Deduce that ΣL,M does not depend on the particular
choice of F .
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3.4. Restriction and extension of cones

A top-cone can be as small as a chamber and as large as the set of all chambers.
This feature makes it possible to assign two meanings to what it means for a top-
cone to be local to a face F . The first meaning is that it is contained in the
top-star of F . The second meaning is that it contains F in its closure. Note that
the first meaning is stricter than the second. These two kinds of local top-cones
can be related to each other by the operations of restriction and extension. We
also discuss the special case when the top-cones are gallery intervals and top-lunes.
These considerations generalize to arbitrary cones.

3.4.1. Restriction. Fix a face F . Suppose W is a combinatorial top-cone whose
closure contains F . Define

WF := W ∩ ΓF ,

where ΓF is the top-star of F . Since F belongs to the closure of W, the intersection
in the rhs is nonempty, so WF is a top-cone. It is the meet of W and ΓF in the
poset of top-cones. (See Exercise 2.9.) We call it the restriction of W to F . It
consists of those chambers of W which are greater than F .

3.4.2. Extension. Fix a face F . Suppose V is a combinatorial top-cone contained
in the top-star of F . Define

FV := {C | FC ∈ V}.
This is a top-cone which contains V. (This can be checked using Proposition 2.3,
items (2) or (3).) We call it the extension of V from F .

3.4.3. Adjunction. We now relate the two constructions. Let ÛΩF denote the set

of all top-cones contained in the top-star of F , and let F
ÛΩ denote the set of all

top-cones whose closure contains F . We view both of them as subposets of ÛΩ (the

poset of all top-cones). Note that ÛΩF can be identified with the set of all top-cones
of the arrangement AF .

Restriction and extension define order-preserving maps

F
ÛΩ→ ÛΩF , W 7→WF and ÛΩF → F

ÛΩ, V 7→ FV.

Moreover, for any V ∈ ÛΩF and W ∈ F
ÛΩ,

(3.29) WF ≤ V ⇐⇒ W ≤ FV.

In other words, restriction and extension form an adjunction, with restriction as
the left adjoint and extension as the right adjoint, see (B.2).

Proof. Forward implication. Suppose WF ≤ V. Let C be any chamber in W.
Then by Proposition 2.7, FC is in WF , and hence in V. Hence C belongs to FV.
This shows that W ≤ FV.

Backward implication. Suppose W ≤ FV. Let D be any chamber in WF . In
particular, it belongs to W and hence to FV. So FD belongs to V, but FD = D,
so D belongs to V. This shows that WF ≤ V. �

As a specialization of (B.3):

(FV)F ≤ V and W ≤ F (WF ).
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In fact, observe that the first inequality is always an equality, that is, (FV)F = V.
Thus, FV is the largest top-cone whose restriction to F is V. The second inequality
can be strict. A necessary and sufficient condition for equality to hold is given below.

(3.30) W = F (WF ) ⇐⇒ s(F ) ≤ b(W).

Backward implication is equivalent to the lune decomposition of W over the flat
s(F ), see (3.23). Forward implication is implied by the following.

For V ∈ ÛΩF , the support of F is contained in the base of FV.

To see this, fix a D ∈ V. Let G be any face with the same support as F . Then
F (GD) = FD = D, so GD ∈ FV. This shows that G lies in the closure of FV.
Thus, the support of F is contained in the closure of FV and hence lies in its base.

As a specialization of (B.4):

Proposition 3.32. For any face F , there is a bijection between top-cones contained
in the top-star of F , and top-cones whose base contains the support of F . The latter
are the closed sets of the closure operator which sends W to F (WF ).

When F is the central face, the posets ÛΩF and F
ÛΩ coincide with ÛΩ, and both

restriction and extension equal the identity map. The other extreme is when F is

a chamber, say C. Then ÛΩC is a singleton, its only element is the top-cone C. In

contrast, C ÛΩ consists of all top-cones which contain C. The extension map sends
C to the largest top-cone, namely, the set of all chambers. (The latter is the only
top-cone whose base is the maximum flat.) The restriction map sends all top-cones
containing C to C.

Exercise 3.33. Let F be a face and W a combinatorial top-cone with s(F ) ≤ b(W).
Show that: C ∈W iff FC ∈W.

Exercise 3.34. Let F belong to the closure of W. Show that F (WF ) = Γ iff F
belongs to the interior of W.

Exercise 3.35. Give an example of a face K and a combinatorial top-cone V such
that {KC | C ∈ V} is not a combinatorial top-cone.

3.4.4. Inclusion maps. Fix a face F . We can also consider the order-preserving

inclusion map from ÛΩF to F
ÛΩ. Observe that it is the left adjoint of the restriction

map.

Similarly, there is an inclusion map from F
ÛΩ to ÛΩ. It has a left adjoint which

sends a top-cone V to the smallest top-cone greater than V which has F in its
closure. Such a smallest top-cone exists and equals the meet of all top-cones with
this property. This can be deduced from (2.3). Note that this adjunction can be
composed with the adjunction given by restriction and extension.

3.4.5. Restriction and extension of arbitrary cones. The above considera-
tions generalize to arbitrary cones.

Fix a face F . Let us first define ΩF and FΩ. A cone V belongs to ΩF iff all
the top-dimensional faces of V are greater than F . A cone W belongs to FΩ iff the
closure of W contains F . For V ∈ ΩF and W ∈ FΩ, define

WF = {G ≥ F | G ∈W} and FV = {G | FG ∈ V, s(G) = c(V)}.
(The same definitions as before are employed but in the arrangement under the
case of the cone.) We check below that (3.29) continues to hold.
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Proof. Forward implication. Suppose WF ≤ V. Let G ∈ W. Then by Proposi-
tion 2.7, FG ∈ WF . Hence, there exists K ∈ V such that FG ≤ K. Then GK
satisfies F (GK) = K and its support is the same as the case of V, so GK ∈ FV.
This shows that W ≤ FV.

Backward implication. Suppose W ≤ FV. Let H ∈WF . In particular, H ∈W.
Hence, there exists K ∈ FV such that H ≤ K. So FK ∈ V, but FK = K, so
K ∈ V. This shows that WF ≤ V. �

Thus, restriction and extension form an adjunction between ΩF and FΩ.

Lemma 3.36. Fix faces F and G. Let V be a cone whose top-dimensional faces
are greater than F . Then G belongs to the closure of FV iff FG belongs to the
closure of V.

Proof. This can be checked directly, or deduced from (3.26). �

3.4.6. Restriction and extension of gallery intervals. We now show that the
operations of restriction and extension preserve gallery intervals.

Lemma 3.37. Suppose V is a gallery interval, and F belongs to the closure of V.
Then VF , the restriction of V to F , is also a gallery interval. More precisely, if
V = [C :D], then VF = [FC :FD].

F

C D

FC FD

Proof. Let V = [C :D]. Since F belongs to the closure of V, by Proposition 2.7,
FC and FD belong to V, and hence to VF . Now let E be any chamber in VF . By
hypothesis, C --E --D. By projecting this minimal gallery on F and using (1.26),
we obtain FC --E --FD since FE = E. Alternatively, this also directly follows
from the gate property. Thus, VF = [FC :FD] as required. �

Lemma 3.38. Suppose V is a gallery interval contained in a top-star of F for
some face F . Then FV, the extension of V from F , is also a gallery interval.
More precisely, if V = [C :D] for some chambers C and D greater than F , then

FV = [C :FD].

F F

C

D FD

E
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Proof. Let V = [C :D]. Note that F (FD) = FD = D, so FD ∈ FV. Now let
E be any chamber in FV. Then FE ∈ V and hence by hypothesis, C --FE --D.
Also, by the gate property, C --D --FD. This yields C --FE --FD. Again by the
gate property, this can be refined to C --FE --FE --FD. By Proposition 1.53,
this further refines to C --FE --E --FE --FD. Thus, C --E --FD, and we obtain

FV = [C :FD] as required. �

We mention that this fact can also be obtained more directly by employing
Lemma 1.67.

3.4.7. Restriction and extension of top-lunes. Now let us consider the further
subclass of top-lunes. This case is slightly different because there is a distinction
between top-lunes contained in the top-star of F , and top-lunes in the arrangement
AF . We need to work with the latter.

Suppose L is a combinatorial top-lune containing F in its closure. Then its
restriction LF may not be a top-lune, but it will be a top-lune when viewed as a
top-cone in AF . This can be phrased as follows.

Lemma 3.39. Let HF ≤ D. Then

s(FH/F, FD/F ) = s(H,D)F .

Proof. We need to check that for any chamber E greater than F , we haveHE = D
iff FHE = FD. For the forward implication, we premultiply by F . For the
converse, we premultiply by H and use HFH = HF and HFD = D. �

H

FFH

FD

D

L′

L

AF

In the above picture, the top-lune L is the lunar region, while the top-star of F is
the circular region. Their intersection is the shaded region marked L′. It is also a
top-lune but in AF .

Suppose L is a top-lune in AF . View it as a top-cone contained in the top-star
of F . Then its extension FL is a top-lune. This can be phrased as follows.

Lemma 3.40. For F ≤ H ≤ D,

F (s(H/F,D/F )) = s(H,D).

In particular, s(H,D) is the extension of D from H.

Proof. This is equivalent to saying HC = D iff H(FC) = D, which is clear. �

This result can be viewed as a reformulation of (3.20) and the discussion leading
to Proposition 3.21.
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3.5. Top-star-lunes

We introduce top-star-lunes. Their relation to the other geometric objects that
we have discussed is shown below.

gallery interval

top-star-lune

top-star top-lune

chamber ambient space

Thus, a top-star-lune is a gallery interval, while top-stars and top-lunes are top-
star-lunes. Recall that a chamber or the ambient space is both a top-star and a
top-lune, and in particular, these are also top-star-lunes.

Top-star-lunes of a given arrangement are defined inductively from top-star-
lunes in arrangements of smaller rank as follows. The arrangement of rank zero has
a unique top-cone. By definition, it is a top-star-lune. Inductively, a top-cone W in
A is a top-star-lune in A if there exists a noncentral face F in A and a top-star-lune
V in AF such that

either W = V or W = FV,

where recall that FV is the extension of V from F . We refer to these two possibil-
ities as the series alternative and parallel alternative, respectively. In the parallel
alternative, note that the support of F must be smaller than the base of W.

Note very carefully that the F in the above definition is not required to be
unique. Thus, it may happen that a given top-star-lune arises from a F by the
series alternative, and at the same time from a F ′ by the parallel alternative.

Lemma 3.41. Any top-star is a top-star-lune. Any top-lune is a top-star-lune.

Proof. Any chamber C is a top-star-lune in the rank-zero arrangement AC , and
hence a top-star-lune in A (by the series alternative). Hence, chambers are top-
star-lunes.

For a top-nested face (H,D), the chamber D/H is a top-star-lune in AH (by
what we just saw). By Lemma 3.40, s(H,D) is the extension of D from H, and
hence a top-star-lune in A (by the parallel alternative). Hence, top-lunes are top-
star-lunes.

The top-star ΓF of a face F is a top-lune in AF , hence a top-star-lune in AF
(by what we just saw), and hence a top-star-lune in A (by the series alternative).
Hence, top-stars are top-star-lunes. �

Lemma 3.42. A top-star-lune is a gallery interval.

Proof. We induct on the rank of the arrangement. The rank-zero case is clear.
For the induction step, let W be a top-star-lune in A. Let F be a noncentral face
and V a top-star-lune in AF which give rise to W. By induction hypothesis, V is a
gallery interval in AF , and hence in A. In the series alternative, W = V and hence
W is a gallery interval. In the parallel alternative, we use Lemma 3.38 to reach the
same conclusion. �
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In the arrangement of rank 1, all top-cones are top-star-lunes. In fact, the only
top-cones are the two chambers and the ambient space.

V

In the rank-two arrangement of n lines, a top-cone is a top-star-lune iff the top-cone
has either 1 edge, or 2 edges, or n edges or 2n edges. The smallest top-cone which
is not a top-star-lune is shown above. It consists of three contiguous edges of the
octagon.

The above is a typical picture in rank three of a top-cone which is not a top-star-
lune. It is neither localized enough to be in the top-star of a vertex, nor has it
spread out enough to contain two opposite vertices (assuming the arrangement has
enough hyperplanes).

3.6. Conjugate top-cones

Two top-cones are conjugate when the set of hyperplanes cutting them are
complementary. Gallery intervals always have conjugates. Further, any top-lune
has a conjugate which is a top-star, and vice versa. Similarly, any top-star-lune has
a conjugate which is a top-star-lune. An arrangement satisfies the conjugate-meet
property if any two conjugates share a common chamber. Stronger results can be
proved under this assumption.

3.6.1. Conjugate top-cones. Two top-cones are conjugate if any hyperplane in
the arrangement cuts exactly one of the two top-cones. In other words, V and W
are conjugate if any hyperplane cuts either V or W but not both. In this situation,
we say that W is a conjugate of V.

Recall from Lemma 2.31 that a hyperplane cuts V iff it cuts V. Hence, if V
and W are conjugate, then so are V and W.

Any chamber has a unique conjugate, namely, the ambient space. Similarly, a
top-cone is a conjugate of the ambient space iff that top-cone is a chamber. This
follows from (2.13).

Any top-cone which is not a chamber has an even number of conjugates (pos-
sibly zero). This is because if V is a conjugate of the given top-cone, then so is V,
and by Proposition 2.11, these are distinct since V is not the ambient space.

3.6.2. Gallery intervals. Any gallery interval has a conjugate which is also a
gallery interval. More precisely, for any chambers C and D, the gallery intervals

V = [C :D] and W = [C :D]

are conjugate. This is because any hyperplane separates exclusively either C and
D, or C and D. Observe that C and D can be recovered from V and W as

V ∧W = C and V ∧W = D.
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An example in rank 2 is shown below.

W

V

The edge common to both V and W is C, while the edges in V and W opposite to
each other are D and D.

3.6.3. Top-stars and top-lunes. Any top-lune has a conjugate which is a top-
star, and conversely, any top-star has a conjugate which is a top-lune. More pre-
cisely, for any top-nested face (H,D), the top-star and top-lune, namely,

ΓH = [D :HD] and s(H,D) = [D :HD]

are conjugate. A hyperplane cuts the top-star ΓH iff it contains H, and cuts the
top-lune s(H,D) iff it does not contain H.

H
HHD HDD

The situation in rank three when H is a vertex is illustrated above. The circular
region is the top-star, while the lunar region is the top-lune. They have exactly one
common chamber D. The chambers HD and HD are opposite.

When H is either O or D, we recover the fact that the chamber D and the
ambient space are conjugate.

Lemma 3.43. Every conjugate of a top-star is a top-lune. More precisely, the
conjugates of the top-star of H are indexed by chambers D greater than H and
given by the top-lunes s(H,D).

Proof. Let V denote the top-star of H. We have seen that the s(H,D) are conju-
gates of V. It remains to show that these are all. For that, suppose W is a conjugate
of V. Pick a chamber C in W and put D := HC. We claim that W = s(H,D).
First note that any chamber C ′ in W satisfies HC ′ = D. If not, then there exists
a hyperplane passing through H which separates D and HC ′, and hence also D
and C ′. This hyperplane then cuts both V and W which is a contradiction. Thus,
W ≤ s(H,D). Further, equality must hold. If not, then by Theorem 2.55, there
exists a hyperplane which cuts s(H,D) but not W. This hyperplane then cuts
neither V nor W which is a contradiction. �
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In contrast, not every conjugate of a top-lune is a top-star. An example is given
below.

C

D

Consider the gallery interval [C :D]. It is a vertex-based top-lune with the north and
south poles in its base. The conjugate [C :D] has three chambers, with the chamber
D on the backside. It is not a top-star. In fact, it is not even a top-star-lune. This
is relevant to the discussion below.

3.6.4. Top-star-lunes. Recall that top-star-lunes are defined inductively. The
following observation about conjugates is of a similar nature. Recall that FV de-
notes the extension of V from F .

Lemma 3.44. Suppose V and V′ are contained in the top-star of F . Then V and
V′ are conjugate in AF iff FV and V′ are conjugate in A.

Proof. Let A denote the set of hyperplanes of A. Write A = B ⊔ C, where B
consists of those hyperplanes which contain F , and C consists of those which do
not contain F . Let g, h and g′ denote the sets of hyperplanes which cut V, FV
and V′, respectively. Then g, g′ ⊆ B and h = g ⊔ C. It follows that V and V′ are
conjugate in AF iff g ⊔ g′ = B iff h ⊔ g′ = A iff FV and V′ are conjugate in A. �

Lemma 3.45. Any top-star-lune has a conjugate which is also a top-star-lune.

Proof. We induct on the rank of the arrangement. The rank-zero case is clear.
For the induction step, let W be a top-star-lune in A. Let F be a noncentral face
and V a top-star-lune in AF which give rise to W. By induction hypothesis, V has
a conjugate V′ in AF which is a top-star-lune. We now employ Lemma 3.44. In the
series alternative, W = V which is conjugate to FV

′ and which is a top-star-lune
by the parallel alternative. In the parallel alternative, W = FV which is conjugate
to V′ and which is a top-star-lune by the series alternative. �

In other words, we obtain a conjugate of V by repeating the inductive con-
struction of V (which may not be unique) interchanging the series and parallel
alternatives at each step.

Every conjugate of a top-star-lune is not necessarily a top-star-lune. The ex-
ample given above of a top-lune with a conjugate which is not a top-star works.

3.6.5. Conjugate-meet property. An arrangement satisfies the conjugate-meet
property if any of the following equivalent conditions hold.

• If V and W are conjugate, then V ∧W = C, for some chamber C. That
is, any two conjugate top-cones have a unique chamber in common.

• If V and W are conjugate, then V ∧W exists in the poset of top-cones.
That is, any two conjugate top-cones have a chamber in common.
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The first condition clearly implies the second. Conversely, if V and W had a
common chamber apart from C, say E, then any hyperplane separating C and E
would cut both V and W, which is not possible.

The conjugate-meet property fails precisely if there exist conjugate top-cones
which do not have any chamber in common, or equivalently, whose meet (in the
poset of cones) is not a top-cone.

Proposition 3.46. Assume the conjugate-meet property. Let V and W be top-
cones. Then V and W are conjugate iff there exist chambers C and D such that
V = [C :D] and W = [C :D]. In particular, in this situation, V and W are both
gallery intervals.

Proof. We have seen the backward implication. For the forward implication:
Suppose V and W are conjugate. By the conjugate-meet property, V ∧W = C,
for some chamber C. Since V and W are also conjugate, V ∧W = D, for some
chamber D. Since cones are convex, by Proposition 2.39, V contains [C :D] and W
contains [C :D]. In fact, equality must hold, that is, V = [C :D] and W = [C :D].
Suppose not. Say V is strictly greater than [C :D]. Then by Theorem 2.55, there
exists a hyperplane which cuts V but not [C :D]. But then this hyperplane cuts
[C :D] and hence W, contradicting the fact that V and W are conjugate. �

Corollary 3.47. Assume the conjugate-meet property. A top-cone V is a gallery
interval iff there exists a top-cone which is conjugate to V.

Arrangements of rank up to 2 have the conjugate-meet property. But it can
fail in higher ranks. For instance, the conjugate-meet property fails for the smallest
nonsimplicial arrangement in rank three (Section 1.2.5). In fact, in this arrange-
ment, for any vertex-based top-lune with three chambers, there exists a conjugate
vertex-based top-lune with three chambers such that the meet of the two top-lunes
is the central face.

Lemma 3.48. If A satisfies the conjugate-meet property, then so does AF for any
face F .

Proof. Suppose V and W are conjugate in AF . Then by Lemma 3.44, FV and W
are conjugate in A. So by hypothesis, they have a common chamber, say C. Then
C ∈W implies that C is greater than F which then implies that C ∈ V. Thus, V
and W have a common chamber as required. �

3.7. Cartesian product of cones, gallery intervals and lunes

Cartesian product of arrangements was discussed in Section 1.8. We will now
see that cones, gallery intervals and lunes behave nicely under this operation. In
this discussion, A and A′ are arrangements, and A×A′ is their cartesian product.

3.7.1. Cones. Recall that a hyperplane of A × A′ is either (H,⊤′) with H an
hyperplane of A or (⊤,H′) with H′ an hyperplane of A′. Thus, the set of hyper-
planes of A × A′ is the disjoint union of the set of hyperplanes of A and A′. The
same comment applies to half-spaces. Hence, by taking power sets and employing
notations of Section 2.6, we get

−→
G[A×A′] =

−→
G[A]×−→G[A′] and G[A×A′] = G[A]×G[A′].
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Since cones are obtained by intersecting half-spaces, and flats by intersecting hy-
perplanes, we deduce that

(3.31) Ω[A×A′] = Ω[A]× Ω[A′] and Π[A×A′] = Π[A]×Π[A′].

The second identification has been noted earlier. The first one says that a cone of
A × A′ is the same as a pair (V,V′), where V is a cone of A and V′ is a cone of
A′. Also note that if V and V′ are top-cones, then so is (V,V′), and the set of
chambers in (V,V′) is the cartesian product of the set of chambers in V with the
set of chambers in V′.

The maps in diagrams (2.17) are compatible with these identifications.

3.7.2. Minimal galleries. Let C and D be chambers of A, and C ′ and D′ be
chambers of A′. We make some elementary observations.

A hyperplane H in A×A′ separates (C,C ′) and (D,D′) iff either H corresponds
to a hyperplane in A and separates C and D, or H corresponds to a hyperplane in
A′ and separates C ′ and D′.

The two alternatives are illustrated above. The chambers (C,C ′) and (D,D′) are
drawn shaded, while the separating hyperplanes are drawn thick.

Thus, the set of hyperplanes separating (C,C ′) and (D,D′) is the union of the
set of hyperplanes separating C and D, and the set of hyperplanes separating C ′

and D′. In particular,

dist((C,C ′), (D,D′)) = dist(C,D) + dist(C ′, D′).

Therefore: Chambers (C,C ′) and (D,D′) are adjacent in A×A′ iff either C ′ = D′

and C and D are adjacent in A, or C = D and C ′ and D′ are adjacent in A′.
By employing (1.25), we can now deduce all of the following.
For any chambers (C,C ′), (D,D′) and (E,E′) of A×A′,

(3.32) (C,C ′) -- (E,E′) -- (D,D′) ⇐⇒ C --E --D and C ′ --E′ --D′.

A minimal gallery from (C,C ′) to (D,D′) yields a pair of galleries, one from C
to D, and another from C ′ to D′. The gallery from C to D is obtained by projecting
on the first coordinate and deleting repeated entries, while the gallery from C ′ to
D′ is obtained similarly by projecting on the second coordinate.

Conversely, given a minimal gallery from C to D, and another from C ′ to
D′, one can construct minimal galleries from (C,C ′) to (D,D′) as follows. At each
stage, we either change the first coordinate using the first gallery keeping the second
coordinate fixed or vice versa.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



96 3. LUNES

Continuing with the previous picture, there are three minimal galleries from
(C,C ′) to (D,D′) and they are shown below.

At a given stage in the minimal gallery, we either cross the horizontal hyperplane,
or one of the two vertical hyperplanes drawn thick. The horizontal hyperplane can
be interleaved with the vertical ones in any manner.

3.7.3. Gallery intervals. For chambers C and D of A, and C ′ and D′ of A′,

[(C,C ′) : (D,D′)] = ([C :D], [C ′ :D′]).

This is an identity of top-cones in A×A′. It is a restatement of (3.32). It implies
that a top-cone (V,V′) of A × A′ is a gallery interval iff V is a gallery interval in
A and V′ is a gallery interval in A′.

3.7.4. Top-stars and top-lunes. For a face F of A, and F ′ of A′,

Γ(F,F ′) = (ΓF ,ΓF ′).

It implies that a top-cone (V,V′) of A × A′ is a top-star iff V is a top-star in A
and V′ is a top-star in A′.

For a top-nested face (H,D) of A, and (H ′, D′) of A′,

s((H,H ′), (D,D′)) = (s(H,D), s(H ′, D′)).

This follows from (1.18). It implies that a top-cone (V,V′) of A×A′ is a top-lune
iff V is a top-lune in A and V′ is a top-lune in A′.

More generally, for a nested face (H,G) of A, and (H ′, G′) of A′,

s((H,H ′), (G,G′)) = (s(H,G), s(H ′, G′)).

Thus, a cone (V,V′) of A×A′ is a lune iff V is a lune in A and V′ is a lune in A′.
In other words, the identification of cones in (3.31) restricts to

Λ[A×A′] = Λ[A]× Λ[A′].

3.7.5. Restriction and extension of cones. The operations of restriction and
extension of cones are also well-behaved under cartesian product. Let (F, F ′) be
a face and (V,V′) a top-cone of A × A′. Then (F, F ′) belongs to the closure of
(V,V′) iff F belongs to the closure of V and F ′ belongs to the closure of V′. In
this situation,

(V,V′)(F,F ′) = (VF ,V
′
F ′).

Similarly, (V,V′) is contained in the top-star of (F, F ′) iff V is contained in the
top-star of F and V′ is contained in the top-star of F ′. In this situation,

(F,F ′)(V,V
′) = (FV, F ′V′).
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3.7.6. Top-star-lunes. A top-cone (V,V′) of A × A′ is a top-star-lune iff V is
a top-star-lune in A and V′ is a top-star-lune in A′. This can be established
by an induction on the sum of the ranks of A and A′. The base case is when
either A or A′ has rank zero. For the induction step, we explain one case for the
forward implication. Let (W,W′) be a top-star-lune of A × A′. Suppose (W,W′)
is constructed from (F, F ′) and a top-star-lune (V,V′) of A(F,F ′) by the parallel
alternative. (Recall that A(F,F ′) = AF ×AF ′ .) Hence, by induction hypothesis, V
and V′ are top-star-lunes in AF and AF ′ , respectively. Then

(W,W′) = (F,F ′)(V,V
′) = (FV, F ′V′).

Thus, W is constructed from F and V, and W′ from F ′ and V′ by the parallel
alternative. Hence, W and W′ are both top-star-lunes. The other cases are similar.

3.7.7. Conjugate top-cones. A hyperplane H in A × A′ cuts (V,V′) iff either
H corresponds to a hyperplane in A and cuts V, or H corresponds to a hyperplane
in A′ and cuts V′. It follows that (V,V′) and (W,W′) are conjugate top-cones in
A × A′ iff V and W are conjugate top-cones in A, and V′ and W′ are conjugate
top-cones in A′.

Similarly, one can deduce that A×A′ has the conjugate-meet property iff both
A and A′ have the conjugate-meet property. The forward implication also follows
from Lemma 3.48 (since A and A′ can be viewed as arrangements over a flat of
A×A′).

Notes

Top-nested faces and top-lunes. Top-lunes for affine arrangements are considered by
Varchenko [402, Section 7]. The dictionary between his terminology and ours is: cone ↔
top-lune, edge ↔ flat, vertex (of the cone) ↔ base (of the top-lune), sharpness (of the
cone) ↔ slack (of the top-lune), marked cone ↔ top-lune written in the form s(H,D).
Top-lunes are used later by Bidigare, Hanlon and Rockmore [56]; our Proposition 3.5 is
very closely related to their Lemma 4.5. The term “lune” was coined by Billera, Brown,
and Diaconis [58, Section 6.1]. They work only in rank 3, but the general definition is
clear from this case. For a labeled simplicial arrangement, the number of chambers in
top-lunes is related to the flag f and flag h vector of the arrangement [281, Lemma 5 and
Figure 1.9]. More information is given in the notes to Chapter 7.

Top-nested faces appear prominently in the description of the Salvetti complex by
Arvola [23, Sections 5 and 7]; see also [312, page 175], [166, Chapter 5] and more recently
[137, Sections 2.1 and 3.6].

The relevance of top-nested faces and top-lunes to combinatorial Hopf algebras was
brought forth in [8, 9]. Top-nested faces are called directed faces, while top-lunes are
called directed flats in [9]. Some basic theory of top-lunes (for any LRB) is developed in
[8, Sections 2.3, 2.4 and 2.5]. Equations (3.4) and (3.7) are given in [8, (2.6) and (2.4)],
and Propositions 3.4, 3.5 and 3.9 are given in [8, Fact 5.2.1, Lemmas 2.3.2 and 2.3.3]. The
set in (3.4) is called a lunar region in this reference.

Reiner, Saliola and Welker consider an interesting family of bilinear forms on chambers
[340, Definition II.1.1]. They can be phrased using top-lunes as follows. Define 〈C,D〉 to
be the number of top-lunes which contain both C and D. More generally, for any subset
A of the set of flats, define 〈C,D〉A to be the number of top-lunes which contain both C

and D, and whose base belongs to A. When A is the set of all hyperplanes, 〈C,D〉A is
the number of half-spaces which contain both C and D, which is the same as the number
of hyperplanes in the arrangement minus dist(C,D).
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CHAPTER 4

Category of lunes

We study two interesting partial orders on lunes. The first one is the restriction
of the partial order on cones, and thus is defined by inclusion of lune closures. The
second partial order is defined by inclusion of lune interiors. Both partial orders are
graded. In the first case, the rank of a lune is the sum of the ranks of its base and
its case, while in the second, it is just the rank of its base. The poset of top-lunes
is an upper set in either partial order.

Lunes can be composed when the case of the first lune equals the base of
the second lune. This yields the category of lunes whose objects are flats and
morphisms are lunes. Further, this category is internal to posets under the second
partial order on lunes. Also it has a nice presentation with generators being lunes
of slack 1 (half-flats) subject to quadratic relations involving lunes of slack 2. In
addition, the Birkhoff monoid acts on the category of lunes.

Recall that a lune is the same as a chamber in the arrangement over its base and
under its case. Thus, composition of lunes is equivalent to an operation on chambers
in arrangements over and under flats. We call this the substitution product of
chambers. Using the same idea, one can also multiply chambers and faces, and
top-lunes and chambers.

We consider the categories associated to the poset of faces and to the poset of
flats. Since these posets are strongly connected, both categories have nice presen-
tations. We also relate them to the category of lunes by functors which are internal
to posets.

These ideas are further developed in Chapter 15.

4.1. Poset of top-lunes

Let us begin with the set of top-lunes ÛΛ[A]. It is a poset under inclusion, that
is, L ≤ M iff M contains L (as subsets of the ambient space). The poset of top-lunes
has a maximum element, namely, the ambient space. Each chamber is a minimal
element. In combinatorial terms,

(4.1) L ≤ M ⇐⇒ Cl(L) ⊆ Cl(M).

By definition, ÛΛ[A] is a subposet of the poset of top-cones ÛΩ[A]. Recall from
Section 2.7 that the poset of top-cones is graded. We now proceed to show that the
same is true for the poset of top-lunes. The strategy remains the same, namely, to
find an order-preserving map to a graded poset which preserves cover relations. In
the case at hand, this will be accomplished by the base map

(4.2) b : ÛΛ[A]→ Π[A]
obtained by restricting (2.9).

99
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The connection between top-nested faces and top-lunes was treated in Sec-
tion 3.2.1. Lune decompositions were discussed in Section 3.3. These ideas will be
used in the discussion below.

Proposition 4.1. For top-lunes L and M, the following are equivalent.

(1) L ≤ M.
(2) b(L) ≤ b(M), and L appears in the lune decomposition of M over the flat

b(L).
(3) There exist faces H ≤ G and H ≤ C such that L = s(H,C) and M =

s(G,GC).

Proof. (1) implies (2). Suppose L ≤ M. Since the base map is order-preserving,
we have b(L) ≤ b(M). Further from (3.18), distinct top-lunes with the same base
are disjoint, so L must appear in the lune decomposition of M over the flat b(L).
Alternatively, we may apply (3.24) to V = M.

(2) implies (3). This follows from (3.20).
(3) implies (1). Suppose the chamber E belongs to L, that is, HE = C. Then

GE = GHE = GC, so E belongs to M. Thus, L ≤ M. �

Lemma 4.2. For top-nested faces (H,D) and (H ′, D′),

s(H,D) ≤ s(H ′, D′) ⇐⇒ HC = D implies H ′C = D′

⇐⇒ H ′H = H ′ and H ′D = D′.

Proof. The first equivalence follows from the definition (3.3). We now prove the
second equivalence. Forward implication. Taking C = D yields H ′D = D′. In
particular, H ′H is a face of D′. Similarly, taking C = HD, we get that H ′H is a
face of D′. Hence, H ′H = H ′H = H ′ by Proposition 1.19. Backward implication.
Suppose HC = D. Then H ′C = H ′HC = H ′D = D′. �

In order to state the next result fully, we make use of the action of the Birkhoff
monoid on lunes discussed in Section 4.7.2.

Lemma 4.3. For X ≤ Y, and L a top-lune with base X, there exists a unique top-
lune M with base Y such that L ≤ M, and it is given by M = Y · L. In particular,
for a chamber D and a flat Y, there exists a unique top-lune with base Y which
contains D.

Proof. We can use Lemma 4.2. Write L = s(H,D) where s(H) = X. Pick any
face H ′ with support Y. The desired lune is M = s(H ′, H ′D). By definition, this
equals Y · L.

Alternatively: Apply (3.18) to Y, and then further take the lune decomposition
of each summand over X. This is the same as applying (3.18) directly to X. The
unique summand whose lune decomposition contains L is the required M. �

Lemma 4.3 says that the base map from top-lunes to flats is a covering map in
the sense of Section C.4.5 (provided the partial orders on both posets are reversed).

Lemma 4.4. For X ≤ Y, and M a top-lune with base Y, the top-lunes L with base
X such that L ≤ M are precisely those that appear in the lune decomposition of M
over the flat X.

Proof. This follows from Proposition 4.1 or Proposition 3.23. �
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Lemma 4.5. For top-lunes L, M and N,

L ≤ M, L ≤ N and b(M) ≤ b(N) ⇐⇒ L ≤ M ≤ N.

In particular: For top-lunes M and N,

M ≤ N ⇐⇒ b(M) ≤ b(N), and N contains a chamber of M.

Proof. Backward implication is clear. The forward implication is a formal con-
sequence of Lemma 4.3. Let N′ be the unique top-lune with base b(N) such that
M ≤ N′. Now N and N′ are both top-lunes with base b(N) which are greater than
L, so N = N′, and hence M ≤ N. �

Lemma 4.6. For top-lunes L ≤ N, and a flat Y such that b(L) ≤ Y ≤ b(N), there
exists a unique top-lune M with base Y such that L ≤ M ≤ N.

Proof. By Lemma 4.3, there is a unique M with base Y such that L ≤ M. Now,
by Lemma 4.5, L ≤ M ≤ N. �

An illustration is provided below.

L

N

Y

M

In the picture, N is a hemisphere, Y is the rank-one flat consisting of the north and
south pole, and L is a chamber contained in N. (The base of L is the minimum
flat.) The lune decomposition of N over Y has four top-lunes, and exactly one of
them contains L. This is the desired top-lune M.

Exercise 4.7. First derive Lemma 4.6 as a formal consequence of Lemma 4.3, and
then deduce Lemma 4.5 from it.

Lemma 4.8. The base map (4.2) preserves cover relations. That is, for top-lunes
L and M,

L⋖M =⇒ b(L)⋖ b(M).

Proof. By Corollary 3.17 or 3.20, distinct top-lunes with the same base are in-
comparable, so b(L) < b(M). Now use Lemma 4.6. �

As a consequence, composing (4.2) with the rank function of Π[A] yields a rank

function for ÛΛ[A]. Thus:

Theorem 4.9. The poset of top-lunes ÛΛ[A] is graded with the rank of a top-lune

being the rank of its base. In particular, the rank of ÛΛ[A] equals the rank of A. The
map (4.2) is rank-preserving.

Remark 4.10. One must be careful while talking of the rank of a top-lune L. It

could refer to the rank of L either in the poset of top-lunes ÛΛ[A] or in the poset

of top-cones ÛΩ[A]. The former is the rank of the flat b(L), while the latter is the
number of hyperplanes which cut L. The latter is always greater than the former.
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4.2. Two partial orders on lunes

Recall the set of lunes Λ[A]. We consider two partial orders on it; both extend
the partial order on the set of top-lunes. The first partial order is the restriction of
the partial order on cones, that is, L ≤ M iff the closure of M contains the closure
of L. The second partial order is as follows. L � M iff the interior of M contains
the interior of L. The goal of this section is to show that both partial orders are
graded.

4.2.1. First partial order on lunes. For lunes L and M, define

(4.3) L ≤ M ⇐⇒ Cl(L) ⊆ Cl(M).

In other words, L ≤ M iff the closure of L is contained in the closure of M. This
defines a partial order on lunes which extends the partial order on top-lunes (4.1).
It is also the restriction of the partial order on cones in view of (2.2).

Consider the map

(4.4) Λ[A]→ Π[A]×Π[A], L 7→ (b(L), c(L)).

Since the base and case maps are order-preserving, this map is also order-preserving.
We call this the base-case map and denote it by bc. In terms of nested faces, it can
be expressed as

(4.5) s(H,G) 7→ (s(H), s(G)).

Lemma 4.11. The map (4.4) preserves cover relations. That is, for lunes L and M,

L⋖M =⇒ Either b(L)⋖ b(M) and c(L) = c(M),

or b(L) = b(M) and c(L)⋖ c(M).

Proof. Consider two cases.
c(L) = c(M). Then, by passing to the arrangement under this flat and using

Lemma 4.8, we see that b(L)⋖ b(M).
c(L) < c(M). We employ Lemma 3.16. Write L = s(H,G), and let K be

any top-dimensional face of M. Then, s(H,GK) is a lune strictly greater than L
since G < GK and less than M by Proposition 3.12. Hence, M = s(H,GK). In
particular, b(L) = b(M). Further, G⋖GK, so c(L)⋖ c(M). �

As a consequence, composing (4.4) with the rank function of Π[A]×Π[A] yields
a rank function for Λ[A]. Thus:

Theorem 4.12. The set of lunes Λ[A] under the partial order ≤ is graded with the
rank of a lune being the sum of the ranks of its base and its case. In particular, the
rank of Λ[A] is 2 rk(A). The map (4.4) is rank-preserving.

Exercise 4.13. Show that: For any rank-two arrangement of n lines with n ≥ 3,
the set of lunes Λ[A] under ≤ is not a lattice. Give concrete examples of two lunes
whose meet (join) does not exist. In particular, the meet (join) of two lunes in the
lattice of cones may not be a lune.
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The picture below shows two top-lunes in rank three whose meet (consisting of
two adjacent triangles) is not a lune.

Locate other examples of this kind in the picture.

Exercise 4.14. Give an example of a lune and a flat whose meet in the lattice
of cones is not a lune. In contrast, the join of a lune and a flat is a lune, see
Proposition 4.46.

Lemma 4.15. For nested faces (H,G) and (H ′, G′),

s(H,G) ≤ s(H ′, G′) ⇐⇒ HK ≤ G implies H ′K ≤ G′

⇐⇒ H ′H = H ′ and H ′G ≤ G′.

This generalizes the result of Lemma 4.2. The proof is similar.

Exercise 4.16. Deduce that: For lunes L and L′,

L ≤ L′ ⇐⇒ There exist nested faces (H,G) and (H ′, G′)

with supports L and L′, respectively, such that H ≤ H ′ and H ′G ≤ G′.

(The equivalence between items (1) and (3) in Proposition 4.1 is a special case.)

4.2.2. Second partial order on lunes. For lunes L and M, define

(4.6) L � M if L ≤ M and b(M) ∨ c(L) = c(M).

The relation � defines another partial order on lunes. This follows from Lemma 4.18
below. It is also a special case of Lemma E.3.

Lemma 4.17. For nested faces (H,G) and (H ′, G′),

s(H,G) � s(H ′, G′) ⇐⇒ H ′H = H ′ and H ′G = G′.

Compare with Lemma 4.15.

Lemma 4.18. For lunes L and M,

(4.7) L � M ⇐⇒ Lo ⊆ Mo.

In other words, L � M iff the interior of L is contained in the interior of M.

Proof. Write L = s(H,G) and M = s(H ′, G′). We employ (3.11) and Lemma 4.17.
Forward implication: Suppose F ∈ Lo. Thus HF = G. Then H ′F = H ′HF =

H ′G = G′. So F ∈ Mo. Backward implication: Since G ∈ Lo, we have G ∈ Mo

and hence H ′G = G′. Similarly, since HG ∈ Lo, we have H ′HG = G′. So
H ′H and H ′H are both smaller than G′, hence joinable. So by Proposition 1.19,
H ′H = H ′H = H ′. �
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Observe from (4.6) that:

If c(L) = c(M), then L � M ⇐⇒ L ≤ M.

In particular, the partial orders ≤ and � are identical when restricted to the set of
top-lunes.

If b(L) = b(M), then L � M ⇐⇒ L = M.

This follows from Corollary 3.17. In particular, for faces F and G,

F � G ⇐⇒ F = G.

Also note that for a lune L and flat Y,

(4.8) L � Y ⇐⇒ L ≤ Y ⇐⇒ c(L) ≤ Y.

In particular, for flats X and Y,

X � Y ⇐⇒ X ≤ Y.

Further, the set of flats is an upper set under �. That is, X � L implies L is a flat.

Exercise 4.19. Recall that faces are lunes. Show that: For a face F and lune L,

F ≤ L ⇐⇒ F ∈ Cl(L) and F � L ⇐⇒ F ∈ Lo.

(Use (3.10) and (3.11).)

Example 4.20. The set of lunes for the rank-one arrangement has four elements,
namely, the minimum and maximum flats and the two chambers. The Hasse dia-
grams of the two partial orders are shown below.

The partial order on the left is ≤, while the one on the right is �.
Exercise 4.21. Show that: For cones V and W,

Cl(V) ⊆ Cl(W) and b(W) ∨ c(V) = c(W) =⇒ Vo ⊆Wo.

(Use Exercise 2.25.) The converse is false in general.

The results of Section 4.1 generalize to arbitrary lunes for the partial order �.
(The partial order ≤ does not work so well.) This is briefly explained below. We
begin with the generalization of Lemma 4.3. To state this fully, we make use of the
action of the Birkhoff monoid on lunes discussed in Section 4.7.2.

Lemma 4.22. For X ≤ Y, and L a lune with base X, there exists a unique lune M
with base Y such that L � M, and it is given by M = Y · L.

Proof. We can use Lemma 4.17. Write L = s(H,G) where s(H) = X. Pick any
face H ′ with support Y. The desired lune is M = s(H ′, H ′G). By definition, it
equals Y · L. �

Exercise 4.23. Show that: For lunes L ≤ N, there exists a unique lune M such
that L � M ≤ N and b(M) = b(N). It is given by M = b(N) · L.

Lemma 4.22 says that the base map from lunes to flats is a covering map in the
sense of Section C.4.5 (provided the partial orders on both posets are reversed). As
formal consequences:
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Lemma 4.24. For lunes L, M and N,

L � M, L � N and b(M) ≤ b(N) ⇐⇒ L � M � N.

In particular: For lunes M and N,

M � N ⇐⇒ b(M) ≤ b(N), and M and N have a common interior face.

Use Exercise 4.19 to see that the second fact follows from the first.

Lemma 4.25. For lunes L � N, and a flat Y such that b(L) ≤ Y ≤ b(N), there
exists a unique lune M with base Y such that L � M � N.

The base map from the set of lunes under the partial order � to the set of flats
preserves cover relations. Hence:

Theorem 4.26. The set of lunes Λ[A] under the partial order � is graded with
the rank of a lune being the rank of its base. In particular, the rank of this poset is
rk(A).

Observe that: The ambient space is the maximum element of this poset. Each
face is a minimal element.

Exercise 4.27. Let L be a lune with case X, and X ≤ Y. Consider the set
{M | L � M, c(M) = Y}. Show that: This set is nonempty, with maximum element
Y. However, it may not have a unique minimum element.

4.3. Maps involving lunes

We now collect together different maps involving lunes and explain the inter-
relationships between them. More precisely, we consider adjunctions between nested
faces and faces, between nested flats and flats, and relate them to the adjunctions
between lunes and flats.

4.3.1. Lunes and flats. Consider the set of lunes Λ[A] under the first partial
order ≤. Recall from Section 2.2 the inclusion, base and case maps relating cones
and flats. By restricting them to lunes, we obtain

i : Π[A] →֒ Λ[A], b : Λ[A] ։ Π[A] and c : Λ[A] ։ Π[A],

and adjunctions (c, i) and (i, b). That is, for any lune L and flat X,

c(L) ≤ X ⇐⇒ L ≤ X and X ≤ L ⇐⇒ X ≤ b(L).

4.3.2. Nested faces and faces. View the set of nested faces Q[A] as a poset
componentwise. Consider the order-preserving maps

i : Σ[A]→ Q[A] b : Q[A]→ Σ[A] c : Q[A]→ Σ[A]
F 7→ (F, F ) (H,G) 7→ H (H,G) 7→ G.

Then (c, i) and (i, b) are adjunctions. That is, for any nested face (H,G) and face
F ,

G ≤ F ⇐⇒ (H,G) ≤ (F, F ) and (F, F ) ≤ (H,G) ⇐⇒ F ≤ H.
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The following diagrams commute.

Q[A] s // Λ[A]

Σ[A]
s

//

i

OO

Π[A]

i

OO
Q[A]

b

��

s // Λ[A]

b

��

Σ[A]
s

// Π[A]

Q[A]
c

��

s // Λ[A]
c

��

Σ[A]
s

// Π[A]

(4.9)

These diagrams relate the support map from nested faces to lunes to the support
map from faces to flats.

4.3.3. Nested flats and flats. There is a similar story with flats instead of faces.
A nested flat is a pair of flats (X,Y) with X ≤ Y. Let P[A] denote the set of nested
flats. We view it as a poset componentwise. Consider the order-preserving maps

i : Π[A]→ P[A] b : P[A]→ Π[A] c : P[A]→ Π[A]
X 7→ (X,X) (Y,Z) 7→ Y (Y,Z) 7→ Z.

Then (c, i) and (i, b) are adjunctions.
Recall the base-case map from (4.4). It restricts to a map from lunes to nested

flats. The following diagrams commute.

Λ[A] bc // P[A]

Π[A]
id

//

i

OO

Π[A]

i

OO
Λ[A]

b

��

bc // P[A]

b

��

Π[A]
id

// Π[A]

Λ[A]
c

��

bc // P[A]
c

��

Π[A]
id

// Π[A]

(4.10)

4.4. Category of lunes

Lunes can be composed when the case of the first lune equals the base of the
second lune. This yields the category of lunes whose objects are flats and morphisms
are lunes. Further, it is internal to the category of posets under the second partial
order on lunes.

4.4.1. Category of lunes. We proceed to define the category of lunes . Its objects
are flats and morphisms are lunes. More precisely, a morphism from Y to X is a
lune whose base is X and whose case is Y. In particular, a morphism from Y to X
exists iff X ≤ Y. Composition of lunes is defined as follows.

Suppose L and M are lunes such that c(L) = b(M). First write L = s(A,F ) for
some nested face (A,F ). Since s(F ) = c(L) = b(M), by Proposition 3.12, there is a
unique G greater than F such that M = s(F,G). Define L ◦M = s(A,G). In other
words,

(4.11) s(A,F ) ◦ s(F,G) = s(A,G).

This is well-defined in view of the first part of Exercise 3.15. We call L ◦M the
composite of L and M.

Z

M

""

L◦M

99Y

L

""

X

For any flat X, observe that L ◦ X = L when c(L) = X and X ◦ M = M when
X = b(M). Thus, X serves as the identity morphism for the object X. It is the only
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morphism from X to itself, since flats are the only lunes whose base and case are
equal.

Example 4.28. The category of lunes for the rank-one arrangement is shown
below. There are two flats, namely, ⊥ and ⊤, while the chambers C and C are the
only lunes which are not flats.

⊤ ⊥
C

C

This is the category with two objects and two parallel (non-identity) arrows.

An illustration of lune composition in a rank-three arrangement is shown below.

L

L◦M

M

In the picture, L is a semicircle shown as a thick line, and M is the upper hemisphere.
The composite L ◦M is the vertex-based top-lune shown in darker shade.

Exercise 4.29. Since the category of lunes is finite, it is also locally finite in the
sense that given N there are finitely-many pairs (L,M) such that L ◦M = N. Show
that the number of ways to express N = s(A,G) as a composite equals the number
of faces between A and G. (Use the converse in Exercise 3.15.) In particular, there
is a unique way to decompose a flat X, namely, X = X ◦X.

4.4.2. Interaction with partial orders. Recall that we have defined two partial
orders on lunes, namely, ≤ and �. We now study how the composition operation
interacts with these partial orders.

Proposition 4.30. Suppose L and M are lunes such that c(L) = b(M). Then L◦M
is the unique lune satisfying

(4.12) b(L) = b(L ◦M), L ≤ L ◦M ≤ M, c(L ◦M) = c(M).

Proof. Write L = s(A,F ) and M = s(F,G). Then it is easy to see that L ◦
M = s(A,G) satisfies the conditions in (4.12). For uniqueness: Suppose N satisfies
b(L) = b(N), L ≤ N ≤ M and c(N) = c(M). Since s(A) = b(L) = b(N), by
Proposition 3.12, there is a unique G′ such that N = s(A,G′). Further, since
L ≤ N, by Lemma 3.16, F ≤ G′. Next, since N ≤ M, G′ belongs to the closure of
M, so FG′ ≤ G. But FG′ = G′, so G′ ≤ G. Finally, since c(N) = c(M), G′ and G
have the same support which implies G′ = G. Thus, N = L ◦M as required. �

A category is internal to the category of posets if the set of objects and the set
of arrows are posets, and source, target, insertion of identities and composition are
order-preserving.
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Proposition 4.31. The category of lunes is internal to posets under the partial
order �. In particular, for lunes L, L′, M, M′,

L � L′ and M � M′ =⇒ L ◦M � L′ ◦M′

whenever the composites are defined.

Proof. We employ Lemma 4.17. Write L = s(A,F ), M = s(F,G), L′ = s(A′, F ′)
and M′ = s(F ′, G′). We are given that A′A = A′, A′F = F ′, F ′F = F ′ and
F ′G = G′. We want to show that A′A = A′ and A′G = G′. For the latter,
A′G = A′FG = F ′G = G′. �

Lemma 4.32. Let L ≤ N with b(L) = b(N). Then there exists a unique lune M
such that L ◦M = N.

Proof. We employ Lemma 3.16. Let L = s(A,F ) and N = s(A,G) for some
A ≤ F ≤ G. Now put M = s(F,G) which yields L◦M = N as required. Uniqueness
is clear. �

Lemma 4.33. Suppose L ◦M � N′. Then there exist unique lunes L′ and M′ such
that L � L′, M � M′ and L′ ◦M′ = N′.

Proof. Write L = s(A,F ), M = s(F,G) and N′ = s(A′, G′). By hypothesis,
A′A = A′ and A′G = G′. To break N′ as a composite, we need to look at faces
between A′ andG′. Put F ′ := A′F and check that L′ = s(A′, F ′) and M′ = s(F ′, G′)
works. Uniqueness of L′ can be deduced from Lemma 4.22 from which uniqueness
of M′ follows by Lemma 4.32. �

Corollary 4.34. For any lune N′, there is a bijection

{(L,M) | L ◦M � N′}
←→ {(L,M,L′,M′) | L′ ◦M′ = N′, L � L′, M � M′, c(L) = b(M)}.

Further, for any X ≤ Z, the bijection restricts to the subsets defined by b(L) = X
and/or c(M) = Z.

Exercise 4.35. Show that: For lunes L, L′, M, M′,

L ≤ L′ and M ≤ M′ =⇒ L ◦M ≤ L′ ◦M′.

whenever the composites are defined, and b(L′)∨ c(L) = c(L′). (Use Lemma 4.15.)
The implication may not hold if this last condition is dropped.

Exercise 4.36. Show that: For lunes L, L′, M, M′,

L ≤ L′ ⇐⇒ L ◦M ≤ L′ ◦M and M ≤ M′ ⇐⇒ L ◦M ≤ L ◦M′

whenever the composites are defined.

Exercise 4.37. Show that: For lunes L, L′, M, M′,

L � L′ and L ◦M � L′ ◦M′ =⇒ M � M′

whenever the composites are defined. (Use Lemma 4.17.)

Exercise 4.38. Show that: L ◦M � M for composable lunes L and M. However,
L � L ◦M is false in general.
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4.4.3. Opposition map on lunes. Recall from Section 3.2.4 that every lune L
has an opposite lune L. Further, recall from Lemmas 2.14 and 2.16 that b(L) = b(L)
and c(L) = c(L).

Lemma 4.39. We have L ◦M = L ◦M for composable lunes L and M.

Proof. Write L = s(A,F ) and M = s(F,G). Then

s(A,F ) ◦ s(F,G) = s(A,AF ) ◦ s(F, FG) = s(A,AF ) ◦ s(AF,AG)
= s(A,AG) = s(A,G).

Note very carefully the second step which used s(F, FG) = s(AF,AG). �

4.4.4. Cartesian product. Recall from Section 3.7.4 that the set of lunes of
A×A′ is the cartesian product of the set of lunes of A and of A′:

Λ[A×A′] = Λ[A]× Λ[A′].

Further, this is an isomorphism of posets for both partial orders ≤ and �. It is
also compatible with lune composition (4.11). It follows that the category of lunes
of A×A′ is the cartesian product of the category of lunes of A and of A′.

4.5. Categories associated to faces and flats

Recall that there is a category associated to any poset P (Section B.4.2). For
the category associated to the poset of flats Π, objects are flats and there is a unique
morphism from X to Y whenever X ≤ Y. Similarly, we have the category associated
to the poset of faces Σ. We now relate these two categories to the category of lunes.

The diagrams in (4.9) and (4.10) can be compactly written as follows.

(4.13)

Q[A]

b

��

c

��

s // Λ[A]

b

��

c

��

bc // P[A]

b

��

c

��

Σ[A]
s

//

i

OO

Π[A]
id

//

i

OO

Π[A]

i

OO

Each vertical triple can be viewed as a category: The set of objects is at the bottom,
the set of morphisms is at the top, the two vertical arrows going down specify the
source and target of a morphism, while the vertical arrow going up specifies the
identity morphisms. The middle triple is the category of lunes. The first triple is
the opposite of the category associated to the poset of faces, while the last triple is
the opposite of the category associated to the poset of flats. By convention,

(A,F ) ◦ (F,G) = (A,G) and (X,Y) ◦ (Y,Z) = (X,Z).

The pair of horizontal maps linking two triples can be viewed as a functor.
The first pair given by the two support maps defines a functor from the opposite
of the category associated to faces to the category of lunes. This follows from
(4.11). Similarly, the second pair defines a functor from the category of lunes to
the opposite of the category associated to flats which is identity on objects and the
base-case map on morphisms.

For nested faces (H,G) and (H ′, G′), define

(4.14) (H,G) � (H ′, G′) if (H,G) ≤ (H ′, G′) and H ′G = G′.
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Similarly, for nested flats (X,Y) and (X′,Y′), define

(4.15) (X,Y) � (X′,Y′) if (X,Y) ≤ (X′,Y′) and X′ ∨Y = Y′.

Proposition 4.31 can be extended as follows.

Proposition 4.40. The categories associated to the posets of faces and flats are
both internal to posets under the partial orders �. Further, the functors relating
these two categories with the category of lunes considered in (4.13) are internal to
posets, that is, order-preserving on arrows as well as on objects.

4.6. Presentation of categories

The categories associated to the poset of flats and the poset of faces and the
lune category all have nice presentations. This is explained below.

Proposition 4.41. The category associated to the poset of flats has a presentation
given by generators ∆ : X→ Y, where Y covers X, and relations

X′ ∆ // Y

Z
∆

//

∆

OO

X

∆

OO

whenever Y covers both X and X′, and they in turn cover Z.
Similar statement holds for the category associated to the poset of faces.

Proof. The first claim follows from Lemma 1.33 and Proposition B.10 (applied
to the poset of flats). The second claim follows similarly from Lemma 1.32 and
Proposition B.10 (applied to the poset of faces). �

We now turn to the category of lunes. Observe that: If L and M are composable
lunes, then

(4.16) sk(L ◦M) = sk(L) + sk(M),

where sk denotes the slack of a lune (3.2).

Proposition 4.42. The category of lunes has the following presentation. It is
generated by lunes of slack 1 (half-flats) subject to the quadratic relations

L ◦M = L′ ◦M′,

where L, M, L′ and M′ are lunes of slack 1 such that L ◦M and L′ ◦M′ both define
the same lune of slack 2.

Proof. Let C denote the category of lunes, and D the category with the above
presentation. Clearly, we have a functor D→ C. It is identity on objects.

Surjective on morphisms. Any lune L can be written as a composite L1◦· · ·◦Lk,
with each Li of slack 1. To see this, let L = s(A,F ). Pick a maximal chain
A = G0 ⋖ G1 ⋖ · · · ⋖ Gk = F of faces starting at A and ending at F . Now set
Li = s(Gi−1, Gi). This shows that the functor is surjective on morphisms.

Injective on morphisms. Suppose L = s(A,F ) equals both L1 ◦ · · · ◦ Lk and
L′
1 ◦ · · · ◦ L′

k, where each Li and L′
i has slack 1. These two composites correspond

to maximal chains, say A = G0⋖G1⋖ · · ·⋖Gk = F and A = G′
0⋖G

′
1⋖ · · ·⋖G′

k =
F . By Lemma 1.32, the two can be linked by a sequence of maximal chains in
which two successive chains differ in exactly one position. Hence L1 ◦ · · · ◦ Lk and
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L′
1 ◦· · ·◦L′

k define the same morphism in D. This shows that the functor is injective
on morphisms.

We conclude that C = D. �

Exercise 4.43. For any lune L, sk(L) ≥ k iff there exist lunes L1, . . . ,Lk with
sk(Li) ≥ 1 for 1 ≤ i ≤ k such that L = L1 ◦ · · · ◦ Lk.

4.7. Action of the Birkhoff monoid on lunes

The Tits monoid acts on the set of nested faces componentwise. This descends
to an action of the Birkhoff monoid on the set of lunes. We discuss how this action
interacts with the two partial orders that we have defined on lunes.

4.7.1. Action on nested faces. The Tits monoid acts on the set of nested faces
via

(4.17) A · (F,G) = (AF,AG).

Lemma 4.44. The action (4.17) is compatible with the equivalence relations (1.14)
and (3.13): if A ∼ A′ and (F,G) ∼ (F ′, G′), then (AF,AG) ∼ (A′F ′, A′G′).

Proof. The checks are straightforward. One of the required equalities may be
derived as follows:

AFA′G′ = AFG′ = AG.

We employed the hypotheses and the property in Exercise 1.11. �

4.7.2. Action on lunes. As a consequence of Lemma 4.44: The Tits monoid acts
on the set of lunes via

A · s(F,G) = s(AF,AG).

Further, this induces an action of the Birkhoff monoid on the set of lunes. For a
flat X and a lune L, we write X · L for the action of X on L.

An illustration in rank two when X has rank one is shown below.

L

X · L

X

The lune L is the red edge, and X · L is the semicircle.
Two illustrations in rank three are shown below. In both cases, X is the rank-

one flat consisting of the north and south pole.

L

X

X·L

L

X

X·L
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In the first picture, L is the shaded chamber, and X · L is the shaded vertex-based
lune. In the second picture, L is a semicircle shown as a red line, and X · L is the
visible hemisphere.

4.7.3. Interaction with partial orders. Recall that we have defined two partial
orders on lunes, namely, ≤ and �. We now discuss how the action of the Birkhoff
monoid interacts with these partial orders.

Proposition 4.45. For any flat X and lune L,

L ≤ X · L, b(X · L) = X ∨ b(L) and c(X · L) = X ∨ c(L),

or equivalently,

L � X · L and b(X · L) = X ∨ b(L).

Further, X · L is the unique lune with these properties.

Proof. Write X = s(A), L = s(F,G) and X · L = s(AF,AG). Then

b(X · L) = s(AF ) = s(A) ∨ s(F ) = X ∨ b(L).

The assertion about c(X·L) can be derived similarly. The fact that L ≤ X·L can be
deduced from the first equivalence in Lemma 4.15: FK ≤ G implies AFK ≤ AG.

For uniqueness, suppose M is a lune satisfying

L ≤ M, b(M) = X ∨ b(L) and c(M) = X ∨ c(L).

Let K be any top-dimensional face of L. Since L ≤ M, we deduce that AK is
a top-dimensional face of M, where A is any face with support X. Now apply
Corollary 3.20. �

Second proof. We employ Lemma 4.22. Let M be the unique lune such that
L � M and b(M) = X∨ b(L). Then M = (X∨ b(L)) ·L. Thus, M = X · (b(L) ·L) =
X · L. �

Observe that for any flats X and Y, we have

X ·Y = X ∨Y.

Thus, the action of flats on lunes extends the join operation on flats, which is the
product in the Birkhoff monoid. More generally:

Proposition 4.46. For any flat X and lune L,

X · L = X ∨ L,

with the latter being the join in the poset of cones.

Proof. First note that X · L is greater than both X and L. Write X = s(A),
L = s(F,G) and X · L = s(AF,AG). By (3.9), X · L = [AG :AFG]. Now let V be
any cone which is greater than both X and L. Then the closure of V contains A,
F , A, F and G (since X contains A, and L contains F ). By Proposition 2.7, item
(3), the closure of V also contains AG and AFG, and finally by Lemma 2.45, it
contains [AG :AFG]. Therefore, V is greater than X · L as required. �

Recall that the inclusion map from flats to cones is join-preserving. Hence, for
a flat X and cone V, the assignment

X ·V := X ∨V
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specifies an action of the Birkhoff monoid on the set of cones. Proposition 4.46 says
that the action of the Birkhoff monoid on the set of lunes is precisely the restriction
of this action.

We note some more consequences of Proposition 4.46.

Corollary 4.47. For any flat X and lune M,

X ·M = M ⇐⇒ X · L = M for some L ⇐⇒ X ≤ b(M).

In particular: Given a flat X, lunes of the form X · L, as L varies, are those whose
base is greater than X.

Corollary 4.48. For any lunes L and M and flat X,

L ≤ M =⇒ X · L ≤ X ·M.

In other words, the Birkhoff monoid acts on the set of lunes under ≤ (and also on
the poset of top-lunes).

Exercise 4.49. Prove Corollary 4.48 using the formulation of the partial order on
lunes given in Lemma 4.15. Similarly, use Lemma 4.17 to check that Corollary 4.48
holds with ≤ replaced by �.

The set of top-lunes is preserved under the action of the Birkhoff monoid.
Further, the partial order on top-lunes can be captured using this action as follows.

Proposition 4.50. For top-lunes L and M, the following are equivalent.

(1) L ≤ M.
(2) b(M) · L = M.
(3) There exists a flat X such that X · L = M.

Proof. (1) implies (2). Use Proposition 4.1, item (3). Alternatively, one can use
the uniqueness assertion in Proposition 4.45.

(2) implies (3). Clear.
(3) implies (1). Follows from Proposition 4.45. �

Exercise 4.51. Check that: Proposition 4.50 generalizes to arbitrary lunes for the
partial order �. However, L ≤ M does not imply b(M) · L = M for arbitrary lunes.

Exercise 4.52. Given L � M and X, show that X ·L = M ⇐⇒ X∨b(L) = b(M).

4.7.4. Action on the category of lunes. A monoid acts on a category if it acts
on the objects and on the morphisms such that source, target, composition and
identities are preserved.

One may check that (4.17) yields an action of the Tits monoid on the category
associated to the poset of faces. This action descends to an action of the Birkhoff
monoid on the category of lunes and on the category associated to the poset of
flats. In particular, for a flat X and composable lunes L and M,

X · (L ◦M) = (X · L) ◦ (X ·M).

Exercise 4.53. Use the above property to deduce the existence of L′ and M′ in
Lemma 4.33.
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4.8. Substitution product of chambers

We introduce the substitution product of chambers. It specifies a way to mul-
tiply chambers in arrangements under a flat with chambers in arrangements over
a flat. This operation is equivalent to the composition operation on lunes. Its
connection to the classical associative operad is given in Section 6.5.10. We also
discuss related substitution products of chambers and faces, and of top-lunes and
chambers.

4.8.1. Substitution product of chambers. Recall the set of chambers Γ[A].
For any flat X, there is a map

(4.18) Γ[AX]× Γ[AX]→ Γ[A].
We call this the substitution product of chambers. To define this map, pick any
face F with support X, consider the map

Γ[AX]× Γ[AF ]→ Γ[A], (H,C/F ) 7→ HC,

and identify Γ[AF ] with Γ[AX]. The result does not depend on the particular choice
of F . More directly,

Γ[AX]× Γ[AX]→ Γ[A], (H,L) 7→ D.

Here L is a top-lune with base X which is the same as a chamber inAX (Lemma 3.2),
H is a face with support X, and D is the unique chamber in L which is greater
than H (which exists by Proposition 3.8).

Let us consider the end cases when X is either the minimum flat or the maxi-
mum flat. The substitution products

Γ[A⊥]× Γ[A⊥]
∼=−→ Γ[A] and Γ[A⊤]× Γ[A⊤]

∼=−→ Γ[A]
are the canonical identifications. Since A⊥ and A⊤ have rank zero, Γ[A⊥] and
Γ[A⊤] are singletons, while A⊥ = A⊤ = A.

The first interesting case of the substitution product occurs in rank two when
the flat X has rank one. This is illustrated below.

D

L

H

Here X supports the vertex H shown in black. The semicircle shown in blue is the
top-lune L. The substitution product of H and L is the red edge D.

In rank three, the interesting cases are when X has rank one or rank two. These
are shown below.

D

L

H

D

L

H
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The flat X is the support of H. The shaded portion is the top-lune L. (It includes
the chamber D.) In the first picture, H is a vertex and L is vertex-based, while in
the second picture, H is an edge and L is edge-based. The substitution product of
H and L is the chamber D.

4.8.2. Connection to category of lunes. Let X ≤ Y ≤ Z be flats and consider
the arrangement AZ

X. Using Lemma 3.2, observe that the substitution product of
chambers written in the general form

(4.19) Γ[AY
X]× Γ[AZ

Y]→ Γ[AZ
X]

is equivalent to the composition product of lunes defined in Section 4.4.
Associativity of composition of lunes says that the diagram

(4.20a)

Γ[AY
X]× Γ[AZ

Y]× Γ[AW
Z ] //

��

Γ[AY
X]× Γ[AW

Y ]

��

Γ[AZ
X]× Γ[AW

Z ] // Γ[AW
X ]

commutes for any X ≤ Y ≤ Z ≤W.
Unitality says that the maps

(4.20b) Γ[AX
X]× Γ[AY

X]→ Γ[AY
X] and Γ[AY

X]× Γ[AY
Y]→ Γ[AY

X]

are the canonical identifications (using that Γ[AX
X] and Γ[AY

Y] are singletons).

4.8.3. Substitution product of chambers and faces. Recall the set of faces
Σ[A]. For any flat X, there is a map

(4.21) Γ[AX]× Σ[AX]→ Σ[A].
To define this map, pick any face F with support X, consider the map

Γ[AX]× Σ[AF ]→ Σ[A], (H,K/F ) 7→ HK,

and identify Σ[AF ] with Σ[AX]. More directly,

Γ[AX]× Σ[AX]→ Σ[A], (H,L) 7→ G,

where L is a lune with base X which is the same as a face in AX, H is a face
with support X, and G is the unique top-dimensional in L which is greater than H
(which exists by Proposition 3.12).

Under the identification

Σ[A] =
⊔

Y

Γ[AY],

the diagram

(4.22)

Γ[AX]× Γ[AY
X]

//

��

Γ[AY]

��

Γ[AX]× Σ[AX] // Σ[A]

commutes for any X ≤ Y.
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4.8.4. Substitution product of top-lunes and chambers. Recall the set of

top-lunes ÛΛ[A]. For any flat X, there is a map

(4.23) ÛΛ[AX]× Γ[AX]→ ÛΛ[A].
A top-lune in AX is a lune L in A with case X, while a chamber in AX is a top-lune
M in A with base X. The above map, by definition, sends (L,M) to L ◦M. Note
that the latter is a top-lune in A as required.

Under the identification

ÛΛ[A] =
⊔

X

Γ[AX],

the diagram

(4.24)

Γ[AY
X]× Γ[AY] //

��

Γ[AX]

��

ÛΛ[AY]× Γ[AY] // ÛΛ[A]
commutes for any X ≤ Y.

Notes

The second diagram in (4.9) for top-nested faces and top-lunes is given in [8, First
diagram in (2.5)], and for the braid arrangement in [9, Diagram (10.49)]. The action of
the Tits monoid on top-nested faces and of the Birkhoff monoid on top-lunes is considered
in [9, Section 10.10.2].

Category of lunes. The category of lunes under the partial order opposite to � is a
semiregular ordered category in the sense of Lawson [262]. More precisely, it satisfies the
axioms (OC1), (OC2), (OC3), (OC4), (OC5), (OC6)(ii), (OC7), (OC8)(ii) stated in his
Lemma 2.5. We elaborate briefly. (OC1), (OC2), (OC3) say that the category of lunes is
internal to posets. (OC4) is contained in Corollary 3.17. (OC8)(ii) (which is stronger than
(OC5)(ii) and (OC6)(ii)) is the same as Lemma 4.22. (OC7) is weaker than Lemma 4.33.
(OC5)(i) is contained in Exercise 4.27.

Substitution product of chambers. We mention that the substitution product of
chambers (4.18) generalizes to any LRB.
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CHAPTER 5

Reflection arrangements

We review reflection arrangements. Roughly speaking, these are hyperplane
arrangements equipped with reflection symmetries. The group generated by these
symmetries is the Coxeter group of the arrangement. In addition to everything that
comes with an arrangement, these symmetries allow us to define concepts such as
face-types, flat-types, nested face-types and lune-types. These are orbits of faces,
flats, nested faces and lunes under the Coxeter group action and display similar
inter-relationships. Another interesting concept is that of the cycle-type function.
One can also construct new objects like the Coxeter-Tits monoid by taking the
semidirect product of the Coxeter group and Tits monoid.

Among reflection arrangements, there is a further subclass of good reflection
arrangements which is closed under passage to arrangements over and under a flat.
We recall the classification of reflection arrangements, and then list out those which
are good.

5.1. Coxeter groups and reflection arrangements

5.1.1. Reflections. Let V be a finite-dimensional vector space over R equipped
with an inner product. For any hyperplane H passing through the origin, reflection
in H defines an orthogonal transformation of V . It fixes H pointwise, and sends any
point on the line through the origin orthogonal to H to its negative. Let us denote
this transformation by sH.

A Coxeter group W on V is a finite group of orthogonal transformations of V
generated by reflections in some finite set of hyperplanes through the origin. (The
condition that the group generated by reflections be finite is very nontrivial. For
instance, the group generated by reflections in two lines in R2 passing through the
origin is finite iff the angle between them is a rational multiple of π.) For a Coxeter
group W , the set of hyperplanes H such that sH ∈W is the reflection arrangement
associated with W . This arrangement is central but not necessarily essential. Its
ambient space is V .

Above we started with the group and constructed the arrangement from it. This
procedure can also be reversed: We say that a hyperplane arrangementA = {Hi}i∈I
with ambient space V is a reflection arrangement if for each i, the reflection sHi

preserves A. For a reflection arrangement A, the group generated by the reflections
sHi

is called the Coxeter group of A. (One can show that the Coxeter group does
not have any more reflections than what we started with.)

5.1.2. Coxeter complex. A reflection arrangement A is necessarily simplicial.
We will refer to elements of its Coxeter group as the Coxeter symmetries of A. For
a Coxeter group W , the regular cell complex Σ associated to its reflection arrange-
ment is the Coxeter complex of W . It is a pure simplicial complex. Moreover, it is

117
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118 5. REFLECTION ARRANGEMENTS

labeled. This fact will be elaborated later when we discuss the type map. (Let ∆
be a pure simplicial complex and I be any set whose cardinality equals the rank of
∆. A labeling of ∆ assigns to each vertex an element of I called its label such that
any two vertices which share an edge have distinct labels. If such a labeling exists,
then we say that ∆ is a labeled simplicial complex .)

5.1.3. Examples. Arrangements of rank zero and rank one are reflection arrange-
ments. The rank-two arrangement of n lines is a reflection arrangement precisely
when the lines are equally spaced, that is, the arrangement is dihedral. Some
important examples of reflection arrangements in Rn are shown in Table 5.1.

Table 5.1. Examples of reflection arrangements.

Reflection arrangement Hyperplanes

Coordinate arrangement xi = 0 for 1 ≤ i ≤ n
Braid arrangement or type A xi = xj for 1 ≤ i, j ≤ n

Arrangement of type B xi = ±xj and xi = 0 for 1 ≤ i, j ≤ n
Arrangement of type D xi = ±xj for 1 ≤ i, j ≤ n

The coordinate arrangement arises as the n-fold cartesian product of the rank-
one arrangement with itself. The braid arrangement or type A arises from the
symmetric group Sn on n letters acting on Rn by permuting coordinates. The
reflections in this group are precisely transpositions. Similarly, the arrangement of
type B arises from the signed symmetric group. These arrangements are discussed
in detail in Chapter 6.

5.1.4. Coxeter group in action. Recall that we have associated many geometric
objects such as faces, flats, cones, lunes, and so on to an arrangement. Some of
these objects have extra structure such as that of a poset or monoid. Further, there
are maps between these objects, for instance, the support map from faces to flats.

For a reflection arrangement, the Coxeter groupW acts on each of these objects
preserving whatever structure they may possess, and further is compatible with
maps relating them. For instance,

w(FG) = w(F )w(G) and w(s(F )) = s(w(F )).

Some important properties of the action are given below.

• The action of W on the set of chambers is simply transitive. That is,
given C and D, there is a unique w ∈ W such that w(C) = D. It follows
that there is a bijection Γ → W which preserves the left action of W on
Γ and W . Thus, Γ ∼= W as left W -sets. In particular, the cardinality of
W equals the number of chambers.
• If w(F ) = F , then w fixes F (and in fact the entire flat s(F )) pointwise.
• If w(F ) = G, then w(A) = A for any A smaller than both F and G.

Exercise 5.1. If F and G are faces of K and w(F ) = G for some w, then F = G.
In other words, the action of W on the poset of faces Σ satisfies condition (C.46).
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5.1.5. Pointed arrangements. A pointed arrangement is a pair (A, C), where A
is a reflection arrangement and C is a chamber of A. We will usually use the letter
α to denote a pointed arrangement. We will refer to C as the reference chamber .
Let S be the set of reflections in the walls of C. It is a fact that S generates the
Coxeter group of A, which we are denoting by W . The pair (W,S) is called a
Coxeter system.

5.2. Face-types, flat-types and lune-types

Face-types, flat-types and lune-types are the orbits of the action of the Coxeter
group on faces, flats and lunes, respectively. We discuss these notions along with
other similar notions which arise from the action of the Coxeter group.

5.2.1. Face-types. Define an equivalence relation on faces: F ∼ G if there is a
Coxeter symmetry which sends F to G. An equivalence class is called a face-type.
In other words, a face-type is an orbit of Σ under the action of W . We denote the
set of face-types by ΣW . The canonical map

(5.1) Σ→ ΣW , F 7→ t(F )

is called the type map. We refer to t(F ) as the type of F .
Fix a chamber C. Then each face of C has a distinct type, and all face-types

arise in this manner. Thus, ΣW can be identified with the poset of faces of C. Since
C is a simplex, this is a Boolean poset. Note that the type map is order-preserving.

It follows that the Coxeter complex Σ is a labeled simplicial complex: the label
assigned to each vertex is its type.

Lemma 5.2. Let A and B be faces of the same support. If F and G are faces
greater than A and w(F ) = G for some w ∈ W , then w(BF ) = BG. If F and G
are faces greater than A and t(F ) = t(G), then t(BF ) = t(BG).

Proof. For the first claim: The hypothesis implies that w(A) = A. So w fixes the
support of A pointwise, and hence w(B) = B. Thus w(BF ) = w(B)w(F ) = BG
as required. For the second claim, since F and G have the same type, there is a w
such that w(F ) = G. Now apply the first claim. �

Covering maps between posets are reviewed in Section C.4.5. The type map is
an example of a covering map. This is a formal consequence of Exercise 5.1, see
Proposition C.33, item (c),

Let (A, C) be a pointed arrangement with Coxeter system (W,S). Faces of
C can be identified with subsets of S: Given a face F of C, any element s ∈ S
either fixes F or does not fix F . The required subset is obtained by picking those
reflections that do not fix F . By this convention, the central face corresponds to
the empty set, and C corresponds to S. Since face-types correspond to faces of
C, we can identify them with subsets of S. The poset of face-types is then the
Boolean poset of subsets of S. Viewed in this manner, we use the letters T , U , V
for face-types. Note that rk(T ) = |T |.

For α = (A, C) and T ≤ S, consider the pointed arrangement

αT := (AF , C/F ),
where F is the face of C of type T . The set of reflections in the walls of C/F
identifies with the set S \ T . If G is a face greater than F of type U , then we will
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denote the type of G/F by U/T (instead of U \ T ). By this convention, face-types
of αT are subsets of S which contain T .

5.2.2. Group action on a set with an equivalence relation. Let G be a
group acting on a set X. Suppose X has an equivalence relation ∼ compatible with
the group action, that is, x ∼ y implies g · x ∼ g · y. Then there is a commutative
diagram

(5.2)

X // //

����

XG

����

X∼
// // (X∼)G = (XG)∼.

Here X∼ denotes the set of equivalence classes of X under ∼, while XG denotes
the set of orbits of X under G. Due to compatibility, there is an induced G-action
on X∼, and an induced equivalence relation ∼ on XG, and the orbits of the former
correspond to classes of the latter yielding (5.2). Two elements x, y ∈ X map to
the same element of (XG)∼ iff there exists an element z ∈ X such that z and x lie
in the same G-orbit, and z ∼ y.

We will apply this construction to two situations. In both cases, G is the
Coxeter group W . In the first case, X is the set of faces, and ∼ is (1.14), while in
the second case, X is the set of nested faces, and ∼ is (3.13). Elements of (XG)∼
will be called flat-types in the first case, and lune-types in the second case. Details
follow.

5.2.3. Flat-types. A flat-type can be defined in two ways:

• Define an equivalence relation on flats: X ∼ Y if there is a Coxeter sym-
metry which sends X to Y. An equivalence class is a flat-type.
• Define an equivalence relation on face-types: T ∼ U if there is a flat X
which supports both a face of type T and a face of type U . (If T ∼ U and
U ∼ V , then using transitivity of the group action on faces of type U , we
deduce T ∼ V .) An equivalence class is a flat-type.

There is a canonical bijection between the two sets of equivalence classes: In one
direction, the class of T maps to the class of s(F ), where F is any face of type T .
In the other direction, the class of X maps to the class of t(F ), where F is any face
of support X.

Let ΠW denote the set of flat-types. We have the commutative diagram

Σ
t //

s

��

ΣW

s

��

Π
t

// ΠW

face ✤
t //

❴

s

��

face-type
❴

s

��

flat
✤

t
// flat-type

(5.3)

with the support map and the type map on faces as before. This is a special case
of (5.2). It is convenient to refer to both horizontal maps as the type maps, and
to both vertical maps as the support maps. Thus, we can talk of the support of a
face-type, and the type of a flat. We define the support-type of a face to be the type
of its support, or equivalently, the support of its type.

In contrast to the type map on faces, the type map on flats is not a covering
map in general.
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Lemma 5.3. Suppose F and G are two faces. Then F and G have the same
support-type iff there exists a face H of the same type as F and of the same support
as G.

Proof. Backward implication. By hypothesis, the support-type of H equals both
the support-type of F and the support-type of G.

Y

X

G H

F

w

Forward implication. Let X = s(F ) and Y = s(G). Then by hypothesis, there
is an element w which sends X to Y. Set H := wF . Observe that H has the same
type as F and the same support as G. �

Flat-types will usually be denoted by λ and µ. There is a partial order on
flat-types. We say that λ ≤ µ if there are faces F and G with F ≤ G such that the
support-types of F and G are λ and µ, respectively. This partial order can also be
described using face-types or flats. For instance, λ ≤ µ if there are flats X and Y
with X ≤ Y such that the types of X and Y are λ and µ, respectively. Note that the
poset of flat-types has a unique minimum and maximum element. In addition, it is
graded. The rank of λ equals the rank of F , where F is any face with support-type
λ. Equivalently, it equals |T | for any face-type T with support λ, and equals the
rank of X for any flat X of type λ.

5.2.4. Nested face-types and lune-types. A nested face-type is a pair (T,U)
of face-types such that T ≤ U . Given a nested face (F,G), its type is defined to
be the pair (t(T ), t(U)). The latter is a nested face-type. The Coxeter group W
acts on the set of nested faces, and the orbits of this action can be identified with
nested face-types.

Let (T,U) and (T ′, U ′) be two nested face-types. We say (T,U) ∼ (T ′, U ′)
if there exist nested faces (F,G) and (F ′, G′) of types (T,U) and (T ′, U ′) such
that (F,G) ∼ (F ′, G′) in the sense of (3.13). Observe that (T, S) and (T ′, S) are
equivalent iff T and T ′ have the same support.

A lune-type is an equivalence class under this equivalence relation on nested
face-types. Alternatively, it is an orbit under the action of W on the set of lunes.
We have the commutative diagram

(5.4)

nested face
✤ t //

❴

s

��

nested face-type
❴

s

��

lune
✤

t
// lune-type.

This is a special case of (5.2).
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One may also consider the action of W on the set of top-nested faces under the
equivalence relation (3.7). This yields the commutative diagram

(5.5)

top-nested face ✤
t //

❴

s

��

face-type
❴

s

��

top-lune ✤
t

// flat-type.

5.2.5. Opposition. The opposition map F 7→ F clearly commutes with the action
of W . In other words, wF = wF . More generally, it also preserves preserves
opposition in stars:

Lemma 5.4. Suppose C and D are chambers opposite to each other in the star of
A, that is, D = AC and C = AD. Then for any w ∈W , wC and wD are opposite
to each other in the star of wA.

Proof. The required calculation is (wA)(wC) = (wA)(wC) = w(AC) = wD. �

Lemma 5.5. Let F be any face and C be any chamber. Suppose u is the Coxeter
symmetry defined by u(FC) = C. Then u(FC) = F0C, where F0 is the face of C
of the same type as F .

FC C

F F0

u

F0C

C

FC

FCF0 Fu

u

Proof. Since u is type-preserving and u(FC) = C, we have u(F ) = F0. Further
since u respects the opposition map, we deduce u(FC) = C and u(F ) = F0. Now
FC and FC are opposite chambers in the star of F , while C and F0C are opposite
chambers in the star of F0. So by Lemma 5.4, it follows that u(FC) = F0C, as
required. �

5.3. Length, W -valued distance and weak order

In this discussion, we let C0 denote the reference chamber.
The length of an element w ∈ W , denoted l(w), is the smallest integer such

that w can be expressed as a word in the generating set S whose length is that
integer. Equivalently,

(5.6) l(w) = dist(C0, wC0).

Since the gallery metric is invariant under the diagonal action of W , we have

dist(uC0, vC0) = l(u−1v).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



5.4. SUBGROUPS OF COXETER GROUPS 123

Define a W -valued gallery distance function by

d : Γ× Γ→W, d(uC0, vC0) = u−1v.

Observe that dist(C,D) = l(d(C,D)). The function d is also invariant under the
diagonal action of W . Further,

(5.7) d(E,C) = d(E,D)d(D,C)

for any chambers C, D and E.

Let u, v ∈W . We say that u ≤ v in the weak order on W if there is a minimal
gallery E --D --C with d(D,C) = u and d(E,C) = v. Equivalently,

(5.8) u ≤ v ⇐⇒ v−1C0 --u
−1C0 --C0 ⇐⇒ C0 -- vu

−1C0 -- vC0.

Alternatively, by letting d(E,D) = w,

u ≤ v ⇐⇒ v = wu and l(v) = l(w) + l(u).

The ‘left’ in the terminology refers to the fact that w appears to the left of u in the
expression v = wu.

Exercise 5.6. Given w ∈ W , show that the parity of dist(C,wC) is independent
of C. In particular, the parity is odd when w is a reflection.

Exercise 5.7. Show that the chamber graph of a reflection arrangement of rank
at least one is a balanced bipartite graph. (For definitions, see Section 1.10.4.)
Equivalently, the number of w ∈W with l(w) odd equals those with l(w) even. For
the braid arrangement, this says that the number of odd permutations equals the
number of even permutations.

5.4. Subgroups of Coxeter groups

The Coxeter group W acts on the set of faces. For any face F , put

WF := {w ∈W | w(F ) = F}.
This is the subgroup ofW which leaves F invariant. It is called a parabolic subgroup
ofW . Elements ofWF fix the entire flat s(F ) pointwise. ThusWF =WG whenever
F and G have the same support.

Similarly, the Coxeter group acts on the set of flats. For any flat X, put

ŴX := {w ∈W | w(X) = X}.
Let WX be the subgroup of ŴX which fixes X pointwise. It is a normal subgroup

of ŴX. This can be checked directly. It will also follow from the discussion below.
Note thatWX =WF whenever F has support X. We mention thatWX is a Coxeter
group in its own right, the corresponding reflection arrangement is AX.

For a top-lune L, let

WL := {w ∈W | w(L) = L}.
For a top-lune L with base X, there is an exact sequence of groups

WX →֒ ŴX ։WL.

The first map is inclusion. The second map is defined as follows. Suppose w ∈ ŴX.
Pick any top-nested face (F,C) with support L. Let u be the unique element such
that u(C) = w(F )C. Thus, u sends (F,C) to (w(F ), w(F )C) which also has support
L, and hence u ∈ WL. One can check that u does not depend on the particular
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choice of (F,C). Further, the map w 7→ u is a group homomorphism with kernel

WX, and the inclusion WL →֒ ŴX is a section. As a consequence:

Proposition 5.8. There is an isomorphism of groups

(5.9) ŴX

∼=−→WX ⋊WL, w 7→ (wu−1, u).

Multiplication in the semidirect product is given by

(y, v) · (x, u) = (yvxv−1, vu).

Here is another way to think about the semidirect product. The group ŴX acts
on the set of top-lunes with base X. The subgroup WX is normal and its action
is simply transitive. That is, for top-lunes M and M′ with base X, there exists a
unique w ∈ W such that w(M) = M′ and w fixes X pointwise. This is because
top-lunes with base X can be identified with chambers of AX (Lemma 3.2). Hence,

ŴX

∼=−→WX ⋊WL, w 7→ (x, x−1w),

where x ∈WX is defined by x(L) = w(L).

Observe that WF and WG are conjugate subgroups if F and G have the same
type. For a face-type T , we let WT denote the conjugacy class of subgroups WF

with F of type T . Recall that face-types (as subsets of S) are defined using a
reference chamber C. So we have a canonical representative for WT , namely, WF0

,
where F0 is the face of C of type T . To keep the notation flexible, we also use WT

to denote this particular subgroup.

Similarly, ŴX and ŴY are conjugate subgroups if X and Y have the same type.

For a flat-type λ, we let Wλ denote the conjugacy class of subgroups ŴX with X of
type λ. In contrast to face-types, there is no canonical representative for Wλ, but
still we will allow ourselves to treat it as a subgroup (in which case it is assumed
that some particular representative has been chosen).

Exercise 5.9. For any flat X and hyperplane H, show that:

• The reflection sH leaves X invariant iff X = X ∩H+X ∩H⊥.
• sH fixes X pointwise iff X ⊆ H.
• sH leaves X invariant but not fixed iff H⊥ ⊆ X.

Exercise 5.10. For any top-lune L with base X, and hyperplane H, show that:
The reflection sH leaves L invariant iff H⊥ ⊆ X.

Exercise 5.11. For a top-lune L with base X, show that: If a reflection of W

belongs to ŴX, then it either belongs to WX or to WL.

Exercise 5.12. Let L and L′ be top-lunes, and F and F ′ be faces supported by
the bases of L and L′, respectively, such that t(F ) = t(F ′). Show that there exists
a unique u ∈ W such that u(L) = L′ and u(F ) = F ′. When L and L′ have the

same base X, the element u belongs to ŴX, and when F = F ′, it belongs to WF .

Exercise 5.13. Fix a chamber C. Suppose X and X′ are flats and w ∈W is such
that w(X) = X′. Show that w can be uniquely expressed in the form w = vu, with
u and v subject to the following conditions: u sends the top-lune containing C with
base X to the top-lune containing C with base X′, and v fixes X′ pointwise.
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5.5. Cycle-type function and characteristic polynomial

We discuss some enumerative aspects of arrangements which are specific to
reflection arrangements.

5.5.1. Numbers |λ|. Fix a flat-type λ. Suppose T is a face-type of support λ,
and X is a flat of type λ. Let |λ| denote the number of faces with type T and
support X. Thus, it is the number of ways to complete the diagram

?
✤ //

❴

��

T❴

��

X ✤ // λ,

as defined in (5.3). We show below that |λ| only depends on λ, and not on the
particular choice of T and X.

Lemma 5.14. Let X and X′ be flats with type equal to the support of a face-type
T . Then the number of faces with support X and type T equals the number of faces
with support X′ and type T .

Let T and T ′ be face-types with support equal to the type of a flat X. Then the
number of faces with support X and type T equals the number of faces with support
X and type T ′.

Proof. The first statement is clear since there is a Coxeter symmetry which takes
X to X′, and it is type-preserving.

For the second statement: Let F be any face of support X. Then the subgroup

ŴX acts transitively on the faces of type t(F ) and support X. So this number is

the cardinality of ŴX divided by the cardinality of WF . But WF = WX, so this
number only depends on X and not on the particular F . �

Exercise 5.15. Check that: If λ is the maximum flat-type, then |λ| = |W |, the
order of W .

Exercise 5.16. Let L be a top-lune whose base has type λ. Show that the group
WL has cardinality |λ|. In particular, |λ| divides the order of W .

5.5.2. Cycle-type function. Recall the set of flats Π, and the set of flat-types
ΠW . Consider the function

(5.10) W → Π

which sends w ∈W to the largest flat which is fixed pointwise by the action of w.

Lemma 5.17. The inverse image of a flat X under (5.10) has cardinality |µ(AX)|.

Proof. Let us temporarily denote this number by f(X). Since WX is the Coxeter
group of AX, its cardinality is the number of chambers of AX which we denote by
cX. Thus, we obtain

cX =
∑

Y:Y≥X

f(Y).

Now the Zaslavsky formula (1.45) applied to each AX yields f(X) = |µ(AX)|. �
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The cycle-type function

(5.11) W → ΠW

is obtained by composing (5.10) with the type map from Π to ΠW . In other words,
the cycle-type of w is the type of the largest flat which is fixed pointwise by w.

Lemma 5.17 yields the following.

Theorem 5.18. Let W be a Coxeter group, and let A be its reflection arrangement.
Then the number of elements of W with cycle-type λ is

∑

X: t(X)=λ

|µ(AX)|.

In particular, the number of elements of W whose cycle-type is the type of the
minimum flat is |µ(A)|.
5.5.3. Characteristic polynomial. We state below an important result concern-
ing the factorization of the characteristic polynomial for reflection arrangements.

Theorem 5.19. Given a reflection arrangement A, there exist positive integers
e1, . . . , en such that

(5.12) χ(A, t) = (t− e1) . . . (t− en).
The integers e1, . . . , en are called the exponents of the Coxeter group of A. The

number 1 is always an exponent (assuming A has at least rank 1). This follows
from (1.50b). Similarly, (1.50a) and (1.50c) yield:

(5.13) µ(A) =
n∏

i=1

(−ei) and c(A) =
n∏

i=1

(ei + 1).

Some interesting identities involving the Möbius function are given below.

Lemma 5.20. In a reflection arrangement A, for any chamber D,

∑

G:G≤D

µ(AG)
cGcG

=

®
1 if A has rank 0,

0 otherwise,

∑

G:G≤D,
rk(G)=k

µ(AG)
cGcG

=
wy(A, k)

c
,

∑

G:G≤D

(−1)rk(G)µ(AG)
cGcG

= (−1)rk(A).

Proof. For the first identity: The result is clear if A has rank 0. So assume that A
has rank at least 1. Note that the sum is only over faces of D. Using the symmetry
in a reflection arrangement, it suffices to show that

∑

D

∑

G:G≤D

µ(AG)
cGcG

= 0.

By definition, there are precisely cG chambers greater than G. The above identity
then follows from:

∑

G

∑

D:G≤D

µ(AG)
cGcG

=
∑

G

µ(AG)
cG

=
∑

X

µ(AX) =
∑

X

µ(X,⊤) = 0.
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The last step used (C.5b).
For the second identity: Repeating this calculation, we end up with a sum over

all X of rank k which by (1.52) is wy(A, k).
For the third identity: We may proceed as in the proof of the first identity

and use the Zaslavsky formula in the last step. Alternatively, one can start with
the second identity in Lemma 5.20, multiply it by (−1)k, sum over k and use
(1.53d). �

5.5.4. Counting chambers in a top-lune.

Lemma 5.21. In a reflection arrangement A, for any face F , the number of cham-
bers in the top-lune s(F,D) is independent of D, and equals the number of chambers
in A divided by the numbers of chambers in AF .
Proof. For any chambers D and E greater than F , there is a Coxeter symme-
try which takes s(F,D) to s(F,E), and hence they contain the same number of
chambers. To get the second statement, use the decomposition (3.16). �

Exercise 5.22. Show by an example that Lemma 5.21 fails for arbitrary arrange-
ments.

5.6. Coxeter-Tits monoid

We introduce the Coxeter-Tits monoid. It is the semidirect product of the Cox-
eter group and the Tits monoid. Similarly, the semidirect product of the Coxeter
group and the Birkhoff monoid yields the Coxeter-Birkhoff monoid. The support
map relates the two monoids. By the same considerations, we define the Coxeter-
Janus monoid.

5.6.1. Coxeter-Tits monoid. The Coxeter group W acts on the Tits monoid Σ.
So we can form their semidirect product

Σ⋊W = {(F,w) | F ∈ Σ, w ∈W}.
This is a monoid with product defined by

(5.14) (G, v) · (F, u) := (Gv(F ), vu).

The unit element is (O, e). We refer to Σ⋊W as the Coxeter-Tits monoid and ab-
breviate it to WΣ. Note that Σ andW are submonoids of WΣ via the identifications
F 7→ (F, e) and w 7→ (O,w).

Proposition 5.23. The Coxeter-Tits monoid WΣ is freely generated by W and Σ
subject to the relations

w · F = w(F ) · w or equivalently F · w = w · w−1(F )

for w ∈W and F ∈ Σ.

Proof. We have already remarked thatW and Σ are submonoids of WΣ. Further,
we see from (5.14) that

(O,w) · (F, e) = (w(F ), e) · (O,w),
with both sides equal to (w(F ), w). This yields the relation w ·F = w(F ) ·w. Since
it allows us to switch the order of elements of W and Σ, we obtain a presentation
of WΣ. �
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The discussion above applies to any group acting on any monoid. For instance,
W also acts on the opposite of the Tits monoid. Set WΣop := Σop⋊W . Explicitly,
the product of WΣop is given by

(5.15) (G, v) · (F, u) := (v(F )G, vu).

The order of the factors in the second coordinate is the same as in (5.14), but it has
been reversed in the first coordinate. Thus, W and Σop are submonoids of WΣop.
In fact, WΣop is isomorphic to the opposite of WΣ:

Proposition 5.24. The map

(WΣ)op →WΣop, (F,w) 7→ (w−1(F ), w−1)

is an isomorphism of monoids.

This is straightforward to check.

5.6.2. Coxeter-Birkhoff monoid. Similarly, using the action of the Coxeter
group W on the Birkhoff monoid Π, we can form the semidirect product

Π⋊W = {(X, w) | X ∈ Π, w ∈W}.
This is a monoid under

(5.16) (Y, v) · (X, u) := (Y ∨ v(X), vu).

The unit element is (⊥, e). We refer to Π⋊W as the Coxeter-Birkhoff monoid and
abbreviate it to WΠ.

Note that W and Π are submonoids of WΠ via the identifications w 7→ (⊥, w)
and X 7→ (X, e). More precisely, the Coxeter-Birkhoff monoid WΠ is freely gener-
ated by W and Π subject to the relations

w ·X = w(X) · w or equivalently w · w−1(X) = X · w
for w ∈W and X ∈ Π.

Proposition 5.25. The map

(WΠ)op →WΠ, (X, w) 7→ (w−1(X), w−1)

is an isomorphism of monoids.

5.6.3. Coxeter-Janus monoid. Finally, we consider the action of W on the
Janus monoid J, and set

J⋊W = {(F, F ′, w) | (F, F ′) ∈ J, w ∈W}.
This is a monoid under

(5.17) (G,G′, v) · (F, F ′, u) := (Gv(F ), v(F ′)G′, vu).

The unit element is (O,O, e). We refer to J⋊W as the Coxeter-Janus monoid and
abbreviate it to WJ. It can also be obtained as the fiber product of the Coxeter-Tits
monoid and its opposite over the Coxeter-Birkhoff monoid:

WJ = WΣ×WΠ WΣop.
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In particular, we have a commutative diagram of monoids

WJ //

��

WΣop

s

��

WΣ
s

// WΠ,

where s is the support map (F,w) 7→ (s(F ), w), the left-vertical map is projection
on the first and third coordinates, while the top-horizontal map is projection on
the second and third coordinates.

Proposition 5.26. The map

WJ→ (WJ)op, (F, F ′, w) 7→ (w−1(F ), w−1(F ′), w−1)

is an isomorphism of monoids.

This can also be seen as a formal consequence of Propositions 5.24 and 5.25,
and the fiber product property.

5.6.4. Support map. The support map

s : WΣ ։ WΠ, (F,w) 7→ (s(F ), w)

can be understood algebraically as follows. Using (5.14),

(5.18) (F, u) · (G, v) · (F, u) = (F, u) ⇐⇒ v = u−1 and Fu(G) = F.

In this situation, we say that (G, v) is a pseudoinverse of (F, u). Every element
of WΣ has a pseudoinverse, so WΣ is a regular semigroup. Further, its set of
idempotents form a subsemigroup, so it is an orthodox semigroup.

We say that (G, v) is an inverse of (F, u) if (G, v) is a pseudoinverse of (F, u)
and vice-versa.

Lemma 5.27. We have: (G, v) is an inverse of (F, u) iff v = u−1 and F and u(G)
have the same support.

Proof. Employing (5.18), we see that (G, v) is an inverse of (F, u) iff v = u−1,
Fu(G) = F and Gv(F ) = G. Applying u to Gv(F ) = G, we get u(G)uv(F ) = u(G).
If v = u−1, then this is the same as u(G)F = u(G). �

Consider the quotient of WΣ obtained by identifying (F, u) and (F ′, u′) when-
ever they have a common inverse. By Lemma 5.27, (F, u) and (F ′, u′) get identified
iff u = u′ and F and G have the same support. In other words, this quotient is
precisely the Coxeter-Birkhoff monoid WΠ. The latter is an inverse semigroup,
that is, every element has an unique inverse.

5.7. Good reflection arrangements

Reflection arrangements or Coxeter groups have been classified. They are usu-
ally listed using the notation of a Coxeter diagram. Here we introduce the notion
of a good reflection arrangement. Then we go over each arrangement in the classi-
fication list, and say which one is good and which is not.
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5.7.1. Irreducible reflection arrangements. IfA andA′ are reflection arrange-
ments with Coxeter groups W and W ′, then the cartesian product A×A′ is also a
reflection arrangement and its Coxeter group is W ×W ′. A reflection arrangement
is irreducible if it cannot be expressed as a cartesian product of two reflection ar-
rangements (both with nonzero ambient space). Such arrangements are necessarily
essential. They have been completely classified up to gisomorphism. These are the
arrangements of types An and Bn for n ≥ 0, Dn for n ≥ 3, H3, H4, F4, E6, E7,
E8, and I2(m) for m ≥ 3. The subscripts refer to the rank of the arrangement.
There are some repetitions in this list, namely, A0 = B0, A1 = B1, A2 = I2(3),
B2 = I2(4), and A3 = D3.

Types A, B and D have been briefly mentioned in Section 5.1.3. They are
discussed in more detail in Chapter 6. Type I2(m) is the dihedral arrangement of
m lines. We do not discuss the remaining types.

Warning. Braid arrangements are not irreducible, but their essentializations are. In
this section, all references to type A are to the latter. In particular, the arrangement
of type A0 is the essential rank-zero arrangement.

5.7.2. Coxeter diagram. To each reflection arrangement A, one can associate a
graph with edges labeled by an integer greater than or equal to 3. The number of
vertices is the rank of A. This is called the Coxeter diagram of A. (We omit the
details.) The Coxeter diagrams of irreducible reflection arrangements are all trees
(with very little branching).

5.7.3. Good reflection arrangements. Let A be a reflection arrangement with
Coxeter group W . Then for any flat X, the arrangement AX is also a reflection
arrangement with Coxeter group WX. However, AX may not be a reflection ar-
rangement. This motivates the following definition.

A reflection arrangement A is good if it has the property that for each flat X,
the arrangement AX is cisomorphic to a reflection arrangement.

The class of good reflection arrangements is indeed closed under passage to
arrangements under and over a flat, and under cartesian products. The list of good
reflection arrangements is given below.

Theorem 5.28. An irreducible reflection arrangement A is good iff A is of type
An−1 or Bn for n ≥ 1 or I2(m) or H3.

Proof. We provide a sketch. In this discussion, we will draw a tiny bit from
Chapter 6.

• Type A and type B are good: in these types, an arrangement under a flat
is again of the given type (Sections 6.3.11 and 6.7.11).
• All reflection arrangements of ranks 0, 1, 2 and 3 are good: The cases of

rank 0 and 1 are clear. Any rank-two arrangement is cisomorphic to a
reflection arrangement. It follows that rank-two and rank-three reflection
arrangements are good. In particular, types I2(m) and H3 are good.
• TypeD4 is not good: In this case, the arrangement under any of the hyper-
planes is cisomorphic to the arrangement shown in Section 6.8.2. Observe
that there are vertices, the boundary of whose top-stars are hexagons, but
6 does not divide 32, which is the number of chambers. So it cannot be a
reflection arrangement (by Lemma 5.21).
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• Type Dn for n ≥ 4 and types E6, E7 and E8 are not good: In each of these
arrangements, there is face F such that AF is cisomorphic to D4. (This is
because the Coxeter diagrams of these arrangements contain the Coxeter
diagram of D4.) Now pick a hyperplane X greater than s(F ). Then AX

F

is cisomorphic to the arrangement under a hyperplane of D4, and hence
is not a reflection arrangement. Therefore AX is also not a reflection
arrangement (since reflection arrangements are closed under passage to
arrangements over a flat).
• Types F4 and H4 are not good: An irreducible rank-three reflection ar-
rangement has 24, 48 or 120 chambers. In typeH4, the arrangement under
any hyperplane has 480 chambers, so it cannot be any of these. Further,
the maximum boundary of a top-star of any vertex in this arrangement is
a 12-gon, so it cannot be reducible either. The same argument works for
type F4, the arrangement under a hyperplane now has 96 chambers. �

It follows that:

Theorem 5.29. An essential reflection arrangement A is good iff A is a cartesian
product of arrangements of type An−1 or Bn or I2(m) or H3.

We also note that a reflection arrangement is good iff its essentialization is
good. In other words, a good reflection arrangement is a cartesian product of the
above types possibly with an arbitrary rank-zero arrangement.

5.7.4. Enumerative aspects. By employing the defining property of a good re-
flection arrangement, the results of Lemmas 5.20 and 5.21 can be improved as
follows.

Lemma 5.30. In a good reflection arrangement A, for any F ≤ H,

∑

G:F≤G≤H

µ(AHG )

cGF c
H
G

=

®
1 if F = H,

0 otherwise,

and
∑

G:F≤G≤H,
rk(G)=k

µ(AHG )

cGF c
H
G

=
wy(AHF , k)

cHF
,

and for any face H,

∑

G:G≤H

(−1)rk(G)µ(AHG )

cGcHG
= (−1)rk(H).

Lemma 5.31. In a good reflection arrangement A, for any face F , the number
of faces in the combinatorial lune s(F,G) only depends on the support of G, and
equals the number of chambers in AG divided by the numbers of chambers in AGF .

Exercise 5.32. Recall that the reflection arrangement of type D4 is not good.
Check that Lemma 5.31 fails for this arrangement.
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Notes

Coxeter theory. The foundations of Coxeter theory were laid down by Tits [396]. Sup-
plementary information is available in many places. See for instance the books by Abra-
menko and Brown [2], Björner and Brenti [73], Borovik and Borovik [90], Borovik, Gelfand
and White [91, Chapters 5 and 7], Bourbaki [92], Davis [126], Grove and Benson [199],
Humphreys [224] and Kane [236]. Short introductions can be found in [8, Sections 1.3
and 1.4], [166, Section 3], and [323, Chapter 11].

Flat-types. The partial order on flat-types in Section 5.2.3 is mentioned in [8, Section
2.6]. It agrees with the partial order considered by Saliola [349, Section 5, Remark 5.1].
The numbers |λ| in Section 5.5.1 are defined in [8, Definition 5.7.4].

Coxeter-Tits monoid. The general construction of semidirect product of monoids is
discussed in [343, Section 1.2.2]. Early references for regular and inverse semigroups are
the papers by Green [193], Vagner [398] and Preston [332].

Characteristic polynomial. The factorization (5.12) of the characteristic polynomial
is proved by Shephard and Todd [363, Theorem 5.3] by a case-by-case analysis. Warning:
They work in the more general setting of unitary reflection groups, and the polynomial
which they factorize is defined using dimension of the stabilizers of the group elements.
For Coxeter groups, that is, in the real case, this polynomial agrees with the characteristic
polynomial. (This is the content of Theorem 5.18.) A direct proof of their result is given
by Solomon [366, Formula (1)]. The related second formula in (5.13) was observed by
Coxeter [119] by a case-by-case analysis.

A similar factorization of the Poincare polynomial of the complement of a complexified
reflection arrangement is given by Brieskorn [95, Theorem 6, part (ii)]. Orlik and Solomon
show that the Poincare polynomial and the characteristic polynomial coincide for any
complex arrangement [310, Theorem 5.2]. In a later paper, they obtain a factorization
of the characteristic polynomial for unitary reflection groups [311, Theorem 4.8]. (Note
that this differs from the factorization of Shephard and Todd.) This is generalized to free
arrangements by Terao [393]. The latter result is discussed in [312, Theorem 6.60 and
Corollary 6.62], and stated in [381, Theorem 4.14].

Good reflection arrangements. In [1, Proposition 5], Abramenko determined the class
of finite Coxeter complexes with the property that their walls are again Coxeter complexes.
His result is stated below.

Proposition 5.33. Let Σ be a finite Coxeter complex. Every wall of Σ is a Coxeter

complex iff the diagram of Σ does not contain a subdiagram of type D4, F4 or H4. If Σ is

of type An, Bn, H3, then every wall of Σ is of type An−1, Bn−1, I2(6), respectively.

Theorem 5.28 can be deduced from this result. The proof that we have sketched
follows Abramenko’s argument.
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CHAPTER 6

Braid arrangement and related examples

We discuss some important examples of arrangements. The coordinate ar-
rangement is treated first. It is the simplest example. We then focus on the braid
arrangement. This is the reflection arrangement of type A and is a main example.
Subsequently we treat the reflection arrangements of types B and D, more briefly.
Finally we discuss graphic arrangements. They are associated to simple graphs and
are the subarrangements of the braid arrangement. In all these examples, there is
a rich interplay between geometry and combinatorics.

We employ the notation [n] := {1, 2, . . . , n}.

6.1. Coordinate arrangement

The coordinate arrangement of rank n is the n-fold cartesian product of the
arrangement of rank 1. We make explicit the notions of faces, flats, cones, lunes
and so on for this arrangement.

In this section, A denotes the coordinate arrangement of rank n, andW denotes
its Coxeter group.

6.1.1. Coordinate arrangement. The coordinate arrangement of rank n con-
sists of the n hyperplanes

xi = 0

for 1 ≤ i ≤ n. It is the smallest arrangement of rank n in terms of number of
hyperplanes. It is the n-fold cartesian product of the arrangement of rank 1. It is
a reflection arrangement. Its Coxeter group is Zn2 , the product of n copies of Z2.
The generator of the i-th copy of Z2 acts on Rn by changing the i-th coordinate to
its negative.

6.1.2. Small ranks. The linear and spherical models for n = 1, 2, 3 are shown
below.

133
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6.1.3. Faces and flats. Faces of A can be described as n-tuples in which each
entry is either 0, + or −. The Tits product on faces is given by (1.5), where ǫi(F )
denotes the i-th entry in the tuple representating F . We have F⋖G iff G is obtained
from F by replacing exactly one 0 by either + or −. Chambers are n-tuples in which
each entry is either + or −. The opposition map on faces interchanges + and −.

For any flat, there is a unique set of hyperplanes whose intersection is that flat.
In other words, the maps (2.18) and (2.19) are inverse bijections. Thus, flats (which
are the same as charts) can be identified with subsets of [n]. The poset structure is
given by reverse inclusion. The support map sends a face to the subset consisting
of those positions in its n-tuple which have a 0 entry.

The lattice of flats is a Boolean poset. In particular, it is modular, that is,
equality always holds in (1.17). Every flat is a factor, that is, every flat has a
unique modular complement. In terms of subsets, modular complements are com-
plementary subsets of [n]. The rank-one flats are the prime factors.

6.1.4. Cones and lunes. There is no distinction between cones, gallery intervals
and lunes for the rank-one arrangement. Since these notions are compatible with
cartesian product, the same is true for the coordinate arrangement. Cones of A
can be described as n-tuples in which each entry is either 0, +, − or ±. For any
cone, there is a unique set of half-spaces whose intersection is that cone. In other
words, the maps (2.22) and (2.23) are inverse bijections. Thus, cones are also the
same as dicharts.

Similarly, there is no distinction between top-stars, top-lunes, top-star-lunes
and top-cones. Top-lunes with a base of rank i are the same as top-stars of faces
of corank i, and consist of 2i chambers. For instance, vertex-based top-lunes are
the same as top-stars of panels, and consist of two adjacent chambers. The poset
of top-stars or top-cones is dual to the poset of faces, with the maps (2.4) and (2.5)
being inverse bijections.

Conjugate top-cones arise by taking cartesian products of conjugate top-cones
in the rank-one arrangement. They can be completely classified as follows. Given
faces F and G, the following are equivalent.

• The top-star of F and the top-star of G are conjugate.
• F ∧G = O and F ∨G exists and is a chamber.
• F and G are complementary faces of a chamber.

In this situation, the top-star of G is the same as the top-lune s(F,C) where C =
F ∨G. Thus, conjugates of the top-star of F are indexed by chambers greater than
F . This is consistent with Lemma 3.43.
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6.1.5. Coxeter aspects. Face-types can be identified with subsets of [n]. All faces
supported by a given flat have the same face-type. So diagram (5.3) specializes to

Σ //

��

ΣW

Π ΠW .

It also follows that there is no distinction between nested face-types and lune-types.

Any given flat X is fixed by all Coxeter symmetries. In other words, ŴX =W
for all X. For any top-lune L with base X, we have W =WX ×WL. Note that this
is a direct product.

6.1.6. Arrangements under and over a flat. Cartesian product. Recall
that a flat X of A is a subset of [n]. The arrangement AX is the coordinate
arrangement whose coordinates belong to X. The arrangement AX is cisomorphic
to the coordinate arrangement whose coordinates do not belong to X. Similarly, the
cartesian product of two coordinate arrangements is again a coordinate arrangement
obtained by taking disjoint union of the two sets of coordinates.

To summarize: The family of all coordinate arrangements, as n varies, is closed
under passage to arrangements under and over a flat, and under cartesian products.

6.1.7. Substitution product of chambers. Recall the substitution product of
chambers (4.18). It works as follows.

A flat X of A is the same as a subset of [n]. Call this subset S. Let T denote the
complementary subset, that is, S ⊔T = [n]. An element of Γ[AX] can be written as
a n-tuple whose i-th entry is either + or − when i ∈ S, and 0 when i ∈ T . Similarly,
an element of Γ[AX] can be written as a n-tuple whose i-th entry is either + or −
when i ∈ T , and 0 when i ∈ S. By combining the + and − in the two n-tuples,
we obtain a n-tuple whose entries are either + or −. This is the desired element of
Γ[A]. For example,

((0 +−00−+), (−00 + +00)) 7→ (−+−++−+).

Here n = 7 with S = {2, 3, 6, 7} and T = {1, 4, 5}.

6.1.8. Category of lunes. Recall from Example 4.28 that the category of lunes
for the rank-one arrangement is the category with two objects and two parallel
arrows. It follows that the category of lunes for the coordinate arrangement of rank
n is the n-fold cartesian product of this category with itself.

6.1.9. Möbius number and characteristic polynomial. For the coordinate
arrangement A of rank n,

c(A) = 2n, d(A) = 3n, µ(A) = (−1)n, χ(A, t) = (t− 1)n.

This follows from (1.54) by taking n-th powers. These values can also be computed
directly.
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6.2. Rank-two arrangements

The arrangement of n lines in the plane, for n ≥ 2, was introduced in Sec-
tion 1.2.3. It has been used to illustrate many of the ideas and results in the
preceding chapters. The cardinalities of the different geometric objects associated
to an arrangement can be explicitly computed in this case. They are listed in Ta-
ble 6.1. For objects such as face-types which are specific to reflection arrangements,
we assume that the arrangement is dihedral, that is, the n lines are equally spaced.

Table 6.1. Enumeration in rank two.

Object Cardinality

face 4n+ 1

chamber 2n

flat n+ 2

cone 2n2 + 3n+ 2

top-cone 2n2 + 1

gallery interval 2n2 + 1

top-nested face 8n

top-lune 4n+ 1

top-star 4n+ 1

top-star-lune 9 if n = 2 and 6n+ 1 if n ≥ 3

nested face 12n+ 1

lune 7n+ 2

nested flat 3n+ 3

face-type 4

flat-type 3 if n is odd, and 4 if n is even

nested face-type 9

lune-type 7 if n is odd, and 9 if n is even

Note that:

• Top-stars and top-lunes have the same cardinality. Faces and top-stars
have the same cardinality in any arrangement (Section 2.1.6).

• There is no distinction between top-cones and gallery intervals (Exer-
cise 2.42).
• For n even, opposite vertices have the same type; as a result, there is no
distinction between face-types and flat-types, and between nested face-
type and lune-types.

We also recall from (1.55) that the Möbius number and characteristic polyno-
mial are given by µ(A) = n− 1 and χ(A, t) = t2 − nt+ n− 1.

6.3. Braid arrangement. Compositions and partitions

The braid arrangement is a very important example of a reflection arrange-
ment. It is a basic object for many considerations in algebra and combinatorics.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



6.3. BRAID ARRANGEMENT. COMPOSITIONS AND PARTITIONS 137

The Coxeter group of the braid arrangement is the symmetric group. Many well-
known combinatorial notions such as linear and partial orders, set and integer
partitions, and so on correspond to geometric notions in the braid arrangement
such as chambers, top-cones, flats, flat-types, and so on. In this section, we focus
on compositions and partitions.

6.3.1. Braid arrangement. The braid arrangement on [n] consists of the
(
n
2

)

hyperplanes in Rn defined by

xi = xj

for 1 ≤ i < j ≤ n. This is also called the arrangement of type An−1. It has
rank n − 1. It is not essential: The central face is one-dimensional and given by
x1 = · · · = xn. It is a reflection arrangement, the Coxeter group is the symmetric
group on n letters, denoted Sn. An element of Sn, called a permutation, is a bijection
from [n] to itself. It acts by permuting the coordinates.

The canonical linear order of the set [n] is not relevant to the definition of
the arrangement. So it is also useful to proceed as follows. Let I be a finite set.
Consider the vector space RI consisting of functions from I to R, with pointwise
addition and scalar multiplication. The braid arrangement on I consists of the
hyperplanes

xa = xb

in RI , as a and b vary over elements of I with a 6= b. Its Coxeter group is the group
of all bijections from I to itself. We refer to elements of I as letters.

Recall that to any hyperplane arrangement, one can attach a variety of geo-
metric notions such as faces, flats, and so on. For the braid arrangement, these
geometric notions are equivalent to well-known combinatorial notions. The dictio-
nary is given in Table 6.2. Some of these combinatorial objects are discussed below,
the rest are discussed in Section 6.4.

6.3.2. Set compositions and set partitions. Let I be a finite set. A compo-
sition of I is a finite sequence (I1, . . . , Ik) of disjoint nonempty subsets of I such
that

I =
k⊔

i=1

Ii.

The subsets Ii are the blocks of the composition. We write F � I to indicate that
F = (I1, . . . , Ik) is a composition of I.

When the blocks are singletons, a composition of I amounts to a linear order
on I. Two linear orders are adjacent if one is obtained from the other by switching
two consecutive elements. A minimal gallery from one linear order to another is
a minimal way to sort the first list by adjacent transpositions so as to obtain the
second list.

Let F and G be compositions of I. We say G refines F if each block of F is a
union of some contiguous set of blocks of G. In this case, we write F ≤ G. This
defines a partial order on the set of compositions of I. Maximal elements are linear
orders. There is a unique minimum element, namely, the one-block composition of
I.

A partition X of I is a collection X of disjoint nonempty subsets of I such that

I =
⊔

B∈X

B.
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Table 6.2. Geometry and combinatorics.

Geometry Combinatorics

face set composition

chamber linear order

flat set partition

cone preorder

top-cone partial order

gallery interval partial order of order dimension 1 or 2

chart simple graph

dichart simple directed graph

top-nested face set composition with a linear order on each block

top-lune
set partition with a linear order on each block, or

parallel composition of linear orders

top-star series composition of discrete partial orders

top-star-lune series-parallel partial order

nested face set composition with a composition of each block

lune set partition with a composition of each block

face-type integer composition

flat-type integer partition

nested face-type integer composition with a composition of each part

lune-type integer partition with a composition of each part

The subsets B are the blocks of the partition. We write X ⊢ I to indicate that X is
a partition of I.

Let X and Y be partitions of I. We say that Y refines X if each block of X
is a union of blocks of Y. In this case, we write X ≤ Y. This defines a partial
order on the set of partitions of I which is in fact a lattice. The top element is the
partition into singletons and the bottom element is the partition whose only block
is the whole set I.

6.3.3. Faces and flats. We now illustrate how faces correspond to set composi-
tions, and flats to set partitions.

A face is defined by a system of equalities and inequalities which may be en-
coded by a composition of I: the equalities are used to define the blocks and the
inequalities to order them. For example, for I = {a, b, c, d, e},

xa = xc ≤ xb = xd ≤ xe ←→ ac|bd|e.
(The blocks have been separated by vertical bars and ordered from left to right.
There is no order within each block.) Thus, faces correspond to compositions of
the set I. In defining this correspondence, we have followed the convention that
the values increase from left to right, that is, the value of the coordinates in the
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first block is smaller than the value of the coordinates in the second block, and so
forth.

Under the above correspondence, chambers correspond to linear orders on I.
For example, for I = {a, b, c, d, e},

xa ≤ xc ≤ xb ≤ xd ≤ xe ←→ a|c|b|d|e.
A flat is defined by a system of equalities which may be encoded by a partition

of I: the equalities are used to define the blocks. For example, for I = {a, b, c, d, e},
xa = xc, xb = xd, xe ←→ {ac, bd, e}.

(The blocks have been separated by commas. There is no order within each block
or among the blocks.) Thus, flats correspond to partitions of the set I.

6.3.4. Support map. The support map from faces to flats translates as follows.
The support of a composition F of I is the partition s(F ) of I obtained by forgetting
the order among the blocks: if F = (I1, . . . , Ik), then

s(F ) = {I1, . . . , Ik}.

6.3.5. Opposition map. The opposition map on faces translates as follows. The
opposite of F = (I1, . . . , Ik) is F = (Ik, . . . , I1). In other words, the opposition
map reverses the order on the blocks of the set composition. This map restricts to
chambers: the opposite of a linear order is a linear order.

6.3.6. Small ranks. The braid arrangement on I = {a} is the rank-zero arrange-
ment containing no hyperplanes.

The braid arrangement on I = {a, b} consists of one hyperplane xa = xb. It is
cisomorphic to the rank-one arrangement whose ambient space is one-dimensional.
The latter is shown below on the left with the spherical model on the right.

ab b|aa|b
a|b b|a

The central face corresponds to the one-block composition ab. It is not seen in the
spherical model.

The braid arrangement on I = {a, b, c} consists of the three hyperplanes xa =
xb, xb = xc and xa = xc. It is cisomorphic to the rank-two arrangement of three
lines. The latter is shown below on the left with the spherical model on the right.

abc

a|b|c

b|a|c

b|c|a

c|b|a

c|a|b

a|c|b

a|bc

ab|cb|ac

bc|a

c|ab ac|b

a|b|c

b|a|c

b|c|a

c|b|a

c|a|b

a|c|b

a|bc

ab|cb|ac

bc|a

c|ab ac|b
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Faces are labeled by compositions of I. The central face corresponds to the one-
block composition abc. It is not seen in the spherical model. There are two types
of vertices shown in blue and magenta, respectively.

The braid arrangement on I = {a, b, c, d} consists of six hyperplanes. Its spheri-
cal model is shown below. The hyperplane xa = xd is the outer circle, while xb = xc
is the horizontal line.

a|b|c|d

a|c|b|d

c|a|d|b

b|a|d|c

b|a|c|da|b|d|c

c|b|a|da|d|c|b

b|c|a|da|d|b|c

c|a|b|da|c|d|b

There are 24 triangles labeled by linear orders of which 12 are visible in the picture.
The edges can be labeled by three-block compositions, and vertices by two-block
compositions. There are three types of vertices shown in blue, magenta and black,
respectively.

a|b|c|d

a|c|b|d

c|a|d|b

c|d|a|b

b|a|d|c

b|d|a|c

d|b|c|a

b|d|c|ad|b|a|c

b|c|d|ad|a|b|c

b|a|c|da|b|d|c

c|b|a|da|d|c|b

c|b|d|ad|a|c|b

b|c|a|da|d|b|c

c|a|b|da|c|d|b

c|d|b|ad|c|a|b

Here the spherical model has been flattened so that all triangles except d|c|b|a are
visible. The six hyperplanes can be seen in full as the six ovals.

The spherical model can also be visualized as a triangulated tetrahedron, with
each of the four faces barycentrically subdivided into 6 triangles. This is illustrated
below. In the picture, only two faces are visible. Each face has a blue vertex in the
center, magenta vertices on its three edges, and black vertices as its vertices. The
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labels on some of the vertices have also been shown.

a|bcd

b|acd

c|abd

d|abc

ac|bd

bc|ad ad|bc

bd|ac

Another illustration is given below. Each of the two pictures shows two faces
of the tetrahedron. To get the full tetrahedron, we identify the two pictures along
their boundary, with one as the front side and the other as the back side.

Where are the six hyperplanes?
In another illustration shown below, three faces of the tetrahedron are fully

visible, while one face is fully hidden. The three curved arcs on the boundary of
the picture are the three sides of the hidden face. The visible faces have two straight
sides and one curved side and share the black vertex in the center of the picture.

Three hyperplanes are seen in full as the three circles, while three are partly visible
as the three straight lines.

6.3.7. Tits product. Let F = (S1, . . . , Sp) and G = (T1, . . . , Tq) be two compo-
sitions of I. Consider the pairwise intersections

Aij := Si ∩ Tj

for 1 ≤ i ≤ p, 1 ≤ j ≤ q. A schematic picture is shown below.
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S1

Sp

T1 Tq

A11 A1q

Ap1 Apq

The Tits product FG is the composition obtained by listing the nonempty inter-
sections Aij in lexicographic order of the indices (i, j):

(6.1) FG = (A11, . . . , A1q, . . . , Ap1, . . . , Apq)̂,
where the hat indicates that empty intersections are removed.

For example, to multiply acde|bfg and cdfg|b|ae, we first compute the pairwise
intersections. ï

acde
bfg

ò [
cdfg b ae

] ï
cd ∅ ae
fg b ∅

ò

Now, from the last matrix, we read the nonempty entries in the first row followed
by those in the second to obtain:

(acde|bfg)(cdfg|b|ae) = (cd|ae|fg|b).
There is a similar operation on set partitions. To multiply X and Y, intersect

the blocks of X with the blocks of Y and remove empty intersections. This operation
is commutative, and in fact agrees with the join X∨Y, which is the smallest common
refinement of X and Y.

Since the support map forgets the ordering on the blocks, it is easy to see that
(1.11) holds.

6.3.8. Degeneracies in the Tits product of two vertices. Let us look at the
Tits product of two vertices in detail. A vertex is a set composition with two blocks.
Suppose F = (S, T ) and G = (S′, T ′) are vertices. Put

ï
A B
C D

ò
:=

ï
S ∩ S′ S ∩ T ′

T ∩ S′ T ∩ T ′

ò
.

(Note that FG = (A,B,C,D)̂ and GF = (A,C,B,D)̂.) Since S, T , S′ and T ′

are nonempty, both entries in a row or column cannot be empty. The remaining
possibilities are listed below.

Combinatorics Geometry

All entries are nonempty FG and GF are triangles

One diagonal entry is empty and the rest
are nonempty

FG and GF are distinct edges

One off-diagonal entry is empty and the
rest are nonempty

FG = GF is an edge

Diagonal entries are empty and the rest
are nonempty

F = G

Off-diagonal entries are empty and the
rest are nonempty

F = G

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



6.3. BRAID ARRANGEMENT. COMPOSITIONS AND PARTITIONS 143

The first row is the generic case. The rest are degenerate cases of the generic
case. Observe how the combinatorial and geometric degeneracies go hand-in-hand.

6.3.9. Integer compositions and integer partitions. Let n be a nonnegative
integer. A composition α = (a1, . . . , ak) of n is a finite sequence of positive integers
such that

a1 + a2 + · · ·+ ak = n.

If the numbers ai are allowed to be nonnegative, we say that α is a weak composition
of n.

A partition λ = (l1, . . . , lk) of n is a finite sequence of positive integers such
that

l1 ≥ l2 ≥ · · · ≥ lk and l1 + · · ·+ lk = n.

We write α � n and λ ⊢ n to indicate that α is a composition of n, and λ
is a partition of n. The numbers ai and li are the parts of α and λ. The empty
sequence is the only composition (and partition) of 0; it has no parts.

The support of a composition of n is the partition of n obtained by reordering
the parts in decreasing order.

There is a partial order on the set of compositions given by refinement. We write
α ≤ β when β refines α. There is a similar partial order on the set of partitions.
We say λ ≤ µ if µ is obtained by refining each part in λ, and rearranging the parts
in descending order.

6.3.10. Type map. The type of a composition F of I is the composition of |I|
whose parts are the sizes of the blocks of F . The type of a partition X of I is the
partition of |I| whose parts are the sizes of the blocks of X (listed in decreasing
order).

The support and type maps commute with each other.

set composition ✤ t //
❴

s

��

composition
❴

s

��

set partition
✤

t
// partition

This is a specialization of (5.3).

6.3.11. Arrangements under and over a flat. Let A be any braid arrange-
ment. The arrangement under a flat X of the braid arrangement A is again ciso-
morphic to a braid arrangement. More precisely, each block of X plays the role of
one letter. For example, for X = {cdf, ae, bg}, the arrangement AX is cisomorphic
to the braid arrangement on the three letters cdf , ae and bg.

The arrangement over a flat X is cisomorphic to a cartesian product of braid
arrangements. There is one braid arrangement for each block of X whose letters are
the letters of that block. For example, for X = {cdf, ae, bg}, the arrangement AX is
cisomorphic to the cartesian product of the three braid arrangements on {c, d, f},
{a, e} and {b, g}, respectively.
Exercise 6.1. Show that: Any braid arrangement A of rank at least one is prime.
More generally, the arrangement AX is prime iff X has exactly one non-singleton
block. (This provides examples for the second part of Exercise 1.49.)
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Exercise 6.2. Characterize the set of faces F of the braid arrangement whose star
ΣF identifies with the set of faces of a coordinate arrangement.

6.3.12. Adjoint of the braid arrangement. For each subset S of [n], let HS
denote the hyperplane in Rn with equation

∑

i∈S

xi = 0.

The all-subset arrangement consists of the hyperplanes HS , as S runs over all
nonempty subsets of [n]. The restricted all-subset arrangement is the arrangement
under the hyperplane H[n] of the all-subset arrangement. There are 2n−1 − 1 hy-
perplanes in this arrangement, one for each partition of [n] into 2 blocks. The
hyperplane corresponding to {S, T} has equation

∑

i∈S

xi = 0, or equivalently
∑

i∈T

xi = 0.

This hyperplane is orthogonal to the line of the braid arrangement corresponding
to {S, T}. Thus, the restricted all-subset arrangement is the adjoint of the braid
arrangement.

6.3.13. The external product. In addition to the Tits product, there is another
operation among faces of the braid arrangement. This is of a different nature: it
combines faces from smaller arrangements to produce a face of a bigger one. It is
combinatorially simpler.

Given a composition F = (S1, . . . , Sp) of I and a sequence of compositions Hi

of Si, i = 1, . . . , p, we set

(6.2) µF (H1, . . . , Hp) = H,

where H is the ordered concatenation of the Hi. We refer to H as the external
product of the Hi along F . It is a composition of I, finer than F . For example,

µabc|de(ac|b, e|d) = (ac|b|e|d).
The external product restricts to linear orders: If each Hi is a linear order,

then so is H, for any composition F .
The external product is unital: If F is the one-block composition, then µF is

the identity. It is also associative, in the following sense. Let G = (T1, . . . , Tq) be a
composition of I refining F . Let (G/F )i denote the composition of Si consisting of
those contiguous blocks of G which refine Si. Similarly, given compositions Hj of
Tj , j = 1, . . . , q, let Hi denote the subsequence of H1, . . . , Hq consisting of the Hj

for which Tj ⊆ Si. Thus Hi is a sequence of compositions of the blocks of (G/F )i.
Then we have

µF (µ(G/F )1(H1), . . . , µ(G/F )p(Hp)) = µG(H1, . . . , Hq).

The external product can also be defined for set partitions, integer composi-
tions, and integer partitions, along the same lines.

6.4. Braid arrangement. Partial orders and graphs

We now focus on cones and charts for the braid arrangement. A key observation
is that top-cones correspond to partial orders. Hence, results on top-cones from
Chapter 2 specialize to interesting results on partial orders. We also mention that
charts correspond to simple graphs, and dicharts to simple digraphs.
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Table 6.3. Top-cones and partial orders.

Top-cone V Partial order P

Half-spaces which contain V Relations in P

Walls of V Cover relations in P

Hyperplanes which cut V
Unordered pairs of incomparable

elements of P

Chambers contained in V Linear extensions of P

Top-cone opposite to V Partial order opposite to P

6.4.1. Preorders and partial orders. A preorder is a relation on a set which
is reflexive and transitive. Let x ∼ y if x ≤ y and y ≤ x. This is an equivalence
relation whose classes are called the blocks of the preorder. A preposet is a set
equipped with a preorder.

We say x and y are comparable if either x ≤ y or y ≤ x. Let x ∼ y if there is a
sequence of elements starting with x and ending at y such that adjacent elements
in the sequence are comparable. This is an equivalence relation whose classes are
called the connected components of the preorder.

A partial order is a preorder that is in addition anti-symmetric. A poset is a
set equipped with a partial order.

A partial order is the same as a preorder whose blocks are singletons. Similarly,
a preorder is the same as an equivalence relation together with a partial order on
the set of blocks.

6.4.2. Cones and top-cones. We turn to the correspondence between top-cones
in the braid arrangement on I and partial orders on the set I stated in Table 6.2.
Let V be a top-cone and P the corresponding partial order. The correspondence
between geometric notions attached to V and combinatorial notions attached to P
is given in Table 6.3. We elaborate on the first entry. For distinct i, j ∈ I, i < j in
P iff the half-space xi ≤ xj contains V.

Cones correspond to preorders. Recall that a cone is a top-cone in an arrange-
ment under a flat. This ties to the fact that a preorder is a partial order on its
blocks.

The fact that faces and flats are particular cones adopts the following form. A
set composition is the same as a linear preorder: a preorder for which the partial
order on the blocks is linear (the first block is smaller than the second block and so
on). An equivalence relation is the same as a preorder for which the partial order
on the blocks is discrete, and this amounts to a set partition.

Exercise 6.3. Notions of boundary, interior and closure for top-cones translate to
partial orders. Check that: A two-block composition S|T belongs to the closure of
a partial order P iff the following condition holds.

If x < y in P , then either x and y both belong to S, or both belong to T ,

or x belongs to S and y belongs to T .

Equivalently, no element of T is less than an element of S. (In this case, one says
S is a lower set of P and T is an upper set of P .)
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When does S|T lie in the boundary or interior of P?
More generally, when does a set composition belong to the closure, boundary

or interior of P?

6.4.3. Poset of partial orders. The partial order on top-cones translates to
partial orders as follows. Fix a finite set I. For partial orders P and Q on I, we
have

P ≤ Q ⇐⇒ x < y in Q implies x < y in P for all x, y ∈ I.
In other words, P ≤ Q iff Q is obtained from P by deleting some relations in P .

This is the poset ÛΩ of all partial orders on I. The discrete partial order on I is the

maximum element, while linear orders on I are the minimal elements of ÛΩ.
a b c

a

b c

a

c
b

b

c

a

b

a

c

a

c

b

a

b

c

The picture shows the interval from a linear order to the discrete partial order on
the set I = {a, b, c}.

Going back to the general case, P ⋖ Q iff Q is obtained from P by deleting a

cover relation of P . One can deduce that ÛΩ is graded, with the rank of P equal to
the number of unordered pairs of incomparable elements in P . In particular, the

rank of ÛΩ is equal to
(
n
2

)
, where n is the cardinality of I. This is a special case

of Theorem 2.55. More generally, ÛΩ is join-distributive, and in particular, every
interval is upper semimodular. These are special cases of Theorems 2.57 and 2.59.
The interval [P,Q] is Boolean iff the relations in P and not in Q are cover relations
in P . This is a special case of Proposition 2.58. The Möbius function of the poset
of partial orders is

(6.3) µ(P,Q) =

®
±1 if deleting some cover relations in P yields Q,

0 otherwise.

The sign is +1 if an even number of cover relations are deleted, and −1 if an odd
number of cover relations are deleted. The value is 0 when P contains a noncover
relation that is not present in Q. This is a special case of Corollary 2.63.

Exercise 6.4. Let P and Q be partial orders on I. If x and y are elements of I
such that x < y in P and y < x in Q, then P and Q cannot have a common linear
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extension. Show that the converse is false. That is, find partial orders P and Q
which do not have a common linear extension, and in which elements x and y of
the above kind do not exist. This will also be an example for Exercise 2.30.

Exercise 6.5. The partial order on cones translates to preorders. Explicitly, for
preorders P and Q on I, we have

P ≤ Q ⇐⇒ (x, y) ∈ Q implies (x, y) ∈ P for all x, y ∈ I.
Show that the poset of all preorders on a set of three elements is not graded. This
is the case n = 3 of Exercise 2.56.

6.4.4. Case and base maps. The case and base maps from cones to flats trans-
late as follows. The case of a preorder is the set partition whose blocks are the
blocks of the preorder. The base of a preorder is the set partition whose blocks are
the connected components of the preorder. In particular, the base of a preorder is
the one-block partition iff the preorder is connected. Thus, a connected preorder
corresponds to a salient cone (in the essentialization of the arrangement).

6.4.5. Order dimension. Convexity dimension of a top-cone translates to order
dimension of a partial order. The order dimension of a partial order is the minimum
number of linear orders whose join is the given partial order. In particular, a gallery
interval is precisely a partial order of order dimension either 1 or 2. (A partial order
of order dimension 1 is precisely a linear order.) Let us make this explicit.

Given two linear orders ℓ1 and ℓ2, one can associate a partial order by defining
x < y iff x < y in both ℓ1 and ℓ2. Indeed, this partial order is the gallery interval
[ℓ1 :ℓ2]. Thus, a partial order P is a gallery interval iff there exist linear extensions
ℓ1 and ℓ2 with the following property.

x < y in both ℓ1 and ℓ2 =⇒ x < y in P .

Equivalently:

For any x, y ∈ P which are not related,

either x < y in ℓ1 and y < x in ℓ2, or vice versa.

6.4.6. Graphs and digraphs. We turn to the combinatorial side of charts and
dicharts.

A simple graph on a finite set I is a subset g of
(
I
2

)
. An element {i, j} is an edge

between the vertices i and j of the graph g. By letting the edge {i, j} represent the
hyperplane xi = xj , simple graphs on I are in correspondence with charts in the
braid arrangement on I.

The complete graph on I corresponds to the chart consisting of all hyperplanes,
while the discrete graph corresponds to the chart with no hyperplanes. Connected
graphs correspond to connected charts, and trees to coordinate charts.

A simple directed graph (simple digraph) on I is a subset r of I × I \ {(a, a) |
a ∈ I}. An element (i, j) of r is an arrow of the digraph from the vertex i to the
vertex j. Simple digraphs on I are in correspondence with dicharts in the braid
arrangement on I, with an arrow (i, j) representing the half-space xi ≤ xj .

Recall the maps in (2.17):

Π[A] λ // G[A]
ρ

oo λ′ //
−→
G[A]

ρ′
oo

ρ′′
oo

~ρ
// Ω[A].

~λoo
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They admit the following combinatorial descriptions. Let X be a partition of I, g
a simple graph on I, r a simple digraph on I, and P a preorder on I. The simple
graph λ(X) is the disjoint union of the complete graphs on the blocks of X. The
blocks of the partition ρ(g) are the connected components of g. In the digraph λ′(g)
there are two arrows (i, j) and (j, i) for each edge {i, j} in g. In the graph ρ′(r)
there is an edge {i, j} if either arrow (i, j) or (j, i) is present in r. In the graph
ρ′′(r) there is an edge {i, j} only if both arrows (i, j) and (j, i) are present in r. For
distinct i and j in I, we have (i, j) in the preorder ~ρ(r) if there is a directed path

from i to j in r, and we have an arrow from i to j in the digraph ~λ(P ) if (i, j) ∈ P .
Simple digraphs are the same as reflexive relations on the set I. Via λ′, simple

graphs correspond to reflexive symmetric relations, and partitions correspond to
equivalence relations via λ′λ. The relation λ′ρ′(r) is the symmetric closure of the
relation r. The relation λρ(g) is the transitive closure of the symmetric relation g.

The relation ~λ~ρ(r) is the transitive closure of the relation r.

6.5. Braid arrangement. Linear compositions, partitions and shuffles

We now focus on nested faces and lunes for the braid arrangement. Top-
nested faces and top-lunes correspond to linear compositions and linear partitions.
There are similar descriptions for nested faces and lunes, as well as for nested
face-types and lune-types. Combinatorial top-lunes relate to shuffles and quasi-
shuffles. Top-star-lunes correspond to series-parallel partial orders (constructed
from the operations of series and parallel composition), while conjugate top-cones
corrrespond to conjugate partial orders. The substitution product of chambers
specializes to the classical associative operad.

6.5.1. Series and parallel composition. Suppose I and J are disjoint sets,
and P and Q are partial orders on I and J , respectively. There are two natural
partial orders on I ⊔ J as follows. The disjoint union or parallel composition of
P and Q combines the relations in P and Q, with no additional relations. The
series composition of P and Q combines the relations in P and Q, and in addition,
imposes that every element of P be less than every element of Q.

6.5.2. Linear compositions and linear partitions. A linear composition of a
set I is a composition in which each block is equipped with a linear order. A linear
composition yields a linear order on I (the series composition of the linear orders
on its blocks), but it cannot be recovered solely from it.

Similarly, a linear partition of I is a partition in which each block is equipped
with a linear order. Equivalently, it is a partial order on I each of whose connected
components is a linear order. This is the same as a partial order which can be
obtained as a parallel composition of linear orders. Note that the base of a linear
partition is the underlying set partition (obtained by forgetting the orders within
each block).

6.5.3. Nested faces and lunes. Top-nested faces correspond to linear composi-
tions: Given a top-nested face (H,D), the H specifies a set composition and the D
specifies a linear order on each block of H. Using this along with (3.7) and (6.1),
one can deduce that top-lunes correspond to linear partitions.
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More generally, a nested face corresponds to a set composition in which each
block is given the structure of a set composition. Similarly, a lune corresponds to
a set partition is which each block is given the structure of a set composition.

a|b|c|d

a|c|b|d

c|a|d|b

b|a|d|c

b|a|c|da|b|d|c

c|b|a|da|d|c|b

b|c|a|da|d|b|c

c|a|b|da|c|d|b

a|b|c|d

a|c|b|d

c|a|d|b

b|a|d|c

b|a|c|da|b|d|c

c|b|a|da|d|c|b

b|c|a|da|d|b|c

c|a|b|da|c|d|b

The top-lune on the left corresponds to the linear partition {a|d, b|c}, while the one
on the right corresponds to {a|d|b, c}.

Exercise 6.6. Recall from Theorem 3.27 that every cone has an optimal decom-
position into lunes. Check that: The optimal decomposition of a partial order P is
the union of those linear partitions whose connected components are the same as
those of P and within each component, we have a linear extension. Generalize to
preorders.

6.5.4. Shuffles. Let I = S ⊔ T , ℓ and m linear orders on S and T , respectively.
Let ℓ ·m be the concatenation of ℓ and m, a linear order on I. A shuffle of ℓ and
m is any linear order on I whose restrictions to S and T are ℓ and m.

The shuffles of ℓ and m are precisely those linear orders C which satisfy HC =
D, where H = (S, T ) and D = ℓ ·m. This follows from (6.1). One may equally well
choose H = (T, S) and D = m · ℓ.

The linear orders ℓ and m give rise to two linear compositions, namely, (ℓ,m)
and (m, ℓ). They correspond to the two choices of (H,D) given above. The support
of either of them is the linear partition {ℓ,m}. Its base is the two-block partition
consisting of S and T . Viewing the linear partition as a partial order (parallel
composition of ℓ and m), the shuffles of ℓ and m are precisely its linear extensions.

Thus, {ℓ,m} corresponds to a vertex-based top-lune, with shuffles correspond-
ing to chambers.

Take for instance I = {a, b, c, d}. The shuffles of c and a|d|b are

c|a|d|b, a|c|d|b, a|d|c|b, and a|d|b|c.

These are the linear extensions of the linear partition {c, a|d|b} (viewed as a partial
order). Similarly, the shuffles of a|d and b|c are

a|d|b|c, a|b|d|c, a|b|c|d, b|a|d|c, b|a|c|d, and b|c|a|d.

These are the linear extensions of {a|d, b|c}. See the pictures in Section 6.5.3.
This discussion generalizes to shuffles of a finite number of linear orders and to

shuffles of set compositions. The latter correspond to solutions F of an equation
HF = G with s(F ) = s(G).
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6.5.5. Quasi-shuffles. Let I = S ⊔ T , ℓ and m be as in Section 6.5.4. A quasi-
shuffle of ℓ and m is any composition of I whose restrictions to S and T are ℓ and
m, respectively. Every shuffle is a particular quasi-shuffle.

The quasi-shuffles of ℓ and m are precisely those compositions F which satisfy
HF = D, where H = (S, T ) and D = ℓ · m. Other than the shuffles, the quasi-
shuffles of a|d and b|c are

a|db|c, ab|d|c, ab|c|d, a|b|cd, b|a|cd, b|ac|d, and ab|cd.
The discussion generalizes to quasi-shuffles of a finite number of linear orders and
to quasi-shuffles of set compositions. The latter correspond to solutions F of an
equation HF = G.

6.5.6. Series composition of discrete partial orders. The notion of top-star
of a face translates as follows.

A partial order is the top-star of the two-block composition S|T iff elements of
S are minimal, elements of T are maximal, and each element of S is less than each
element of T .

More generally, a partial order is the top-star of a set composition F iff elements
within any given block of F are incomparable, and all elements in a given block of
F are less than all elements in a subsequent block of F . This is precisely a partial
order which can be obtained as the series composition of discrete partial orders.

top-star top-lune

The picture on the left shows a top-star obtained as series composition of three
discrete partial orders, while the one on the right shows a top-lune obtained as
parallel composition of three linear orders.

Exercise 6.7. Let P be a series composition of discrete partial orders. Check that:
For any linear extension ℓ of P , there exists a unique linear extension ℓ′ of P such
that P is the gallery interval [ℓ :ℓ′]. This is a specialization of Exercise 2.44.

Exercise 6.8. Let P be a parallel composition of linear orders. (It corresponds
to a linear partition.) Check that: For any series composition ℓ of the given linear
orders, P is of the form [ℓ :ℓ′] for a unique ℓ′. In fact, these are all the ways to realize
P as a gallery interval. (In other words, the possibilities listed in Proposition 3.18
are the only ones for the braid arrangement.)

6.5.7. Series-parallel partial orders. A partial order is series-parallel if it can
be obtained by a sequence of series compositions and parallel compositions starting
with the partial order with one element.

The notion of top-star-lunes translates to the notion of series-parallel partial
orders. Both definitions are inductive in nature; the series alternative in the former
corresponds to series composition in the latter, while parallel alternative in the
former corresponds to parallel composition in the latter. (Here we use that the
arrangement over a flat of a braid arrangement is a cartesian product of smaller
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braid arrangements, and top-star-lunes are compatible with cartesian products. See
Section 6.3.11.)

Series-parallel partial orders have order dimension either 1 or 2. This corre-
sponds to the fact that top-star-lunes are gallery intervals (Lemma 3.42). It can
also be directly checked by showing that partial orders of order dimension either 1
or 2 are preserved under series and parallel compositions.

6.5.8. Conjugate partial orders. The notion of conjugate top-cones translates
as follows. Two partial orders on I are conjugate if any distinct x and y in I are
incomparable in exactly one of the two partial orders. Conjugate partial orders have
a common linear extension (obtained by combining the relations in the two). In
other words, the braid arrangement satisfies the conjugate-meet property. Hence,
by Corollary 3.47, we obtain: a partial order has order dimension either 1 or 2 iff
it has a conjugate.

6.5.9. Nested face-types and lune-types. Compositions, partitions and the
type map were reviewed in Sections 6.3.9 and 6.3.10. Nested faces, lunes, and
their top-versions were described combinatorially in Section 6.5.2. Now let n be a
positive integer. A nested face-type of n consists of a composition of n together
with a composition of each of its parts. A lune-type of n consists of a partition of
n together with a composition of each of its parts.

The type of a nested face is a nested face-type, and the type of a lune is a
lune-type. They are obtained by replacing the involved sets by their cardinalities.
One can explicitly see that diagrams (5.4) and (5.5) commute.

6.5.10. Classical associative operad. Let A be the braid arrangement on the
set I. Arrangements under and over a flat of this arrangement are explained in
Section 6.3.11. For a partition X of I, the substitution product of chambers (4.18)
works as follows.

An element of Γ[AX] is a linear order on the blocks of X, while an element of
Γ[AX] is a family of linear orders, one on each block of X. (The latter is the same
as a linear partition whose base is X.) The two together specify a linear order on
I, which is an element of Γ[A]. For example, for the partition X = {abd, fg, ce},

((fg|ce|abd), {a|d|b, g|f, c|e}) 7→ (g|f |c|e|a|d|b).
The substitution product in rank two is illustrated below.

{b, a|c}

b|a|c

b|ac
{b, a|c}

ac|b a|c|b

In the picture on the left, the substitution product of the vertex b|ac (shown in
black) with the top-lune {b, a|c} (shown in blue) is the chamber b|a|c (shown as the
red edge). Similarly, in the picture on the right, the substitution product of the
vertex ac|b with the top-lune {b, a|c} is the chamber a|c|b.

Linear orders on finite sets with these structure maps constitute the classical
associative operad .
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Table 6.4. Enumeration in the braid arrangement.

Object Sequence OEIS

set composition 1, 3, 13, 75, 541 A000670

linear order 1, 2, 6, 24, 120 A000142

set partition 1, 2, 5, 15, 52 A000110

preorder 1, 4, 29, 355, 6942 A000798

partial order 1, 3, 19, 219, 4231 A001035

set composition with a linear order on
each block

1, 4, 24, 192, 1920 A002866

set partition with a linear order on
each block

1, 3, 13, 73, 501 A000262

series-parallel partial order 1, 3, 19, 195, 2791 A048172

set composition with a composition of
each block

1, 5, 37, 365, 4501 A050351

set partition with a composition of
each block

1, 4, 23, 173, 1602 A075729

6.6. Enumeration in the braid arrangement

We now discuss some enumerative features of the braid arrangement. This
features in particular inversion sets, factorials, multinomial coefficients and formal
power series.

6.6.1. Combinatorial objects. In Table 6.4, we list the first five terms in the
sequences enumerating several combinatorial objects associated to the braid ar-
rangement on [n], starting at n = 1. The references are to the Online Encyclopedia
of Integer Sequences [365]. The corresponding geometric objects are given in Ta-
ble 6.2.

6.6.2. Gallery distance. Gallery distance is discussed in Section 1.10.3. It is
related to inversion sets as follows.

Let C be a chamber in the braid arrangement on I. Write C = C1| · · · |Cn,
where n = |I|. Define the inversion set of (C,D) to be

Inv(C,D) := {(i, j) ∈ [n]× [n] | i < j and Ci appears after Cj in D}.

The gallery distance between C and D is then given by

(6.4) dist(C,D) = |Inv(C,D)|.

Let F and G be faces with the same support. Write F = F 1| · · · |F k. Then
G is a set composition obtained by permuting the F i in some order. Define the
inversion set of (F,G) to be

Inv(F,G) := {(i, j) ∈ [k]× [k] | i < j and F i appears after F j in G}.
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Then the distance between F and G is

(6.5) dist(F,G) =
∑

(i,j)∈Inv(F,G)

|F i| |F j |.

Consider now the general case, in which F and G are arbitrary faces. Here, we
have

(6.6) dist(F,G) =
∑

i<k
j>l

|F i ∩Gj | |F k ∩Gl|,

where i and k index the blocks of F while j and l index the blocks of G.

6.6.3. Degrees and factorials. Recall that for set compositions F ≤ G, the set
composition (G/F )i consists of those contiguous blocks of G which refine the i-th
block of F .

For any set composition G, let deg(G) denote the number of blocks of G. More
generally, for F ≤ G, let
(6.7) deg(G/F ) =

∏

i

deg(G/F )i.

In particular, deg(G/O) = deg(G).
For F , a set composition consisting of two blocks, deg(G/F ) is the product of

two numbers, one for each block of F , as in the following example.

F = krish|na, G = kr|i|sh|n|a, deg(G/F ) = 3.2 = 6.

Here kr|i|sh which refines krish has 3 blocks, while n|a which refines na has 2
blocks.

For any set composition G, let deg!(G) denote the factorial of the number of
blocks of G. More generally, for F ≤ G, let
(6.8) deg!(G/F ) =

∏

i

deg!(G/F )i.

In particular, deg!(G/O) = deg!(G).
For example,

F = krish|na, G = kr|i|sh|n|a, deg!(G/F ) = 3!2! = 12.

In a similar manner, for integer compositions α ≤ β, one can define deg(β/α)
and deg!(β/α).

Lemma 6.9. For any integer m, and any set partition X,

∑

F : s(F )≤X

Ç
m

deg(F )

å
= mdeg(X),

where deg(X) denotes the number of blocks of X.

Proof. First assume m is positive. Take m boxes labeled 1 to m. The rhs counts
the number of ways of putting each block of X in one of the m boxes. Each such
assignment yields a set composition F with s(F ) ≤ X: each box is a block of F
with empty boxes deleted. The number of assignments which yield the same F is
precisely

(
m

deg(F )

)
. This is the lhs. This proves the identity for m positive.

For the general case, note that both sides are polynomials in m. Since they
agree for infinitely many values of m, they must agree for all values of m. �
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6.6.4. Möbius number and characteristic polynomial. Let A denote the
braid arrangement on [n]. It has rank n− 1. Note that

rk(F ) = deg(F )− 1 and rk(G/F ) = deg(G)− deg(F ).

The number of chambers c(A) is n! and the number of faces d(A) is the number of
compositions of [n]. More generally,

c(AG) = deg!(G) and c(AGF ) = deg!(G/F ).

The first one is the number of set compositions with the same support as G, while
the second is the number of set compositions which are greater than F and have
the same support as G. When F is the one-block composition, the second formula
reduces to the first.

The Möbius number is given by

(6.9) µ(A) = (−1)n−1(n− 1)!.

More generally, for F ≤ G, we have

(6.10) µ(AGF ) = (−1)rk(G/F ) deg!(G/F )

deg(G/F )
.

This is because the arrangement AGF is cisomorphic to a cartesian product of braid
arrangements, so the Möbius numbers multiply. It is also useful to note that

(6.11)
µ(AGF )
c(AGF )

=
(−1)rk(G/F )

deg(G/F )
.

The characteristic polynomial of the braid arrangement is given by

(6.12) χ(A, t) =
n−1∏

i=1

(t− i).

Putting t = −1, we see that the rhs up to sign equals the number of chambers.
This is the Zaslavsky formula in the equivalent form (1.50c).

The falling factorial is the polynomial tn = t(t− 1) · · · (t− n+ 1). By (6.12),

χ(A, t) = tn

t
.

For n ≥ k, let s(n, k) to be the coefficient of tk in tn. These are the Stirling numbers
of the first kind . By Lemma 1.83, we have

wy(A, k) = s(n, k + 1).

More generally, for any flat X, we have

(6.13) wy(AX, k) = s(deg(X), k + 1),

since AX is cisomorphic to the braid arrangement on [d] where d = deg(X).

Exercise 6.10. Recall the adjoint of the braid arrangement from Section 6.3.12.
Check that the characteristic polynomial of the adjoint of the rank-three braid
arrangement is given by

χ(“A, t) = −9 + 15t− 7t2 + t3 = (t− 1)(t− 3)2,

and deduce that it contains 32 chambers.
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6.6.5. Exponential and logarithm. For all n ≥ 1, let

ζ(n) = 1 and µ(n) = (−1)n−1(n− 1)!.

Note that

ex − 1 =
∑

n≥1

ζ(n)
x
n

n!
and log(1 + x ) =

∑

n≥1

µ(n)
x
n

n!
.

This brings out the close relationship of ζ and µ with the exponential and logarithm.
Let us understand this locally in Π[I], the poset of partitions of I.

Let

v =
∑

n≥1

vn
x
n

n!

be a formal power series. Let ev − 1 denote the formal power series obtained by
substituting v for x in ex − 1. A formal power series v gives rise to a function Pv
on Π[I] for every nonempty finite set I via

Pv(X) :=
∏

B∈X

v|B|.

For instance, for X = {ace, bf, dg}, we have Pv(X) = v3v2v2.

Lemma 6.11. Suppose S and T are disjoint sets whose union is I. For any
partition X of S, and Y of T ,

Pv(X ⊔Y) = Pv(X)Pv(Y).

This multiplicative property follows from the definitions.

Proposition 6.12. For a formal power series v and a partition X of I,

(6.14) Pev−1(X) =
∑

Y:Y≥X

Pv(Y).

The sum is over all Y greater than X in the poset Π[I].

As functions on the poset Π[I], we say that Pev−1 is the exponential of Pv, and
Pv is the logarithm of Pev−1. This is consistent with the usage in Section C.1.7.

Proof. In view of Lemma 6.11, we may assume that X = {I} is the one-block
partition. Let |I| = n. Put

∑

i

bi
i!

x
i := ev − 1 =

∑

m≥1

vm

m!
=

∑

m≥1

1

m!

(∑

j>0

vj
x
j

j!

)m
.

Note that Pev−1({I}) = bn. Each composition (j1, . . . , jm) of n contributes to x
n

in the rhs, and the contribution is

1

m!

vj1
j1!

. . .
vjm
jm!

.

Now ∑

Y

Pv(Y) =
∑

m

1

m!

∑

F :F has m blocks

Pv(F ).

The inner sum is over all set compositions F with m blocks, and Pv(F ) is defined
the same way as for set partitions. Given a composition (j1, . . . , jm), there are

Ç
n

j1, . . . , jm

å
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number of F whose type is that composition, and for each such F , Pv(F ) equals
vj1 . . . vjm . This completes the proof of (6.14). �

6.6.6. Shuffles and quasi-shuffles. Recall shuffles and quasi-shuffles from Sec-
tions 6.5.4 and 6.5.5.

Exercise 6.13. Let I = S1⊔· · ·⊔Sk. For each i = 1, . . . , k, let Gi be a composition
of Si with pi blocks. Show that shuffles of the Gi are in bijection with lattice paths
in Nk from the origin to the point (p1, . . . , pk) with steps of the form (e1, . . . , ek)
where exactly one ei is 1 and all others are 0. (So the steps move from a point
to any other vertex of the unit frame with origin at that point.) Deduce that the
number of such shuffles with p blocks is the multinomial coefficient

(
p

p1,...,pk

)
.

Exercise 6.14. Let I = S1⊔· · ·⊔Sk. For each i = 1, . . . , k, let Gi be a composition
of Si with pi blocks. Show that quasi-shuffles of the Gi are in bijection with
lattice paths in Nk from the origin to the point (p1, . . . , pk) with steps of the form
(e1, . . . , ek) where each ei is either 0 or 1 and not all ei are 0. (So the steps move
from a point to any other vertex of the unit cube with origin at that point.)

In particular, the number of such quasi-shuffles only depends on p1, . . . , pk. Let(
p

p1,...,pk

)
qs

denote the number of such quasi-shuffles with p blocks.

Exercise 6.15. Deduce that
Ç

p

p1, p2

å

qs

=

Ç
p

p− p2, p− p1, p1 + p2 − p

å

(a multinomial coefficient) if max{p1, p2} ≤ p ≤ p1 + p2, and is 0 otherwise.

Exercise 6.16. Show that
Ç

p

p1, . . . , pk

å

qs

=

p∑

i=0

(−1)i
Ç
p

i

åÇ
p− i
p1

å
· · ·
Ç
p− i
pk

å
.

Exercise 6.17. Consider an equation of the form Z ∨ X = Y among partitions of
I. Suppose Z has k blocks respectively refined by p1, . . . , pk blocks of Y. Show that
the number of solutions X with p blocks is

p1! · · · pk!
p!

Ç
p

p1, . . . , pk

å

qs

.

Exercise 6.18. Employ (1.51) to deduce the identity

Ç
t

p1

å
· · ·
Ç
t

pk

å
=

p1+···+pk∑

p=max{p1,...,pk}

Ç
p

p1, . . . , pk

å

qs

Ç
t

p

å
.

In particular,

Ç
t

p1

åÇ
t

p2

å
=

p1+p2∑

p=max{p1,p2}

Ç
p

p− p2, p− p1, p1 + p2 − p

åÇ
t

p

å
.

(Use (6.12) and Exercises 6.15 and 6.17.)
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6.6.7. Numbers |λ|. Recall the numbers |λ| from Section 5.5.1. For the braid
arrangement, they are given as follows.

For a partition λ, let T be any composition of support λ, and X be any set
partition of type λ. Then |λ| is the number of set compositions of type T and
support X. Explicitly,

|λ| = m1!m2! . . . ,

where in λ, the number 1 appears m1 times, 2 appears m2 times, and so on. This
is because blocks of the same size can be permuted among themselves.

6.6.8. Cycle-type function. Recall the cycle-type function from Section 5.5.2.
For the braid arrangement, it is given as follows.

Any permutation on n letters can be written in cycle notation. The lengths
of the cycles form a partition of n. This is called the cycle-type of that permuta-
tion. Let Sn denote the symmetric group on n letters, and Parn denote the set of
partitions of n. The cycle-type function

Sn → Parn,

assigns to a permutation its cycle-type.
The number of permutations which consist of a single cycle, that is, whose

cycle-type is the partition (n) (with a single part) is (n − 1)!. This coincides with
the absolute value of the Möbius number given in (6.9). This is in accordance with
Theorem 5.18.

6.7. Arrangement of type B

We now discuss the arrangement of type B. Just as the braid arrangements
correspond to the combinatorics of finite sets, the arrangements of type B corre-
spond to the combinatorics of finite sets equipped with an involution (with a unique
fixed point).

6.7.1. Arrangement of type B. The arrangement of type Bn consists of the n2

hyperplanes in Rn

xi = xj , xi = −xj and xk = 0

for 1 ≤ i < j ≤ n and 1 ≤ k ≤ n. It is essential, and hence has rank n. It is
a reflection arrangement, the Coxeter group is the signed symmetric group on n
letters, denoted S±n . It acts by permuting the coordinates, and changing some of
them to their negative.

Similar to the braid arrangement, the canonical linear order of the set [n] is
not relevant to the definition of the arrangement. So we may proceed as follows.
For a finite set I, the arrangement of type B on I consists of the hyperplanes

xa = xb, xa = −xb and xc = 0

in RI , as a, b and c vary over elements of I, with a 6= b. Put

I := I ⊔ I ⊔ {0},
where I is a copy of the set I and 0 is an element not in I or I. For a ∈ I, write a
for the corresponding element of I and set 0 = 0. The set I is thus endowed with
a canonical involution whose unique fixed point is 0 and which exchanges a and a.
The Coxeter group consists of all bijections of I which commute with the canonical
involution. We refer to elements of I as letters. In case I = [n], we may identify I
with the set [n] := {−n, . . . ,−1, 0, 1, . . . , n}.
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Geometric notions such as faces, flats, and so on can be described combinatori-
ally in terms of type B set compositions, type B set partitions, and so on. In other
words, there is a type B analogue of Table 6.2. There are two kinds of subsets of I
which intervene in these combinatorial descriptions. They are as follows.

Let J be a subset of I. We let J denote the image of J under the canonical
involution. We say J is involution-exclusive if a ∈ J implies a 6∈ J , that is, if
J ∩ J = ∅. We say J is involution-inclusive if 0 ∈ J , and a ∈ J implies a ∈ J , that
is, if 0 ∈ J and J = J .

6.7.2. Type B set compositions and set partitions. A type B composition
of I is a composition of the set I with the following two properties:

• If S is a block, then S is also a block.
• If a block S precedes a block T , then T precedes S.

Such a composition is therefore of the form

(Ik, . . . , I1, I0, I1, . . . , Ik),

with I1, . . . , Ik involution-exclusive, I0 involution-inclusive, and

I = I0 ⊔
k⊔

i=1

(Ii ⊔ Ii).

We refer to I0 as the zero block, and to the remaining Ij and Ij as the nonzero
blocks of the composition. Necessarily 0 lies in I0. Sometimes we specify a type
B composition by displaying only the blocks I0, I1, . . . , Ik, and omitting elements
of I from the zero block. We refer to this as the short notation. The blocks are
separated by vertical bars. The order within each block is irrelevant. For example,
we may write either

e|db|ca0ac|bd|e or 0ac|bd|e.
Refinement among type B set compositions is defined as it is among all set

compositions. The resulting partial order on the set of type B compositions of I
has a unique minimum element given by the one-block composition (I). A maximal
element is a type B linear order , that is, a type B composition in which all blocks
are singletons (and in particular, I0 = {0}). Equivalently, a type B linear order is
a linear order on I such that a ≤ b implies b ≤ a.

A type B partition of I is a partition of I such that:

• If S is a block, then S is also a block.
• There is exactly one block S with S = S.

It consists of an involution-inclusive subset I0 and a collection {Ij}j∈J of nonempty
involution-exclusive subsets of I, closed under the canonical involution and such that

I = I0 ⊔
⊔

j∈J

Ij .

An example is X = {ce, fg, dba0abd, fg, ce}. We employ the same terminology as
for type B compositions.

Type B partitions are partially ordered by refinement and the resulting poset
is a lattice. The minimal element is the type B partition into one block and the
maximal element is the type B partition in which all blocks are singletons.

For any type B set composition F , we let z(F ) denote the zero block of F .
Similarly, for a type B set partition, we let z(X) denote the zero block of X.
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6.7.3. Support map. The support of a type B composition of I is the type B
partition of I obtained by forgetting the order among the blocks.

Two type B compositions F and G with the same support have the same zero
block and may only differ in the order in which the nonzero blocks are listed.

6.7.4. Opposition map. The opposite of a type B set composition is obtained
by listing its blocks in reverse order. For example,

F = e|db|ca0ac|bd|e, F = e|bd|ca0ac|db|e.

6.7.5. Tits product. The combinatorial description of the Tits product is similar
to that for the braid arrangement. Let F and G be two type B compositions of I.
The Tits product FG is the type B composition obtained by listing the pairwise
intersections of the blocks in F with the blocks in G in lexicographic order and
removing empty intersections from the nonzero blocks. The zero block of FG is the
intersection of the zero blocks of F and G. Two small examples follow.

(ab̄|0|āb)(āb̄|0|ab) = (b̄|a|0|ā|b), (a|b̄0b|ā)(b̄|ā0a|b) = (a|b̄|0|b|ā).

6.7.6. Small ranks. The arrangement of type B on I = {a} consists of one
hyperplane xa = 0. The linear and spherical models are shown below.

0a 0|ā0|a
0|a 0|ā

Compare and contrast with the braid arrangement on I = {a, b}. The models are
identical, both being rank-one, but the way the faces are labeled is different.

The arrangement of type B on I = {a, b} consists of the four hyperplanes
xa = xb, xa = −xb, xa = 0 and xb = 0. It is the dihedral arrangement of four lines.
The linear and spherical models are shown below.

0ab

0|b|a

0|a|b0|ā|b

0|b|ā

0|b̄|ā

0|ā|b̄ 0|a|b̄

0|b̄|a

0b|a

0|ab

0a|b

0|āb

0b|ā

0|āb̄

0a|b̄

0|ab̄

0|b|a

0|a|b0|ā|b

0|b|ā

0|b̄|ā

0|ā|b̄ 0|a|b̄

0|b̄|a

0b|a

0|ab

0a|b

0|āb

0b|ā

0|āb̄

0a|b̄

0|ab̄

The faces are labeled by type B compositions of I using short notation.
The arrangement of type B3 on I = {a, b, c} consists of 9 hyperplanes. Two

different spherical models are shown below. The set of hyperplanes splits into two
orbits under the Coxeter group action. A representative from each orbit is chosen as
the outer circle for the two pictures. Observe carefully the pattern of vertex-types
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on the outer circles; it is different in the two cases.

abc

ābc

ab̄c

āb̄c

bacb̄ac

bācb̄āc

acb

ācb

acb̄

ācb̄

bcab̄ca

bcāb̄cā

cab

cāb

cab̄

cāb̄

cba

cbā

cb̄a

cb̄ā

acb

ācb

abc

ābc

cab

cāb

bac

bāc

cba

cbā

bca

bcā

ac̄b

āc̄b

ab̄c

āb̄c

c̄ab

c̄āb

b̄ac

b̄āc

c̄ba

c̄bā

b̄ca

b̄cā

In the first picture, the horizontal line is xa = 0, the vertical line is xb = 0, while
the outer circle is xc = 0. In the second picture, the horizontal line is xa = 0, the
vertical line is xb = xc, while the outer circle is xb = −xc. The arrangement has 48
triangles of which 24 are visible in the pictures. The triangles are 0|a|b|c, 0|b|a|c,
0|ā|b|c and so on, but for convenience, we have shortened them to abc, bac, ābc and
so on.

Another useful way to picture this arrangement is shown below.

The arrangement has been intersected with a centrally located cube each side of
which is parallel to one of the three coordinate planes. (This is as the spherical
model except that we have used a cube instead of a sphere.) The 48 triangles can
now be seen as 8 triangles on each of the six sides of the cube.

6.7.7. Type B compositions and partitions. Let n be a nonnegative integer.
A type B composition α = (a0, a1, . . . , ak) of n is a finite sequence of integers with
a0 ≥ 0, ai ≥ 1 for i ≥ 1, and such that

a0 + a1 + · · ·+ ak = n.

A type B partition λ = (l0, l1, . . . , lk) of n is a finite sequence of integers with
l0 ≥ 0, li ≥ 1 for i ≥ 1, and such that

l1 ≥ l2 ≥ · · · ≥ lk and l0 + l1 + · · ·+ lk = n.

We refer to a0 and l0 as the zero part, and to the remaining ai and li as the
nonzero parts of α and λ.

The support of a type B composition of n is the type B partition of n obtained
by reordering the nonzero parts in decreasing order.
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6.7.8. Type map. The type of a type B composition (I0, I1, . . . , Ik) of I is the
type B composition α = (a0, a1, . . . , ak) of |I| for which |I0| = 2a0+1 and aj = |Ij |
for j ≥ 1. The type of a type B partition is defined similarly.

The support and type maps commute with each other.

type B set composition
✤ t //

❴

s

��

type B composition
❴

s

��

type B set partition
✤

t
// type B partition

This is a specialization of (5.3).

6.7.9. Type B graphs. A type B simple graph on I is a simple graph with vertex
set I and with the property that if there is an edge between vertices a and b, then
there is also an edge between a and b.

We may represent hyperplanes in the arrangement of type B on I as follows. Let
i, j ∈ I. A hyperplane xi = xj is represented by a pair of edges, one between i and
j and the other between i and j. Similarly, a hyperplane xi = −xj is represented
by an edge between i and j and another between i and j. Finally, a hyperplane
xk = 0 is represented by edges between 0 and k and between 0 and k. In this
manner, charts in the arrangement correspond to type B simple graphs.

Consider instead the following class of graphs: the vertex set is I, they may
possess half-edges (but not loops), each edge between two distinct vertices i and j
must be labeled + or −, and parallel edges cannot receive the same label. A graph
of this kind is said to be simply signed in the literature.

Removing the vertex 0 and identifying vertices and edges matched by the canon-
ical involution turns a type B simple graph into a simply signed graph (edges within
I or I are labeled +, edges between the two are labeled −). The type B graph can
then be reconstructed by duplicating each edge and attaching the loose end of each
half-edge to 0. Thus, type B simple graphs and simply signed graphs are equivalent
notions. An illustration is provided below.

c a b

0

b a c

or
c a b

+ −

6.7.10. Type B partial orders. A type B partial order on I is a partial order
on the set I with the property that if a ≤ b, then also b ≤ a. An example follows.

d

a b

0

b a

d

c

e c

e
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Top-cones in the arrangement of type B on I are in correspondence with such
structures. Let i, j ∈ I. The top-cone corresponding to a partial order is defined
by the inequalities xi ≤ xj if i ≤ j, xi ≤ −xj if i ≤ j, −xi ≤ xj if i ≤ j, 0 ≤ xi if
0 ≤ i, and xi ≤ 0 if i ≤ 0.

A type B partial order is also known as a signed poset .

6.7.11. Arrangements under and over a flat. Let A be an arrangement of
type B. The arrangement under a flat X of the type B arrangement A is again
cisomorphic to an arrangement of type B. The blocks of X play the role of the
elements of I, with the zero block of X playing the role of 0. The nonzero blocks
appear in pairs and this defines the canonical involution.

The arrangement over a flat X is cisomorphic to a cartesian product of braid
arrangements and an arrangement of type B. The arrangement of type B arises
from the zero block of X, and its letters are the letters of that block. The nonzero
blocks appear in pairs, and each pair gives one braid arrangement whose letters can
be equivalently taken from either of the two blocks.

6.7.12. Substitution product of chambers. For a type B partition X of I, the
substitution product of chambers (4.18) works as follows.

An element of Γ[AX] is a type B linear order on the blocks of X, while an
element of Γ[AX] consists of a type B linear order on the zero block of X and linear
orders, one on each nonzero block of X. (Recall that the nonzero blocks occur in
pairs (J, J). It is understood here that the linear order on J is obtained by reversing
the linear order on J and applying the canonical involution to each letter.) This
data together specifies a type B linear order on I, which is an element of Γ[A]. For
example, for the type B partition X = {ce, fg, dba0abd, fg, ce},

((ce|fg|dba0abd|fg|ce), {d|b|a|0|a|b|d, e|c, c|e, f |g, g|f})
7→ (c|e|g|f |d|b|a|0|a|b|d|f |g|e|c).

In short notation, this can be rewritten as

((0abd|fg|ce), {0|a|b|d, e|c, f |g}) 7→ (0|a|b|d|f |g|e|c).
The substitution product in rank two is illustrated below.

0|a|b̄

{0|a, b̄}

0a|b̄

0|ā|b̄

{0, ā|b̄}
0|āb̄

In both pictures, the substitution product of the vertex shown in black with the
top-lune shown in blue is the red edge. The top-lunes can also be denoted {0|a, b}
and {0, b|a}, respectively.

6.7.13. Type B degrees and double factorials. The double factorials are

(2k)!! = 2k(2k − 2) · · · 2 and (2k + 1)!! = (2k + 1)(2k − 1) · · · 1.
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Let G be a type B set composition. If the number of blocks of G is 2k + 1,
then rk(G) = k. This is the number of nonzero blocks when G is written in short
notation. Define

deg(G) :=
(2k)!!

(2k − 1)!!
=

4k(
2k
k

) and deg!(G) := (2k)!! = k! 2k.

Note that

(6.15)
(−1)k
deg(G)

=

Ç
−1/2
k

å
.

For type B set compositions F ≤ G, let (G/F )i denote the part of G which
refines the i-th block of F , starting at i = 0 with the part that refines the block z(F ).
Note that (G/F )0 is a type B set composition, while the rest are set compositions.
Define

deg(G/F ) := deg(G/F )0
∏

i≥1

deg(G/F )i,(6.16)

deg!(G/F ) := deg!(G/F )0
∏

i≥1

deg!(G/F )i.(6.17)

Recall that for a (type A) set composition, deg is the number of its blocks and deg!
is the factorial of this number.

These definitions also apply to type B set partitions, type B integer composi-
tions and type B integer partitions, and we employ similar notations for them.

Lemma 6.19. For any integer m, and any type B set partition X,

∑

F : s(F )≤X

Ç
m

rk(F )

å
= (2m+ 1)rk(X),

and
∑

F : s(F )≤X
z(F )={0}

Ç
m

rk(F )

å
=

®
(2m)rk(X) if z(X) = {0},
0 otherwise.

Proof. We prove the first identity. First assume m is positive. Take 2m+1 boxes
labeled m, . . . , 1, 0, 1, . . . ,m. The rhs counts the number of ways of putting each
block of X in one of the boxes with the condition that if a block goes in box i,
then its opposite block goes in box i. (In particular, the zero block of X must go
in the box labeled 0.) Each such assignment yields a type B set composition F
with s(F ) ≤ X: each box is a block of F with empty boxes deleted. The number
of assignments which yield the same F is precisely

(
m

rk(F )

)
. This is the lhs. This

proves the first identity for m positive. For the general case, note that both sides
are polynomials in m. Since they agree for infinitely many values of m, they must
agree for all values of m. �

6.7.14. Möbius number and characteristic polynomial. Let A denote the
arrangement of type B on [n]. The number of chambers c(A) is (2n)!!, and the
number of faces is the number of type B compositions of [n]. More generally,

c(AG) = deg!(G) and c(AGF ) = deg!(G/F ).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



164 6. BRAID ARRANGEMENT AND RELATED EXAMPLES

The first one is the number of type B set compositions with the same support as G,
while the second is the number of type B set compositions which are greater than
F and have the same support as G. When F is the one-block type B composition,
the second formula reduces to the first.

The Möbius number is given by

(6.18) µ(A) = (−1)n (2n− 1)!!.

More generally, for F ≤ G, we claim that

(6.19) µ(AGF ) = (−1)rk(G/F )deg!(G/F )

deg(G/F )
.

When F is the central face, this reduces to (6.18). The general case can be deduced
from this special case in conjunction with (6.10). The relevant fact is that AGF is
cisomorphic to a cartesian product of braid arrangements and an arrangement of
type B, so the Möbius numbers multiply. It is also useful to note that

(6.20)
µ(AGF )
c(AGF )

=
(−1)rk(G/F )

deg(G/F )
.

The characteristic polynomial of the arrangement of type B is given by

(6.21) χ(A, t) =
n∏

i=1

(t− (2i− 1)).

Putting t = −1, we see that the rhs up to sign equals the number of chambers.
This is the Zaslavsky formula in the equivalent form (1.50c). More generally,

(6.22) χ(A, 2m+ 1) = (2n)!!

Ç
m

n

å
.

Let s±(m, k) denote the coefficient of xk in the polynomial (x−1)(x−3) · · · (x−
(2m− 1)). These are the type B Stirling numbers . By Lemma 1.83, we have

wy(A, k) = s±(n, k).

More generally, for any flat X, we have

(6.23) wy(AX, k) = s±(rk(X), k).

This is because AX is also an arrangement of type B.
As a companion, one may also consider the coefficient of xk in the polynomial

x(x − 2)(x − 4) · · · (x − 2(m − 1)). Observe that this equals 2m−ks(m, k), where
s(m, k) is the Stirling number of type A.

6.8. Arrangement of type D

We discuss this reflection arrangement very briefly.

6.8.1. Arrangement of type D. For n ≥ 2, the arrangement of type Dn consists
of hyperplanes in Rn, namely,

xi = xj and xi = −xj
for 1 ≤ i < j ≤ n. It is a subarrangement of the arrangement of type Bn with the
coordinate hyperplanes removed. It is also a reflection arrangement.

The arrangement of type D2 consists of the two hyperplanes x1 = x2 and
x1 = −x2. It is cisomorphic to the rank-two arrangement of two lines.
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The arrangement of type D3 is shown below. It has 24 chambers. Observe that
it is cisomorphic to the arrangement of type A3.

Just as for types A and B, for type D also, faces, flats, and other geometric
objects admit combinatorial descriptions, but we do not discuss them here.

6.8.2. Arrangement under a flat. The arrangement under any of the hyper-
planes of the arrangement of type D4 is cisomorphic to the following rank-three
arrangement:

x1 = x2, x2 = x3, x1 = x3, x1 = −x2, x2 = −x3, x1 = −x3 and x1 = 0.

Two ways to picture this arrangement are shown below.

In the picture on the right, the outer circle is included in the arrangement.
In general, the arrangement under a flat of a typeD arrangement sits “between”

types B and D. That is, we have the hyperplanes xi = ±xj for all i 6= j, but xk = 0
only for some k.

6.9. Graphic arrangements

We take a brief look at arrangements associated to simple graphs. They are
subarrangements of the braid arrangement. The vertex set determines the ambient
space and the edge set determines the hyperplanes. Every subarrangement of the
braid arrangement arises in this manner from a unique simple graph.

6.9.1. Graphic arrangements. Let g be a simple graph on a finite set I. The
elements of I are the vertices of g. An edge of g is a subset of I of cardinality 2.

There are no repeated edges or loops. There are 2(
n
2) simple graphs on n vertices.

The arrangement A(g) in RI consists of the hyperplanes xa = xb, one for
each edge {a, b} of g. This is the graphic arrangement of g. It is not essential:
The dimension of the central face is the number of connected components of g. It
follows that the rank of the graphic arrangement is

(6.24) rk(A(g)) = |I| − c(g),
where c(g) is the number of connected components of g.

The complete graph kI contains all possible edges among the elements of I.
The arrangement A(kI) is the braid arrangement on I. The discrete graph dI
contains no edges (and has vertex set I). The arrangement A(dI) is empty. Graphic
arrangements on I are precisely subarrangements of the braid arrangement on I.
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Combinatorial descriptions of some of the geometric objects associated to A(g)
are summarized in Table 6.5 and detailed along the section.

Table 6.5. Combinatorics of graphic arrangements.

Geometry Combinatorics

flat bond or closed subgraph

chamber acyclic orientation

face bond with an acyclic orientation of the contraction

top-cone partial order with covers among the edges

top-lune bond and an acyclic orientation on each block

6.9.2. Product of graphic arrangements. Disjoint union of graphs results in
product of arrangements. Suppose I = S ⊔T . If g is a graph on S and h is a graph
on T , then

A(g ⊔ h) = A(g)×A(h).
This is an arrangement in RI = RS × RT .

6.9.3. Bonds and flats. Given a subset S of I, let g|S denote the graph induced
by g on S: the set of vertices is S and the edges are the edges of g between elements
of S.

A bond of g is a partition X of I into blocks B such that g|B is connected.
Bonds correspond to flats of A(g) under the same correspondence as for the braid
arrangement: the flat corresponding to X is defined by setting all variables in each
block of X equal to each other.

The maximum flat corresponds to the partition of I into singletons. The min-
imum flat corresponds to the partition into connected components of g. The rank
of the flat corresponding to X is the number of blocks of X minus the number of
connected components of g.

6.9.4. Restriction and contraction. Let X be a bond of g. The restriction gX
is the disjoint union of the graphs induced on the blocks of X:

gX =
⊔

B∈X

g|B .

It is obtained by removing edges connecting distinct blocks of X. The vertex set is
I. The contraction gX is the simple graph obtained by identifying the vertices in
each block of X. The vertex set is X and there is an edge between two blocks B
and C if there is at least one edge in g connecting a vertex in B to a vertex in C.
An example follows in which I = {a, b, c, d} and X = a|bd|c.

a

b

c

d

a

b

c

d

a bd c

g gX gX
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Let h be another graph on I. It is a subgraph of g if g contains every edge of h.
A subgraph h of g is closed if it has the following property: if there is a sequence
of edges {a, b}, {b, c}, . . . , {y, z} in h and {a, z} is an edge of g, then {a, z} is in h.
Closed subgraphs are in correspondence with bonds, with the bond X corresponding
to the restriction gX (which is a closed subgraph). The bond is recovered from the
closed subgraph h as the partition of I into connected components of h. If h is the
closed subgraph corresponding to X, gX is obtained by contracting all edges in h.

The arrangements under and over a flat are again graphic. We have

A(g)X = A(gX) and A(g)X = A(gX) =
∏

B∈X

A(g|B).

6.9.5. Acyclic orientations, faces, and chambers. An orientation O of g
is an assignment of a direction to each edge {a, b} of g, denoted by a → b or
b → a, as the case may be. A sequence of the form a → b → · · · → a with each
i → j in O is a cycle. An orientation is acyclic if it contains no cycles. Acyclic
orientations correspond to chambers: the chamber corresponding to O is defined
by the inequalities xa ≤ xb for a→ b in O.

A face of A(g) is uniquely determined by a bond X together with an acyclic
orientation of the contraction gX. Note this corresponds to a chamber of A(g)X.
The flat corresponding to X is the support of the face.

The figure shows a path on 3 vertices and the corresponding arrangement (of
rank 2).

a b c

a b ca b c

a b c a b c

a bc

ab c

a bc

ab c

abc

6.9.6. Top-cones and top-lunes. Consider a partial order p on I whose Hasse
diagram is a subgraph of g. In other words, if a ⋖ b is a cover relation in p, then
{a, b} is an edge of g. Top-cones of A(g) correspond to such structures. This follows
from Exercise 2.21 applied to A(g) as a subarrangement of the braid arrangement.
The base of the top-cone corresponds to the partition into connected components
of p. The chambers contained in the top-cone correspond to the acyclic orientations
O of g such that if a ⋖ b in p, then a → b in O. When the Hasse diagram of p
equals g, the top-cone is a chamber. In this case, p is the transitive closure of the
corresponding acyclic orientation of g.

A top-lune of A(g) is uniquely determined by a bond X together with acyclic
orientations OB of g|B for each block B of X. Note this corresponds to a chamber
of A(g)X. The flat corresponding to X is the base of the top-lune. The chambers
contained in the top-lune correspond to the acyclic orientations O of g such that
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if a → b in OB for some block B, then a → b in O. A top-lune is a particular
top-cone: the corresponding partial order is the transitive closure of

⊔
B∈XOB .

6.9.7. Chromatic and characteristic polynomials. An n-coloring of g is a
function f : I → [n]. An n-coloring is proper if f(a) 6= f(b) whenever a and b are
connected by an edge in g. The chromatic function χ(g, n) counts the number of
proper n-colorings of g. It is a polynomial function of n. Moreover, it is related to
the characteristic polynomial of the graphic arrangement by

χ(A(g), t) = 1

tc(g)
χ(g, t),

where c(g) is the number of connected components of g. It follows from (1.50c) and
(6.24) that

(6.25) (−1)|I|χ(g,−1)
is the number of acyclic orientations of g. This is Stanley’s negative one color
theorem.

6.9.8. Sinks and Möbius number. Let O be an orientation of g. If {a, b} is an
edge of g and a→ b in O, we say the edge is outgoing at a. A sink of O is a vertex
a with no outgoing edges at a. Let S(O) denote the set of sinks of O. Note that if
O is acyclic, then S(O) contains at least one vertex in each connected component
of g. Pick one vertex in each connected component of g. This yields a set S of
vertices. It turns out that the number of acyclic orientations O with S(O) = S is
independent of S. Moreover, it is equal to

(6.26) (−1)|I|−c(g)µ(A(g)) = |µ(A(g))|,
where µ(A(g)) is the Möbius number of A(g). In particular, when g is connected,
|µ(A(g))| counts the number of acyclic orientations of g with a unique fixed sink.
This is [197, Theorem 7.3].

Notes

Coordinate arrangement. In the literature, the coordinate arrangement is also called
the Boolean arrangement.

Braid arrangement. A detailed discussion on the braid arrangement is given in [9,
Chapter 10]. The correspondence between geometry and combinatorics is discussed in
[9, Section 13.5]. This is also discussed in the paper of Reiner, Postnikov and Williams
[330, Section 3]; see in particular their Proposition 3.5. The correspondence between
posets and top-cones goes back to Reiner’s thesis [338], where similar correspondences
for other reflection arrangements are also considered. The notions of order dimension
of a poset and of conjugate posets were introduced by Dushnik and Miller [152]. They
observed that conjugate posets have a common linear extension, and showed that a poset
has order dimension either 1 or 2 iff the poset has a conjugate [152, Lemma 3.51 and
Theorem 3.61]. For further results, see [37, 38]. The equivalence of order dimension
and convexity dimension, and of convex closure of two permutations (which are related
in the weak order) and gallery intervals is given by Björner and Wachs [76, Corollaries
6.7 and 6.4]. There is extensive literature on series-parallel posets, starting perhaps with
[260]. Enumeration results on this class of posets are provided by Stanley [375], [380,
Exercises 5.39 and 5.40] and Chapoton [107]. In the literature, the partial order on the
poset of partial orders is opposite to the one given in Section 6.4.3, so upper semimodular
becomes lower semimodular and join-distributive becomes meet-distributive. Dean and
Keller [128] showed that every interval in the poset of partial orders is lower semimodular.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



NOTES 169

Stanley [374] showed the stronger property that it is meet-distributive. This fact is also
given in [382, Exercise 49]. The topology of the poset of partial orders is studied in [78,
Section 2] and [161, Theorem 15]. Edelman and Klingsberg [160, Lemma 2.1] give the
Möbius function of the poset of partial orders (6.3) when Q is the discrete poset.

Just as poset is short for partially ordered set, preposet is short for pre-partially
ordered set. This terminology is used in [9, 382, 330]. Preposets are also sometimes
called prosets [163].

Formulas (6.4), (6.5) and (6.6) are given in [9, (10.26), (10.37) and (10.38)]. The
Zaslavsky formula (see text below (6.12)) is a special case of [9, Equation (10.4)].

The lattice of set partitions goes back to Birkhoff [62, Section 18]. His partial order
is opposite to ours. Birkhoff also considered the poset of integer partitions. Again his
partial order is opposite to the one given in Section 6.3.9. He discusses both posets in [64,
Section I.8, Examples 9 and 10]. The poset of integer partitions with either one of the two
conventions appears in [8, Definition 3.2.1], [30, page 546], [342, Section 9.2, page 227]
and [382, Chapter 3, Exercise 135].

In the notation of [380, Equation (7.16)], Rλλ = |λ|, with the latter as in Section 6.6.7.
The paper [219] introduces a family of semigroups that generalizes the Tits monoid

of type A.
The description of the classical associative operad given in Section 6.5.10 can be found

for instance in [9, Example B.2]. There are also other ways to formulate this operad, see
for instance [291, Proposition 1.10 and Definition 1.12] and [275, Section 9.1].

The external product of set compositions and linear orders. These two are ex-
amples of monoids in the category of species. This and related structures are the main
subject of [9, Part II]. See also [10, Section 10]. These considerations can be suitably
extended to all real hyperplane arrangements. We plan to develop these ideas in a future
work; some are implicit in this work already.

Adjoints and the all-subset arrangement. Adjoints of geometric lattices were con-
sidered by Crapo [120] and Cheung [108]. The all-subset arrangement (restricted or not)
is considered in [234, 235]. Billera et al have shown that the number of chambers of the

restricted all-subset arrangement is between the bounds 2(n−1
2 ) and 2(n−1)2 . The exact

number has been computed up to n = 9 [59, Theorem 1.2 and Proposition 1.1]. See [59]
and [72] for additional information and references pertaining to the restricted all-subset
arrangement.

Types B and D. Combinatorial descriptions of the arrangements of types B and D

are given in [281, Sections B.5 and B.6]. For the combinatorics of their Coxeter groups,
see [73, Sections 8.1 and 8.2] and [323, Chapter 13]. Also see [41, Section 4]. A short
discussion is given in [2, Examples 1.82 and 1.83]. The arrangements between types B
and D mentioned in Section 6.8 are considered by Zaslavsky [423] and later by Björner
and Wachs [77, Section 9].

Work on signed graphs has been led by Zaslavsky, starting with [423, 424, 425].
For a comprehensive list of references, see [426]. Signed posets were introduced by Reiner
[339]. For related work, see [122, 338, 388].

Graphic arrangements. The study of these arrangements originates in work of Greene
and Zaslavsky [195, 197, 422]. More recent references include [312, Section 2.4], [305,
Section 5], [381, Section 2.3]. The negative one color theorem (6.25) was originally ob-
tained by Stanley by other methods [373, Corollary 1.3]. Its derivation from (1.50c)
appears in [195, Section 1], [197, Theorem 7.1], and [422, Theorem G.1]. The expression
for the Möbius number of graphic arrangements in terms of acyclic orientations (6.26)
is given in [197, Theorem 7.3]. See [139, Section 1.1], [162, Section 3.2], [257], [305,
Remark 5.5] and [378, Theorem 1.2(b)] for additional information.
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Cographic arrangements constitute a different class of arrangements studied in [195,
Section 3], [197, Section 8], and [305, Section 5]. They are associated to not necessarily
simple graphs and are related to graphic arrangements by matroid duality. See also
[34, 216] for recent related work.

Other work. Among vast interesting work on affine hyperplane arrangements related to
the braid arrangement or other reflection arrangements, we mention [20, 26, 27, 331,

379, 409].
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CHAPTER 7

Descent and lune equations

In any monoid, one may consider the equation xy = a, where a is fixed and
either x or y or both are varying. We consider such equations for the Tits monoid.
The main observation is that their solution sets (which consist of faces) are related
to either topological balls or spheres. Hence the expression

∑
(−1)rk(F )

with F ranging over the solution set (which is an Euler characteristic), can be
computed. This leads to numerous identities which are called descent identities,
lune identities and the Witt identities.

More generally, one may consider such equations in the context of (left or right)
modules over the Tits monoid. We attach a relative pair (X,A) of cell complexes
to the solution set. The notation is meant to remind us of relative pairs in algebraic
topology. By construction X is either a ball or sphere, but the topology of A can
be complicated. We give examples where A is a ball or sphere or more generally a
wedge of spheres. Since the Euler characteristic is known in these cases, we again
obtain explicit identities. Left actions give descent identities while right actions
give lune identities.

We also apply these considerations to the Birkhoff monoid. Since it is commu-
tative, there is no distinction between left and right modules. So in this case we
obtain descent-lune identities. We illustrate this for the example of charts.

Background information on cell complexes and Euler characteristics is given in
Section A.1.

7.1. Descent equation

We introduce the descent equation. We study it first for chambers and then for
faces. In the simplicial case, its solution set involves the notion of descent between
chambers, and more generally, between faces. We discuss identities involving the
Euler characteristic of the solution set.

7.1.1. Descent equation. Consider the equation HC = D, where C and D are
given chambers and we want to find H. We call this the descent equation for
chambers . For faces, there are two situations one may look at, namely, HF = G
and HF ≤ G, where F and G are arbitrary fixed faces. We refer to either of these
as the descent equation for faces .

Simplicial case. Let us first assume that A is a simplicial arrangement.

Proposition 7.1. Let C and D be any chambers in a simplicial arrangement. If
H1C = D and H2C = D, then (H1 ∧H2)C = D.

171
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Proof. Since D is a simplex, its subfaces form a Boolean poset. Using the ele-
mentary exercise stated below, we deduce that: A wall of D contains H1 ∧H2 iff
it contains either H1 or H2. Now use (1.5) for all three products H1C, H2C and
(H1 ∧H2)C with i indexing the walls of D. This is sufficient since any chamber is
determined by its walls (Proposition 2.10). �

Exercise 7.2. Let A and B be subsets of a finite set I. Let J be a subset which
is I minus a singleton. Check that J contains A ∩B iff J contains either A or B.

Proposition 7.1 allows us to make the following definition. For chambers C and
D, let Des(C,D) denote the smallest face H of D such that HC = D. In other
words,

(7.1) HC = D ⇐⇒ Des(C,D) ≤ H ≤ D.
We say that Des(C,D) is the descent of D wrt C.

Note that

(7.2) Des(C,D) = D ⇐⇒ C = D and Des(C,D) = O ⇐⇒ C = D.

To summarize:

Proposition 7.3. Let C and D be chambers in a simplicial arrangement. Then the
set of solutions to the equation HC = D is a Boolean poset with minimum element
Des(C,D) and maximum element D. A unique solution exists iff C = D.

Now let F and G be any faces in a simplicial arrangement such that GF = G.
Then FG and FG have the same support as G. So they are all chambers in the
arrangement under this support. Define

(7.3a) Des(F,G) := Des(FG,G)

and

(7.3b) Des(F,G) := Des(FG,G),

where the rhs refer to the previous definition of Des(C,D). By definition, both are
faces of G. When F and G are both chambers, the two coincide and agree with the
previous definition.

Using (7.1) and (7.2) in conjunction with (1.9a) and (1.9b), one can deduce the
following.

(7.4a) HF ≤ G ⇐⇒ Des(F,G) ≤ H ≤ G,

(7.4b) HF = G ⇐⇒ Des(F,G) ≤ H ≤ G.
Thus, Des(F,G) is the smallest face H of G such that HF ≤ G, while Des(F,G) is
the smallest face H of G such that HF = G.

Further,

(7.5a) Des(F,G) = G ⇐⇒ F = G and Des(F,G) = O ⇐⇒ F ≤ G,

(7.5b) Des(F,G) = G ⇐⇒ F ≤ G and Des(F,G) = O ⇐⇒ F = G.

The two notions of descent are related by

Des(F,G) ≤ Des(F,G) ≤ G.
This follows by taking H = Des(F,G) in (7.4b) and substituting in (7.4a).

To summarize:
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Proposition 7.4. Let F and G be any faces in a simplicial arrangement, and
consider the equations HF = G and HF ≤ G.

• If GF 6= G, then neither equation has any solution.
• Suppose GF = G. The set of solutions of HF = G is a Boolean poset with
minimum element Des(F,G) and maximum element G. Further, there is
a unique solution iff F ≤ G.
• Suppose GF = G. The set of solutions of HF ≤ G is a Boolean poset with
minimum element Des(F,G) and maximum element G. Further, there is
a unique solution iff F = G.

We now relate descents in the arrangement A to descents in the arrangement
AA, where A is any face.

Let C and D be chambers, with D greater than A. Then

(7.6) Des(AC/A,D/A) = (Des(C,D) ∨A)/A,
where the lhs is evaluated in the arrangement AA. This follows from the definition.
Combining it with the first identity in (7.2), we deduce that

(7.7) Des(C,D) ∨A = D ⇐⇒ AC = AD ⇐⇒ AC = D.

More generally, let F and G be faces with GF = G and G greater than A.
Then

(7.8a) Des(AF/A,G/A) = (Des(F,G) ∨A)/A
and

(7.8b) Des(AF/A,G/A) = (Des(F,G) ∨A)/A.
This can be deduced from (7.6) by working in the arrangement under the support
of G. Combining with the first identity in (7.5a) and (7.5b), respectively, we obtain

(7.9a) Des(F,G) ∨A = G ⇐⇒ AF = AG ⇐⇒ AF = G,

and

(7.9b) Des(F,G) ∨A = G ⇐⇒ AF ≤ AG ⇐⇒ AF ≤ G.
Exercise 7.5. Suppose C and D are chambers which are both greater than A.
Show that Des(C,D) ∧A = O.

General case. Now let us consider arbitrary arrangements (not necessarily simpli-
cial). The set of solutions to the equation HC = D may no longer be a Boolean
poset. In fact, it may not have a unique minimal element. For example, take D to
be a square, and C to be a triangle adjacent to D as shown below.

D C

P2

P1

(For a concrete realization, see the arrangement in Section 1.2.4, or consider for
instance the arrangement x1 = x2, x1 = −x2, x2 = x3, and x2 = −x3 in R3.) The
two vertices P1 and P2 of D which are not on the edge shared by C and D both
satisfy HC = D but the central face does not since C 6= D. Thus P1 and P2 are
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the two minimal solutions. (Note that Proposition 7.1 fails.) An example of this
kind is present in any nonsimplicial arrangement:

Lemma 7.6. Let A be an arrangement. Then A is simplicial iff for any chambers
C and D, the solution set of HC = D is a Boolean poset.

Proof. The forward implication follows from Proposition 7.3. For the backward
implication, suppose A is not simplicial. Pick a chamber D which is not a simplex.
Then D has a panel such that at least two vertices of D are not on that panel.
Let C be the chamber adjacent to D along this panel. Then the solution set of
HC = D cannot be a Boolean poset: The vertices of D not on the common panel
are the minimal solutions, and there are at least two of them by construction. �

Let us understand the solution set in more detail in the nonsimplicial case.
Let C and D be two fixed chambers. Divide the set of panels of D into two
parts depending on whether the supporting wall of the panel separates or does not
separate C and D. Label the panel + if its supporting wall does not separate, and
− if its separates. This is illustrated below.

D

−
+

+

+
−

C

Observation 7.7. If C = D, then all panels of D are labeled +, and if C = D,
then all panels of D are labeled −. In all other cases, the set of panels with + label
along with all their faces forms a topological ball, the same happens for the set of
panels with a − label, and the two balls share a common boundary sphere.

This can be established by induction on dist(C,D). In the figure, the three
edges labeled + form a topological interval, as also the two edges labeled −, and
the two intervals share two vertices, which is a 0-dimensional sphere.

Lemma 7.8. Let H be a panel of D. Then HC = D iff H is labeled +. Equiva-
lently, HC 6= D iff H is labeled −.

This is contained in Lemma 1.51.

Lemma 7.9. If a particular face of D does not solve HC = D, then no subface of
it can solve this equation.

Proof. This follows from Lemma 1.6, item (2). �

Proposition 7.10. Let C and D be chambers in any arrangement. Then there is
a unique solution to the equation HC = D iff C = D.

Proof. Note that H = D is always a solution of HC = D. By Lemmas 7.8 and
7.9, this is the unique solution precisely when all panels of D are labeled −. This
occurs iff C = D. �

A situation where the descent equation has a unique minimal solution is given
below.
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Proposition 7.11. Suppose F is a face of C such that FC = D. Then HC = D
iff F ≤ H ≤ D.

CDF F

H

Proof. The backward implication follows from Lemma 1.6, item (2). For the
forward implication: By Lemma 1.6, item (1), H and F are faces of D. So they
are joinable, and hence HF = FH by Proposition 1.18. Also, HFC = HC =
D, so HF is a face of D. Since HF and HF are faces of D, we deduce from
Proposition 1.19 that HF = HF = H. Together, we deduce that FH = H, so
F ≤ H as required. �

The following is a weaker form of Proposition 7.1 but it works for any arrange-
ment.

Proposition 7.12. Let H be a face of D. If HiC = D for all H ≤ Hi ⋖D, then
HC = D.

Proof. Suppose HiC = D for all H ≤ Hi⋖D. By Lemma 1.51, D is on the same
side as C for the supports of all the Hi. (These are the walls of D which contain H.)
By definition (1.5), HC also has the same property. Since a chamber is uniquely
determined by its walls (Proposition 2.10), by working in the arrangement AH , we
conclude that HC = D. �

Exercise 7.13. Let {Hi} be some set of panels of D whose meet is H. Show by
an example that HiC = D for all i does not imply HC = D.

Let us now improve upon Lemma 7.8.

Proposition 7.14. Consider the equation HC = D, with C 6= D and C 6= D. The
faces which do not solve HC = D are those in the − ball, and O. The faces which
solve HC = D are those in the interior of the + ball, and D.

Proof. It is clear that D solves the equation HC = D while O does not. Let
us look at the remaining faces of D. By Lemma 7.9, none of the faces in the −
ball solve this equation. The faces left are those in the interior of the + ball. Any
such face belongs only to the + panels of D, so by Proposition 7.12, it solves the
equation. �

Proposition 7.15. Let F and G be any faces in any arrangement, and consider
the equations HF = G and HF ≤ G.

• If GF 6= G, then neither equation has any solutions.
• If GF = G, then HF = G has a unique solution iff F ≤ G.
• If GF = G, then HF ≤ G has a unique solution iff F = G.

Proof. The first claim regarding GF 6= G is clear. So we may assume GF = G.
Then FG and FG have the same support as G. So they are all chambers in the
arrangement under this support.

By (1.9b), the condition HF = G is equivalent to HFG = G, so the second
claim follows by applying Proposition 7.10 with D = G and C = FG and using
(1.9a).
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Similarly, by (1.9a), the condition HF ≤ G is equivalent to HFG = G, so the
last claim follows by applying Proposition 7.10 with D = G and C = FG and using
(1.9b). �

7.1.2. Descent identities.

Proposition 7.16. In any arrangement, for any chambers C and D,

(7.10)
∑

H:HC=D

(−1)rk(H) =

®
(−1)rk(D) if C = D,

0 otherwise.

Proof. If the arrangement is simplicial, then we can apply Proposition 7.3. Since
a Boolean poset is Eulerian (C.9), the lhs is up to sign an instance of (C.5a) for
C = D, and an instance of (C.5b) for C 6= D.

In the general case, we can proceed as follows. We may assume that the ar-
rangement has rank at least 1. We consider three cases. Let X denote the cell
complex consisting of D and all its faces.

• C = D. Then H = D is the only solution.
• C = D. Then, all faces of D solve HC = D. The alternating sum (7.10)
is the negative of the reduced Euler characteristic of X. Since X is a
topological ball, the sum is zero.
• C 6= D and C 6= D. Equivalently, at least one but not all panels of D

solve HC = D. Let A denote the cell complex consisting of those faces
of D which do not solve HC = D. Then by Proposition 7.14, A is a
topological ball of dimension one lower than that of X. Then

∑

H:HC=D

(−1)rk(H) = −χ(X) + χ(A) = 0,

since both X and A are topological balls. �

Let us see what is going on in a concrete example. Consider the nonsimplicial
arrangement discussed in Section 1.2.4. It is redrawn below for convenience.

D

C1
C2

C3

The solution set of HC1 = D consists of D itself, three (contiguous) edges of D,
and the two vertices in-between. (These edges and vertices topologically form an
open interval.) So the sum (7.10) is −1 + (1 + 1 + 1)− (1 + 1) = 0. The situation
for HC3 = D is completely analogous. The solution set of HC2 = D consists of D
itself, two (contiguous) edges of D, and the vertex in-between. So the sum (7.10)
is −1 + (1 + 1)− 1 = 0.

Proposition 7.17. In any arrangement, for any faces F and G,

(7.11a)
∑

H:HF=G

(−1)rk(H) =

®
(−1)rk(G) if F ≤ G,
0 otherwise,
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(7.11b)
∑

H:HF≤G

(−1)rk(H) =

®
(−1)rk(G) if F = G,

0 otherwise.

Proof. If the arrangement is simplicial, then the result can be deduced from
Proposition 7.4. In the general case, we proceed as follows. The argument will
repeatedly make use of (1.9a) and (1.9b). We may assume GF = G, since other-
wise there is no H satisfying HF = G or HF ≤ G. Since all the action happens
in the support of G, we may further assume that G is a chamber (and hence so is
FG). The condition HF ≤ G is equivalent to HFG = G, so (7.11b) is the same as
(7.10) with D = G and C = FG. Similarly, the condition HF = G is equivalent to
HFG = G, so (7.11a) is the same as (7.10) with D = G and C = FG. �

Exercise 7.18. Use (7.11a) to deduce (7.11b), and vice-versa.

Exercise 7.19. Deduce Proposition 1.73 using Propositions 7.17 and 1.19.

7.2. Lune equation

The lune equation is a companion of the descent equation. Its solution set
involves lunes which were studied in detail in Chapter 3. We discuss identities
involving the Euler characteristic of the solution set.

7.2.1. Lune equation. Consider the equation HC = D, where H and D are fixed
and we want to find C. We call this the lune equation. This is because its solutions
form a combinatorial top-lune. This follows from (3.3) and Proposition 3.5.

The general case is to consider the equations HF = G and HF ≤ G, where H
and G are arbitrary fixed faces. The solution sets are, respectively, the interior and
the closure of a combinatorial lune. This follows from (3.10) and (3.11).

7.2.2. Lune identities. We can use the topology of a lune (Proposition 3.11) to
obtain identities involving the Euler characteristic of the solution sets of the lune
equation.

Proposition 7.20. In any arrangement, for any faces H and G,

(7.12a)
∑

F :HF=G

(−1)rk(F ) =

®
(−1)rk(G) if H ≤ G,
0 otherwise,

(7.12b)
∑

F :HF≤G

(−1)rk(F ) =

®
(−1)rk(G) if H = G,

0 otherwise.

Proof. We may assume H ≤ G, else both lhs are zero. We consider two further
subcases.

• H = G. In this case, HF = G holds for any face F whose support is
smaller than s(G), and so the sum in (7.12a) as well as in (7.12b) is the
negative of the reduced Euler characteristic of the sphere of dimension
rk(G)− 1, which is (−1)rk(G).
• H < G. In this case, the sum in (7.12b) is the reduced Euler character-

istic of a ball which is 0, while the sum in (7.12a) is the relative Euler
characteristic of a pair consisting of a ball and its boundary sphere. Since
the ball contributes 0, this sum is the reduced Euler characteristic of the
sphere of dimension rk(G)− 2 which is (−1)rk(G). �

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



178 7. DESCENT AND LUNE EQUATIONS

A more general result (with a different proof) is given below.

Proposition 7.21. In any arrangement, for any faces H and G,

(7.13a)
∑

F :HF=G

(−1)rk(F )qdist(H,F ) =

®
(−1)rk(G)qdist(H,H) if H ≤ G,
0 otherwise,

(7.13b)
∑

F :HF≤G

(−1)rk(F )qdist(H,F ) =

®
(−1)rk(G)qdist(H,H) if H = G,

0 otherwise.

Proof. Let us look at (7.13b). We give two arguments. The idea is to introduce
an intermediate indexing face K which is either FH or FG. The figure below shows
faces H, F and G satisfying HF ≤ G along with the two choices for K.

H G

K

K F

Using the first choice for K, the lhs of (7.13b) can be manipulated as follows.

∑

K:HK≤G

qdist(H,K)
∑

F :FH=K

(−1)rk(F ) =
∑

K:HK≤G,H≤K

qdist(H,K)(−1)rk(K)

= qdist(H,H)
∑

K:H≤K≤HG

(−1)rk(K).

The first equality uses (7.11a). By the Eulerian property (1.40), the last sum is 0
unless H = HG, which is the same as H = G.

Alternatively, using the second choice for K, one may manipulate the lhs of
(7.13b) as follows.

∑

K:HK=G

qdist(H,K)
∑

F :FG=K

(−1)rk(F ) =
∑

K:HK=G,G≤K

qdist(H,K)(−1)rk(K)

If H < G, then there is no choice for K, hence the sum is 0. If H = G, then there
is exactly one choice for K, namely, K = G.

The identity (7.13a) can be proved similarly by summing over all K of the same
support as G with HK = G, and then summing over all F with FH = K. �

Exercise 7.22. Use (7.12a) to deduce (7.12b), and vice-versa. More generally, do
the same for (7.13a) and (7.13b).

7.3. Witt identities

We now look at some special identities called the Witt identities which combine
features of the descent and the lune identities.
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7.3.1. Witt identity for chambers. The Witt identity for chambers arises by
considering the equation HC = D, where both H and C are regarded as variables.

Proposition 7.23. In any arrangement, for a fixed chamber D, and scalars xC

indexed by chambers C,

(7.14)
∑

H:H≤D

(−1)rk(H)

Å ∑

C:HC=D

xC
ã
= (−1)rk(D)xD.

We point out that the xC instead of being scalars can more generally be taken
to be elements of some fixed abelian group. Similar remark applies to the later
identities.

Proof. By interchanging the summations, the lhs of (7.14) can be written as

∑

C

Å ∑

H:HC=D

(−1)rk(H)

ã
xC .

The result now follows from (7.10). �

We refer to (7.14) as the Witt identity . A special case is given below.

Proposition 7.24. In a reflection arrangement, for a fixed chamber D,

(7.15)
∑

H:H≤D

(−1)rk(H) 1

cH
= (−1)rk(D) 1

cO
,

where cH is the number of chambers in the arrangement AH , and, in particular,
cO is the number of chambers in A.
Proof. In a reflection arrangement, by Lemma 5.21,

|{C | HC = D}| = cO
cH

.

Now specialize all the xC to 1 in (7.14) to deduce the result. �

A more general formulation of the Witt identity is given below.

Proposition 7.25. In any arrangement, for a top-nested face (A,D), and scalars
xC indexed by chambers C,

(7.16)
∑

H:A≤H≤D

(−1)rk(H)

Å ∑

C:HC=D

xC
ã
= (−1)rk(D)

∑

C:AC=AD

xC .

Setting A to be the central face recovers (7.14).

Proof. For any chamber C ′ greater than A, put

xC
′

A :=
∑

C:AC=C′

xC .

Then, for A ≤ H ≤ D,
∑

C:HC=D

xC =
∑

C′:HC′=D

∑

C:AC=C′

xC =
∑

C′:HC′=D,C′≥A

xC
′

A .

(This is based on the lune decomposition (3.20).) Now apply (7.14) to the arrange-

ment AA and the scalars xC
′

A . �

One may generalize even further in the simplicial case:
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Proposition 7.26. In a simplicial arrangement, for a top-nested face (K,D), and
scalars xC indexed by chambers C,

(7.17)
∑

H:H≤K

(−1)rk(H)

Å ∑

C:HC=D

xC
ã
= (−1)rk(K)

∑

C: Des(C,D)=K

xC ,

and more generally, for A ≤ K ≤ D,

(7.18)
∑

H:A≤H≤K

(−1)rk(H)

Å ∑

C:HC=D

xC
ã
= (−1)rk(K)

∑

C: Des(C,D)∨A=K

xC .

For K = D, we see from (7.2) that (7.17) specializes to (7.14), and more
generally from (7.7) that (7.18) specializes to (7.16).

Proof. By interchanging the summations and using (7.1), the lhs of (7.17) can be
written as ∑

C

Å ∑

H: Des(C,D)≤H≤K

(−1)rk(H)

ã
xC .

The sum inside the parenthesis is zero unless Des(C,D) = K, and (7.17) follows.

Applying this identity to the arrangement AA and the scalars xC
′

A (as defined in

the proof of Proposition 7.25), we deduce that up to the factor (−1)rk(K), the lhs
of (7.18) equals

∑

C′: Des(C′/A,D/A)=K/A

xC
′

A =
∑

C′: Des(C′/A,D/A)=K/A

∑

C:AC=C′

xC

=
∑

C: Des(AC/A,D/A)=K/A

xC .

Now apply (7.6). �

7.3.2. Witt identity for faces. There are two avatars of the Witt identity if we
work with scalars indexed by faces instead of chambers. This is because instead of
HC = D we now have two equations to consider, namely, HF ≤ G and HF = G.
By setting G = D and the scalars xF to be zero when F is not a chamber, any
Witt identity for faces specializes to a Witt identity for chambers. In this sense,
the results that we now discuss imply the previous ones. The proofs are similar, so
we only indicate them briefly.

The analogue of Proposition 7.23 is as follows.

Proposition 7.27. In any arrangement, for a fixed face G, and scalars xF indexed
by faces F ,

(7.19a)
∑

H:H≤G

(−1)rk(H)

Å ∑

F :HF≤G

xF
ã
= (−1)rk(G)xG,

(7.19b)
∑

H:H≤G

(−1)rk(H)

Å ∑

F :HF=G

xF
ã
= (−1)rk(G)

∑

F :F≤G

xF .

Proof. Interchange the summations, and use (7.11a) and (7.11b). �

The analogue of Proposition 7.25 is as follows.
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Proposition 7.28. In any arrangement, for a nested face (A,G), and scalars xF

indexed by faces F ,

(7.20a)
∑

H:A≤H≤G

(−1)rk(H)

Å ∑

F :HF≤G

xF
ã
= (−1)rk(G)

∑

F :AF=AG

xF ,

(7.20b)
∑

H:A≤H≤G

(−1)rk(H)

Å ∑

F :HF=G

xF
ã
= (−1)rk(G)

∑

F :AF≤AG

xF .

This generalizes Proposition 7.27 and is proved by applying it to the arrange-
ment AA. The symmetry between the two identities in the rhs is more manifest
now.

The analogue of Proposition 7.26 is as follows.

Proposition 7.29. In a simplicial arrangement, for a nested face (K,G), and
scalars xF indexed by faces F ,

(7.21a)
∑

H:H≤K

(−1)rk(H)

Å ∑

F :HF≤G

xF
ã
= (−1)rk(K)

∑

F :GF=G,Des(F,G)=K

xF ,

(7.21b)
∑

H:H≤K

(−1)rk(H)

Å ∑

F :HF=G

xF
ã
= (−1)rk(K)

∑

F :GF=G,Des(F,G)=K

xF .

and more generally, for A ≤ K ≤ G,

(7.22a)
∑

H:A≤H≤K

(−1)rk(H)

Å ∑

F :HF≤G

xF
ã
= (−1)rk(K)

∑

F :GF=G,Des(F,G)∨A=K

xF ,

(7.22b)
∑

H:A≤H≤K

(−1)rk(H)

Å ∑

F :HF=G

xF
ã
= (−1)rk(K)

∑

F :GF=G,Des(F,G)∨A=K

xF .

Proof. We explain the first two identities. By interchanging the summations and
using (7.4a), the lhs of (7.21a) can be written as

∑

F :GF=G

Å ∑

H: Des(F,G)≤H≤K

(−1)rk(H)

ã
xF .

The sum inside the parenthesis is zero unless Des(F,G) = K. The first identity
follows. The second identity can be deduced similarly from (7.4b). �

In the simplicial setting, (7.22a) and (7.22b) are the most general Witt identities
from which all the earlier ones can be deduced.

There are specializations of Witt identities which are of interest. We mention
one of them below.

Lemma 7.30. For any face G,

∑

H,F :HF=G

(−1)rk(H)+rk(F ) =

®
1 if G = O,

0 otherwise.

The sum is over both H and F .

Proof. Put xF = (−1)rk(F ) in (7.19b), and then use (1.41). Alternatively and
more simply, we can first use either (7.11a) or (7.12a) followed by (1.41). �
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7.4. Descent-lune equation for flats

Interestingly, in the context of flats, the descent and lune equations merge into
one equation, and so do the corresponding identities. In addition to alternating
sums, the identities involve chamber counts in certain arrangements over and under
flats. This is not surprising since these identities result from summing the identities
for faces, and in doing so faces with the same support get lumped together.

7.4.1. Descent-lune equation. Consider the equation Y∨X = W, where X and
W are fixed flats, and we want to solve for Y. Since Y ∨ X = X ∨ Y, this can
be viewed as the flat-analogue of either the descent equation or the lune equation.
Hence we call it the descent-lune equation.

7.4.2. Descent-lune identities. The analogue of Propositions 7.17 and 7.20 is
given below. Recall that cYX denotes the number of chambers in the arrangement
AY

X.

Proposition 7.31. In any arrangement, for any flats X and W,

(7.23a)
∑

Y:X∨Y=W

(−1)rk(Y)cY =

®
(−1)rk(W)cWX if X ≤W,

0 otherwise,

(7.23b)
∑

Y:X∨Y≤W

(−1)rk(Y)cYcWX∨Y =

®
(−1)rk(W) if X = W,

0 otherwise.

Proof. Let us use Proposition 7.17. Pick any face F of support X. Sum (7.11a)
over all G of support W, and we obtain (7.23a). If we sum (7.11b) instead, then
we obtain (7.23b).

Alternatively, we may use Proposition 7.20. Pick any face H of support X.
Sum (7.12a) over all G of support W, and we obtain (7.23a). If we sum (7.12b)
instead, then we obtain (7.23b). �

Note that identity (1.39) can be recovered by setting X := W in (7.23a) or
(7.23b).

Exercise 7.32. Verify Proposition 7.31 explicitly for rank-two arrangements.

7.5. Descent and lune equations for partial-flats

Recall from Section 2.8 that partial-flats interpolate faces and flats. One can
consider descent and lune equations and the corresponding identities in this more
general context.

7.5.1. Descent and lune equations. Let ∼ be a partial-support relation. Con-
sider the equation yx = w, where x and w are fixed partial-flats, and we want to
find y. We call this the descent equation for partial-flats . If instead, y and w are
fixed, and x is the unknown, then we call this the lune equation for partial-flats .
One can also consider the variants resulting from yx ≤ w.

For Σ∼ = Σ, these equations specialize to the descent equation and lune equa-
tion, respectively, for faces. For Σ∼ = Π, both equations specialize to the descent-
lune equation for flats.
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7.5.2. Descent and lune identities. For partial-flats x ≤ y, let cyx denote the
number of faces with partial-support y which are greater than some fixed face in x.
In particular, cxx = 1.

We now write down identities involving weighted sums over the solution sets of
the descent and lune equations. They unify the corresponding identities for faces
and flats.

Proposition 7.33. In any arrangement, for partial-flats x and w,

(7.24a)
∑

y: yx=w

(−1)rk(y)cy =

®
(−1)rk(w)cwx if x ≤ w,

0 otherwise,

(7.24b)
∑

y: yx≤w

(−1)rk(y)cycwyx =

®
(−1)rk(w) if x = w,

0 otherwise.

Proof. Let us use Proposition 7.17. Fix a face F in x. Sum (7.11a) over all G in
w, and we obtain (7.24a). If we sum (7.11b) instead, then we obtain (7.24b). �

Proposition 7.34. In any arrangement, for partial-flats y and w,

(7.25a)
∑

x: yx=w

(−1)rk(x)cx =

®
(−1)rk(w)cwy if y ≤ w,

0 otherwise,

(7.25b)
∑

x: yx≤w

(−1)rk(x)cxcwyx =

®
(−1)rk(w) if y = w,

0 otherwise.

Proof. Here we use Proposition 7.20. Fix a face H in y. Sum (7.12a) over all G
in w, and we obtain (7.23a). If we sum (7.12b) instead, then we obtain (7.23b). �

One may check that Propositions 7.33 and 7.34 specialize to Propositions 7.17
and 7.20 for Σ∼ = Σ, and to Proposition 7.31 for Σ∼ = Π.

Exercise 7.35. Show that: In any arrangement, for maximal partial-flats c and d,

(7.26)
∑

y: yc=d

(−1)rk(y)cy =

®
(−1)rk(d) if c = d,

0 otherwise.

7.5.3. Weisner formula.

Proposition 7.36. Suppose ∼ is a geometric partial-support relation. Then for
partial-flats z < x ≤ w,

(7.27)
∑

y: y≥z, yx=w

µ(z, y) = 0,

where µ refers to the Möbius function of Σ∼.

Proof. The interval [z,w] in the poset of partial-flats is a lattice. Apply the
Weisner formula (C.7a) and use Lemma 2.73. �

One may check that Proposition 7.36 specializes to Proposition 1.73 for Σ∼ =
Σ.
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7.6. Faces and flats for left Σ-sets

Let h be a set on which the Tits monoid Σ acts on the left. We introduce the
notion of h-faces and h-flats and show that they carry the structure of a dimonoid.
(A dimonoid is a set with two compatible associative operations, usually denoted
⊢ and ⊣. See [274].) For specific choices of h, one recovers familiar notions such as
faces, flats, and lunes, as tabulated below.

left Σ-set h h-face h-flat

E face flat

Γ top-nested face top-lune

Σ nested face lune

There is a support map from h-faces to h-flats, which generalizes the support
map from faces to flats, and from nested faces to lunes.

7.6.1. Left Σ-sets. A left Σ-set is a set h equipped with a rule which assigns to
each face F and element x ∈ h, an element F · x ∈ h such that

F · (G · x) = FG · x and O · x = x.

In this situation, we say that the monoid Σ acts on h on the left. A map of left
Σ-sets is a map f : h→ k such that

f(F · x) = F · f(x).

This defines the category of left Σ-sets.
Some examples of left Σ-sets are given below.

• Let E := {∗} denote any singleton set. The unique choice F ·∗ = ∗ defines
an action of Σ on E. This is the terminal object in the category of left
Σ-sets.
• The monoid Σ acts on itself, that is, F ·G := FG.
• Recall that the set of chambers Γ is a two-sided ideal of Σ. So Σ acts on

Γ by restriction, that is, F · C := FC. The inclusion Γ → Σ is a map of
left Σ-sets.
• The monoid Σ acts on Π via F ·X := s(F ) ∨X.

7.6.2. Stars. Let h be a left Σ-set. For a face F , define

(7.28) hF := {F · x | x ∈ h} = {x ∈ h | F · x = x}.
We call this set the star of F in h.

Note that ΣF is the star of F , while ΓF is the top-star of F . The notations are
consistent with those in Section 1.7.3. Also ΠF consists of all flats X with s(F ) ≤ X.

7.6.3. h-faces. Let h be a left Σ-set. Let hΣ denote the subset of Σ×h consisting
of pairs (F, x) such that

F · x = x.

We refer to such a pair (F, x) as a h-face. Thus hΣ is the set of h-faces.

• A E-face is the same as a face.
• A Σ-face is the same as a nested face, namely, a pair (H,F ) with H ≤ F .
This follows from (1.9a).
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• A Γ-face is the same as a top-nested face, namely, a pair (H,D) with
H ≤ D.

• A Π-face is a pair (H,X) with s(H) ≤ X.

7.6.4. h-flats. Define an equivalence relation on hΣ by

(7.29) (F, x) ∼ (G, y) ⇐⇒ FG = F, GF = G, F · y = x, G · x = y.

Reflexivity follows from the definition of a h-face. Symmetry is clear. We omit the
transitivity check.

Let hΠ denote the set of equivalence classes. We refer to an equivalence class
as a h-flat . Thus hΠ is the set of h-flats.

• E-flats correspond to flats (1.14).
• Σ-flats correspond to lunes (3.13).
• Γ-flats correspond to top-lunes (3.7).
• A Π-flat is the same as a nested flat, namely, a pair (Y,X) with Y ≤ X.

7.6.5. Support map. We call the canonical quotient map

s : hΣ→ hΠ

as the support map. Thus, the support of a h-face is a h-flat.
For h = E, this is the usual support map from faces to flats, for h = Γ, this

is the support map from top-nested faces to top-lunes, and for h = Σ, this is the
support map from nested faces to lunes.

7.6.6. Naturality. Suppose f : h→ k is a map of left Σ-sets. If (F, x) is a h-face,
then (F, f(x)) is a k-face:

F · f(x) = f(F · x) = f(x).

Thus, we obtain an induced map hΣ → kΣ. Further, if (F, x) ∼ (G, y), then
(F, f(x)) ∼ (G, f(y)):

F · f(y) = f(F · y) = f(x) and G · f(x) = f(G · x) = f(y).

Thus, there is also an induced map hΠ→ kΠ, and a commutative diagram

(7.30)

hΣ //

s
����

kΣ

s
����

hΠ // kΠ.

To summarize, the assignments h 7→ hΣ and h 7→ hΠ are functors, and the support
map is a natural transformation between them.

Example 7.37. Take h := Σ and k := Π, and f to be the usual support map from
faces to flats. Diagram (7.30) takes the following form.

ΣΣ //

��

ΠΣ

��
ΣΠ // ΠΠ.

(H,G)
✤ //

❴

��

(H, s(G))
❴

��

s(H,G)
✤ // (s(H), s(G)).

Here (H,G) is a nested face, and s(H,G) is a lune. Note from (4.5) that the bottom
horizontal map is the base-case map.
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Example 7.38. For any h, there is a unique morphism h→ E of left Σ-sets. Since
a E-face is a face and a E-flat is a flat, diagram (7.30) takes the form

hΣ //

s
��

Σ

s

��
hΠ // Π.

(7.31)

The top horizontal map projects on the first coordinate. For h = Γ, the bottom
horizontal map specializes to the base map from top-lunes to flats (4.2), and for
h = Σ, it specializes to the base map from lunes to flats.

Exercise 7.39. Take h = Γ∼, where ∼ is a partial-support relation on chambers.
Condition (2.28) implies that Γ∼ is a left Σ-set. It interpolates between Γ and E.
Describe Γ∼-faces and Γ∼-flats. Do the same for h = Σ∼, where ∼ is a partial-
support relation on faces. It is a left Σ-set due to condition (2.30c). It interpolates
between Σ and Π.

Use Proposition 2.65 to recast the action of Σ[A] on Γ∼[A] as follows. For any
subarrangement A′, Σ[A] acts on Γ[A′]. Further, this action arises from the action
of Σ[A′] on Γ[A′] via the morphism of monoids (2.37). As a special case, for any
flat X, Σ[A] acts on Γ[AX]. By Lemma 3.2, the latter is the set of top-lunes with
base X. Explicitly, for a face F and top-lune L with base X, F · L is the unique
top-lune with base X which contains the chamber FC for any chamber C in L.

7.6.7. Dimonoids. The set of h-faces hΣ is a bimodule over Σ, that is, Σ acts on
hΣ both on the left and the right, and the two actions commute with each other.
The left and right actions are defined by

F · (G, x) := (FG,F · x) and (F, x) ·G := (FG,FG · x).

Further observe that the map hΣ → Σ in (7.31) which projects on the first coor-
dinate is a map of Σ-bimodules. It follows that hΣ is a dimonoid [274, Example
2.2.d] under the operations

(F, x) ⊢ (G, y) := F · (G, y) = (FG,F · y),

(F, x) ⊣ (G, y) := (F, x) ·G = (FG,FG · x).

Elements of the form (O, x) are the bar-units of this dimonoid.
The left and right actions of Σ on hΣ are compatible with the equivalence

relations (1.14) and (7.29): if A ∼ A′ and (F, x) ∼ (F ′, x′), then A · (F, x) ∼
A′ · (F ′, x′) and (F, x) ·A ∼ (F ′, x′) ·A′. Further, A · (F, x) ∼ (F, x) ·A. It follows
that hΠ is a bimodule over Π with identical left and right actions. (The special case
h = Σ recovers the action of the Birkhoff monoid on lunes discussed in Section 4.7.)
Further, the map hΠ→ Π in (7.31) is a map of Π-bimodules. It follows that hΠ is
a dimonoid.

Suppose f : h → k is a map of left Σ-sets. Then with the above structures,
(7.30) is a commutative diagram of dimonoids. In particular, the support map
hΣ→ hΠ is a morphism of dimonoids.

7.7. Descent equation for left Σ-sets

We now generalize the descent equation to any left Σ-set h. Setting the left Σ-
set to be Γ or Σ recovers the situation in Section 7.1. In the descent equation, two
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elements, say x and y, in h are fixed. For each such x and y, we introduce a relative
pair (X,A) of cell complexes, and formulate a general descent identity via the Euler
characteristic of this pair. In the standard examples, the Euler characteristic can
be computed explicitly, and we recover our earlier descent identities.

7.7.1. Descent equation. Let h be a left Σ-set. Consider the equation F ·x = y,
where x, y ∈ h are fixed, and we need to solve for F . This is the descent equation
for left Σ-sets .

Let us introduce a notation for the solution set of the descent equation:

Σx,y := {F ∈ Σ | F · x = y}.
We view Σx,y as a subposet of the poset of faces Σ. This set may be empty. The
stabilizer set of x is defined to be

Σx,x := {F ∈ Σ | F · x = x}.
This is nonempty since it always contains the central face O.

Proposition 7.40. Σx,x is the closure of a combinatorial cone.

Proof. We verify the conditions of Proposition 2.7 for the stabilizer set.

• O · x = x.
• If G · x = x and F ≤ G, then F · x = F · (G · x) = FG · x = G · x = x.
• If F · x = x and G · x = x, then FG · x = F · (G · x) = x. �

Proposition 7.41. Σx,y is a subset of Σy,y.

Proof. Suppose F · x = y. Then

F · y = F · (F · x) = (FF ) · x = F · x = y.

The result follows. �

Proposition 7.42. If F ∈ Σx,y and G ∈ Σy,z, then GF ∈ Σx,z. Further, if
F ∈ Σx,y, G ∈ Σy,y and GF = G, then G ∈ Σx,y.

Proof. The first part follows from the definition of a left action:

GF · x = G · (F · x) = G · y = z.

The second part follows by taking z = y. �

Observe that there is a category whose objects are elements of h, and morphisms
are F : x→ y whenever F · x = y.

Proposition 7.43. If Σx,y is nonempty, then its set of maximal elements is a
combinatorial cone. This cone is the same as the set of top-dimensional faces of
Σy,y. Thus, if Σx,y is nonempty, then its closure is the stabilizer set Σy,y.

Proof. We deduce from Propositions 7.41 and 7.42 that the maximal elements in
Σx,y are the same as the top-dimensional faces of Σy,y. Now use Proposition 7.40
and the result follows. �

Proposition 7.44. If F,G ∈ Σx,y and K ≤ F , then KG ∈ Σx,y.

Proof. This is a straightforward calculation.

KG · x = K · (G · x) = K · y = K · (F · x) = KF · x = F · x = y. �

Proposition 7.45. The set Σx,y has the following properties.
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(1) It is closed under taking products:
If F,G ∈ Σx,y, then FG ∈ Σx,y.

(2) It is a convex subposet of Σ:
If F,G ∈ Σx,y and G ≤ H ≤ F , then H ∈ Σx,y.

(3) It is closed under taking gallery intervals:
If F,G ∈ Σx,y, s(F ) = s(G) and H ∈ [F :G], then H ∈ Σx,y.

Proof. (1) Take K := F in Proposition 7.44. Alternatively, specialize to z = y in
Proposition 7.42 and use Proposition 7.41.

(2) Take K := H in Proposition 7.44 and use HG = H.
(3) By Proposition 7.41, F,G ∈ Σy,y. Since Σy,y is the closure of a combina-

torial cone, by Lemma 2.45, it is closed under taking gallery intervals. We deduce
that H ∈ Σy,y. Now use the second part of Proposition 7.42. �

Exercise 7.46. Prove Proposition 7.45, item (3) using Proposition 7.44 and an
induction on gallery distance between F and G.

Exercise 7.47. Suppose F1, F2 ∈ Σx,y, and F is such that FF1 = F and F ≤ F2.
Then show that F ∈ Σx,y.

Exercise 7.48. Show that: If Σx,y is nonempty, then its maximal elements have
greater support than the maximal elements of Σx,x. If Σx,y and Σy,x are nonempty
for x 6= y, then they are disjoint and their maximal elements have the same support.

7.7.2. Relative pair (X,A) of cell complexes. Fix x, y ∈ h. Define X to be
the cell complex obtained by taking closure of Σx,y. In other words, the cells of X
are precisely those faces which are smaller than some face in Σx,y. If Σx,y is empty,
then X is the empty cell complex. If Σx,y is nonempty, then by Proposition 7.43,
X is the closure of a combinatorial cone, so it is either a topological sphere or ball.
In particular, it is a pure cell complex.

Define A to be the complement of Σx,y in X. A key observation is that A is
a subcomplex of X, that is, if G ∈ A and F ≤ G, then F ∈ A. This follows from
Proposition 7.45, item (2).

Lemma 7.49. We have x = y iff X is nonempty and A is the empty cell complex.

Proof. If x = y, then X contains the central face and A is the empty cell complex.
Conversely, Σx,y contains the central face, so O · x = y which means x = y. �

Thus, we have associated a pair (X,A) of cell complexes to Σx,y. Since X
(if not the empty cell complex) is the closure of a combinatorial cone, it is also
convenient to view it as a geometric cone. The structure of A is however more
complicated in general. This is addressed below.

We say that a cone W (smaller than V) is full wrt V if W = V ∧ c(W). (In
general, W will be smaller than V ∧ c(W).)

An illustration is given below.

In both pictures, V is the shaded region and W is the thick line. In the first picture,
W is not full wrt V, while in the second picture, W is full wrt V.
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Going back to the general case, suppose V is a flat. Then W is full wrt V iff
W is a flat smaller than V.

Lemma 7.50. Suppose A is not the empty cell complex. Viewing A as a subset
of the ambient space of the arrangement, A can be written as the union of certain
geometric cones, each of which is full wrt X. In particular, if X is the ambient
space, then A can be written as the union of certain geometric flats.

Proof. For any cone V contained in X, the top-dimensional faces of V either all
belong to Σx,y, or all belong to A: Let F be a top-dimensional face of V. Suppose
F belongs to Σx,y. Now, if G is another top-dimensional face of V, then pick a face
H ≥ G which belongs to Σx,y, and by Proposition 7.44, GF = G belongs to Σx,y.

Since A is a subcomplex, it follows that A is the union of all those cones V for
which the top-dimensional faces of V all belong to A and which are full wrt X. �

7.7.3. Face-meet property. Let h be a left Σ-set, and x, y ∈ h. We say that h
satisfies the face-meet property wrt x and y if either of the following two equivalent
conditions holds. They are formulated in terms of the relative pair (X,A).

• For any face H of the cell complex X, if Hi ·x = y for all corank-one faces
Hi of X which are greater than H, then H · x = y.
• For any face H of the cell complex A, there exists a face K in A which is

greater than H and has corank one in X.

This yields the following.

Lemma 7.51. Suppose A is not the empty cell complex. Then h satisfies the face-
meet property wrt x and y iff A can be written as a union of geometric cones, each
of which is of corank one in X.

A stronger form of the face-meet property is given in the two equivalent con-
ditions below.

• For any maximal face G in Σx,y, and for any face H of G,

Hi · x = y for all H ≤ Hi ⋖G implies H · x = y.

• For any maximal face G in Σx,y, and for any face H of G,

if H is in A, then Hi is in A for some H ≤ Hi ⋖G.

Exercise 7.52. Suppose h satisfies the face-meet property wrt x and y, and A is
nonempty. Deduce that if X is the ambient space, then A is the union of certain
hyperplanes.

7.7.4. Descent identity. Let h be a left Σ-set. Observe that: For x, y ∈ h,

(7.32)
∑

F :F ·x=y

(−1)rk(F ) = −χ(X) + χ(A),

where χ is the reduced Euler characteristic (A.1). This is the descent identity.
If Σx,y is empty, then X and A are both empty cell complexes, so χ(X) =

χ(A) = 0. If x = y, then A is empty and χ(A) = 0.
Since X is either the empty cell complex or a topological ball or sphere, its

reduced Euler characteristic is either 0, 1 or −1. In the examples for which we have
discussed the descent identity, A is either contractible or homotopy equivalent to
a wedge of spheres (with all spheres of the same dimension), and one is able to
calculate the number of these spheres explicitly. This is explained in more detail
below.
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7.7.5. Examples. Basic examples of left h-sets are given in Section 7.6. We go
over them one by one.

Example 7.53. Let h = E. We have Σ∗,∗ = Σ, where ∗ is the unique element of
E. This poset has a bottom element, namely, the central face, but no top element
assuming that the arrangement has rank at least 1. The cell complex X is all of Σ
while A is the empty cell complex. The descent identity is (1.38).

Example 7.54. Let h = Γ. Fix chambers C and D. The poset ΣC,D has a top
element, namely, the chamber D. If the arrangement A is simplicial, then ΣC,D
has a bottom element as well, namely, the face Des(C,D), so in this case, ΣC,D
is a Boolean poset (Proposition 7.3). Let us go back to the general case. The
cell complex X consists of D and all its faces. By Proposition 7.12, Γ satisfies
the stronger form of the face-meet property. So whenever A is not the empty cell
complex, it is the union of certain panels of D. In fact, we have seen earlier that
A is a topological ball or sphere. The descent identity is (7.10). The proof given
there uses the technique of relative pairs and essentially evaluates the rhs of (7.32).

Exercise 7.55. Let h = Γ∼, where ∼ is a partial-support relation on chambers
(Exercise 7.39). Fix ∼-top-cones c and d. Describe the corresponding X and A.
Deduce the descent identity (7.26). (A more general analysis for h = Σ∼ is given
in Example 7.59 below.)

Work out the special case when Γ∼ is the set of top-lunes with a fixed base X.
Also check that the notation ΣL,M := {F ∈ Σ | F · L = M} agrees with the one
introduced in Exercise 3.31.

Example 7.56. Now consider h = Σ. Fix faces F and G. Observe that ΣF,G is
nonempty iff GF = G. We assume this to be the case and proceed. By (1.9b),

ΣF,G = ΣFG,G.

Now G and FG have the same support, so by working in the arrangement under
this support, we are back in the case h = Γ. This yields the following. The poset
ΣF,G has a top element, namely, G. If the arrangement A is simplicial, then ΣF,G
has a bottom element, namely, Des(F,G), so in this case, ΣF,G is a Boolean poset;
also see Proposition 7.4. In the general case, X consists of G and all its faces, while
A (if not the empty cell complex) is a topological ball or sphere. Also, Σ satisfies
the stronger form of the face-meet property. The descent identity is (7.11a).

Example 7.57. Let h = Π. Fix flats Y and W. We have

ΣY,W = {F ∈ Σ | s(F ) ∨Y = W}.
This set is nonempty only if Y ≤ W. So let us assume this to be the case and
proceed. What is the relative pair (X,A)? Clearly, X is the closure of W, and A is
the union of all hyperplanes in AW which contain Y. Topologically, A is the wedge
of cWY − 1 number of spheres. This is one less than the number of regions that the
hyperplanes chop W into. (In this case, bear in mind that W is a topological sphere
of one higher dimension.) We point out two extreme cases.

• Y = ⊥. The set Σ⊥,W consists of faces F with support W, and A is the
union of all hyperplanes in AW.
• Y = W. The set ΣW,W consists of faces F with support smaller than W,
and A is the empty cell complex.
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Evaluating the rhs of (7.32) yields the following.

∑

X:X∨Y=W

(−1)rk(X)cX =
∑

F∈ΣY,W

(−1)rk(F ) = −χ(X) + χ(A)

= (−1)rk(W) − (−1)rk(W)−1(cWY − 1) = (−1)rk(W)cWY .

This is the descent identity (7.23a).

Exercise 7.58. Show that h = Π satisfies the face-meet property. However, it
does not satisfy the stronger form of the face-meet property. As a consequence, it
also does not satisfy the property

H1 · x = H2 · x = y =⇒ (H1 ∧H2) · x = y.

(Recall from Proposition 7.1 that h = Γ satisfies this property when the arrange-
ment is simplicial.)

Example 7.59. Let h = Σ∼, where ∼ is a partial-support relation. Fix partial-
flats y and w. First note that Σy,w is nonempty only if the support of y is contained
in the support of w. So we proceed with this assumption. Clearly, X is the closure
of w. Let Aw denote the arrangement under the support of w. The subcomplex
A is the union of H ∧ w over those hyperplanes H in Aw which either contain y,
or separate y and w. (For the latter, we could use only those hyperplanes which
are walls of w in view of Proposition 2.10.) The topology of A can be understood
completely as follows.

First suppose w is a flat. Then A is the union of all hyperplanes in Aw which
contain y, and hence topologically A is a wedge of cwy −1 spheres as in Example 7.57.
(Recall that cwy is the number of faces with partial-support w which are greater than
some fixed face in y.)

Now suppose w is not a flat (and thus a topological ball). Then A is again
homotopy equivalent to a wedge of spheres (all of dimension one less than that of
w). The number of these spheres is exactly equal to the number of regions that the
hyperplanes chop w into. (We do not consider regions which have some part on the
boundary of w which is not in A.)

• Let y 6≤ w. Then the number of these regions is zero: If there were such a
region, y must lie in it by construction, and hence also lie in w. But this
contradicts the hypothesis.
• Let y ≤ w. In this case, all walls of w belong to A, and in addition, A

contains the hyperplanes which pass through y. So the number of regions
is cwy .

This is illustrated below.

In each picture, w consists of the five triangles shown and X is its closure. The
partial-flat y is chosen differently in each picture. It is the vertex marked in blue.
The resulting subcomplex A is marked by blue lines. In the first picture, y is outside
w, so A is contractible. (The number of regions is zero.) In the next two pictures,
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y is inside w, and the number of regions that X is chopped into are two and four,
respectively.

From the above analysis, we see that (7.32) specializes to (7.24a).

Exercise 7.60. Give an example of a left Σ-set which does not satisfy the face-meet
property.

7.8. Lune equation for left Σ-sets

We now discuss the lune equation for left Σ-sets. The notions of h-faces and
h-flats developed in Section 7.6 play a role in this discussion.

7.8.1. Lune equation. Let h be a left Σ-set. Consider the equation F · x = y,
where F and y are fixed, and we need to solve for x. This is the lune equation for
left Σ-sets .

We introduce a notation for its solution set:

(7.33) ℓ(F, y) := {x ∈ h | F · x = y}.

If (F, y) is not a h-face, that is, if F · y 6= y, then by Proposition 7.41, the lune
equation has no solutions, that is, ℓ(F, y) is empty. So we may restrict to lune
equations of h-faces.

For h = Γ, solutions of the lune equation are combinatorial top-lunes (3.3). For
h = Σ, solutions are interiors of combinatorial lunes (3.11).

7.8.2. Lune decomposition. We saw in Section 3.3 how a lune can be decom-
posed into smaller lunes. This situation can be generalized as follows. The solution
set ℓ(G, y) of a h-face (G, y) can be decomposed using a face F ≤ G.

Proposition 7.61. Let (G, y) be a h-face and F ≤ G. Then (F, y) is a h-face, and
ℓ(F, y) ⊆ ℓ(G, y).

Proof. The first claim follows from Proposition 7.40. The second claim follows
from the second statement of Proposition 7.42. �

Proposition 7.62. Let (G, y) be a h-face and F ≤ G. Then

(7.34) ℓ(G, y) =
⊔

x:F ·x=x,G·x=y

ℓ(F, x),

with ℓ(F, y) being one of the summands.

Proof. The main point to note is that if w belongs to the lhs, then it belongs to
the summand in the rhs indexed by x := F ·w. All checks are straightforward. The
last claim follows from Proposition 7.61. �

Recall from Lemma 1.34 that ΣF is a monoid for a fixed face F . Consider
{x ∈ h | F · x = x}. It consists of all h-faces of the form (F, x). It is a left ΣF -set.
Observe that the indexing set of the disjoint union in (7.34) is ℓ(G/F, y), which is
a solution set of the lune equation for this ΣF -set.

For h = Γ and h = Σ, the decomposition (7.34) specializes to (3.20) and (3.22),
respectively.
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7.8.3. h-flats. Let us now understand the connection of the lune equation to h-
flats.

Proposition 7.63. Suppose (F, y) and (G, z) are h-faces which are equivalent in
the sense of (7.29). Then the lune equations of (F, y) and (G, z) have the same
solutions, that is, ℓ(F, y) = ℓ(G, z).

Proof. Suppose F · x = y. Then

G · x = GF · x = G · (F · x) = G · y = z.

The result follows by symmetry. �

Recall that h-flats are equivalence classes under the relation (7.29). Thus, one
can talk of the lune equation of a h-flat. It is now natural to ask whether distinct
h-flats have distinct solution sets. This is not true in general. For instance, for
h = E, all h-flats have the same solution set consisting of the unique element of E.
However, the statement is true for Γ and Σ, see Propositions 3.9 and 3.13. Let us
look at this problem in more detail.

Proposition 7.64. Suppose the lune equations of the h-faces (F, y) and (G, z)
have the same solutions. Then (FG, y) is a h-face and its lune equation also has
the same solutions.

Proof. By hypothesis, ℓ(F, y) = ℓ(G, z) and contains both y and z. Thus, F ·z = y
and G · y = z. Let us first check that (FG, y) is a h-face:

FG · y = F · (G · y) = F · z = y.

Now we compare ℓ(F, y) and ℓ(FG, y). Suppose F · x = y. Then G · x = z. Hence
FG · x = F · z = y. So ℓ(F, y) ⊆ ℓ(FG, y). Conversely, suppose FG · x = y, that
is, F · (G · x) = y. Hence G · (G · x) = z. So G · x = z, and hence F · x = y. This
proves the other inclusion. �

Proposition 7.65. Distinct h-flats have distinct solution sets iff for any faces
F < G and h-face (G, y), we have ℓ(F, y) $ ℓ(G, y).

Proof. The forward implication follows from Proposition 7.61. For the backward
implication: Suppose the lune equations of the h-faces (F, y) and (G, z) have the
same solutions. Then by Proposition 7.64, the lune equations of (F, y) and (FG, y)
also have the same solutions. Since F ≤ FG, the hypothesis implies FG = F . By
symmetry, GF = G. Hence, F and G have the same support. We deduce from
here that (F, y) and (G, z) are equivalent under (7.29) and determine the same
h-flat. �

Exercise 7.66. Recall that a Π-flat is the same as a nested flat, that is, a pair
(Y,Z) with Y ≤ Z. The solutions of its lune equation consists of those flats X such
that Y ∨X = Z. Show that distinct Π-flats have distinct solutions sets.

Exercise 7.67. Take h = Γ∼, where ∼ is a partial-support relation on chambers.
Show that the solution set of the lune equation of a Γ∼-face is a combinatorial
top-lune of the subarrangement corresponding to ∼ (Proposition 2.65). Further,
all top-lunes of the subarrangement arise in this manner, so they index the distinct
solution sets. Show that two Γ∼-faces (F, c) and (G, d) have the same solution
set iff they have at least one solution in common and the set of hyperplanes in

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



194 7. DESCENT AND LUNE EQUATIONS

the subarrangement containing F is the same as those containing G. Deduce that
distinct Γ∼-flats have distinct solution sets iff Γ∼ = Γ.

Now take the left Σ-set h = Σ∼, where ∼ is a partial-support relation on faces.
Show that distinct Σ∼-flats have distinct solutions sets.

7.9. Lune equation for right Σ-sets

We now discuss the lune equation for right Σ-sets, that is, the Tits monoid acts
on a set on the right. This complements the discussion in Section 7.7.

7.9.1. Right Σ-sets. A right Σ-set is a set h equipped with a rule which assigns
to each face F and element x ∈ h, an element x · F ∈ h such that

(x · F ) ·G = x · FG and x ·O = x.

In this situation, we say that Σ acts on h on the right. A map of right Σ-sets is a
map f : h→ k such that

f(x · F ) = f(x) · F.

This defines the category of right Σ-sets.
For example, Σ acts on itself on the right. As a general construction, we can

take quotient of Σ by any equivalence relation ∼ on Σ which satisfies (2.30b). For
instance, for any partial-support relation ∼ on faces, Σ∼ is a right Σ-set. Among
other examples of this construction, an extreme one is h = E when all faces are
identified into one equivalence class.

As another example, consider the coordinate arrangement of rank three.

The black vertex and the two incident black edges belong to one class, the two
light magenta triangles and their common edge belong to one class, the two dark
magenta triangles and their common edge belong to one class, while all other classes
are singletons. This defines a right Σ-set h.

7.9.2. Lune equation. Let h be a right Σ-set. Consider the equation x · F = y,
where x, y ∈ h are fixed, and we need to solve for F . This is the lune equation for
right Σ-sets.

Let us introduce a notation for the solution set of the lune equation:

x,yΣ := {F ∈ Σ | x · F = y}.
The stabilizer set of x is defined to be

x,xΣ := {F ∈ Σ | x · F = x}.
Proposition 7.68. x,xΣ is the closure of a combinatorial flat.

Proof. We verify the conditions of Proposition 1.16 for the stabilizer set.

• x ·O = x.
• If x ·G = x and GF = G, then x · F = (x ·G) · F = x ·GF = x ·G = x.
• If x · F = x and x ·G = x, then x · FG = (x · F ) ·G = x. �

Proposition 7.69. x,yΣ is a subset of y,yΣ.
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Proof. Suppose x · F = y. Then

y · F = (x · F ) · F = x · FF = x · F = y.

The result follows. �

Proposition 7.70. If F ∈ x,yΣ and G ∈ y,zΣ, then FG ∈ x,zΣ. Further, if
F ∈ x,yΣ, G ∈ y,yΣ, and FG = G, then G ∈ x,yΣ.

Proof. The first part follows from the definition of a right action; the second part
follows from the first by taking z = y. �

Proposition 7.71. If F,G ∈ x,yΣ and FK = F , then GK ∈ x,yΣ.

Proof. This is a straightforward calculation.

x ·GK = (x ·G) ·K = y ·K = (x · F ) ·K = x · FK = x · F = y. �

Proposition 7.72. The set x,yΣ has the following properties.

(1) It is closed under taking products:
If F,G ∈ x,yΣ, then FG ∈ x,yΣ.

(2) It is a convex subposet of Σ:
If F,G ∈ x,yΣ and G ≤ H ≤ F , then H ∈ x,yΣ.

Proof. (1) Take K := F in Proposition 7.71. Alternatively, specialize to z = y in
Proposition 7.70 and use the fact that x,yΣ is a subset of y,yΣ.

(2) Take K := H in Proposition 7.71 and use GH = H. �

Exercise 7.73. Show that any maximal element of x,yΣ is also a maximal element
of y,yΣ.

7.9.3. Lune decomposition. The relationship of the lune equation with lunes is
brought forth by the following result.

Lemma 7.74. Let h be a right Σ-set. For x, y ∈ h,

(7.35) x,yΣ =
⊔

G∈x,yΣ,
G≥H

s(H,G)o,

where H is some arbitrary but fixed maximal element of x,xΣ, and s(H,G)o is as
in (3.11).

Proof. Let F ∈ x,yΣ. Then by Proposition 7.70, G := HF is also an element of

x,yΣ. Now let F ′ be any element of s(H,G)o, that is, HF ′ = G. Then

x · F ′ = (x ·H) · F ′ = x ·HF ′ = x ·G = y.

Hence F ′ belongs to x,yΣ. This establishes the decomposition (7.35). �

The decomposition (7.35) may convey the wrong impression that x,yΣ is a nice
geometric object such as a cone. The point is that the indexing set ΣH ∩ x,yΣ can
be quite arbitrary. This is discussed below.

Lemma 7.75. For any right Σ-set h, x,yΣ is an upper set of y,yΣ. Conversely:
Given any upper set U of Σ, there is a right Σ-set h and x, y ∈ h such that x,yΣ = U.
The same holds, more generally, if U is an upper set of Cl(Y) for some combina-
torial flat Y.
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Proof. The first statement follows from the second part of Proposition 7.70. For
the converse: Consider the equivalence relation on Σ in which U is an equivalence
class, and all remaining classes are singletons. This satisfies (2.30b), so the equiv-
alence classes define a right Σ-set. Let x be the class of the central face, and y be
U. Then x,yΣ = U.

For the more general claim, consider the equivalence relation on Σ in which U
is an equivalence class, all other elements of Cl(Y) are singleton classes, and the
complement of Cl(Y) is an equivalence class. This defines a right Σ-set and the rest
is as above. �

Exercise 7.76. Give an example, where the set of maximal elements of x,yΣ is
not a combinatorial cone. In other words, the analogues of Proposition 7.43 and
Proposition 7.45, item (3) do not hold for the lune equation.

7.9.4. Partial order on a right Σ-set. Let h be a right Σ-set. We say that

(7.36) x ≤ y if there exists a face F such that x · F = y.

Lemma 7.77. For a right Σ-set, (7.36) defines a partial order. Further, any map
f : h→ k of right Σ-sets is order-preserving.

Proof. We check below that (7.36) defines a partial order.

• Reflexive. Since x ·O = x, we have x ≤ x.
• Transitive. Suppose x ≤ y and y ≤ z. So for some faces F and G, x·F = y
and y ·G = z. Then x · FG = z, so x ≤ z.

• Antisymmetric. Suppose x ≤ y and y ≤ x. Then, as above, for some faces
F and G, x ·F = y and y ·G = x, hence x ·FG = x. By Proposition 7.68,
the stabilizer set of x is the closure of a combinatorial flat. Since it contains
FG, it must also contain F (and G). Thus x · F = x, and x = y.

For the second claim, take x ≤ y in h. Then for some F , x · F = y. Applying f ,
we obtain f(x · F ) = f(x) · F = f(y). Hence, f(x) ≤ f(y) in k. �

Observe that x,yΣ is nonempty iff x ≤ y. Further, for any x ∈ h,

(7.37) Σ =
⊔

y: y≥x

x,yΣ.

Exercise 7.78. Why does definition (7.36) (with F written on the left) not define
a partial order on a left Σ-set?

Exercise 7.79. Suppose h is a right Σ-set. We know that x·F = y implies y·F = y.
Does x ≤ z ≤ y and x · F = y imply z · F = y?

7.9.5. Stars. Let h be a right Σ-set. For x ∈ h, let

(7.38) hx := {y ∈ h | y ≥ x}.
We call this set the star of x. It is a right Σ-set with action induced from h.
Further, the map

(7.39) Σ ։ hx, F 7→ x · F

is a surjective map of right Σ-sets. In other words, hx is the right Σ-submodule of
h generated by x.

The inverse image of y under the map (7.39) is x,yΣ. So the fibers of this map
yield the decomposition (7.37).
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Exercise 7.80. Suppose f : Σ ։ h is a surjective map of right Σ-sets. Then show
that h has a unique minimum element and it is given by f(O). Give an example
of a right Σ-set which is connected as a poset but has more than one minimum
element.

7.9.6. Support map. Let h be a right Σ-set. Proposition 7.68 yields a support
map

(7.40) s : h→ Π, x 7→ s(x),

where s(x) is the flat determined by the maximal faces of x,xΣ. For h := Σ, this
coincides with the usual support map.

Lemma 7.81. The map s : h → Π is strictly order-preserving, that is, x < y
implies s(x) < s(y).

Proof. Suppose x < y with x ·F = y. Then, by hypothesis, F is not contained in

x,xΣ. Let G be any maximal element in x,xΣ. Then, x ·GF = y, so GF belongs to

x,yΣ. Since x,xΣ is the closure of a combinatorial flat, s(GF ) > s(G). Also, since

x,yΣ is a subset of y,yΣ, GF belongs to the latter. Thus, s(x) < s(y) as required. �

Exercise 7.82. Give an example of a right Σ-set which is not graded as a poset.
Deduce that the map (7.40) does not preserve cover relations in general.

7.9.7. Relative pair (X,A) of cell complexes. Let h be a right Σ-set. To each
x, y ∈ h, we associate a relative pair of cell complexes (X,A) as follows. Let X be
the closure of x,yΣ, and A be the complement of x,yΣ in X. By Proposition 7.72,
item (2), A is indeed a subcomplex of X.

Lemma 7.83. For x, y ∈ h:

(1) If x 6≤ y, then both X and A are the empty cell complexes.
(2) If x = y, then X is a nonempty cell complex while A is the empty cell

complex.
(3) If x < y, then both X and A are nonempty cell complexes.

Proof. If x 6≤ y, then from the definition of the partial order x,yΣ is empty, and
hence X and A are the empty cell complexes. If x = y, then the central face belongs
to X, so it cannot belong to A, which means that A is the empty cell complex. If
x < y, then X is nonempty but since x ·O 6= y, the central face does not belong to

x,yΣ, so it must belong to A which is then nonempty. �

Suppose (X,A) is a pair associated to some x ≤ y. All maximal elements of

x,yΣ have the same support. So X is a pure cell complex, and it has a well-defined
support. Let Y denote the support of X. We say that F is a boundary face of X
if F is contained in X but there is some face supported by Y which is greater than
F but which is not in X. We deduce from Lemma 7.75 that A must necessarily
contain the boundary faces of X. (This is in contrast to what happened for left
actions.)

Exercise 7.84. Show that any lower set of Σ which does not contain any chambers
can be realized for the subcomplex A for suitable choice of x ≤ y.
Exercise 7.85. Show that the union of the closures of any nonempty subset of
faces having the same support can be realized for the complex X for suitable choice
of x ≤ y. Given such a X, deduce that A could be any lower set of X containing
all its boundary faces but none of its maximal faces.
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Exercise 7.86. Give an example, where X is a topological cylinder, that is, a
sphere with two holes, and A is the boundary of the cylinder, which is the disjoint
union of two topological circles.

7.9.8. Lune identity. Let h be a right Σ-set. Observe that: For x, y ∈ h,

(7.41)
∑

F : x·F=y

(−1)rk(F ) = −χ(X) + χ(A),

where χ is the reduced Euler characteristic (A.1). This is the lune identity.
If x 6≤ y, then both X and A are the empty cell complexes, and both sides of

(7.41) are zero.

Example 7.87. Let h := Σ. The partial order on Σ given by (7.36) coincides with
the usual one. For G ≥ H, note from (3.11) that

H,GΣ = s(H,G)o.

In this case, the decomposition (7.35) assumes a trivial form with only one term in
the rhs.

The star hx given by (7.38), for x := H, coincides with the star of H. We have
previously denoted this set by ΣH , so the notations are consistent. The quotient
map (7.39) is

Σ→ ΣH , F 7→ HF,

and ΣH is the right ideal generated by H (Lemma 1.34). The decomposition of Σ
given by (7.37) is precisely (3.17).

Now let us look at the relative pair (X,A). For G ≥ H, X is the closure and
A is the boundary of the lune s(H,G). For G > H, X is a topological ball and A
is a topological sphere, while for G = H, X is a topological sphere and A is the
empty cell complex. The lune identity (7.41) specializes to (7.12a), see the proof of
the latter for more details.

Exercise 7.88. Generalize the above analysis to h := ΣF for a fixed face F .

Example 7.89. Let h := Σ∼, where ∼ is a partial-support relation on faces. The
partial order on Σ∼ given by (7.36) coincides with the usual one. For x ≤ w,

x,wΣ =
⊔

G:G∈w,G≥H

s(H,G)o,

where H is some arbitrary but fixed element of x. This decomposition is a special
case of (7.35). Since partial-flats are combinatorial cones, the G in the sum runs
over a convex set of faces in the star of H (with the same support as w). As a
consequence, the lunes s(H,G) together determine a cone. For a concrete instance,
see the figure in Section 3.3.6. The interiors of the three shaded lunes make up

x,wΣ. Their closure is X, and their boundaries (shown as thick lines) together
make up A. In general, X is a topological ball or sphere, and A is homotopy
equivalent to a wedge of spheres. This can be used to deduce the lune identity
(7.25a). (Alternatively, one can work with each lune interior separately, and see
that each of them contributes (−1)rk(w).)

Exercise 7.90. Let h = E, the singleton Σ-set with the trivial right action. What
are X and A in this case? Write down the lune identity. What happens for h = Γ,
with the right action induced from Σ?
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7.10. Descent-lune equation for Π-sets

We consider the descent-lune equation for Π-sets. This generalizes the descent-
lune equation for flats. It combines the features of the descent equation for left
Σ-sets and the lune equation for right Σ-sets. We formulate a descent-lune identity
using relative pairs (X,A), and work it out explicitly for the example of charts. We
also give the descent-lune identity for the example of lunes.

7.10.1. Π-sets. A Π-set is a set h equipped with a rule which assigns to each flat
X and element x ∈ h, an element X · x ∈ h such that

X · (Y · x) = (X ∨Y) · x and ⊥ · x = x.

(Since Π is commutative, there is no distinction between left and right actions. As
a convention, the action is written on the left.)

7.10.2. Descent-lune equation. Now suppose h is a Π-set. Consider the equa-
tion X ·x = y, with x and y fixed and X variable. This is the descent-lune equation.
Denote its solution set by

Πx,y := {X ∈ Π | X · x = y}.
Note that h is both a left and right Σ-set via

F · x = x · F = s(F ) · x.

Clearly,

x,yΣ = Σx,y,

and taking supports of faces in this set yields Πx,y. Thus, the analysis of both
Sections 7.7 and 7.9 applies. We summarize the results below.

There is a partial order on h defined as follows. We say that

(7.42) x ≤ y if there exists a flat X such that X · x = y.

Further, there is an order-preserving map

(7.43) h→ Π

which sends x to the largest flat which stabilizes x.

Lemma 7.91. For any Π-set h and x, y ∈ h, Πx,y is an upper set in Πy,y. Con-
versely, given any flat X and an upper set U in the interval [⊥,X] of flats, there is
a Π-set h such that Πx,y = U for some x, y ∈ h.

Proof. This can be deduced from Lemma 7.75. �

7.10.3. Descent-lune identity. Let h be a Π-set. Assume x ≤ y. The relative
pair (X,A) is defined in the same manner as before, that is, by applying the previous
definitions to either Σx,y or x,yΣ. By definition,

(7.44)
∑

X:X·x=y

(−1)rk(X)cX = −χ(X) + χ(A),

where χ is the reduced Euler characteristic (A.1). This is the descent-lune identity.
We have a complete understanding of whatX and A could be. The cell complex

X is the closure of a combinatorial flat, and A consists of faces supported by flats
of some proper lower set of Π. Note from Lemma 7.91 that any proper lower set is
possible for A. In particular, A may not be connected topologically. For instance,
X could be the sphere and A could be the union of a great circle and a pair of
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antipodal points (disjoint from that circle). In Example 7.57, A was homotopy
equivalent to a wedge of spheres.

7.10.4. Descent-lune identity for charts. Recall the poset of charts G from
Section 2.6. It is a monoid under the join operation (intersection). The join-
preserving map (2.18) turns G into a Π-set. Explicitly,

X · g = λ(X) ∨ g = gX,

where recall that gX consists of those hyperplanes in g which contain X. So, one
can consider the descent-lune equation for charts. The descent-lune identity for
charts is given below. Recall from (2.19) that for a chart h, the flat ρ(h) is the
intersection of all hyperplanes in h.

Proposition 7.92. For any g, h ∈ G,

(7.45)
∑

X:X·g=h

(−1)rk(X)cX =

®
(−1)rk(ρ(h))c(gρ(h)) if gρ(h) = h,

0 otherwise,

where c(gρ(h)) is the number of chambers in the arrangement gρ(h).

Proof. The equation X · g = h has a solution iff ρ(h) · g = h. This is the same
as the condition gρ(h) = h. So let us proceed under this assumption (else both

sides are zero). The sum can be rewritten as
∑
F (−1)dim(F ), where F runs over

all faces of A such that the intersection of the hyperplanes in g which contain F is
ρ(h). Equivalently, the sum is over all faces F in Aρ(h) such that F is not on any
hyperplane in gρ(h). To calculate this sum: let us first sum over all faces F in Aρ(h).
This is the reduced Euler characteristic of a topological sphere. From this sum we
substract the sum over all faces contained in the hyperplanes in gρ(h). These form
a space which is homotopy equivalent to a wedge of spheres, the number of spheres
being the number of chambers in gρ(h) minus 1. �

The above argument is indeed using the technique of relative pairs (X,A) by
evaluating the rhs of (7.44). In this example, X is a sphere, and A is homotopy
equivalent to a wedge of spheres.

7.10.5. Descent-lune identity for lunes. Recall from Section 4.7 that the set
of lunes Λ is a Π-set. The partial order (7.42) coincides with the partial order �
defined in (4.6). This follows from Exercise 4.51. Further, the map (7.43) specializes
to the base map on lunes. This follows from Corollary 4.47.

Proposition 7.93. For any lunes L and M,

(7.46)
∑

X:X·L=M

(−1)rk(X)cX =

{
(−1)rk(b(M))c

b(M)
b(L) if L � M,

0 otherwise.

Proof. By Exercise 4.51, the equation X ·L = M has a solution iff L � M. Under
this assumption, X is a solution iff X∨b(L) = b(M). This follows from Exercise 4.52.
Now apply (7.23a). �

7.11. Flat-based lattices

We introduce the notion of a flat-based lattice. We generalize the descent-lune
identity for flats to flat-based lattices under the hypothesis of supertightness.
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7.11.1. Category of Π-based lattices. Recall the lattice of flats Π. A Π-based
lattice is a finite lattice h equipped with a join-preserving map λ : Π → h. By
our convention, a join-preserving map preserves all finite joins. In particular, it
preserves minimum elements. A morphism between Π-based lattices is a join-
preserving map h→ k such that

h // k

Π

__❄❄❄❄
??����

commutes. This defines the category of Π-based lattices. This is an instance of a
coslice category.

Exercise 7.94. Describe the terminal object and product in the category of Π-
based lattices.

Any Π-based lattice h carries the structure of a Π-set. The action is defined by

X · x := λ(X) ∨ x.
It is easy to check that a morphism of Π-based lattices yields a map h → k of Π-
sets. In other words, this construction yields a functor from the category of Π-based
lattices to the category of Π-sets.

For Π, the action is simply given by the join operation of Π.
In view of (D.38), for a Π-based lattice h with structure map λ, the right adjoint

ρ : h→ Π coincides with the map in (7.43).

7.11.2. Descent-lune equation for Π-based lattices. Recall the notion of
tightness (Definition B.13).

Lemma 7.95. Suppose λ : Π → h is a supertight join-preserving map of lattices.
Then for any x, y ∈ h, and flat X,

(7.47) X · x = y ⇐⇒ X ∨ ρ(x) = ρ(y) and λρ(y) ∨ x = y,

where ρ is the right adjoint of λ.

This is a special case of Lemma B.16. Also note that λρ(y)∨x = y is equivalent
to ρ(y) · x = y.

Consider the equation X · x = y with x and y fixed and X variable. This is
the descent-lune equation for a Π-based lattice. (When h = Π, we recover the
descent-lune equation for flats.) Let Πx,y denote its set of solutions. From (7.47),
we deduce that

Πx,y =

®
Πρ(x),ρ(y) if λρ(y) ∨ x = y,

∅ otherwise.

In other words, under the hypothesis of supertightness, the solution set of the
general descent-lune equation coincides with the solution set of the descent-lune
equation for flats. Applying (7.23a) leads to the following descent-lune identity.

Proposition 7.96. Suppose λ : Π → h is a supertight join-preserving map of
lattices. Then for any x, y ∈ h,

(7.48)
∑

X:X·x=y

(−1)rk(X)cX =

{
(−1)rk(ρ(y))cρ(y)ρ(x) if λρ(y) ∨ x = y,

0 otherwise,

where ρ is the right adjoint of λ.
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More precisely, (7.48) holds whenever λx,y is tight.

Recall the lattice of charts G. The map (2.18) turns G into a Π-based lattice.
However this map is not supertight in general. Compare and contrast the descent-
lune identity for charts (7.45) with the descent-lune identity (7.48) given above.

Exercise 7.97. Show that in the context of Π-based lattices, for any x, y ∈ h and
flat X,

X · x ≤ y ⇐⇒ X ≤ ρ(y) and x ≤ y.
Use this to generalize (7.23b).

Notes

Descents. The notion of descent at a chamber D wrt another chamber C, denoted
Des(C,D), occurs in [281, Section 1.6.2] and later in [8, Chapter 5]. (It generalizes in
an appropriate sense the classical notion of descent of a permutation.) The more general
notion of descent involving faces, denoted Des(F,G), dates back to the same time. Brown
discusses chamber descents in the context of reflection arrangements [96, Section 9.3].
Observation (7.1) is given in [96, Proposition 4]. It is also explained in [8, Proposition
5.2.2]. Propositions 7.3 and 7.4 for the braid arrangement are given in [9, Propositions
10.11 and 10.12].

Witt formula. Formula (7.15) is due to Witt [415, Satz 3]. It is also given in [224,
Section 1.11]. This identity is closely related to the flag f and flag h vectors associated

to a labeled simplicial complex. If we multiply both sides of (7.15) by (−1)rk(D)cO, the
resulting identity can be understood in two steps as∑

J⊆S

(−1)|S\J|
fJ(D) = hS(D) and hS(D) = 1.

where fJ(D) and hJ(D) denote the components of the flag f and flag h vectors local to
D. The former counts the number of chambers in the lune s(H,D) where H has type J ,
while the latter counts the number of chambers C such that the face Des(C,D) has type

J . In particular, hS(D) = 1 since D is the only chamber with the required property. For
more details, see [96, Proposition 5] and [281, Section 1.7].

h-faces and h-flats. The material pertaining to dimonoids in Section 7.6 for the left
Σ-set h = Γ is present in [9, Section 10.10]. Proposition 7.64 for h = Γ in the general
context of LRBs is given in [8, (2.8)].
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CHAPTER 8

Distance functions and Varchenko matrix

We introduce an abstract notion of distance function on chambers of an arrange-
ment. The motivating example arises by assigning a weight to each half-space, and
letting the distance between C and D to be the product of weights of all half-spaces
that one has to move out of while going from C to D. An important special case
is when all half-spaces have the same weight, say q, in which case, the distance be-
tween C and D is q power the number of hyperplanes separating C and D. (Recall
that the latter is the gallery distance between C and D.)

A distance function gives rise to a matrix indexed by chambers whose entry in
position (C,D) is the distance between C and D. This is the Varchenko matrix.
For distance functions arising from weight functions on half-spaces, the determinant
of this matrix has a nice factorization. The same is true, more generally, for the
Varchenko matrix indexed by chambers of any top-cone.

8.1. Weights on half-spaces

Let A be an arrangement. We begin with distance functions on A which arise
from weight functions on its half-spaces. This material builds on the discussion
on separating hyperplanes, minimal galleries and their basic properties given in
Section 1.10. An abstract approach to distance functions is given in Section 8.3.

8.1.1. Distance function on chambers. A weight function assigns a number
(weight) to each half-space of A. We write wt(h) for the weight on the half-space
h. Given a weight function, for any chambers C and D, let

(8.1) υC,D :=
∏

h∈r(C,D)

wt(h),

where recall that r(C,D) consists of half-spaces h which contain C but do not
contain D. This defines a function υ on the set of pairs of chambers. We call it a
(multiplicative) distance function.

C
D

H
h

h

υC,D

203
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One may visualize υC,D as an arrow from C to D as shown in the figure. H is

a typical hyperplane which separates C and D, and h and h are the two opposite
half-spaces which it bounds. The weights of h and h are not required to be equal.
By our convention, wt(h) will appear as a factor in υC,D, while wt(h) will appear
as a factor in υD,C .

One may also interpret υC,D as the minimum (multiplicative) cost of going from
C to D, the cost of going out of an half-space being the weight of that half-space.

The basic properties of υ are listed below. They follow from (8.1) and the
corresponding properties of the sets r(C,D) listed in Proposition 1.62.

Proposition 8.1. For any chamber C,

(8.2a) υC,C = 1.

For faces F and G with the same support, and F ≤ C and F ≤ D,

(8.2b) υC,GC = υD,GD.

For any minimal gallery C --D --E,

(8.2c) υC,D υD,E = υC,E .

For any chambers C and D,

(8.2d) υC,D is the product of the distances between adjacent chambers

in any minimal gallery joining C and D.

For any C, and G a face of D,

(8.2e) υC,D = υC,GC υGC,D.

For any D, and F a face of C,

(8.2f) υC,D = υC,FD υFD,D.

For faces F and G with the same support, and F ≤ C and F ≤ D,

(8.2g) υC,D = υGC,GD.

For any chambers C and D,

(8.2h) υC,D = υD,C .

Properties (8.2b) and (8.2g) may be rephrased as follows. For any chambers C
and D, and faces F and G with the same support,

(8.3) υFC,GC = υFD,GD,

and

(8.4) υFC,FD = υGC,GD.

8.1.2. Symmetry and log-antisymmetry. A distance function υ associated to
a weight function wt is symmetric if

wt(h) = wt(h) or equivalently υC,D = υD,C ,

and log-antisymmetric if

wt(h)wt(h) = 1 or equivalently υC,D υD,C = 1

for all half-spaces h and for all chambers C and D.
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Observe that a symmetric distance function arises by assigning a weight to each
hyperplane and letting υC,D be the product of weights of those hyperplanes which
separate C and D.

Proposition 8.2. For a log-antisymmetric distance function υ,

υC,D υD,E = υC,E

for any chambers C, D and E.

In other words, the minimal gallery condition in (8.2c) can be dropped when υ
is log-antisymmetric.

C

D

E

1

23

Proof. We may assume that C, D and E are all distinct (the remaining cases are
straightforward). Then there are three kinds of hyperplanes as shown in the figure
whose associated half-spaces contribute to the weighted distances. The hyperplanes
labeled 1 and 3 contribute once to both the lhs and rhs via the half-space which
contains C. The hyperplane labeled 2 does not contribute to the rhs and contributes
twice to the lhs via the two opposite half-spaces which it bounds; but since υ is
log-antisymmetric, the two contributions multiply to 1. �

8.1.3. Operations on distance functions. Let υ be a distance function. Its
transpose υt is the distance function defined by

(8.5) (υt)C,D := υD,C .

In other words, the transpose interchanges the weights of opposite half-spaces.
Let υ be a nowhere-zero distance function, that is, none of the weights are 0.

This happens, for instance, if υ is log-antisymmetric. In this situation, define the
inverse distance function υ− by

(8.6) (υ−)C,D := υ−1
C,D.

In other words, the inverse replaces every weight by its inverse. Also let υ−t :=
(υt)−, that is,

(υ−t)C,D := υ−1
D,C .

Observe that υ is symmetric iff υ = υt, and is log-antisymmetric iff υ = υ−t.
Let υ and υ′ be two distance functions. Their Hadamard product υ× υ′ is the

distance function defined by

(υ × υ′)C,D := υC,D υ
′
C,D.

In other words, the weight on a half-space for υ × υ′ is the product of the weights
on that half-space for υ and for υ′.
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8.1.4. Distance function on faces. Property (8.3) can be used to extend any
distance function υ to the set of pairs of faces with the same support: For faces F
and G with the same support, let

(8.7) υF,G := υFC,GC ,

where C is any chamber. The point is that the rhs does not depend on the specific
choice of C.

The distance function further extends to the set of all pairs of faces as follows.
For any faces F and G, let

(8.8) υF,G := υFG,GF ,

where for the rhs, (8.7) applies since FG and GF have the same support. Note
that υF,G = υFG,G = υF,GF .

Proposition 8.3. For any face F ,

(8.9a) υF,F = 1.

For faces F and G with the same support, and F ≤ H,

(8.9b) υF,G = υH,GH .

For faces F , G and K with FG ≤ K,

(8.9c) υF,G = υK,G and υG,F = υG,K .

For faces F , G and H with the same support such that F --G --H,

(8.9d) υH,GυG,F = υH,F .

For faces F , H and K with H ≤ K,

(8.9e) υK,F = υK,HFυHF,F .

For faces F , H and K with H ≤ F ,
(8.9f) υK,F = υK,HKυHK,F .

For faces F and G with the same support, and F ≤ H and F ≤ K,

(8.9g) υH,K = υGH,GK .

For faces F and G,

(8.9h) υF,G = υG,F .

Properties (8.9b) and (8.9g) may be rephrased as follows. For faces F , G, H
and K with s(F ) = s(G),

(8.10) υFH,GH = υF,G = υFK,GK ,

and

(8.11) υFH,FK = υGH,GK .

Proof. Identity (8.9a) follows from (8.2a).
For (8.9b): If H is a chamber, then we are reduced to (8.7). For the general

case, we can choose a chamber C greater than H, and observe that GC = GHC.
For (8.9c): Using (8.9b),

υF,G = υFG,GF = υK,GFK = υK,GK = υK,G.

The second identity is similar.
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Identity (8.9d) follows from (8.2c) and (1.32).
When F and K are chambers, (8.9e) specializes to (8.2f). The general case can

be reduced to this case as follows. Note that KF , FK and HFK have the same
support, and KF --HFK --FK by the gate property. So by (8.9d),

υKF,FK = υKF,HFKυHFK,FK .

Further, since FK ≥ FH, we have υHFK,FK = υHF,FH . Substituting this in the
above identity yields the result.

Identity (8.9f) is similar or can also be deduced from (8.9e) and (8.9h). The
latter follows from (8.2h).

Identity (8.9g) can be deduced from (8.2g). �

Proposition 8.4. For a log-antisymmetric distance function υ,

υH,G υG,F = υH,F

for any faces F , G and H with the same support.

Proof. This follows by picking any chamber C, and applying Proposition 8.2 to
the chambers HC, GC and FC. �

Proposition 8.5. For a distance function υ, and faces F ′, G, G′ and H with
s(G) = s(G′),

υF ′,GυG′F ′,H = υF ′,GHυG′,H

This identity reduces to a tautology when G and G′ are both chambers.

Proof. Using (8.8), (8.9e) and (8.10), the lhs is

υF ′,GυG′F ′,H = υF ′G,GF ′υG′F ′H,HG′F ′ = υF ′GH,GF ′HυG′F ′H,G′HF ′υG′HF ′,HG′F ′ .

Similarly, using (8.8), (8.9f) and (8.10), the rhs is

υF ′,GHυG′,H = υF ′GH,GHF ′υG′H,HG′ = υF ′GH,GF ′HυGF ′H,GHF ′υG′HF ′,HG′F ′ .

So the check boils down to the identity

υG′F ′H,G′HF ′ = υGF ′H,GHF ′

which holds by (8.11). This uses that G and G′ have the same support. �

8.1.5. Weights on half-flats. Suppose wt is a weight function on the set of half-
spaces in A. Then it extends to a weight function on the set of half-flats: The
weight on a half-flat h is the product of weights of all half-spaces which contain h
but do not contain the support of h. For any flat X, a half-space of AX is precisely
a half-flat whose support is X. In particular, wt induces a weight function on
half-flats with support X. Let us denote it by wtX.

Let υX denote the distance function on chambers of AX which arises from wtX.
We claim that

(8.12) (υX)F,G = υF,G,

with the latter as in (8.7). It is easy to see that both sides are equal to the product
of weights of all half-spaces in A which contain F but do not contain G.
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8.1.6. Distance from a fixed chamber. Let υ be a log-antisymmetric distance
function. For each chamber C, define

(8.13) υC :=
∑

D

υC,D.

Then for any chambers C and C ′, we have

(8.14) υC = υC,C′υC′ .

This follows from Proposition 8.2. More generally, for each face F , define

υF :=
∑

G: s(G)=s(F )

υF,G.

Then for any faces F and F ′ with the same support, we have

υF = υF,F ′υF ′ .

This follows from Proposition 8.4.

8.2. Sampling weights from a matrix

Let A be any arrangement. We discuss weight functions on A that arise by
sampling entries of a fixed square matrix. The special case when the matrix has
size 1 is also nontrivial and of interest. We begin the discussion with this case.

8.2.1. Uniform weights. Fix a scalar q. Define a distance function υq on A by
assigning the weight q to each half-space. By (8.1),

(8.15) (υq)C,D := qdist(C,D),

where dist(C,D) is the gallery distance between C and D, or equivalently, it is the
number of hyperplanes which separate C and D. This is an example of a symmetric
distance function. It is log-antisymmetric precisely when q = ±1.

The induced function on pairs of faces (8.8) is given by

(8.16) (υq)F,G = qdist(F,G),

where dist(F,G) is the number of hyperplanes which separate F and G.
The cases q = ±1 and q = 0 are of special interest. The distance function υ1 is

identically 1,

(8.17) (υ−1)C,D = (−1)dist(C,D)

keeps track of the parity of the gallery distance, while υ0 is the delta function

(8.18) (υ0)C,D =

®
1 if C = D,

0 otherwise.

Since υ±1 are log-antisymmetric, by Proposition 8.4,

(8.19) (υ±1)H,G(υ±1)G,F = (υ±1)H,F

whenever F , G and H have the same support.
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8.2.2. Odd-even invariant. We apply the discussion in Section 8.1.6 to the log-
antisymmetric distance functions υ±1. For υ1, we have

(υ1)C = c(A),
the number of chambers in the arrangement. This does not depend on the choice
of C. More generally, (υ1)F equals the number of faces of the same support as F .

For υ−1, we have

(υ−1)C =
∑

D

(−1)dist(C,D).

Up to sign, the rhs is independent of C. (This follows from (8.14).) Its absolute
value is called the odd-even invariant of the arrangement. Recall from Section 1.10.4
that the chamber graph of an arrangement is bipartite. The absolute difference in
the sizes of the two parts of this bipartite graph is precisely the odd-even invariant.
In particular, this invariant is zero iff the bipartite graph is balanced. By Exer-
cises 1.56 and 5.7, this invariant is zero for reflection arrangements of rank at least
one, and for arrangements with an odd number of hyperplanes. More generally, we
have

(υ−1)F =
∑

G: s(G)=s(F )

(−1)dist(F,G).

Up to sign, the rhs only depends on the support of F , say X. Taking absolute
value, we get the odd-even invariant of the flat X. When X is the maximum flat,
we recover the odd-even invariant of the arrangement.

For the rank-two arrangement of n lines, the odd-even invariants are 0 for the
maximum flat, 1 + (−1)n−1 for any of the lines, and 1 for the minimum flat.

Exercise 8.6. Show that: The odd-even invariants for the braid arrangement are
as follows. The invariant is 0 unless X has at most one block of odd size, and in this
case, the invariant is deg!(X), the factorial of the number of blocks of X. (Employ
(6.5) for the distance between two faces with the same support.)

In particular, for the rank-three braid arrangement, the odd-even invariants are
0 for the maximum flat, 0 for each hyperplane, 0 for flats of the form {a, bcd}, 2 for
flats of the form {ab, cd}, and 1 for the minimum flat.

8.2.3. Square matrices. We set up some terminology to deal with square matri-
ces of size r. A general square matrix of size r is denoted

Q := (qij)1≤i,j≤r.

Given square matrices P and Q of size r, let P ×Q denote the matrix obtained by
multiplying the corresponding entries of P and Q. This is the Hadamard product
on matrices [217, Chapter 5]. The unit element for this product is the matrix all
of whose entries are 1. A matrix Q is invertible wrt this product iff each entry of
Q is nonzero. In this case, the inverse is obtained by inverting each entry of Q.
We denote the inverse by Q−. The transpose of Q is given the usual meaning and
denoted Qt. When Q is invertible, we let Q−t := (Qt)−, that is, take transpose of
Q and invert each entry.

We say Q is symmetric if Q = Qt. We say Q is log-antisymmetric if Q = Q−t,
that is,

qijqji = 1 for 1 ≤ i, j ≤ r.
In particular, the diagonal entries of a log-antisymmetric matrix are either 1 or −1.
A log-antisymmetric matrix is symmetric iff the matrix entries are either 1 or −1.
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8.2.4. Matrix weights. Fix a matrix Q of size r. Suppose f : ℧ → [r] with ℧
being the set of half-spaces in A. With this data, define a distance function υfQ on
A by assigning to the half-space h the weight

wtfQ(h) := qf(h)f(h).

By (8.1),

(υfQ)C,D :=
∏

wtfQ(h),

where the product is over all half-spaces h which contain C but do not contain D.
Observe that

(υfQ)
t = υfQt , (υfQ)

− = υfQ− and υfP × υ
f
Q = υfP×Q.

In particular, ifQ is symmetric, then υfQ is symmetric, and ifQ is log-antisymmetric,

then υfQ is log-antisymmetric.

Now suppose r = 1, so Q is of the form (q) for some scalar q. Note that there is
a unique function of the form f : ℧→ [1]; thus f provides no additional information

in this case. It is clear that υfQ = υq and we recover the distance function of uniform
weights.

8.3. Distance functions

We have discussed distance functions on arrangements arising from weight func-
tions on half-spaces. We now approach them through the axiomatic treatment of
Section E.2 which defines (left, right) distance functions on bands. The band under
consideration here is the Tits monoid.

8.3.1. Distance functions. By definition, a distance function on chambers is a
function υ on pairs of chambers which satisfies (8.2a), (8.2b), (8.2e) and (8.2f). In
particular, weight functions on half-spaces give rise to distance functions.

Proposition 8.7. Suppose υ is any function on pairs of chambers which satisfies
(8.2a). Then conditions (8.2c), (8.2d), (8.2e) and (8.2f) are equivalent to one
another.

Proof. Clearly (8.2c) and (8.2d) are equivalent. By the gate property, we have
C --GC --D and C --FD --D whenever G ≤ D and F ≤ C. Thus, (8.2e) and (8.2f)
are both special cases of (8.2c). Conversely, either (8.2e) or (8.2f) implies (8.2d),
and hence also (8.2c). �

Thus, a distance function on chambers is a function υ on pairs of chambers
which satisfies (8.2a), (8.2b), and any of the equivalent conditions (8.2c), (8.2d),
(8.2e) and (8.2f). The latter says that distance functions, left distance functions,
and right distance functions are all equivalent notions.

Proposition 8.8. Suppose υ is a nowhere-zero distance function on chambers.
Then it necessarily arises from a choice of a nonzero weight for each half-space.

Proof. We first show that (8.2g) holds. Applying (8.2c) to C --GC --GD and to
C --D --GD, we obtain

υC,GC υGC,GD = υC,GD = υC,D υD,GD.

Now by (8.2b),
υC,GC = υD,GD.
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Canceling this off from the previous equation, we obtain υC,D = υGC,GD as required.
Finally, any distance function satisfies (8.2d) which then implies (8.1). �

Exercise 8.9. Give an example of a distance function on chambers which does not
arise from a weight function on half-spaces.

Exercise 8.10. Suppose in the definition of distance function, axiom (8.2b) is
replaced by (8.2g). (The latter corresponds to the additional axiom (E.10).) Then
show that distance functions necessarily arise from weight functions on half-spaces.
In particular, axiom (8.2b) is then a consequence.

By definition, a distance function on faces is a function υ on pairs of faces with
the same support which satisfies (8.9a), (8.9b), (8.9e), and (8.9f). This is equivalent
to a distance function on chambers.

8.3.2. Partial-flats. Let ∼ be a partial-support relation on faces (Section 2.8).
The monoid Σ∼ is a LRB. For chambers c and d, that is, for partial-flats whose
support is the maximum flat, define

(8.20) υc,d :=

®
1 if c = d,

0 otherwise.

We claim that this is a distance function on Σ∼. The nontrivial part is to check
property (E.9b). This follows from Corollary 2.67. The extension of this function
to faces with the same support (E.12) is given by

υx,y :=

®
1 if x and y have an upper bound,

0 otherwise.

If the partial-support relation is geometric, then by Lemma 2.73, this simplifies to

υx,y :=

®
1 if x = y,

0 otherwise.

8.3.3. Invariant distance functions. Now assume thatA is a reflection arrange-
ment. A distance function is invariant if it is preserved by the action of the Coxeter
group W . That is,

υC,D = υwC,wD

for all w, C and D. An invariant distance function is necessarily symmetric: When
C and D are adjacent, there is a reflection which interchanges C and D, hence
υC,D = υD,C . The general case can be deduced from this one by using (8.2d).

Now assume that the distance function arises from a weight function on half-
spaces. In this case, invariance is equivalent to wt(h) = wt(wh) for all w and h.
Further, since the distance function is symmetric, this condition can be rewritten
as wt(H) = wt(wH) for all w and H. To summarize, an invariant distance function
amounts to assigning a weight to each hyperplane such that hyperplanes in the
same W -orbit have the same weight. For type A, there is a single orbit, so all
hyperplanes must have the same weight, say q, and υ = υq. This is also the case
for other irreducible types except type B, type F4 and I2(m) with m even where
there are two orbits.
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8.4. Varchenko matrix

Fix an arrangement A. Any weight function on its half-spaces gives rise to a
distance function υ on chambers. The matrix (υC,D) is the Varchenko matrix. Its
determinant has a nice factorization. Each factor is of the form 1−α, where α is a
product of weights of some of the half-spaces. In particular, the Varchenko matrix
is invertible whenever no nontrivial product of the weights is 1. The Witt identity
plays a key role in the proof.

8.4.1. Varchenko matrix. Let k be any field. Assign to each half-space h a
formal variable denoted wt(h), and put

R := k[wt(h), h is a half-space].

This is the polynomial ring over k in the variables wt(h). For any chambers C and
D, let

(8.21) υC,D :=
∏

h∈r(C,D)

wt(h),

where recall that r(C,D) is the set of half-spaces h which contain C but do not
contain D. Each υC,D is a monomial in the ring R. If C = D, then υC,D = 1.

Note that if we specialize the variables to scalars, then we have a weight func-
tion, and the monomials υC,D specialize to (8.1). The properties listed in Proposi-
tion 8.1 continue to hold in the present formal setting.

Consider the matrix

A := (υC,D)

indexed by chambers with entries in the ring R. The entry in row C and column D
is υC,D. Note that the diagonal entries of A are all 1, while the off-diagonal entries
are monomials of degree at least 1. We refer to A as the Varchenko matrix of the
arrangement A.
8.4.2. Determinant of Varchenko matrix. Let F be any face which is not a
chamber. Define bF to be the product of weights of all half-spaces whose base
contains F . Thus,

(8.22) bF =
∏

H⊇F

wt(H+) wt(H−)

with H running over the hyperplanes that contain F and H± denoting the two
opposite half-spaces bounded by H. This is a monomial in R. Pick any hyperplane
H which contains F . Define βF to be half the number of chambers C such that
C ∧ H = F . The number βF does not depend on the particular choice of H; this
will be a consequence of the discussion below.

Let X be any non-maximum flat. Put bX := bF and βX := βF , where F is any
face with support X. More directly, bX is the product of weights of all half-spaces
which contain X. Note that X 6= Y implies bX 6= bY.

Theorem 8.11. The determinant of the Varchenko matrix A is given by

(8.23) det(A) =
∏

X:X6=⊤

(1− bX)c
XβX ,

where cX is the number of faces with support X. The product is over all non-
maximum flats.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



8.4. VARCHENKO MATRIX 213

The exponent can also be directly described as follows. Pick any hyperplane
H which contains X. Then cXβX is half the number of chambers C which have the
property that X is the support of C ∧H.

The above result can be recast in the language of bilinear forms: Let RΓ denote
the linearization of the set of chambers Γ over the ring R. Define a bilinear form
on RΓ by letting

(8.24) 〈C,D〉 := υC,D

on the basis elements. Theorem 8.11 says that the determinant of this bilinear form
(in the canonical basis of chambers) is given by formula (8.23).

A more general result is given below.

Theorem 8.12. Let V be a combinatorial top-cone. Let A|V denote the restriction
of the Varchenko matrix A to the chambers in V. Then

(8.25) det(A|V) =
∏

F :F∈Vo,F 6∈Γ

(1− bF )βF .

The product is over all faces in the interior of V which are not chambers. Equiva-
lently,

(8.26) det(A|V) =
∏

X:X6=⊤

(1− bX)c
X,VβX ,

where cX,V is the number of faces with support X which belong to the interior of V.

It is possible that X does not support any faces belonging to the interior of
V. In this case cX,V = 0, and X does not contribute to the factorization. More
interestingly, it is also possible that X does support faces belonging to the interior
of V but it still does not contribute to the factorization because βX = 0.

When V is the ambient space, we have cX,V = cX, and Theorem 8.12 specializes
to Theorem 8.11. As further illustrations, consider the following two top-cones in
rank three.

The determinant for the first top-cone is (1 − xx′)(1 − yy′)(1 − zz′). There are
three edges in the interior of the top-cone. Here x, x′ are weights of the two half-
spaces whose base supports one edge, similarly, y, y′ are weights for the second
edge, and z, z′ for the third edge. The determinant for the second top-cone is
(1 − xx′)2(1 − yy′)2(1 − zz′). Here z, z′ correspond to the vertical edge in the
interior, while x, x′, y, y′ correspond to the slanting interior edges. There is a
vertex P in the interior, but βP = 0, so it does not contribute.

We now work towards proving Theorem 8.12.

Let S denote the ring obtained by localizing R at the set of all polynomials
whose constant term is nonzero. In other words, S consists of fractions whose
numerator is any polynomial, and denominator is a polynomial whose constant
term is nonzero.
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Proposition 8.13. The Varchenko matrix A is invertible over the ring S. Further,
each entry of A−1 is of the form

(8.27)
p∏

X:X6=⊤
(1− bX)kX

,

for some p ∈ R and nonnegative integers kX. (These depend on the matrix entry.)
More generally, the same is true for the matrix A|V, where in addition, the

denominator in (8.27) can be restricted to factors of the form 1 − bF , where F
varies over faces in the interior of V which are not chambers.

Proof. The determinant of A is a polynomial with constant term 1. So it is
invertible in S, and we deduce that A is invertible over S. We now prove the
entries in the inverse have the form (8.27).

Let γ : SΓ → SΓ∗ be the S-linear map induced by the bilinear form (8.24).
Explicitly,

γ(D) =
∑

C

υD,C C
∗.

For any top-nested face (H,D), define

m(H,D) :=
∑

C:HC=D

υD,C C
∗.

We claim that each m(H,D) can be written as a linear combination

(a)
∑

C

aCγ(C),

where each coefficient aC is of the form (8.27). The proof proceeds by backward
induction on the rank of H. Note that m(D,D) = γ(D), so the claim holds if H is
a chamber. This is the induction base.

For the induction step, we proceed as follows. The Witt identity (7.16) applied
to the vectors xC := υD,CC

∗ yields
∑

K:H≤K≤D

(−1)rk(K)m(K,D) = (−1)rk(D)
∑

C:HC=HD

υD,C C
∗

= (−1)rk(D)υD,HDm(H,HD).

The second equality used

υD,HDυHD,C = υD,C ,

which holds by (8.2f). Rearranging the terms of the above identity, we obtain

m(H,D)− (−1)rk(D/H)υD,HDm(H,HD) =
∑

K:H<K≤D

(−1)rk(K/H)+1m(K,D).

By induction hypothesis, the rhs can be expressed in the form (a). Interchanging
the roles of D and HD, we note that

m(H,HD)− (−1)rk(HD/H)υHD,Dm(H,D)

is also of the form (a). Now observe that

1− υD,HDυHD,D = 1− bX,
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where X is the support of H. It follows that both m(H,D) and m(H,HD) can be
expressed in the form (a). (This necessitates dividing by 1 − bX.) This completes
the induction step and the claim is proved.

To finish the argument, we note that for any chamber D, we have m(O,D) =
D∗. So each D∗ is of the form (a). Applying γ−1 to both sides, we see that γ−1(D∗)
is a linear combination of chambers whose coefficients are of the form (8.27).

Now let us deal with the general case of a combinatorial top-cone V. For that,
specialize the above discussion by setting wt(h) = 0 for all half-spaces h whose base
is a wall of V. Hence υC,D = 0 whenever one of C or D belongs to V but the other
does not. Now take D ∈ V. Then m(H,D) can be written in the form (a), with C
varying over chambers in V. To understand aC , we proceed as before. Note that
H ∈ Vo ⇐⇒ HD ∈ V (Exercise 2.24). In this situation, we need to divide by
1− bH to obtain m(H,D) (exactly as before). On the other hand, if H belongs to
the boundary of V, then υD,HD = 0, and hence

m(H,D) =
∑

K:H<K≤D

(−1)rk(K/H)+1m(K,D),

and no division is required. �

Proof of Theorem 8.12. Proposition 8.13 provides us the factors of the deter-
minant, namely,

det(A|V) =
∏

F :F∈Vo,F 6∈Γ

(1− bF )β
′
F

for some nonnegative integers β′
F . We now show that β′

F = βF . We proceed by
induction on the number of chambers in V. Take any hyperplane H which cuts V,
say into V1 and V2. By assigning weight 0 to the two opposite half-spaces bounded
by H, and applying induction hypothesis to both V1 and V2, we see that β′

F = βF
for all F not contained in H. This takes care of all interior faces of V, except those
that lie on every hyperplane that cuts V. There can be at most one such face,
say H, with V being the top-star of H. In this case, by passing to AH , we may
assume that H is the central face and V is the ambient space. We want to show
that β′

O = βO. Observe from the definition that the leading monomial in det(A) is

(−1)c/2
∏

C

υC,C =
(
−

∏

h

wt(h)
)c/2

,

where c is the number of chambers. Further, by our factorization, this equals∏
F 6∈Γ(−bF )β

′
F . Now fix a half-space h. Comparing the exponent of wt(h) in the

two expressions for the leading monomial, we obtain
∑

F :F≤H

β′
F = c/2,

where H is the base of h. Grouping chambers C according to C ∧H, we obtain
∑

F :F≤H

βF = c/2.

Since the l′ and l values for non-minimum faces are known to be equal, we conclude
from the above two identities that β′

O = βO. �
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8.4.3. Varchenko matrix in an arrangement under a flat. Fix a flat X.
Consider the matrix

AX := (υF,G),

indexed by faces with support X, with υF,G as in (8.7). The matrix entries are
in the ring R with weights treated as formal variables. This is the Varchenko
matrix associated to the flat X. When X is the maximum flat, we recover A. The
discussion leading to (8.12) shows that in fact, AX is the Varchenko matrix of AX

for the weight function wtX. Hence, by specializing (8.23), we obtain

(8.28) det(AX) =
∏

Y:Y<X

(1− bXY)c
YβX

Y ,

where bXY and βX
Y are the same as bY and βY but in AX and for the weight function

wtX. Explicitly, bXY is the product of weights of all half-spaces in A which contain
Y but do not contain X. Pick a hyperplane H which contains Y but not X. Then
cYβX

Y is the number of faces K of support X with the property that Y is the support
of K ∧H.

8.4.4. Formal inverse of Varchenko matrix and non-stuttering paths. Let
S′ denote the ring of formal power series in the variables wt(h). Then R →֒ S →֒ S′.
Since the Varchenko matrix is invertible over S, it is also invertible over S′.

To be completely general, let us fix a flat X, and work with the associated
Varchenko matrix AX = (υF,G). Denote its inverse by (υF,G). Explicitly,

(8.29)
∑

G: s(G)=X

υF,GυG,K =

®
1 if F = K,

0 if F 6= K.

Here F and K are faces of support X, and the sum is over all faces G of support X.

Example 8.14. When X is the minimum flat, AX = (1), the matrix of size 1 whose
only entry is 1, and hence υO,O = 1. When X is a rank-one flat with faces F and
F ,

AX =

Ç
1 υF,F

υF,F 1

å
and (AX)−1 =

1

1− υF,FυF,F

Ç
1 −υF,F

−υF,F 1

å
,

and thus

υF,F = υF,F =
1

1− υF,FυF,F
, υF,F =

−υF,F
1− υF,FυF,F

, υF,F =
−υF,F

1− υF,FυF,F
.

The coefficients of the inverse of the Varchenko matrix can be expressed as
formal power series, that is, as elements of S′. The coefficients of these power series
are related to non-stuttering paths in X. This is explained below.

A path α in X is a finite sequence of faces F0−F1−· · ·−Fn all of support X. We
say that α is a path of length n from F0 to Fn, and write s(α) = F0, t(α) = Fn and
l(α) = n. The path α is non-stuttering if any two consecutive faces in its sequence
are distinct, that is, Fi 6= Fi+1 for all i. In the present discussion, we will only be
considering non-stuttering paths. Note that a face by itself is a non-stuttering path
of length 0. For a path α = F0 − · · · − Fn, define

υα :=
n∏

i=1

υFi−1,Fi
.
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If α has length 0, then υα = 1.

Lemma 8.15. For faces F and G with support X, we have

(8.30) υF,G =
∑

α: s(α)=F,t(α)=G

(−1)l(α)υα.

This is an identity in the ring S′ of formal power series. The sum is over all
non-stuttering paths α in X from F to G. The rhs makes sense because there are
only finitely many non-stuttering paths which contribute to a given monomial.

Proof. We use the formal identity

D−1 = (I + (D − I))−1 =
∑

i≥0

(−1)i(D − I)i.

Let D be the associated Varchenko matrix. The diagonal entries of D − I are all
zero. So the entry in row F and column G of (D − I)i is υα summed over all
non-stuttering paths of length i from F to G. �

We now complement the discussion in Example 8.14 using the above result.

Example 8.16. Let X be the minimum flat. Then there is only one non-stuttering
path in X from the central face O to itself, and it has length 0. Thus, we have
υO,O = 1.

Let X be a rank-one flat with faces F and F . Then the non-stuttering paths
in X from F to itself are

F, F − F − F, F − F − F − F − F,

and so on. Similarly, the non-stuttering paths from F to F are

F − F , F − F − F − F , F − F − F − F − F − F ,

and so on. Thus,

υF,F = 1 + υF,FυF,F + (υF,FυF,F )
2 + . . .

and

υF,F = −υF,F − υF,F (υF,F )2 − (υF,F )
2(υF,F )

3 . . . .

The power series for υF,F and υF,F can be computed similarly.

8.4.5. Assembly of Varchenko matrices. Define a matrix B indexed by faces
as follows.

(8.31) BF,G :=

®
υF,G if GF = G,

0 otherwise,

with υF,G as in (8.8). Then

(8.32) det(B) =
∏

Y<X

(1− bXY)c
YβX

Y .

The product is over all Y and X such that Y is properly contained in X.
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Proof. Write B as a block-matrix indexed by flats, with the (Y,X)-block consist-
ing of the entries BF,G with F of support Y and G of support X. This block-matrix
is triangular, with the diagonal (X,X)-block being the associated Varchenko matrix
AX. Thus

det(B) =
∏

X

det(AX),

where the product is over all flats X. Now apply (8.28). �

Example 8.17. Let A be the rank-one arrangement with chambers C and C. Then

B =

Ñ
1 1 1
0 1 υC,C
0 υC,C 1

é

with rows and columns indexed in the order (O,C,C). There are two flats in A, and
hence B splits into four blocks. Multiplying the determinants of the two diagonal
blocks, we see that det(B) = 1− υC,CυC,C .
8.4.6. A linear system of equations. Consider the linear system over the ring
S

(8.33)
∑

F :HF=G

xFυF,G = 0,

indexed by O < H ≤ G. The variables are the xF and the coefficients are the υF,G.
By a triangularity argument, one can see that the linear system

∑

F :HF≤G

xFυF,G = 0,

indexed by O < H ≤ G, has the same solution space as (8.33).
Both linear systems are in fact defined over the ring R, but it is more convenient

to solve the systems over the ring S. The first step is to get rid of the linear
dependencies among the equations:

Lemma 8.18. Consider the linear system

(8.34)
∑

F :GF=G

xFυF,G = 0,

indexed by faces G > O. The solution space of (8.34) coincides with that of (8.33).

Proof. Note that (8.34) is a smaller system than (8.33) consisting of the equations
indexed by O < H ≤ G with H = G. So we need to show that any solution of
(8.34) also solves (8.33). We apply induction on rk(G) − rk(H). The base case is
when H = G. These equations are in the smaller system, so the base case holds.
Let O < A ≤ G. Start with the Witt identity (7.20b) with xF replaced by xFυF,G.
By induction, the summands inside the parenthesis for H > A are zero. Thus,

(−1)rk(A)
∑

F :AF=G

xFυF,G = (−1)rk(G)
∑

F :AF≤AG

xFυF,G

= (−1)rk(G)υAG,G

∑

F :AF≤AG

xFυF,AG

= (−1)rk(G)υAG,G

∑

F :AF=AG

xFυF,AG.
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The second step used (8.9f). The last step used induction and (8.9c). Now in-
terchanging the roles of G and AG yields a similar identity. Combining the two
yields

(1− υG,AGυAG,G)
∑

F :AF=G

xFυF,G = 0.

Since the coefficient is invertible in the ring S, it can be canceled off. This completes
the induction step. �

Theorem 8.19. The solution space of the linear system (8.33) is one-dimensional.
Explicitly, starting with an arbitrary value of xO, there is a unique solution which
can be computed recursively by the formula

(8.35a) xG =
−1

1− υG,GυG,G

∑

F :F<G

(xF + (−1)rk(G)xFυG,G)

or by the formula

(8.35b) xG =
1

1− υG,GυG,G

∑

F :F<G

(υG,Gx
FυF,F + (−1)rk(G)xFυF,F ).

Proof. To the linear system (8.34), add the equation

xO = α,

where α is fixed but arbitrary. The matrix of this linear system is precisely the
square matrix B defined in (8.31). By (8.32), the determinant of B is invertible in
the ring S, so this system has a unique solution. This shows that the solution space
of (8.34) is one-dimensional. Now apply Lemma 8.18. This proves the first part.

To derive (8.35a), we proceed as follows. Applying the Witt identity (7.19a)
with xF replaced by xFυF,G, we obtain

xG − (−1)rk(G)xGυG,G = −
∑

F :F<G

xF .

Interchanging the roles of G and G, and solving for xG and xG yields (8.35a).
Formula (8.35b) can be deduced in a similar manner by applying (7.19b). �

Example 8.20. Let A be the rank-one arrangement with chambers C and C. The
linear system (8.33) consists of two equations:

xOυO,C + xCυC,C + xCυC,C = 0 and xOυO,C + xCυC,C + xCυC,C = 0.

Its solution is given by

xC = −
1− υC,C

1− υC,CυC,C
xO and xC = −

1− υC,C
1− υC,CυC,C

xO,

where xO is arbitrary.

8.5. Symmetric Varchenko matrix

We now specialize to the case when the Varchenko matrix is symmetric. This
happens when the weights of the two associated half-spaces of any hyperplane are
equal. In this case, we can forget half-spaces and work with weights on hyperplanes.
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8.5.1. Weights on hyperplanes. Assign to each hyperplane H, a formal variable
denoted wt(H). For any chambers C and D, let

υC,D :=
∏

H∈g(C,D)

wt(H),

where recall that g(C,D) is the set of all hyperplanes H which separate C and D.
Put A := (υC,D). Since this matrix is symmetric, we refer to it as the symmetric
Varchenko matrix .

Theorem 8.21. The determinant of the symmetric Varchenko matrix A is given
by

(8.36) det(A) =
∏

X:X6=⊤

(1− a2X)c
XβX ,

where aX is the product of weights of all hyperplanes which contain X, and βX is
as in (8.23).

Proof. This follows from Theorem 8.11 by equating the variables wt(h) and wt(h)
and calling this new variable wt(H), where H is the base of h and h. �

More generally, specializing Theorem 8.12, we obtain:

Theorem 8.22. Let V be a combinatorial top-cone. Let A|V denote the restriction
of the symmetric Varchenko matrix A to the chambers in V. Then

(8.37) det(A|V) =
∏

F :F∈Vo,F 6∈Γ

(1− a2F )βF ,

where aF is the product of weights of all hyperplanes which contain F . Equivalently,

(8.38) det(A|V) =
∏

X:X6=⊤

(1− a2X)c
X,VβX ,

with aX and βX as in (8.36) and cX,V as in (8.26).

Similarly, one can define the symmetric Varchenko matrix AX for any flat X.
Its determinant can be obtained by specializing (8.28):

(8.39) det(AX) =
∏

Y:Y<X

(1− (aXY)
2)c

YβX
Y ,

where aXY is the product of weights of all hyperplanes in A which contain Y but do
not contain X, and βX

Y is as before.
Let us now consider the linear system (8.33). One can show by induction that

the solution has antipodal invariance, that is, xF = xF . Formulas (8.35a) and
(8.35b) then simplify to

(8.40a) xG =
−1

1− (−1)rk(G)υG,G

∑

F :F<G

xF

and

(8.40b) xG =
(−1)rk(G)

1− (−1)rk(G)υG,G

∑

F :F<G

xFυF,F

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



8.5. SYMMETRIC VARCHENKO MATRIX 221

respectively. Solving (8.40a) yields

(8.40c) xG =

Å ∑

O<F1···<Fn=G

n∏

i=1

−1
1− (−1)rk(Fi)υFi,Fi

ã
xO.

The sum is over all strict chains of faces from O to G. (A similar formula can be
obtained from the other recursion.) For G = O, there is only one chain, and the
formula is a tautology. For G = P a vertex, again there is only one chain, and the
formula gives

xP =
−1

1 + υP,P
xO.

Note that in the symmetric case, the formulas given in Example 8.20 specialize to
this formula.

8.5.2. Equal weights. Let q be a formal variable. For any chambers C and D,
let

qC,D := qdist(C,D).

Put A := (qC,D). We call it the q-Varchenko matrix .

Theorem 8.23. The determinant of the q-Varchenko matrix is given by

(8.41) det(A) =
∏

X:X6=⊤

(1− q2nX)c
XβX ,

where nX is the number of hyperplanes which contain X, and βX is as in (8.23).

Proof. This follows from Theorem 8.11 by equating all the variables wt(h) and
calling this new variable q, or similarly from Theorem 8.21 by equating the wt(H)
to q. �

Since (8.41) is a formal identity, we may substitute any scalar value for q. We
conclude that det(A) is nonzero when q is not a root of unity.

More generally: Fix a flat X. For any faces F and G with support X, let

qF,G := qdist(F,G).

Put AX := (qF,G). Then, by (8.28),

(8.42) det(AX) =
∏

Y:Y<X

(1− q2nX
Y)c

YβX
Y ,

where nXY is the number of hyperplanes which contain Y but do not contain X, and
βX
Y is as before. Note that the determinant of AX is nonzero when q is not a root

of unity.
Let RΓ[AX] denote the linearization of the set of chambers of AX (or equiva-

lently faces with support X). Define a bilinear form on this space by

〈F,G〉 := qdist(F,G).

Its determinant in the canonical basis is given by (8.42). In particular, this bilinear
form is non-degenerate when q is not a root of unity.

Denote the inverse of AX by (qF,G). Explicitly,

(8.43)
∑

G: s(G)=X

qF,Gqdist(G,K) =

®
1 if F = K,

0 if F 6= K.
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Here F and K are faces of support X, and the sum is over all faces G of support
X. By Cramer’s rule, each qF,G is a rational function in q with the denominator
factorizing as a product of terms of the form (1− qn). One can formally invert the
denominator and express each qF,G as a formal power series in q, whose coefficients
are related to non-stuttering paths in X: For a path α = F0 − · · · − Fn, define

qα :=
n∏

i=1

qdist(Fi−1,Fi) = q
∑n

i=1
dist(Fi−1,Fi).

Then

(8.44) qF,G =
∑

α: s(α)=F,t(α)=G

(−1)l(α)qα.

This is a specialization of (8.30). The sum is over all non-stuttering paths α in
X from F to G. The rhs makes sense because there are only finitely many non-
stuttering paths which contribute to a given power of q.

Example 8.24. When X is the minimum flat, AX = (1), the matrix of size 1 whose
only entry is 1, and hence qO,O = 1.

Let X be a rank-one flat with faces F and F . Put d := dist(F, F ). Then

AX =

Å
1 qd

qd 1

ã
and (AX)−1 =

1

1− q2d
Å

1 −qd
−qd 1

ã
.

Hence

qF,F = qF,F =
1

1− q2d = 1 + q2d + q4d + . . .

and

qF,F = qF,F =
−qd

1− q2d = −qd − q3d − q5d − . . . .

One may readily check that the power series expressions are consistent with (8.44).

Suppose k = C. Then each qF,G is a meromorphic function with poles possible
only at roots of unity. If X is not the minimum flat, then qF,G has at least one
pole, so the power series in the rhs of (8.44) has radius of convergence 1, and (8.44)
holds for |q| < 1.

Consider the linear system

(8.45)
∑

F :HF=G

xF qdist(F,G) = 0,

indexed by O < H ≤ G. The variables are the xF and the coefficients are the
qdist(F,G).

Theorem 8.25. Given xO, the linear system (8.45) has a unique solution which
can be computed recursively by

(8.46a) xG =
−1

1− (−1)rk(G)qdist(G,G)

∑

F :F<G

xF

or

(8.46b) xG =
(−1)rk(G)

1− (−1)rk(G)qdist(G,G)

∑

F :F<G

xF qdist(F,F ).
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Explicitly,

(8.46c) xG =

Å ∑

O<F1···<Fn=G

n∏

i=1

−1
1− (−1)rk(Fi)qdist(Fi,Fi)

ã
xO.

The sum is over all strict chains of faces from O to G.

This is a special case of Theorem 8.19. The formulas are readily seen from
formulas (8.40a), (8.40b) and (8.40c). In the last formula, when G = P is a vertex,
there is only one chain, namely, O < P , and we obtain

xP =
−1

1 + qdist(P,P )
xO.

Example 8.26. Let A be the rank-one arrangement with chambers C and C. The
linear system (8.45) consists of two equations:

xO + xC + q xC = 0 and xO + q xC + xC = 0.

Its solution is given by

xC = xC = − 1

1 + q
xO,

where xO is arbitrary.
Now let A be the rank-two arrangement of d lines. The solution to the linear

system (8.45) is given by

xP = − 1

1 + qd−1
xO and xC =

1− qd−1

(1− qd)(1 + qd−1)
xO,

where xO is arbitrary. Here P is any vertex, and C is any chamber. These formulas
can be obtained from (8.46c).

Example 8.27. Let q be a scalar. Then given xO, (8.45) has a unique solution if
q is not a root of unity. This applies to q = 0. In this case, the solution to (8.45)
is explicitly given by

(8.47) xG = (−1)rk(G)xO.

This follows directly from (8.46b) since except the term corresponding to F =
O, the remaining terms in the sum become zero. Alternatively, (8.46a) yields∑
F :F≤G x

F = 0 for each G > O. Thus xG = µ(O,G)xO, where µ(O,G) is the
Möbius function of the poset of faces. Now apply (1.40).

For q = 1, the solution is not determined by the value of xO. In this case, the
solutions are precisely the Zie elements, whose study we will begin in Chapter 10.

8.5.3. An application. We give an interesting application of formula (8.41).

Lemma 8.28. Let W be a finite Coxeter group. For q not a root of unity, the
element ∑

w∈W

ql(w)w

is invertible in the group algebra of W .
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Proof. We will make use of Lemma D.25, item (3), which is an elementary fact
from algebra.

Let Γ[A] denote the linearization of the set of chambers Γ[A]. It is a faithful
left module over W (since it is isomorphic to the left regular representation of W ).
The action of

∑
w∈W ql(w)w on Γ[A] is given by the linear map

D 7→
∑

w∈W

ql(w)wD,

where l(w) is taken wrt the reference chamber C. We want to show that this map is
an isomorphism. The matrix of this map in the canonical basis of chambers agrees
with the matrix of the following bilinear form on chambers

〈uC, vC〉 = ql(vu
−1) = qdist(u

−1C,v−1C).

By the change of basis uC 7→ u−1C, this bilinear form agrees with

〈D,D′〉 = qdist(D,D
′).

Formula (8.41) implies that the determinant of this bilinear form is nonzero if q is
not a root of unity. So the linear map is an isomorphism as required. �

8.6. Braid arrangement

The braid arrangement was reviewed in Sections 6.3–6.6. Recall that a top-
cone of the braid arrangement corresponds to a partial order. Chambers in the
top-cone correspond to linear extensions of the partial order. We now specialize
Theorem 8.12 to this setting. We give an explicit combinatorial description for the
Varchenko matrix indexed by linear extensions of a partial order, followed by a
formula for its determinant. As special cases, we consider the Varchenko matrix
indexed by permutations, and by Catalan paths.

8.6.1. Varchenko matrix indexed by linear extensions of a partial order.
Let P be a partial order on a finite set I. For each ordered pair (i, j) of incomparable
elements in P , let aij be a parameter. (We do not assume aij = aji.) Given two
linear extensions ℓ1 and ℓ2 of P , define

(8.48) υℓ1,ℓ2 :=
∏

(i,j)∈I2

i < j in ℓ1
i > j in ℓ2

aij .

(If ℓ1 and ℓ2 disagree on {i, j}, then i and j are incomparable in P .) We obtain a
matrix

AP := (υℓ1,ℓ2)

indexed by linear extensions of P .
We say that a composition F of I is a prelinear extension of P if whenever

i < j in P , the block of i in F strictly precedes the block of j. We say it is an
almost-linear extension of P if in addition F contains exactly one non-singleton
block, say B. For such F , we let c(F ) denote the size of B, and set

(8.49) bF :=
∏

(i,j)∈B2

i6=j

aij .

Since F extends P , all pairs (i, j) occurring in the product are incomparable in P .
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Theorem 8.29. We have

(8.50) det(AP ) =
∏

F

(1− bF )(c(F )−2)!.

The product is over the set of almost-linear extensions F of P .

Proof. We employ the dictionary between geometry and combinatorics of the
braid arrangement on I from Table 6.2. For each pair (i, j) ∈ I2 with i 6= j there
is one half-space, namely, hij given by the equation xi < xj . We set

wt(hij) := aij

for each pair of incomparable elements in P .
Chambers correspond to linear orders, and a chamber is contained in hij pre-

cisely when i < j in the corresponding order. The partial order P gives rise to a
top-cone whose chambers correspond to the linear extensions of P . It follows that
(8.48) is a special case of (8.21).

Let i and j be two elements in I and let C be a chamber. The corresponding
linear order is of the form

C = a1| · · · |ap|i|b1| · · · |bq|j|c1| · · · |cr or C = a1| · · · |ap|j|b1| · · · |bq|i|c1| · · · |cr

Let H be the hyperplane xi = xj . In either case, the face C ∧ H then corresponds
to the composition

a1| · · · |ap|{i, b1, . . . , bq, j}|c1| · · · |cr.

Faces F in the interior of the cone correspond to prelinear extensions of P . For F
to satisfy C ∧H = F , F must contain exactly one non-singleton block, and in fact
be an almost-linear extension of P . Conversely, given such an extension F of P ,
the chambers C that satisfy C ∧ H = F only differ in the ordering of the elements
i, b1, . . . , bq, j, with the proviso that i and j must be the endpoints of this segment;
the remaining elements must be ordered as in F . In conclusion, if F is not an
almost-linear extension of P , βF = 0, and if F is such an extension, βF = q!.

The hyperplanes that contain F are those of equation xh = xk where h and k
belong to the non-singleton block. Therefore, bF as defined by (8.22) agrees with
(8.49). Finally, (8.50) follows from (8.25). �

Example 8.30. We illustrate the result with a simple example in which I =
{i, j, k}.

•

•

i

j

• k • i|jk

ik|jk|ij

ij|k

i|k|j

k|i|j

i|j|k

partial order top-cone
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The linear extensions are i|j|k, i|k|j and k|i|j. Listing them in that order, the
matrix is 


1 ajk aikajk
akj 1 aik

akiakj aki 1


 .

The almost-linear extensions are i|jk and ik|j. The determinant is

(1− aikaki)(1− ajkakj).

8.6.2. Varchenko matrix indexed by permutations. For each ordered pair
(i, j) of distinct elements in [n], let aij be a parameter. The set of inversions of a
permutation σ ∈ Sn is

Inv(σ) := {(h, k) ∈ [n]2 | h < k, σ(h) > σ(k)}.

Given two permutations σ and τ ∈ Sn, let

(8.51) υσ,τ :=
∏

(h,k)∈Inv(σ−1τ)

aτ(k)τ(h).

We obtain a matrix A := (υσ,τ ) indexed by permutations in Sn. For each subset B
of [n], let

bB :=
∏

(i,j)∈B2

i6=j

aij .

Also, let c(B) denote the size of B.

Proposition 8.31. We have

(8.52) det(A) =
∏

B

(1− bB)(c(B)−2)!(n−c(B)+1)!.

The product is over all subsets B of [n] of size at least 2.

Proof. We apply Theorem 8.29 to the discrete partial order on [n]. The matrix
entries (8.48) are indexed by all linear orders on [n]. Identify the linear order
i1| · · · |in with the permutation in Sn given by h 7→ ih. If ℓ1 corresponds to σ
and ℓ2 corresponds to τ , then a pair (i, j) satisfies i < j in ℓ1 and i > j in ℓ2
iff (τ−1(j), τ−1(i)) ∈ Inv(σ−1τ). It follows that (8.51) agrees with (8.48). The
almost-linear extensions of the discrete partial order are the compositions F with
exactly one non-singleton block B. For such F , we have bF = bB and c(F ) = c(B).
Given B, the number of such F is (n − c(B) + 1)!. Formula (8.52) follows from
(8.50). �

Let q be a fixed parameter and set aij = q for all i, j. Then υσ,τ = qinv(σ
−1τ)

where inv denotes number of inversions. Formula (8.52) specializes to

(8.53) det(A) =
n∏

i=2

Ä
1− qi(i−1)

ä(ni)(i−2)!(n−i+1)!
.

This is also a special case of (8.41).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



8.6. BRAID ARRANGEMENT 227

8.6.3. Varchenko matrix indexed by Catalan paths. Let Cn be the set of
Catalan paths of length n. They run from (0, 0) to (n, n) and do not go below the
diagonal. The number of such paths is the Catalan number Cn = 1

n+1

(
2n
n

)
[380,

Exercise 6.19.h].
We identify each pair (i, j) with the cell in the integer lattice whose top right

corner is (i, j). Let a+ij and a−ij be two sets of parameters, with 1 ≤ i < j ≤ n. In

other words, we have two parameters for each cell (i, j) located above the diagonal
and between 0 and n.

•

•

a12

a13 a23

Given two paths p and q in Cn, let D(p, q) denote the region between the two
paths. Given a cell (i, j) ∈ D(p, q), let

ǫ(i, j) :=

®
+ if p is above q on that cell,

− if p is below q on that cell.

Define

(8.54) υp,q :=
∏

(i,j)∈D(p,q)

a
ǫ(i,j)
ij .

In other words, we pick one parameter for each cell between p and q; we choose it
from one set of parameters (+) or the other (−) depending on the relative position
of the paths. Then we multiply them all. An example follows.

•

•

p

•

•

q
υp,q = a+12a

−
23

Proposition 8.32. We have

(8.55) det(υp,q)p,q∈Cn
=

∏

1≤i<j≤n

(1− a+ija−ij)(
i+j−3
i−1 )(2n−i−j−1

n−j ).

Let q be a fixed parameter. If a+ij = a−ij = q for all i, j, then υp,q = qa(p,q) where

a(p, q) is the area of D(p, q). On the other hand, if a+ij = q and a−ij = q−1, then

υp,q = qa(p,q) where a(p, q) is the signed area of the region (the area below p and
above q, minus the area above p and below q). According to (8.55), in this case the
matrix is singular.

Proof. We apply (8.50) to the cartesian product poset [2]× [n]. Its linear exten-
sions can be identified with Catalan paths of length n as follows. If the i-th element
of the linear extension occurs in 1× [n], the i-th step of the path is vertical. If the
element occurs in 2× [n], the step is horizontal. An example follows.
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•

•

•

•

•

•

(1, 1)

(2, 3)

1

2

5

6

4

3

•

•

1

2

53 4

6

poset linear extension path

One verifies that (i, j) ∈ D(p, q) iff (2, i) and (1, j) occur in opposite orders in
the linear extensions corresponding to p and q. Thus, (υp,q) is the matrix (8.48) of
the poset [2] × [n]. The relevant set compositions of [2] × [n] contain one block B
of size 2 and all other blocks are of size 1. The former block consists of pairs (2, i)
and (1, j) with i < j. The first block A must consist of the pair (1, 1) and the last
block C of (2, n). The segment between A and B is a shuffle of

(2, 1)| · · · |(2, i− 1) and (1, 2)| · · · |(1, j − 1).

The segment between B and C is a shuffle of

(2, i+ 1)| · · · |(2, n− 1) and (1, j + 1)| · · · |(1, n).
For any such composition F , bF = a+ija

−
ij and βF = 1 (c(F ) = 2). Formula (8.55)

now follows from (8.50). �

Exercise 8.33. Let Pm,n be the set of all lattice paths from (0, 0) to (m,n). The

number of such paths is the binomial coefficient
(
m+n
n

)
. Let a+ij and a

−
ij be two sets

of parameters, with 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given two paths p and q in Pm,n, define
υp,q by the same formula as in (8.54). Show that

(8.56) det(υp,q)p,q∈Pm,n
=

∏

1≤i≤m
1≤j≤n

(1− a+ija−ij)(
i+j−3
i−1 )(m+n−i−j−1

n−j ).

(Example 8.30 addresses the case m = 2, n = 1.)

8.6.4. Equal weights. Let P be a partial order on a set I. We specialize Theo-
rem 8.29 by setting aij = q for all i, j ∈ I, where q is a fixed parameter. We obtain

a matrix AP = (q〈ℓ1,ℓ2〉) with entries indexed by linear extensions ℓ1, ℓ2 of P , and

〈ℓ1, ℓ2〉 = |{(i, j) ∈ I2 | i < j in ℓ1, i > j in ℓ2}|.
Given an antichain B of P , let I/B denote the quotient of the set I in which

all elements of B are identified (and the remaining elements are kept). The partial
order P induces a relation on I/B . Since B is an antichain, this relation is acyclic.
Its transitive closure is then a partial order P/B . Let L(B) denote the number of
linear extensions of P/B .

Proposition 8.34. We have

(8.57) det(AP ) =
∏

B

(1− q|B|(|B|−1))(|B|−2)!L(B).

The product is over all antichains B of P other than the singletons.
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Proof. An almost-linear extension F of P yields an antichain B of P (its non-
singleton block) and a linear extension of P/B , and conversely. We have bF =
q|B|(|B|−1) and c(F ) = |B|. The number of F giving rise to B is L(B). Thus, (8.57)
is a special case of (8.50). �

8.7. Type B arrangement

The type B arrangement was reviewed in Section 6.7. Top-cones of this ar-
rangement correspond to type B partial orders (signed posets). Chambers in the
top-cone correspond to linear extensions of the partial order which are type B linear
orders. We specialize Theorem 8.12 to this setting.

Let the sets I and I be as in Section 6.7.1. Let P be a type B partial order
on I. It is a particular partial order on the set I. For each ordered pair (i, j) of
incomparable elements in P , let aij be a parameter. We assume that for all i, j ∈ I,

(8.58) aij = aj i.

Given two type B linear extensions ℓ1 and ℓ2 of P , define

(8.59) υℓ1,ℓ2 :=
∏

(i,j)∈I
2

i < j in ℓ1
i > j in ℓ2

√
aij .

Contributing indices occur in pairs (i, j) and (j, i). By (8.58), υℓ1,ℓ2 is a monomial
in the variables aij . We obtain a matrix AP := (υℓ1,ℓ2) indexed by type B linear
extensions of P .

Let F be a type B composition that is a prelinear extension of P (whenever
i < j in P , the block of i in F strictly precedes the block of j). Suppose that F has
either one or two non-singleton blocks. In the former case, the non-singleton block
B must be the zero block of F and its size be odd and at least 3. In the latter,
the non-singleton blocks are paired by the involution, call them B and B. In either
case, let c(F ) be the size of B, and set

(8.60) bF :=
∏

(i,j)∈B2

i6=j

aij .

An analysis similar to that in Theorem 8.29 yields the following result as a
special case of Theorem 8.12.

Theorem 8.35. We have

(8.61) det(AP ) =
∏

F

(1− bF )(c(F )−3)!! ·
∏

F

(1− bF )(c(F )−2)!.

The first product is over the set of type B prelinear extensions F of P with one
non-singleton block, the second over those with two.

Exercise 8.36. Formulate the analogue of Proposition 8.34 for the arrangement
of type B and deduce it from Theorem 8.35.

Notes

Odd-even invariant. Proposition 8.2 improves upon [9, Proposition 10.22]; the figure
shown in its proof is the same as [9, Figure 10.12]. The odd-even invariant is considered
by Lawrence in the more general context of oriented matroids [261]; see also [154, 240].
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Varchenko matrix. Varchenko considered the bilinear form arising from a weight func-
tion on hyperplanes, and obtained the factorization (8.36). This result appears in [402,
Theorem (1.1)] and [401, Theorem 2.6.2]. He worked with affine arrangements, but this
case can be deduced from (8.25) by building the corresponding linear arrangement one
dimension higher, and using the cone defined by the special hyperplane. The more general
factorization for a weight function on half-spaces (8.23) is stated in [9, Equation (10.131)].
The proof that we have given here follows ideas of Varchenko; working with arbitrary top-
cones has simplified the induction for us. The number βX which appears in the exponent
in (8.36) is the Crapo invariant for the lattice of flats of AX, see [121], [420, Theorem D]
and [197].

The number βX which appears in the exponent in (8.36) is the Crapo invariant of AX.
This follows from [420, Theorem D]. The invariant was introduced in [121] for arbitrary
matroids. Fine information on this invariant of arrangements is provided in [197]. See
[257, 258] and [421] for the case of oriented matroids.

Our results on Varchenko matrices overlap to an extent with those in the thesis of
Gente [187], although they were obtained independently and by different methods. Gente
considers the Varchenko matrix for top-cones (in the case of symmetric weights) and
obtains the factorization of its determinant [187, Theorem 4.5]. Her formula is equivalent
to (8.38). Proposition 8.34 is precisely [187, Theorem 5.6]. Theorems 8.12 and 8.29, and
most of the results in Section 8.4, appear to be new.

Formula (8.53) was first proved by Zagier [418, Theorem 2]. This specialization is
studied in [150, Section 4] and [210]. Lemma 8.28 (for the symmetric group) is also in
Zagier’s paper. Some other papers dealing with the Varchenko bilinear form are [133,
134, 131, 355]. Additional references can be found in Krattenthaler’s surveys [248,
Theorem 55] and [249, Section 5.7]. A “quasiclassical” version of Varchenko’s result
appears in his earlier paper with Schechtman [354]. Brylawski and Varchenko extended
this result from arrangements to matroids [99, Theorem 4.16].
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CHAPTER 9

Birkhoff algebra and Tits algebra

We study the Birkhoff algebra and the Tits algebra. They are obtained by
linearizing the Birkhoff monoid of flats and the Tits monoid of faces, respectively.
Since the poset of flats is a lattice, the Birkhoff algebra is a split-semisimple com-
mutative algebra. Thus, its simple modules are one-dimensional, and there is one
for each flat. Further, any module is a direct sum of simple modules. The Tits
algebra is a non-commutative elementary algebra. Its split-semisimple quotient is
precisely the Birkhoff algebra (under the support map). Thus, its simple modules
are also one-dimensional and indexed by flats. However, an arbitrary module (for
instance, the module of chambers) is not a direct sum of simple modules. A con-
sequence of knowing the simple modules is that one can compute the eigenvalues
and multiplicities of the action of any given element of the Tits algebra on any
module. For the module of chambers, this yields the Bidigare-Hanlon-Rockmore
(BHR) theorem.

A general framework for studying the Birkhoff algebra is given by algebras
obtained by linearizing lattices. We give three more examples of this nature, namely,
the algebra of charts, the algebra of dicharts and the algebra of cones. These
are obtained by linearizing the lattices of charts, dicharts and cones, respectively.
Further, the four algebras relate to one another by linearizations of join-preserving
maps. In the same vein, a general framework for studying the Tits algebra would
be a “noncommutative lattice” such as a left regular band, but we do not pursue
this idea in detail.

Modules over the Birkhoff algebra and Tits algebra have a primitive part. For
instance, the algebra of charts can be viewed as a module over the Birkhoff algebra,
and its primitive part is spanned by connected charts. The primitive part of the
algebra of cones is spanned by cones whose base is the minimum flat.

The Janus algebra is obtained by linearizing the Janus monoid of bi-faces.
Just like the Tits algebra, it is elementary and its split-semisimple quotient is the
Birkhoff algebra. It admits a deformation by a parameter q which we call the q-
Janus algebra. When q is not a root of unity, this algebra is split-semisimple and
Morita equivalent to the Birkhoff algebra.

Background material on algebras and modules is given in Appendix D. This
includes split-semisimple commutative algebras, simple modules, characters, com-
plete systems of idempotents, radical of an algebra, diagonalizable elements and
elementary algebras. Algebras obtained by linearizing lattices are treated in Sec-
tion D.9.

We will continue to follow Convention 1.1. For instance, Σ[A] denotes the Tits
algebra of A and Π[A] denotes the Birkhoff algebra of A. When A is understood
from the context, we may simply write Σ, Π, and so on.

233
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Convention 9.1. All modules over the Birkhoff algebra and the Tits algebra are
assumed to be finite-dimensional.

9.1. Birkhoff algebra

The Birkhoff algebra is the linearization of the Birkhoff monoid. It has a
basis indexed by flats, with the product given by the join operation. It is a split-
semisimple commutative algebra; the primitive idempotents can be written explic-
itly using the Möbius function of the lattice of flats. It is self-dual as a module over
itself, and the self-duality isomorphism can be explicitly described by choosing a
family of nonzero scalars indexed by flats. This is a specialization of the results of
Section D.9.

9.1.1. Birkhoff algebra. Recall the set of flats Π[A]. Since it is a lattice under the
partial order of inclusion, it carries a monoid structure given by the join operation.
Let Π[A] denote its linearization over a field k, with canonical basis H. It is a
commutative k-algebra:

HX · HY := HX∨Y.

We call this the Birkhoff algebra.

9.1.2. Q-basis and split-semisimplicity. Define the Q-basis of Π[A] by

(9.1) HX =
∑

Y:Y≥X

QY or equivalently QX =
∑

Y:Y≥X

µ(X,Y) HY.

In particular, the unit element is

(9.2) H⊥ =
∑

Y

QY.

Specializing Theorem D.47, we obtain:

Theorem 9.2. The Birkhoff algebra is a split-semisimple commutative algebra. Its
dimension equals the number of flats in A. The unique complete system of primitive
orthogonal idempotents is given by the Q-basis:

(9.3) QX · QY =

®
QX if X = Y,

0 otherwise.

By (D.25), we have:

(9.4) HY · QX =

®
QX if X ≥ Y,

0 otherwise.

From now on, whenever convenient, we will abbreviate Π[A] to Π.

9.1.3. Rank one. Let A be the arrangement of rank one. It has two flats, namely,
the minimum flat ⊥ and the maximum flat ⊤. The Q-basis elements are given by

Q⊥ = H⊥ − H⊤, Q⊤ = H⊤.

One can readily check that they define a complete system.
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9.1.4. Characters of modules. Let h be a module over the Birkhoff algebra, and
Ψh the associated representation. For any element w of the Birkhoff algebra, Ψh(w)
denotes the linear operator on h given by multiplication by w, and w · h denotes its
image. In other words, w · h consists of all elements of the form w · h, as h varies
over elements of h. Following (D.1), the character of h is the linear functional

χh : Π→ k, χh(w) = tr(Ψh(w)),

where tr denotes trace.

9.1.5. Exponential and logarithm. Let (ξX) and (ηX) be two families of scalars
indexed by flats which are related by

(9.5) ξX =
∑

Y:Y≥X

ηY and ηX =
∑

Y:Y≥X

µ(X,Y) ξY.

In other words, they are the exponential and logarithm of each other in the lattice
of flats. They correspond to the linear functional f : Π→ k by

(9.6) ξX = f(HX) and ηX = f(QX).

See (D.26) and (D.27).
Some choices for these families are given below.

Example 9.3. For each flat X, put

(9.7) ξX =

®
1 if X = ⊤,
0 otherwise

and ηX = µ(AX).

This choice is a specialization of (D.28).

Example 9.4. For each flat X, put

(9.8) ξX = c(AX) and ηX = |µ(AX)|,
where c(AX) is the number of chambers in AX. The validity of this choice is
equivalent to the Zaslavsky formula (1.45).

Similarly, for each flat X, put

(9.9) ξX = d(AX) and ηX =
∑

Y:Y≥X

|µ(AY
X)|,

where d(AX) is the number of faces in AX. The validity of this choice is equivalent
to formula (1.46).

Example 9.5. Let h be a module over Π. For each flat X, put

(9.10) ξX(h) := dim(HX · h) and ηX(h) := dim(QX · h).

This choice is a specialization of (D.29). It is illustrated below.

• For h = Π (viewed as a module over itself), ξX(Π) is the number of flats
greater than X, and ηX(Π) ≡ 1.
• Let E denote the module k, with each basis element HX acting by the
identity. Then ξX(E) ≡ 1, and ηX(E) is 1 if X = ⊤ and 0 otherwise.

• Let Λ denote the linearization of the set of lunes Λ. Recall from Section 4.7
that the Birkhoff monoid acts on Λ. Hence, by linearization, the Birkhoff
algebra acts on Λ. By Corollary 4.47, ξX(Λ) is the number of lunes whose
base is greater than X. It then follows that ηX(Λ) is the number of lunes
whose base is equal to X.
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The linear functional f : Π → k associated to ξX(h) (or to ηX(h)) is the character
χh of h.

Exercise 9.6. For each flat X, put

ξX = c(AX)
2 and ηX =

∑

Y∧Z=X

|µ(AY)||µ(AZ)|.

The sum is over both Y and Z. Check that (9.5) holds. Also compare with (9.8).

9.1.6. Simple modules and diagonalizability.

Theorem 9.7. The Birkhoff algebra Π has one simple module (up to isomorphism)
for each flat X. It is one-dimensional and defined by the multiplicative character

χX : Π→ k,
∑

Y

wYHY 7→
∑

Y:Y≤X

wY.

Proof. This is a special case of Theorem D.51. �

Let ηX(h) be as in (9.10). Then: For any w ∈ Π,

(9.11) χh(w) =
∑

X

χX(w) ηX(h).

This is a special case of (D.30).

Theorem 9.8. Any module h is a direct sum of simple modules with ηX(h) being
the multiplicity of the simple module corresponding to the flat X.

Proof. This is a special case of Theorem D.52. �

Theorem 9.9. Let h be a module over the Birkhoff algebra. For w =
∑

X w
XHX,

the linear operator Ψh(w) is diagonalizable. It has an eigenvalue

(9.12) λX(w) = χX(w) =
∑

Y:Y≤X

wY

for each X, with multiplicity ηX(h).

Proof. This is a special case of Theorem D.53. �

9.1.7. Self-duality. Let Π[A]∗ denote the linear dual of Π[A]. Since Π[A] is an
algebra, it is a module over itself. We view Π[A]∗ as a Π[A]-module with the dual
action (D.2). Let M be the basis of Π[A]∗ dual to H, and P be the basis dual to Q.
The action on these bases is given by

(9.13) HY · MW =
∑

X:X∨Y=W

MX and HY · PX =

®
PX if X ≥ Y,

0 otherwise.

This is a specialization of (D.34).

Theorem 9.10. For any ξ and η as in (9.5), the map Π[A]→ Π[A]∗ given by

HX 7→
∑

Y

ξX∨Y MY or equivalently QX 7→ ηX PX

is a morphism of Π[A]-modules. In particular, if ηX 6= 0 for all X, then this map
is an isomorphism.

Proof. This is a special case of Theorem D.59. �
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Theorem 9.11. The maps

ψ,ϕ : Π[A]→ Π[A]∗

defined by

ψ(HY) :=
∑

X

cX∨Y MX and ϕ(HY) :=
∑

X:X∨Y=⊤

MX

are isomorphisms of Π[A]-modules.

Proof. This follows by specializing Theorem 9.10 to the choices of ξ given in (9.7)
and (9.8). �

9.1.8. Over and under a flat. Cartesian product. We briefly discuss how
the Birkhoff algebra behaves under passage to arrangements over and under a flat,
and under taking cartesian product of arrangements.

For any flat X of A, the map

(9.14) ∆X : Π[A]→ Π[AX], HY 7→ HX∨Y/X

is an algebra homomorphism. For flats X ≤ Y, the diagram

(9.15)

Π[A]
∆Y

$$❏
❏❏❏

❏∆X

zzttt
tt

Π[AX]
∆Y/X

// Π[AY]

commutes, where ∆Y/X(HZ/X) = HY∨Z/Y.
For any flat X of A, let

(9.16) µX : Π[AX]→ Π[A], HZ/X 7→ HZ.

These maps satisfy a diagram similar to (9.15). The map µX is a section of the
map ∆X, that is, ∆XµX = id. Composing in the other direction yields

(9.17) µX∆X(z) = HX · z.

Note that µX preserves products, that is, µX(z · w) = µX(z) · µX(w), but it does
not preserve the unit, so it is not an algebra homomorphism.

Exercise 9.12. Check that for any flats X and Y,

∆YµX = µY∨X/Y∆X∨Y/X.

We call this the bimonoid axiom for flats. It links the Birkhoff algebras of A, AX,
AY and AX∨Y.

For any flat X, the linear map

(9.18) Π[A]→ Π[AX],
∑

Y

xYHY 7→
∑

Y:Y≤X

xYHY

is an algebra homomorphism.
For any arrangements A and A′, there is an algebra isomorphism

(9.19) Π[A×A′]→ Π[A]⊗ Π[A′], H(X,X′) 7→ HX ⊗ HX′ .

This follows from (1.19).
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9.2. Algebras of charts, dicharts and cones

In Section 2.6, we defined charts and dicharts for an arrangement, and related
them to flats and cones. These are all lattices linked by join-preserving maps.
Recall that the linearization of the lattice of flats is the Birkhoff algebra. In a
similar manner, we linearize the other three lattices to obtain the algebra of charts,
the algebra of dicharts and the algebra of cones. They can be studied in much the
same way as the Birkhoff algebra by using the general theory of Section D.9. They
are split-semisimple and self-dual. Further, the self-duality isomorphisms can be
chosen in a mutually consistent way.

9.2.1. Algebras of charts, dicharts and cones. Let G[A] and −→G [A] denote
the linearizations of the set of charts G[A] and dicharts

−→
G[A], respectively. We

write H for the canonical basis. Both spaces are linearizations of a (Boolean) lat-
tice, and hence commutative algebras, with product induced by the join operation
(intersection). For instance, the product in G[A] is given by

Hg · Hh := Hg∩h.

Similarly, let Ω[A] denote the linearization of the set of cones Ω[A]. It is a commu-
tative algebra via

HV · HW := HV∨W.

By Theorem D.47, the algebras G[A], −→G [A] and Ω[A] are split-semisimple. Let
Q denote the basis of primitive idempotents in each case. Explicitly, for charts, by
(D.22),

Hg =
∑

h:h⊆g

Qh or equivalently Qg =
∑

h:h⊆g

(−1)|g\h| Hh.

For dicharts, the formulas are very similar. For cones,

HV =
∑

W:W≥V

QW or equivalently QV =
∑

W:W≥V

µ(V,W) HW,

where µ is the Möbius function of the lattice of cones.
The maps in the first diagram in (2.17) are join-preserving. So by linearizing,

we obtain the following commutative diagram of algebras.

(9.20)

G[A] λ′

//
−→
G [A]

Π[A]
i

//

λ

OO

Ω[A]

~λ

OO

The maps on the H-basis are straightforward. On the Q-basis, they can be described
by employing the general formula (D.36) and using the maps in the second diagram
in (2.17). This is elaborated below.

The map λ sends HX to Hg, where g is the set of hyperplanes containing X, see
(2.18). On the Q-basis, it is given by

(9.21) QX 7→
∑

g: ρ(g)=X

Qg,

where ρ is the right adjoint of λ given in (2.19). Explicitly, the sum is over all
charts g whose center is X.
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The map i sends HX to HX, and on the Q-basis,

(9.22) QX 7→
∑

V: b(V)=X

QV.

The sum is over all cones V whose base is X.
The map λ′ sends Hg to Hr, where r is the set of those half-spaces whose base

is in g. On the Q-basis, it is given by

(9.23) Qg 7→
∑

r: ρ′(r)=g

Qr,

with ρ′ is the right adjoint of λ′ given in (2.21). Explicitly, the sum is over all
dicharts r such that g is the set of hyperplanes bounding the half-spaces in r.

The map ~λ sends HV to Hr, where r is the set of half-spaces containing V, see
(2.22). On the Q-basis, it is given by

(9.24) QV 7→
∑

r: ~ρ(r)=V

Qr,

where ~ρ is the right adjoint of ~λ given in (2.23). Explicitly, the sum is over all
dicharts r such that the intersection of the half-spaces in r is V.

9.2.2. Modules. View G[A], −→G [A] and Ω[A] as modules over Π[A] via the algebra
homomorphisms in (9.20). For these modules, the numbers ξX(h) and ηX(h) defined
in (9.10) can be described using Lemma D.62. For instance, ξX(G) is the number
of charts whose center is greater than X which is the same as 2 power the number
of hyperplanes which contain X, while ηX(G) is the number of charts whose center
is X. Similarly, ξX(Ω) is the number of cones whose base is greater than X, while
ηX(Ω) is the number of cones whose base is X. (Compare with the module Λ in
Example 9.5.)

Any module over Π[A] has a primitive part (Section D.9.5). By Lemma D.54,

(9.25) P(h) = Q⊥ · h.

More generally,

(9.26) PX(h) =
⊕

Y:Y≤X

QY · h,

with X = ⊥ recovering the primitive part.
For the modules under consideration, a basis for these spaces can be given using

Lemma D.61. For instance, the primitive part of G, denoted P(G), has a basis of Qg,
as g varies over all connected charts, and more generally, PX(G) has a basis of Qg,
as g varies over all charts whose center is smaller than X. Similarly, the primitive
part of Ω, denoted P(Ω), has a basis of QV, as V varies over all cones whose base
is the minimum flat, and more generally, PX(Ω) has a basis of QV, as V varies over
all cones whose base is smaller than X.

9.2.3. Self-duality. Let (ξg) and (ηg) be two families of scalars indexed by charts
such that

(9.27) ξg =
∑

h:h⊆g

ηh or equivalently ηg =
∑

h:h⊆g

(−1)|g\h| ξh.

As a special case of Theorem D.59, we obtain:
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Theorem 9.13. For any ξ and η as in (9.27), the map G[A]→ G[A]∗ given by

Hg 7→
∑

h

ξg∩h Mh or equivalently Qg 7→ ηg Pg

is a morphism of G[A]-modules. In particular, if ηg 6= 0 for all g, then this map is
an isomorphism.

In view of the algebra homomorphism from flats to charts, the above map is
also a morphism of Π[A]-modules.

Theorem 9.13 also holds with charts replaced by dicharts or cones (with ap-
propriate changes in the notation). The analogous result for flats is given in The-
orem 9.10. There is a nice choice for η in all four cases which is consistent with
the maps in (9.20). We elaborate on this below. For a flat X, cone V, chart g and
dichart r, let

(9.28) ηX := µ(X,⊤), ηV := µ(V,⊤), ηg := (−1)|g| and ηr := (−1)|r|.
We point out that the latter two are also Möbius functions of their respective lat-
tices. So we are in the setup of (D.28), with a simple formula for the corresponding
ξ. For instance, for the lattice of charts,

(9.29) ξg =

®
1 if g has no hyperplanes,

0 otherwise.

Lemma 9.14. Let A be an arrangement. Then for any flat X,

µ(X,⊤) =
∑

g: ρ(g)=X

(−1)|g|, µ(X,⊤) =
∑

V: b(V)=X

µ(V,⊤),

for any chart g,

(−1)|g| =
∑

r: ρ′(r)=g

(−1)|r|,

and for any cone V,

µ(V,⊤) =
∑

r: ~ρ(r)=V

(−1)|r|.

Proof. All identities are special cases of (D.40). (One has to check that the
hypothesis of Lemma D.63 are met.) Also, the first identity is the same as formula
(1.47). �

It follows from (9.28) that
∑

g: ρ(g)=X

ηg = ηX,
∑

V: b(V)=X

ηV = ηX,
∑

r: ρ′(r)=g

ηr = ηg,
∑

r: ~ρ(r)=V

ηr = ηV.

A comparison with (9.21), (9.22), (9.23) and (9.24) yields a commutative diagram

G[A] λ′

//

!!❇
❇❇

❇❇

−→
G [A]

}}④④
④④
④

k

Π[A]
i

//

λ

OO

==③③③③③
Ω[A]

~λ

OO

bb❊❊❊❊❊

where the four maps to k all send Qx to ηx. This can also be seen as a special case
of Lemma D.64.
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9.3. Tits algebra

The Tits algebra is the linearization of the Tits monoid. It is an example of an
elementary algebra. Its split-semisimple quotient is precisely the Birkhoff algebra
(and the kernel of the support map is its radical). We also introduce the projective
Tits algebra.

Background information on elementary algebras is given in Section D.8.

9.3.1. Tits algebra. Recall the set of faces Σ[A]. It carries the structure of a
monoid under the product (1.5). This is the Tits monoid. Let Σ[A] denote its
linearization over a field k, with canonical basis H. It is an algebra:

HF · HG := HFG.

We call this the Tits algebra.
The linearization of the support map (1.2) yields

(9.30) s : Σ[A] ։ Π[A], HF 7→ Hs(F ).

We continue to call this the support map. It is a surjective morphism of algebras,
that is,

(9.31) s(z · w) = s(z) · s(w).

This is a formal consequence of (1.11).

9.3.2. Radical of the Tits algebra. Let N denote the kernel of the support map
(9.30). We set out to prove that

N = rad(Σ[A]),

the radical of the Tits algebra.
Since the support map is an algebra homomorphism, N is an ideal of the Tits

algebra. Let z =
∑
F x

F HF be any element of Σ[A]. Then observe that

(9.32) z ∈ N ⇐⇒
∑

F : s(F )=X

xF = 0 for all flats X.

In particular, for this to occur, xO = 0. Note that for any faces F and G with the
same support, HF − HG belongs to N, and elements of this form linearly span N.

Exercise 9.15. Check that for any face F , the element HF − HF is nilpotent of
order 2.

An element of the Tits algebra is homogeneous if it is a linear combination of
faces with the same support. For any such element x, let us denote this common
support by s(x). By convention, s(0) = ⊤, the maximum flat. Note that an
arbitrary element of the Tits algebra can be written as a linear combination of
homogeneous elements. Further, the product of homogeneous elements is again
homogeneous. Also, s(x), s(y) ≤ s(x · y) for any homogeneous elements x and y.

Lemma 9.16. If x ∈ N is homogeneous and F is a face such that s(x) ≤ s(F ), then
HF · x = 0. More generally, if x and y are homogeneous, x ∈ N and s(x) ≤ s(y),
then y · x = 0.
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Proof. The second statement follows from the first. To prove the first: Write
x =

∑
K: s(K)=X a

KHK , where X = s(x). By hypothesis, FK = F for all K of
support X. Thus,

HF · x =
∑

K: s(K)=X

aKHF · HK =
( ∑

K: s(K)=X

aK
)
HF = 0,

by (9.32). �

Lemma 9.17. For any nonnegative integer k, the ideal Nk only contains elements
which are linear combinations of faces of rank at least k.

Proof. Consider x1 ·x2 · . . . ·xk ∈ Nk, where each xi is a homogeneous element of
N. Then

⊥ ≤ s(x1) ≤ s(x1 · x2) ≤ · · · ≤ s(x1 · . . . · xk).

If equality holds in any place, say s(x1 · . . . · xi−1) = s(x1 · . . . · xi), then s(xi) ≤
s(x1 · . . . · xi−1), and hence x1 · . . . · xi = 0 by Lemma 9.16. Thus we may assume

⊥ < s(x1) < s(x1 · x2) < · · · < s(x1 · . . . · xk)

from which we deduce that x1 · x2 · . . . · xk is a linear combination of faces of rank
at least k. �

Lemma 9.18. For 0 ≤ k ≤ rk(A), given a face K of rank k, there exists an
element of Nk which is a linear combination of faces of the same support as K in
which HK has a nonzero coefficient.

Proof. Pick any chain of faces O ⋖ F1 ⋖ F2 ⋖ · · · ⋖ Fk = K. For 1 ≤ i ≤ k, let
Gi be the face opposite to Fi in the star of Fi−1 (with the convention F0 = O).
Equivalently, Gi = Fi−1Fi. Then the element

(HF1
− HG1

) · . . . · (HFk
− HGk

)

is a sum of 2k distinct faces all of the same support, with coefficients ±1, with HFk

appearing with coefficient +1.
Alternatively: If the arrangement is simplicial and the field characteristic is 0,

then one can also argue as follows. Let z be the element of N obtained by adding
all vertices of K and subtracting all vertices of K. Then the coefficient of HK in
zk is k!: The only way HK can arise is by multiplying the vertices of K in different
orders. In particular, zk 6= 0 and zk is a linear combination of faces of the same
support as K. �

As a consequence of Lemmas 9.17 and 9.18:

Proposition 9.19. The ideal N is nilpotent. Its nilpotency index is rk(A)+1, that
is, rk(A) + 1 is the smallest index k such that Nk = 0.

Proposition 9.20. The Tits algebra is elementary. Its split-semisimple quotient
is the Birkhoff algebra, with the support map as the quotient map. In particular,
the radical of the Tits algebra is the kernel of the support map: rad(Σ[A]) = N and
it consists precisely of the nilpotent elements of the Tits algebra.

Proof. Apply Proposition D.22 to the nilpotent ideal N, and use Theorem 9.2.
All claims follow. �

In conjunction with Lemma 1.10, we deduce:
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Corollary 9.21. The quotient of the Tits algebra by its radical is commutative,
and equals its abelianization.

This is indeed special since, in general, there are commutative algebras with
nontrivial radical, and noncommutative algebras whose radical is zero.

Corollary 9.22. The dimension of the radical of the Tits algebra is equal to the
number of faces minus the number of flats.

9.3.3. Rank one. Let A be the arrangement of rank one with chambers C and
C. The Tits algebra of A is isomorphic to the algebra of upper triangular 2 by 2
matrices (assuming k does not have characteristic 2). An explicit isomorphism is

HO 7→
Å
1 0
0 1

ã
HC 7→

Å
0 1
0 1

ã
HC 7→

Å
0 −1
0 1

ã
.

In this case, the radical of the Tits algebra is one-dimensional and spanned by
HC − HC . This can be seen directly from Exercise 9.15. The radical identifies with
the one-dimensional space of strictly upper triangular 2 by 2 matrices.

Exercise 9.23. By Example D.36, the algebra of upper triangular matrices is
elementary. Show that the algebra of upper triangular n by n matrices for n ≥
3 cannot be isomorphic to the Tits algebra of any arrangement. (Compare the
respective dimensions of the split-semisimple quotients and the nilpotency indices
of the radicals.)

Exercise 9.24. Check by direct calculation that the idempotents in the Tits alge-
bra of the rank-one arrangement are given by

0, HO, β HC + (1− β) HC , HO + β HC + (−1− β) HC ,
with β an arbitrary scalar.

9.3.4. Projective Tits algebra. Consider the linearization of the opposition
map. It sends z to z, where

(9.33) z =
∑

F

xF HF and z =
∑

F

xFHF .

It is an algebra isomorphism by (1.7), that is,

(9.34) z · w = z · w.

An element z of the Tits algebra is called projective if z = z, that is, the coefficients
of HF and HF in z are equal for all F . Observe that the set of all projective elements
is a subalgebra of the Tits algebra. We call it the projective Tits algebra. It has a
basis indexed by projective faces, namely,

(9.35) H{O,O} := HO and H{F,F} := HF + HF for F 6= O.

This is the H-basis of the projective Tits algebra. Observe that

H{F,F} · H{G,G} = H{FG,FG} + H{FG,FG}.

Proposition 9.25. The projective Tits algebra is elementary. Its radical consists of
the projective elements in the radical of the Tits algebra (or equivalently, projective
elements in the kernel of the support map). Further, if the field characteristic is
not 2, then the split-semisimple quotient is the Birkhoff algebra.
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Proof. This can be deduced from Proposition 9.20 using either Lemma D.45 or
Lemma D.46, the latter for the group of two elements consisting of the identity and
the opposition map. �

Exercise 9.26. Assume that the field characteristic is not 2. Let r denote the rank
of the arrangement. Show that the nilpotency index of the radical of the projective
Tits algebra is r/2 + 1 if r is even, and (r + 1)/2 if r is odd. (Formulate analogues
of (9.32) and Lemmas 9.16, 9.17 and 9.18.)

9.4. Left module of chambers

The space of chambers is the linearization of the set of chambers. It is a two-
sided ideal of the Tits algebra. It has a trivial centralizer. This implies that the
Tits algebra has a trivial center. We focus particularly on the left ideal structure of
chambers. We refer to it as the left module of chambers. It is faithful. Thus, there
is an injective algebra homomorphism from the Tits algebra to the endomorphism
algebra of chambers. It factors through the space of top-nested faces.

9.4.1. Left module of chambers. Let Γ[A] denote the linearization of the set of
chambers Γ[A] over a field k, with canonical basis H. It is a two-sided ideal of the
Tits algebra. In particular, it is a left module over the Tits algebra:

HF · HC := HFC .

We call this the left module of chambers .

Lemma 9.27. The left module of chambers is faithful. That is, for any z ∈ Σ[A],
z · HC = 0 for all C implies that z = 0.

Proof. Let z =
∑
H x

HHH . Then, for any chambers C and D,
∑

H:HC=D

xH = 0.

(The lhs is the coefficient of HD in z · HC .) We deduce from Proposition 7.11 that
for any G ≤ D, ∑

H:G≤H≤D

xH = 0.

This implies that xH = 0 for all H, that is, z = 0. �

9.4.2. Center of the Tits algebra. We show that the Tits algebra has a trivial
center. In fact, the following stronger result holds.

Lemma 9.28. The centralizer of the two-sided ideal of chambers is trivial. That
is, for any z ∈ Σ[A], HC · z = z · HC for all C implies that z is a scalar multiple of
HO.

Proof. The proof is similar to that of Lemma 9.27. Let z =
∑
H x

HHH . The
equation HC · z = z · HC translates to the condition: For any chambers C 6= D,

∑

H:HC=D

xH = 0.

We deduce from Proposition 7.11 that for any O < G ≤ D,
∑

H:G≤H≤D

xH = 0.
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This implies that xH = 0 for all H 6= O. So z is a scalar multiple of HO. �

Corollary 9.29. The Tits algebra has a trivial center. That is, the center consists
of scalar multiples of the unit element HO.

9.4.3. Radical. Recall from Section D.5.4 that the radical of a module is the
intersection of its maximal submodules. Let us compute the radical of Γ[A].
Proposition 9.30. The radical of Γ[A] is the unique maximal submodule of Γ[A].
Its dimension is one less than the number of chambers. Explicitly,

(9.36)
∑

C

xC HC ∈ rad(Γ[A]) ⇐⇒
∑

C

xC = 0.

In other words, the radical is linearly spanned by elements of the form HC − HD.

Proof. By (D.12), the radical equals rad(Σ[A]) · Γ[A]. Using (9.32), we deduce
(9.36). The claim about dimension then follows. The uniqueness claim follows next
by the definition of the radical. �

As a consequence of (D.13):

Corollary 9.31. The module Γ[A] is semisimple iff A has rank zero.

Exercise 9.32. Suppose A has rank at least one. Check directly using (9.36)
that every one-dimensional submodule of Γ[A] lies inside rad(Γ[A]). In particular,
rad(Γ[A]) does not have any complementary submodule in Γ[A].
Exercise 9.33. Check that rad(Γ[A]) = Γ[A] ∩ rad(Σ[A]).
Exercise 9.34. Use the fact that A is gallery connected to deduce that rad(Γ[A])
is linearly spanned by elements of the form HC − HD, where C and D are adjacent
chambers.

9.4.4. Endomorphism algebra of chambers. Recall from Section D.1.1 that a
left module M over an algebra A gives rise to an algebra homomorphism from A to
the endomorphism algebra of M . In particular, the left module of chambers Γ[A]
yields an algebra homomorphism

(9.37) Σ[A]→ Endk(Γ[A]),
the latter being the algebra of endomorphisms of Γ[A]. Since the left module of
chambers is faithful (Lemma 9.27), the map (9.37) is injective. By comparing
dimensions, we deduce that

d(A) ≤ c(A)2,
where d(A) is the number of faces and c(A) is the number of chambers of A.
9.4.5. Rank one. Let A be the arrangement of rank one with chambers C and
C. Identifying the endomorphism algebra of chambers with 2 by 2 matrices, the
map (9.37) is given by

(9.38) α HO + β HC + γ HC 7→
Å
α+ β β
γ α+ γ

ã
.

Observe directly that this map is injective. Its image consists of those matrices
whose column sums are equal. The image of the radical of the Tits algebra consists
of matrices whose columns are identical with column sum 0. (That is, α = β+ γ =
0.)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



246 9. BIRKHOFF ALGEBRA AND TITS ALGEBRA

Consider the matrix in (9.38). It has eigenvalues α and α + β + γ with eigen-
vectors HC − HC and β HC + γ HC , respectively. If β + γ = 0, then α is a repeated
eigenvalue. One can check that the matrix is diagonalizable iff either β = γ = 0 or
β + γ 6= 0.

We also deduce from these calculations that the module Γ[A] has a unique
one-dimensional submodule, namely, the subspace spanned by HC − HC . In fact,
this is the radical of Γ[A] by (9.36). The uniqueness of this submodule shows that
Γ[A] does not decompose as a direct sum of simple modules. These observations
are consistent with Proposition 9.30 and Corollary 9.31. Following (D.1), taking
the trace of the matrix in (9.38), we see that the character of Γ[A] is the linear
functional

(9.39) χΓ[A] : Σ[A]→ k, α HO + β HC + γ HC 7→ 2α+ β + γ.

9.4.6. Another viewpoint on the endomorphism algebra. Let us go back
to the general case. Consider the canonical identification

Endk(Γ[A]) ∼= Γ[A]∗ ⊗ Γ[A]
by viewing a basis element

MD ⊗ HC ∈ Γ[A]∗ ⊗ Γ[A]
as the endomorphism

HE 7→
®
HC if D = E,

0 otherwise.

Here M denotes the basis of Γ[A]∗ dual to H. This induces a product on the algebra
Γ[A]∗ ⊗ Γ[A] which is given by

(9.40) (MD2
⊗ HC2

) (MD1
⊗ HC1

) =

®
MD1
⊗ HC2

if D2 = C1,

0 otherwise,

and the injective algebra homomorphism (9.37) takes the form

(9.41) Σ[A]→ Γ[A]∗ ⊗ Γ[A], HF 7→
∑

(D,C):FD=C

MD ⊗ HC .

The sum is over both C and D.

9.4.7. Space of top-nested faces. Let ÛQ[A] denote the linearization of the set
of top-nested faces. We consider two bases on it, namely, H and K, related by

(9.42) HH,D =
∑

G:G≤H

KG,D or equivalently KH,D =
∑

G:G≤H

(−1)rk(H/G)HG,D.

For this equivalence, we used (1.40).
The map (9.41) factors as

(9.43) Σ[A] →֒ ÛQ[A] →֒ Γ[A]∗ ⊗ Γ[A]
with

HH 7→
∑

D:D≥H

HH,D and HH,D 7→
∑

C:HC=D

MC ⊗ HD.

For a simplicial arrangement, using (7.1), the second map can be rewritten as

(9.44) KH,D 7→
∑

C: Des(C,D)=H

MC ⊗ HD.
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In terms of the endomorphism algebra, the second map can be expressed as

HH,D · HC =

®
HD if HC = D,

0 otherwise,

or, in the simplicial case, as

(9.45) KH,D · HC =

®
HD if Des(C,D) = H,

0 otherwise.

Exercise 9.35. Verify that the map ÛQ[A]→ Γ[A]∗ ⊗ Γ[A] is injective as implicitly
claimed in (9.43). (Follow the proof of Lemma 9.27.)

9.4.8. Left module of projective chambers. Let us use the term chamber ele-
ment to mean a linear combination of chambers. A chamber element z is projective
if z = z, that is, the coefficients of HD and HD in z are equal for all D. The notation
z is as in (9.33). The space of all projective chamber elements has a basis indexed
by projective chambers. It is a left module over the projective Tits algebra. We
call it the left module of projective chambers .

9.5. Modules over the Tits algebra

Recall that the Tits algebra is elementary and its split-semisimple quotient is
the Birkhoff algebra. This allows us to classify its simple modules by multiplicative
characters indexed by flats with simple explicit formulas. An arbitrary module does
not break as a direct sum of simple modules. However, by employing the technique
of composition series, one can write down explicit formulas for the eigenvalues and
multiplicities of the action of any element of the Tits algebra on it. For the module
of chambers, this yields the Bidigare-Hanlon-Rockmore (BHR) theorem. Invertible
elements in the Tits algebra are precisely those whose eigenvalues are all nonzero.

9.5.1. Multiplicative characters.

Theorem 9.36. The simple modules over Σ[A] are one-dimensional and indexed
by flats. Let χX denote the multiplicative character corresponding to the flat X. It
is specified by

(9.46) s(z) =
∑

X

χX(z) QX.

On a H-basis element, it is given by

(9.47) χX(HF ) =

®
1 if s(F ) ≤ X,

0 otherwise.

Equivalently, for w =
∑
F w

F HF ,

(9.48) χX(w) =
∑

F : s(F )≤X

wF .

In particular, the multiplicative characters corresponding to the minimum and
maximum flats are given by

(9.49) χ⊥(HF ) =

®
1 if F = O,

0 otherwise,
and χ⊤(HF ) = 1 for all F .
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Proof. Apply Theorem D.35. This yields the first two statements. In particular,
χX(HF ) is the coefficient of QX in Hs(F ). Now use (9.1) to first get (9.47) and then
(9.48). �

The multiplicative characters of the Tits algebra obtained in Theorem 9.36 can
also be directly computed as follows. Let χ : Σ → k be multiplicative. Since HF
is an idempotent, χ(HF ) is either 0 or 1. Let X be the join of the supports of all
faces F for which χ(HF ) = 1. We claim that χ = χX, with the latter as in (9.47).
For this, let G be the product of all faces F with χ(HF ) = 1 taken in some order.
Then G has support X and χ(HG) = 1. Further, for any face F with s(F ) ≤ X, we
have GF = G and hence χ(HGF ) = χ(HG) which implies χ(HF ) = 1. This proves
the claim.

Note very carefully that this calculation does not prove Theorem 9.36 since it
does not show that all simple modules arise from multiplicative characters.

9.5.2. Characters. Let h be a left module over the Tits algebra, and Ψh the
associated representation. For any element w of the Tits algebra, Ψh(w) denotes
the linear operator on h given by multiplication by w, and w · h denotes its image.
Thus,

Ψh(w) : h→ h, Ψh(w)(h) := w · h.

Following (D.1), the character of h is the linear functional

χh : Σ→ k, χh(w) = tr(Ψh(w)),

where tr denotes trace.
Recall from Proposition 9.20 that the Tits algebra is elementary. We now apply

the general discussion in Section D.8.4 to the module h. The character χh factors
through the support map yielding the commutative diagram

Σ
χh

��
❅❅

❅❅
❅❅

s
��

Π
χh

// k.

The induced linear functional on Π is also denoted χh. Following (9.6), for each flat
X, put

(9.50) ξX(h) = χh(HX) and ηX(h) = χh(QX).

Thus,

(9.51) ξX(h) =
∑

Y:Y≥X

ηY(h) or equivalently ηX(h) =
∑

Y:Y≥X

µ(X,Y) ξY(h).

The integer ηX(h) agrees with (D.19). It is the number of times the simple module
with multiplicative character χX appears as a composition factor in a composition
series of h. By (D.20), for w ∈ Σ,

(9.52) χh(w) =
∑

X

χX(w) ηX(h).

Recall from (D.4) that the trace of an idempotent operator is the dimension of
its image. Applying this to the idempotent HF , we get

(9.53) ξX(h) = dim(HF · h),
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where F is any face with support X. The fact that this number does not depend
on the particular choice of F can also be seen directly:

Lemma 9.37. Let F and G be faces of the same support. For a left Σ-module h,
there is an isomorphism

HF · h
∼=−→ HG · h

given by multiplication by HG, with inverse given by multiplication by HF .

Proof. This follows from the second equality in (1.6), and (1.13). �

Similarly, we have

(9.54) ηX(h) = dim(QF · h)

for any idempotent QF which lifts QX. Such idempotents will be constructed in
Chapter 11.

If the action of Σ on h factors through the support map, then h becomes a
module over Π, and ξX(h) and ηX(h) coincide with (9.10).

Example 9.38. For the left module of chambers Γ,

(9.55) ξX(Γ) = c(AX) and ηX(Γ) = |µ(AX)|,
where c(AX) is the number of chambers in AX. This can be understood as follows.
The space HF · Γ has a basis consisting of all chambers greater than F . This yields
the formula for ξX(Γ). The formula for ηX(Γ) then follows from (9.8) (in view of
(9.5) and (9.51)).

Similarly, for Σ as a left module over itself,

(9.56) ξX(Σ) = d(AX) and ηX(Σ) =
∑

Y:Y≥X

|µ(AY
X)|,

where d(AX) is the number of faces in AX. The space HF ·Σ has a basis consisting
of all faces greater than F . This yields the formula for ξX(Σ). The formula for
ηX(Σ) then follows from (9.9).

For h = Γ and h = Σ, the isomorphism in Lemma 9.37 is the linearization of
the bijections in Lemma 1.35.

The character of the left module of chambers Γ is given by

(9.57) χΓ(w) =
∑

X

χX(w) |µ(AX)|.

This follows from (9.52) and (9.55). Similarly, by enploying (9.56), we obtain a
character formula for the left module of faces Σ.

Exercise 9.39. Give an example of a left module h over the Tits algebra such that
ξX(h) and ηX(h) match those given in Exercise 9.6.

Exercise 9.40. Let h be a left module over Σ obtained by linearizing a left Σ-set
h. Check that ξX(h) is the cardinality of the set hF defined in (7.28), where F is
any face with support X.

We mention that the above discussion can also be carried out for right modules.
If h is a left Σ-module, then h∗ is a right Σ-module, and vice versa. We note that
w · h and h∗ · w have the same dimension (Lemma D.3). Applying this to w = HF ,
we conclude:

(9.58) ξX(h) = ξX(h
∗) and ηX(h) = ηX(h

∗).
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Recall that a linear functional on Σ is called a character of Σ if it is the character
of some Σ-module h. Multiplicative characters are those which arise from one-
dimensional modules.

Proposition 9.41. The characters of the Tits algebra correspond to families (ηX)
of nonnegative integers indexed by flats, with the multiplicative ones corresponding
to those families in which exactly one ηX is 1 and the rest are 0.

Proof. This follows from Proposition D.39. �

The characters also correspond to certain families (ξX) of nonnegative integers.
The point is that the ξX cannot be arbitrary. They are such that the ηX defined
from them via (9.51) are nonnegative.

9.5.3. Eigenvalue-multiplicity theorem. Theorem D.38 gives the eigenvalues
and multiplicities of the action of any element of an elementary algebra on a module.
Applying it to the Tits algebra and using (9.48), we obtain:

Theorem 9.42. Let h be a (left or right) module over the Tits algebra Σ. Then
all elements of Σ are simultaneously triangularizable on h. For w =

∑
F w

F HF , the
linear operator Ψh(w) has an eigenvalue

(9.59) λX(w) := χX(w) =
∑

F : s(F )≤X

wF

for each X ∈ Π, with multiplicity ηX(h) given by (9.50).

This is the eigenvalue-multiplicity theorem.

Exercise 9.43. Deduce Theorem 9.9 from Theorem 9.42 using the fact that any
module over the Birkhoff algebra is a module over the Tits algebra via the support
map.

9.5.4. Bidigare-Hanlon-Rockmore. By specializing Theorem 9.42 to the left
module of chambers h = Γ and using formula (9.55), we obtain:

Theorem 9.44. For w =
∑
F w

F HF , the linear operator ΨΓ(w) has an eigenvalue
λX(w) defined by (9.59) for each X ∈ Π, with multiplicity |µ(AX)|.

This is the Bidigare-Hanlon-Rockmore theorem, or BHR for short. Note very
carefully that this result makes no claim about the diagonalizability of ΨΓ(w).

Example 9.45. Let A be the rank-one arrangement with chambers C and C. It
has two flats, namely, ⊥ and ⊤. Let w = α HO + β HC + γ HC . By BHR, the
eigenvalues of ΨΓ(w) are

λ⊥(w) = α and λ⊤(w) = α+ β + γ,

and both have multiplicity one. This is consistent with the explicit calculations
done in Section 9.4.5.

The module Γ has a unique composition series, namely, 0 ⋖ rad(Γ) ⋖ Γ, where
rad(Γ) denotes the radical of Γ. It is the submodule of Γ spanned by HC − HC . In
fact, this composition series coincides with the radical series of Γ. (See (D.14) for
the definition of radical series.) The eigenvalue λ⊥ corresponds to the composi-
tion factor rad(Γ), while λ⊤ corresponds to the composition factor Γ/ rad(Γ). The
calculation for the latter goes as follows.

(α HO + β HC + γ HC) · HC = α HC + β HC + γ HC = (α+ β + γ) HC
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since HC and HC represent the same element of Γ/ rad(Γ).

Exercise 9.46. Recall the notion of uniserial modules from Section D.5.9. Show
that the left module of chambers Γ[A] is uniserial iff A has rank either 0 or 1.

Exercise 9.47. For any subarrangement A′ of A, there is a left action of Σ[A]
on Γ[A′] obtained by linearizing the action given in Exercise 7.39. Give explicit
formulas for the eigenvalues and multiplicities for the left module Γ[A′]. (Linearize
(2.37) to obtain an algebra homomorphism

(9.60) Σ[A]→ Σ[A′]

and use this to reduce the problem to the BHR theorem for the Tits algebra Σ[A′].)

9.5.5. Invertible elements and zero divisors. Let A× denote the set of in-
vertible elements in an algebra A. It is a group under multiplication. Invertible
elements and zero divisors of the Tits algebra are characterized below.

Proposition 9.48. Let w be an element of the Tits algebra. Then

w ∈ Σ× ⇐⇒ s(w) ∈ Π× ⇐⇒ λX(w) 6= 0 for all flats X,

with λX(w) as is (9.59). Similarly,

w is a zero divisor ⇐⇒ λX(w) = 0 for some flat X.

Proof. This is a special case of Proposition D.43. (Recall that λX(w) = χX(w).)
�

There is an algorithm to compute the inverse of u ∈ Σ×. By the proposition,

s(u) =
∑

X

λX(u) QX ∈ Π×.

The inverse in the Birkhoff algebra is given by
∑

X

λX(u)
−1 QX.

Choose any lift of this element to the Tits algebra. Call it v. Then uv = HO + z,
where z belongs to the radical of Σ. Since z is nilpotent, HO + z is invertible with
inverse HO − z + z2 − . . . . Multiplying v on the right by this element yields the
inverse of u. (After choosing v, one may instead compute vu and proceed as before.)

9.5.6. Bilinear forms. Let f be any linear functional on Σ which factors through
the support map. Define the families of scalars ξ and η by (9.6). Define a symmetric
bilinear form on Σ by

(9.61) Σ× Σ→ k, 〈x, y〉 = f(x · y).

It is clearly associative, that is, (D.3) holds. By hypothesis, it induces a symmetric
bilinear form on Π.

Lemma 9.49. The radical of the bilinear form (9.61) contains the radical of the
Tits algebra. Equality holds iff the induced bilinear form on Π is nondegenerate iff
ηX 6= 0 for all X.

Proof. Recall from Proposition 9.20 that the radical of the Tits algebra is the
kernel of the support map. This proves everything except the last claim which
follows from Lemma D.57 specialized to P = Π. �
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Some examples are given below.

• The character χh of any Σ-module h is a linear functional of the above
kind. In this case, equality holds iff ηX(h) 6= 0 for all X iff the associated
graded module of any composition series of h is a faithful Π-module.

• Let f(HF ) be 1 if F is a chamber, and 0 otherwise. In this case, by
(9.7), ηX = µ(X,⊤) which is nonzero, so equality holds. The induced
bilinear form on Π is the one discussed in the beginning of Example D.58
specialized to P = Π.

Exercise 9.50. Frobenius algebras are reviewed in Section D.1.5. The linear func-
tional f considered above is not Frobenius since (9.61) has a nontrivial radical. Is
the Tits algebra Frobenius?

9.6. Filtration by flats of a right module

Any right module over the Tits algebra has a filtration indexed by the poset of
flats. It can be used to give another proof of the eigenvalue-multiplicity theorem.
More perspective on this filtration is given later in Chapter 13 when we discuss
decomposable series of right modules.

9.6.1. Filtration. For a right Σ-module, the isomorphism in Lemma 9.37 gets
replaced by an equality:

Lemma 9.51. Let F and G be faces of the same support. For a right Σ-module h,
we have h · HF = h · HG.

Proof. This follows from (1.13). �

Let h be a right Σ-module. For each flat X, put

(9.62) DX(h) := h · HF ,

where F is any face of support X. This is well-defined by Lemma 9.51. Also

(9.63) dimDX(h) = ξX(h)

by (9.53) (for a right Σ-module). Note that

D⊥(h) = h.

Further,

(9.64) X ≤ Y =⇒ DX(h) ⊇ DY(h).

To see this, pick F ≤ G such that F has support X, and G has support Y. Any
element of DY(h) is of the form x · HG. Call this element z. Then

z · HF = (x · HG) · HF = x · HGF = x · HG = z,

so z belongs to DX(h), proving (9.64). Finally, we claim that each DX(h) is a
submodule of h. To see this, let z = x · HF be any element of DX(h) (with F of
support X). Then for any G, z · HG = x · HFG. This is an element of Ds(FG)(h)
which is a subspace of DX(h) by (9.64). In conclusion:

Lemma 9.52. For a right Σ-module h, the submodules DX(h) defined by (9.62)
define a filtration of h indexed by flats, that is, (9.64) holds.

The following is a key property of this filtration.
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Lemma 9.53. Let h be a right Σ-module. For any flats X and Y,

DX(h) ∩ DY(h) = DX∨Y(h).

For any flats X, Y and Z,

DX(h) ∩ (DY(h) +DZ(h)) = DX∨Y(h) +DX∨Z(h).

This generalizes to a finite sum.

Proof. For the first part: The rhs is contained in the lhs by (9.64). For the reverse
containment: Take F and G of supports X and Y. Let x belong to the lhs. Then
x is fixed by both F and G, and hence by FG (and GF ). So x belongs to the rhs.

For the second part: The rhs is contained in the lhs by the first part. For the
reverse containment: Take F , G and H of supports X, Y and Z. Let x belong to
the lhs. Then x = x · HF and there are x1 and x2 such that x = x1 · HG + x2 · HH .
Then x = x · HF = (x1 · HG + x2 · HH) · HF = x1 · HGF + x2 · HHF . This element is
in the rhs. The same argument works for more than two summands. �

Example 9.54. We make some of the above ideas more explicit in the case when
the right Σ-module arises from a left Σ-set. This makes use of the discussion in
Section 7.8.

Let h be a left Σ-set. Then its linearization h is a left Σ-module. We write

HF · Hx = HF ·x.

Observe that the set {Hy | F · y = y} is a basis for HF · h.
The dual h∗ is a right Σ-module. Writing M for the basis dual to the H-basis,

(9.65) My · HF =
∑

x:F ·x=y

Mx.

The indexing set is ℓ(F, y), see (7.33). The set {My · HF | F · y = y} is a basis
for h∗ · HF . Note that there is a bijection between bases of HF · h and h∗ · HF . In
particular, the two spaces have the same dimension, as expected by (9.58).

For F ≤ G and G · y = y, using (7.34), we have

My · HG =
∑

z∈ℓ(G,y)

Mz =
∑

x:F ·x=x,G·x=y

Å ∑

z∈ℓ(F,x)

Mz

ã
.

This expresses a basis element of h∗ · HG as a sum of basis elements of h∗ · HF . In
particular, h∗ · HG is a subspace of h∗ · HF consistent with (9.64).

9.6.2. Associated graded module. Let k = ⊕XkX denote the associated graded
module of the filtration in Lemma 9.52. That is, kX is the quotient of DX(h) by
the sum of all DY(h) for Y > X.

Note very carefully that we are dealing here with a filtration indexed by the
poset of flats and not a usual filtration indexed by a chain. This extra level of
difficulty can be handled by the technical property given in Lemma 9.53 as follows.

Lemma 9.55. For any upper set U in the lattice of flats, there is a vector space
isomorphism ∑

Y∈U

DY(h) =
⊕

Y∈U

kY.
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In particular: There is a vector space isomorphism

DX(h) ∼=
⊕

Y:Y≥X

kY.

In the special case X = ⊥, we have h ∼= k.

Proof. The second part follows by applying the first part to the upper set [X,⊤].
To prove the first part, we proceed by induction on the cardinality of U. For
convenience, put

hU :=
∑

Y∈U

DY(h).

Pick a minimal element of U. Call it X. Then

hU/hU\X
∼= DX(h)/(DX(h) ∩ hU\X) = DX(h)/(

∑

Y>X

DY(h)) = kX.

The second step used Lemma 9.53. In conjunction with the induction hypothesis,
we obtain

hU ∼= hU\X ⊕ hU/hU\X
∼= (

⊕

Y∈U\X

kY)⊕ kX ∼=
⊕

Y∈U

kY.

This completes the induction step. �

9.6.3. Second proof of the eigenvalue-multiplicity theorem. We now give
a second proof of Theorem 9.42.

Let us assume that h is a right Σ-module. Consider the filtration of h defined
in Lemma 9.52. It is indexed by flats, with the X-component given by DX(h). Its
associated graded module is k = ⊕XkX. We employ Lemma 9.55. The eigenvalues
of Ψh(w) are the same as those of Ψk(w). Using the definition of kX, we see that
HF acts on kX by the identity if s(F ) ≤ X, and by zero otherwise. Equivalently,
by (9.47), w acts on kX by scalar multiplication by χX(w). The multiplicity of this
eigenvalue is the dimension of kX, and by (9.51), this must equal ηX(h) since the
dimension of DX(h) (which is ξX(h) by (9.63)) is the sum of the dimensions of kY
for Y ≥ X. This completes the argument.

Now suppose h were a left Σ-module. Then we can apply the above argument
to its dual h∗ which is a right Σ-module. Dualizing (that is, looking at the transpose
matrix) does not affect eigenvalues and multiplicities. Also recall from (9.58) that
ηX(h) = ηX(h

∗). This concludes the proof.

9.7. Primitive part and decomposable part

We introduce the notion of primitive part of a left module and the decomposable
part of a right module over the Tits algebra. They are related to each other by
duality.

9.7.1. Primitive part of a left module. For a left Σ-module h, the primitive
part of h is the subspace defined by

P(h) =
⋂

F>O

ker(Ψh(HF ) : h→ h).

In other words,
x ∈ P(h) ⇐⇒ HF · x = 0 for all F > O.

Exercise 9.56. Check that: x ∈ P(h) ⇐⇒ HP · x = 0 for all vertices P .
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The definition of primitive part can be rephrased as follows.

Lemma 9.57. The primitive part P(h) is the invariant subspace of h for the mul-
tiplicative character χ⊥ defined in (9.49). In other words,

(9.66) x ∈ P(h) ⇐⇒ z · x = χ⊥(z)x for all z ∈ Σ.

Equivalently, P(h) is the sum of the simple submodules of h with multiplicative
character χ⊥. In particular, P(h) is semisimple.

9.7.2. Decomposable part of a right module. For a right Σ-module h, the
decomposable part of h is the subspace defined by

(9.67) D(h) =
∑

F>O

h · HF =
∑

X>⊥

DX(h),

with DX(h) as in (9.62). It is a submodule of h.

Decomposable part and primitive part are dual notions:

Proposition 9.58. For a left Σ-module h, the spaces P(h) and D(h∗) are orthog-
onal to each other under the canonical pairing between h and h∗.

9.8. Over and under a flat. Cartesian product

We briefly discuss how the Tits algebra behaves under passage to arrangements
over and under a flat, and under taking cartesian product of arrangements.

9.8.1. Over a flat. Let us linearize the isomorphisms in Lemmas 1.35 and 1.36.
For faces F and G with the same support, there is an algebra isomorphism

(9.68) βG,F : Σ[AF ]→ Σ[AG], HK/F 7→ HGK/G.

Its inverse is βF,G. Similarly, for any face with support X, there are canonical
inverse algebra isomorphisms

(9.69) βX,F : Σ[AF ]→ Σ[AX] and βF,X : Σ[AX]→ Σ[AF ].
Identities such as

βX,F = βX,GβG,F and βG,F = βG,XβX,F

always hold.
For any face H of A, the map

(9.70) ∆H : Σ[A]→ Σ[AH ], HF 7→ HHF/H

is an algebra homomorphism. For faces F and G with the same support, the
diagram

(9.71)

Σ[A]
∆G

$$❏
❏❏❏

❏∆F

zzttt
tt

Σ[AF ]
βG,F

// Σ[AG]

commutes. For faces F ≤ G, the diagram

(9.72)

Σ[A]
∆G

$$❏
❏❏❏

❏∆F

zzttt
tt

Σ[AF ]
∆G/F

// Σ[AG]
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commutes, where ∆G/F (HK/F ) := HGK/G.
For any face F of A, let

(9.73) µF : Σ[AF ]→ Σ[A], HK/F 7→ HK .

These maps satisfy a diagram similar to (9.72) with µG/F defined in the obvious
manner. The map µF is a section of the map ∆F , that is, ∆FµF = id. Composing
in the other direction yields

(9.74) µF∆F (z) = HF · z.

Note that µF preserves products, that is, µF (z · w) = µF (z) · µF (w), but it does
not preserve the unit, so it is not an algebra homomorphism.

Exercise 9.59. Check that for any faces F and G,

∆GµF = µGF/GβGF,FG∆FG/F .

We call this the bimonoid axiom for faces. It links the Tits algebras of A, AF , AG,
AFG and AFG.

Exercise 9.60. Recall the maps µX and ∆X from Section 9.1.8. For any face F
with support X, check that the diagrams

Σ[AX]
βF,X

//

s

��

Σ[AF ]
µF // Σ[A]

s

��

Π[AX] µX

// Π[A]

Σ[A] ∆F //

s

��

Σ[AF ]
βX,F

// Σ[AX]

s

��

Π[A]
∆X

// Π[AX]

commute.

Exercise 9.61. Let X be a flat containing a face F . Let χX/F denote the mul-
tiplicative character of Σ[AF ] indexed by the flat X/F . The composite χX/F∆F

is an algebra homomorphism, and hence determines a multiplicative character of
Σ[A]. Check that χX/F∆F = χX.

Exercise 9.62. Check that ∆H induces a map from the projective Tits algebra of
A to the projective Tits algebra of AH . On the H-basis defined in (9.35), it sends
H{F,F} to H{HF/H,HF/H}.

Exercise 9.63. Check that: For any flat X, there is an algebra homomorphism

(9.75) Σ[A]→ Σ[AX].

It is defined as βX,F∆F , where F is any face with support X. This does not depend
on the particular choice of F . Further, this map is the special case of the algebra
homomorphism (9.60) for A′ := AX.

9.8.2. Under a flat. For any flat X, the linear map

(9.76) Σ[A]→ Σ[AX],
∑

F

xF HF 7→
∑

F : s(F )≤X

xFHF

is an algebra homomorphism.
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9.8.3. Cartesian product. For any arrangements A and A′, there is an algebra
isomorphism

(9.77) Σ[A×A′]→ Σ[A]⊗ Σ[A′], H(F,F ′) 7→ HF ⊗ HF ′ .

This follows from (1.18). Similarly, there is an isomorphism

(9.78) Γ[A×A′]→ Γ[A]⊗ Γ[A′], H(C,C′) 7→ HC ⊗ HC′ .

9.9. Janus algebra and its one-parameter deformation

Recall the Janus monoid from Section 1.5. Its linearization is the Janus alge-
bra. It is an elementary algebra, with the Birkhoff algebra as its split-semisimple
quotient. Further, it admits a one-parameter deformation. When the parameter is
not a root of unity, the deformed algebra is in fact a split-semisimple (noncommu-
tative) algebra which is Morita equivalent to the Birkhoff algebra. The proof uses
the factorization of the determinant of the Varchenko matrices.

9.9.1. Janus algebra. The linearization of the Janus monoid yields an algebra.
We call this the Janus algebra, and denote it by J[A]. Using H for the canonical
basis, we write

(9.79) H(F,F ′) · H(G,G′) = H(FG,G′F ′).

Diagram (1.16) yields a commutative diagram of algebras

(9.80)

J[A] //

��

Σop[A]
s

��

Σ[A]
s

// Π[A].

Proposition 9.64. The Janus algebra J[A] is elementary. Its radical is the kernel
of the map J[A] → Π[A]. The dimension of the radical is equal to the number of
bi-faces minus the number of flats.

This can be proved in a manner similar to Proposition 9.20 by showing that
the kernel of the map J[A] ։ Π[A] is a nilpotent ideal. We omit the details.

9.9.2. Modules over the Janus algebra. Since the Janus algebra is elementary,
its module theory is similar to that of the Tits algebra which was discussed in
Section 9.5. In particular, one can define the numbers ξX(h) and ηX(h) for any
module h over the Janus algebra.

Exercise 9.65. Formulate Theorems 9.36 and 9.42 for the Janus algebra.

The Janus algebra is isomorphic to its opposite algebra under the map which
interchanges the two coordinates. It follows that the categories of left modules
and right modules over the Janus algebra are isomorphic. Explicitly, if h is a left
module, then it is also a right module via

x · H(F,F ′) := H(F ′,F ) · x

for x ∈ h. In particular, the dual of a left module can again be viewed as a left
module. Hence, the notion of self-duality makes sense for modules over the Janus
algebra.
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Now let k be a left module over the Tits algebra. Then k∗ is a right module
over its opposite algebra, and as a result k ⊗ k∗ is a left module over the Janus
algebra. In addition, we deduce that the latter is self-dual.

Exercise 9.66. Consider the left module

h := Γ[A]⊗ Γ[A]∗

over the Janus algebra. Explicitly, using (9.65), the action is given by

(9.81) H(F,F ′) · (HC ⊗ MC′) =
∑

D:F ′D=C′

HFC ⊗ MD.

Note that the rhs is zero if F ′ is not a face of C ′. Check that ξX(h) and ηX(h)
match those given in Exercise 9.6.

9.9.3. q-Janus algebra. Fix a scalar q. The binary operation

(9.82) H(F,F ′) · H(G,G′) := qdist(F
′,G) H(FG,G′F ′)

is associative. To see this, take three bi-faces (F, F ′), (G,G′) and (H,H ′). Their
associativity boils down to the identity

qdist(F
′,G)qdist(G

′F ′,H) = qdist(F
′,GH)qdist(G

′,H).

This holds by Proposition 8.5 applied to the distance function υq of Section 8.2.1.
Thus, the product (9.82) indeed defines an algebra. We call it the q-Janus algebra
and denote it by Jq[A]. Setting q = 1 recovers the Janus algebra.

Exercise 9.67. Show that the q-Janus algebra is isomorphic to its opposite algebra.

Exercise 9.68. Check that: The space of chambers has a left action of the q-Janus
algebra given by

(9.83) H(F,F ′) · HC := qdist(C,F
′C) HFC .

Note very carefully the different roles played by F and F ′. We denote this module by
Γq[A]. When q = 1, the action (9.83) factors through the quotient map J[A]→ Σ[A]
to recover the usual left module of chambers Γ[A].

Dualizing Γq[A] yields Γq[A]∗ which we again view as a left module. Write
down the action explicitly.

Exercise 9.69. Let p and q be scalars. Check that: If h is a left module over Jp[A]
and k is a left module over Jq[A], then h⊗ k is a left module over Jpq[A] via

H(F,F ′) · (x⊗ y) := (H(F,F ′) · x)⊗ (H(F,F ′) · y)

for x ∈ h and y ∈ k.
Apply this to the examples in Exercise 9.68 to deduce that

Γp[A]⊗ Γq[A]∗

is a left module over Jpq[A]. When p = q = 1, we recover the module of Exer-
cise 9.66.
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9.9.4. Split-semisimplicity for q not a root of unity. The behavior of the
q-Janus algebra for generic values of q is quite different from that of the Janus
algebra. The precise result is as follows.

Theorem 9.70. Suppose q is not a root of unity. The q-Janus algebra over k is
split-semisimple, that is, isomorphic to a product of matrix algebras over k. There
is one matrix algebra for each flat X, with the size of the matrix being the number
of faces with support X.

To prove this result, we will construct a Q-basis of Jq[A] on which the product
is given by

(9.84) Q(F,F ′) · Q(G,G′) =

®
Q(F,G′) if F ′ = G,

0 otherwise.

Then for any flat X, the Q-basis elements indexed by bi-faces with support X form
the basis of a matrix algebra. Further, Q-basis elements for different flats are or-
thogonal, so Jq[A] breaks as a product of these matrix algebras.

9.9.5. Morita equivalence. Two algebras are Morita equivalent if their module
categories are equivalent.

Theorem 9.71. The q-Janus algebra, for q not a root of unity, and the Birkhoff
algebra are Morita equivalent.

Proof. The algebra of n × n matrices over k is Morita equivalent to k, see for
instance [253, Theorem (17.20)]. Now combine Theorems 9.2 and 9.70. �

9.9.6. 0-Janus algebra. Since the construction of the Q-basis is a little involved,
let us first tackle the case q = 0. In this situation, the product (9.82) simplifies to

(9.85) H(F,F ′) · H(G,G′) =

®
H(FG,G′F ′) if F ′G = GF ′,

0 otherwise.

This follows from (1.29).
Define a partial order on the set of bi-faces by

(9.86) (F, F ′) ≤ (G,G′) ⇐⇒ F ≤ G, F ′ ≤ G′, FG′ = G, F ′G = G′.

Reflexivity and antisymmetry are clear. Transitivity requires a small check, which
we omit. Note that any bi-face greater than (F, F ′) is obtained by arbitrarily
picking a face G greater than F , and then setting G′ = F ′G (or by picking a face
G′ greater than F ′, and setting G = FG′). See Lemma 1.35 in this regard.

Warning. The partial order (9.86) on bi-faces is related to but different from the
partial order on bi-faces in Lemma 1.25.

Now define the Q-basis of J0[A] by

(9.87) H(F,F ′) =
∑

(G,G′)≥(F,F ′)

Q(G,G′).

The sum is over all bi-faces (G,G′) which are greater than (F, F ′).

Lemma 9.72. Formula (9.84) holds.
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Proof. One way to prove this is to assume it and then deduce (9.85) from it. The
calculation goes as follows.

H(F,F ′) · H(H,H′) =
( ∑

G′:G′≥F ′

Q(FG′,G′)

)
·
( ∑

K:K≥H

Q(K,H′K)

)

=
∑

K:K≥F ′,K≥H

Q(FK,H′K).

This sum is zero unless F ′ and H are joinable, that is, unless F ′H = HF ′ (Propo-
sition 1.18). Assuming this, the calculation proceeds as follows.

H(F,F ′) · H(H,H′) =
∑

K:K≥F ′H

Q(FK,H′K) = H(FH,H′F ′).

For the last step, observe that FH, H ′F ′ and F ′H = HF ′ all have the same
support. So by Lemma 1.35, faces K greater than F ′H are in correspondence with
faces FHK = FK greater than FH, and also with faces H ′F ′K = H ′K greater
than H ′F ′. �

This completes the proof of Theorem 9.70 when q = 0.

9.9.7. Back to the general case. Now suppose q is any scalar which is not a
root of unity. Define the Q-basis of Jq[A] by

(9.88) H(F,F ′) =
∑

G:G≥F

∑

G′:FG′=G,
s(G′)=s(G)

qdist(F
′,G′) Q(G,G′).

An illustration of how the bi-faces (F, F ′) and (G,G′) relate to each other is shown
below.

G

G′

F F ′

In particular,

(9.89) H(C,C′) =
∑

D

qdist(C
′,D) Q(C,D).

Formula (8.41) implies that this linear system can be inverted when q is not a root
of unity. More generally, from (8.42) and a triangularity argument, we deduce that
the linear system (9.88) can be inverted. So, they indeed define the Q-basis.

Lemma 9.73. Formula (9.84) holds.
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Proof. We first illustrate the case of pairs of chambers. Again we assume (9.84)
to deduce (9.82).

H(C,C′) · H(E,E′) =
(∑

D

qdist(C
′,D) Q(C,D)

)
·
(∑

D′

qdist(E
′,D′) Q(E,D′)

)

= qdist(C
′,E)

(∑

D′

qdist(E
′,D′) Q(C,D′)

)

= qdist(C
′,E) H(C,E′).

The first and last steps used (9.89). In the second step, we used D = E to eliminate
D. The general calculation goes as follows.

H(F,F ′) · H(H,H′) =
( ∑

G:G≥F

∑

G′:FG′=G,
s(G′)=s(G)

qdist(F
′,G′) Q(G,G′)

)

·
( ∑

K:K≥H

∑

K′:HK′=K,
s(K′)=s(K)

qdist(H
′,K′) Q(K,K′)

)

=
∑

G:G≥F

∑

K:FK=G,
s(K)=s(G)

∑

K′:HK′=K,
s(K′)=s(K)

qdist(F
′,K)qdist(H

′,K′) Q(G,K′)

=
∑

G:G≥FH

∑

K′:FHK′=G,
s(K′)=s(G)

qdist(F
′,HK′)qdist(H

′,K′) Q(G,K′)

=
∑

G:G≥FH

∑

K′:FHK′=G,
s(K′)=s(G)

qdist(F
′,H)qdist(H

′F ′,K′) Q(G,K′)

= qdist(F
′,H) H(FH,H′F ′).

The first and last steps used (9.88). In the second step, we used G′ = K to
eliminate G′. In the next step, we used HK ′ = K to eliminate K. In the third
step, we applied Proposition 8.5 to the distance function υq of Section 8.2.1. �

This completes the proof of Theorem 9.70.

Exercise 9.74. Show that the Janus algebra and (−1)-Janus algebra are isomor-
phic.

9.9.8. Rank one. Let A be the rank-one arrangement with chambers C and C.
The linear system (9.88) is as follows.

H(C,C) = Q(C,C) + q Q(C,C), H(C,C) = Q(C,C) + q Q(C,C),

H(C,C) = Q(C,C) + q Q(C,C), H(C,C) = Q(C,C) + q Q(C,C),

H(O,O) = Q(O,O) + Q(C,C) + Q(C,C).

For q 6= ±1, this linear system can be inverted yielding:

Q(C,C) =
1

1− q2 (H(C,C) − q H(C,C)), Q(C,C) =
1

1− q2 (H(C,C) − q H(C,C)),

Q(C,C) =
1

1− q2 (H(C,C) − q H(C,C)), Q(C,C) =
1

1− q2 (H(C,C) − q H(C,C)),
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Q(O,O) = H(O,O) −
1

1− q2 (H(C,C) − q H(C,C) − q H(C,C) + H(C,C)).

These are the Q-basis elements of the q-Janus algebra for q 6= ±1.

9.9.9. Diagonal 0-Janus algebra. Let Σ0[A] denote the commutative algebra,
indexed by faces, with product defined by

(9.90) HF · HG :=

®
HFG if FG = GF,

0 otherwise.

Define the Q-basis by

HF =
∑

G:G≥F

QG or equivalently QF =
∑

G:G≥F

(−1)rk(G/F ) HG.

The two statements are equivalent by (1.40).

Theorem 9.75. The commutative algebra Σ0[A] is split-semisimple, with Q as its
basis of primitive idempotents.

Proof. The usual way to proceed is to use the product on the Q-basis, and deduce
the one on the H-basis using Proposition 1.18. Another approach is to add a top
element to the poset of faces making it a lattice. The algebra of this lattice is
split-semisimple by Theorem D.47, and Σ0[A] is the quotient of it by the span of
the top element (which is a primitive idempotent). �

Observe that Σ0[A] is the diagonal subalgebra of J0[A] under the map

HF 7→ H(F,F ) or equivalently QF 7→ Q(F,F ).

Formula (9.84) then gives another proof of Theorem 9.75. We refer to Σ0[A] as the
diagonal 0-Janus algebra.

9.9.10. υ-Janus algebra. The q-Janus algebra can be generalized further as fol-
lows. Let υ be any distance function arising from a weight function. By Proposi-
tion 8.5, the binary operation

(9.91) H(F,F ′) · H(G,G′) := υF ′,G H(FG,G′F ′)

is associative. The resulting algebra is the υ-Janus algebra which we denote by
Jυ[A]. Setting the distance function to be υq recovers the q-Janus algebra.

We say that a distance function υ is generic if the associated Varchenko matrices
AX are invertible for all flats X, that is, the bXY which appear in the factorization
(8.28) are never equal to 1. Observe that the distance function υq is generic if q is
not a root of unity.

When υ is generic, the linear system

(9.92) H(F,F ′) =
∑

G:G≥F

∑

G′:FG′=G,
s(G′)=s(G)

υF ′,G′ Q(G,G′)

is invertible and defines the Q-basis of Jυ[A]. By the same calculation as before, we
see that (9.84) holds. This yields the following generalization of Theorem 9.70.

Theorem 9.76. For a generic distance function υ, the υ-Janus algebra is split-
semisimple.
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9.10. Coxeter-Tits algebra

We now consider the Coxeter analogues of the Tits, Birkhoff and Janus monoids
defined in Section 5.6, and linearize them as shown below.

Monoid Linearized algebra

Coxeter-Tits monoid WΣ Coxeter-Tits algebra WΣ

WΣop WΣop

Coxeter-Birkhoff monoid WΠ Coxeter-Birkhoff algebra WΠ

Coxeter-Janus monoid WJ Coxeter-Janus algebra WJ

Since each one of them is a semidirect product, their modules can be described
in terms of an action of the Coxeter group and an action of the Tits or Birkhoff or
Janus monoid with a compatibility condition. Let us make this explicit.

Let W denote the group algebra of W . A left WΣ-module is the same as a
vector space M which is a left W-module and a left Σ-module, and the two actions
are compatible via

w(HF ·m) = w(HF ) · w(m)

for m ∈ M , w ∈ W and F ∈ Σ. This follows from Proposition 5.23. Note that
we write HF ·m for the action of Σ but w(m) for the action of W . The latter is
consistent with the notation w(F ) that we use for the action W on Σ.

Similarly, a left WΣop-module is the same as a vector space M which is a left
W-module and a right Σ-module, and the two actions are compatible via

w(m · HF ) = w(m) · w(HF )

for m ∈ M , w ∈ W and F ∈ Σ. In view of Proposition 5.24, this is also the same
as a right WΣ-module.

A left WΠ-module is the same as a vector space M which is a Π-module and a
left W-module, and the two actions are compatible via

w(HX ·m) = w(HX) · w(m)

for m ∈ M , w ∈ W and X ∈ Π. (We do not need to specify left or right for a Π-
module since Π is commutative.) A right WΠ-module admits a similar description
with W acting on the right. We do not need to consider these explicitly in view of
Proposition 5.25.

A left WJ-module is the same as a vector space M which is a left W-module
and a left J-module, and the two actions are compatible via

w(HF,F ′ ·m) = w(HF,F ′) · w(m)

for m ∈ M , w ∈ W and (F, F ′) ∈ J. We can also consider right WJ-modules, but
it is not required in view of Proposition 5.26.

Notes

Exponential and logarithm. In certain situations, the families (ξX) and (ηX) linked
by (9.5) can be interpreted as the moments and cumulants of a random variable (possibly
noncommutative). For more details, see the remark at the end of [10, Section 13.5].
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Tits algebra. Lemma 9.27 is due to Bidigare [57, Theorem 2.4.2]. Propositions 9.19 and
9.20 are also due to him [57, Section 2.3.3, and in particular, Theorem 2.3.5]. Theorem 9.36
(which is a consequence of these results) was noted by Brown [96, Theorem 3]. It is implicit
in Bidigare’s work [57, Sections 2.3 and 2.4]; formula (9.47) is given at the bottom of page
21 of his thesis. Brown worked in the wider context of LRBs. Theorem 9.36 in more
general contexts even beyond LRBs is given in [182, Corollary 9] and [16, Theorem 4.3].
These references also provide pointers to the older semigroup literature.

The maps (9.43) in the generality of LRBs are contained in [8, Diagram (5.8)]; also
see [9, Diagram (12.14)]. Formula (9.44) is contained in [8, Lemma 5.6.1]. The bilinear
form (9.61) for the linear functional f := χΓ, namely, the character of Γ, is studied in [8,
Section 2.5]; Lemma 9.49 corresponds to [8, Corollary 2.5.2].

BHR theorem. Bidigare, Hanlon and Rockmore [56, Theorem 4.1] or [57, Section 2.5]
proved Theorem 9.44. Our second proof of Theorem 9.42 given in Section 9.6 is inspired
by their method. They worked in the setting of Example 9.54. In hindsight, Bidigare,
Hanlon and Rockmore worked essentially with the decomposable series of h = Γ

∗. In their
Theorem 4.4, they state and prove the first part of Lemma 9.53 for h = Γ

∗. Similarly,
their Proposition 4.8 is our Lemma 9.55 for h = Γ

∗; however, the short inductive proof
that they give makes no mention of the key property of the filtration given in the second
part of Lemma 9.53.

Later, another proof of the BHR theorem (which we have not discussed here) was
given by Brown and Diaconis [98, Theorem 1]. More information on their work is given
in the notes to Chapter 12.

Still later, a third proof of the BHR theorem was given by Brown based on the fact that
the Tits algebra is elementary [96, Theorem 4]. Our first proof of Theorem 9.42 follows
Brown’s approach. His proof, though written for the module of chambers Γ, works for
any h. As noted earlier, Brown worked in the wider context of LRBs. For generalizations
beyond that, see work of Steinberg [383, Theorems 6.3 and 6.4], [384, Formulas (8.4) and
(8.5)] and [385, Theorems 14.11 and 14.12].

Exercise 9.47 is an algebraic reformulation of a result of Athanasiadis and Diaconis
[28, Theorem 3.3, part (i)]. Details on the solution to this exercise as well as numerous
examples can be found in this reference.

Janus algebra. The algebra obtained by linearizing a band is elementary, with the split-
semisimple quotient being the linearization of its support lattice. This result is given by
Brown [97, Theorem B.1]. In view of Lemma 1.25, Proposition 9.64 becomes a special
case of this result.

Finite-dimensional algebras. For references on the general theory of finite-dimensional
algebras, see the notes to Appendix D.

Bialgebras. There are important connections between the theory of modules over the
Birkhoff algebra, Tits algebra and Janus algebra and the classical theory of connected
bialgebras. The connection is made through the braid arrangement and the Hopf monoids
in species of [9, Part II]. The ingredients are present in [10, Section 13]. This inspires
much of our work throughout this monograph, although the connections are often implicit.
For instance, the maps µ and ∆ occurring in Sections 9.1.8 and 9.8.1 correspond to certain
higher product and coproduct operations, while β corresponds to the braiding. We plan
to provide details in future work.
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CHAPTER 10

Lie and Zie elements

We introduce Lie elements. Recall that left modules over the Tits algebra have
a primitive part. Lie elements are the primitive part of the left module of chambers.
These elements can also be expressed as solutions to a linear system of equations
whose variables are chambers. The set of chambers involved in any given equation
form a top-lune. We pay special attention to Lie elements of rank-one and rank-
two arrangements; the antisymmetry relation appears in rank-one and the Jacobi
identity in rank-two arrangements.

We also introduce Zie elements. They are the primitive part of the Tits algebra
viewed as a left module over itself. They can also be expressed as solutions to a
linear system of equations whose variables are faces. In fact, we consider two such
linear systems. The set of faces involved in any given equation form either the
interior or the closure of a lune. A Zie element is special if the central face appears
in it with coefficient 1. A special Zie element projects any left module over the
Tits algebra onto its primitive part. Using this principle, we derive formulas for the
dimensions of the spaces of Lie elements and Zie elements. Both formulas involve
the Möbius function of the lattice of flats.

Lie elements carry a substitution product which specifies a way to multiply Lie
elements in arrangements under a flat with Lie elements in arrangements over a
flat. It is obtained by restricting the substitution product of chambers. Similarly,
Lie can be multiplied with Zie on the right and with chambers on the left. This is
the restriction of the substitution product of chambers with faces on the right and
with top-lunes on the left.

10.1. Lie elements

We introduce Lie elements as solutions to a linear system of equations whose
variables are chambers. We then discuss various characterizations for it named after
Friedrichs, Ree and Garsia. They involve the notions of primitive part, top-lunes
and descents, respectively. The Garsia criterion is also intimately connected to the
Witt identity.

10.1.1. Lie elements. Recall the left module of chambers Γ[A]. We write a typ-
ical element as

z =
∑

C

xCHC .

An element z ∈ Γ[A] is a Lie element if

(10.1)
∑

C:HC=D

xC = 0 for all O < H ≤ D.

This is a linear system in the variables xC .

265
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We denote the set of Lie elements by Lie[A]. It is a subspace of Γ[A].
• Note very carefully that H = O is excluded from (10.1): If not, then z = 0
would be the only solution since all its coefficients xC would be forced to
be zero.
• Since the condition (10.1) is in terms of the Tits product, cisomorphic
arrangements have the “same” Lie elements. In particular, to understand
Lie[A], one may replace A by its essentialization.

Lemma 10.1. If A has rank zero, then Lie[A] = Γ[A] = k.

Proof. Suppose A has rank zero. Then, it has only one chamber which is the
central face, so (10.1) is vacuously true. Hence Lie[A] = Γ[A], spanned by HO. �

Lemma 10.2. If A has rank at least one, then the sum of the coefficients of any
Lie element is zero. That is, z ∈ Lie[A] implies

(10.2)
∑

C

xC = 0.

Proof. Let D be any chamber. Since A has rank at least one, D > O. So we may
choose H = D in (10.1). This yields (10.2). �

Equivalently, using (9.36):

Lemma 10.3. If A has rank at least one, then Lie[A] ⊆ rad(Γ[A]).

A more precise result is given below. For any face F , view Lie[AF ] as a subspace
of Γ[A] via the composite of inclusion maps

Lie[AF ]→ Γ[AF ]→ Γ[A].

Lemma 10.4. We have
∑

F∈Σ[A]\Γ[A]

Lie[AF ] = rad(Γ[A]).

The sum is over all faces F which are not chambers.

Proof. By Lemma 10.2, the lhs is a subset of the rhs. We need to show that
equality holds. If C and D are adjacent chambers with common panel H, then
HC/H − HD/H is an element of Lie[AH ]. For any chambers C ′ and D′, by picking a
gallery joining them, HC′ − HD′ can be written as a sum of (HC − HD)’s, with C and
D adjacent; hence it is an element of the lhs. Since such elements span the rhs,
equality holds. �

10.1.2. Friedrichs primitive part criterion. Recall from Section 9.7 that left
modules over the Tits algebra have a primitive part.

Lemma 10.5. The space of Lie elements is the primitive part of the left module of
chambers:

P(Γ[A]) = Lie[A].
Explicitly,

z ∈ Lie[A] ⇐⇒ HH · z = 0 for all H > O.
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Proof. Let H be any face of A. Then

HH ·
(∑

C

xCHC
)
=

∑

C

xCHHC =
∑

D:H≤D

Å ∑

C:HC=D

xC
ã
HD.

This equals 0 iff ∑

C:HC=D

xC = 0 for all D ≥ H.

The result follows from (10.1). �

We refer to the characterization of Lie elements given by Lemma 10.5 as the
Friedrichs criterion.

Exercise 10.6. Check that: z ∈ Lie[A] ⇐⇒ HP · z = 0 for all vertices P . (See
Exercise 9.56 in this regard.)

10.1.3. Ree top-lune criterion. Recall from Section 3.2.1 that any top-nested
face (H,D) gives rise to a top-lune

s(H,D) = {C | HC = D}.
Note that D always belongs to this top-lune. Further, this top-lune is a singleton
(consisting of D) iff H = O. All top-lunes arise in this manner from top-nested
faces. The definition of a Lie element may now be rewritten as follows.

Lemma 10.7. We have z ∈ Lie[A] iff
(10.3)

∑

C∈L

xC = 0

for all non-singleton combinatorial top-lunes L in A.
When L is the maximum flat, equation (10.3) specializes to (10.2).

Lemma 10.8. We have z ∈ Lie[A] iff (10.3) holds for all vertex-based combinato-
rial top-lunes L in A, or equivalently, (10.1) holds for all vertices H.

Proof. It suffices to consider only vertex-based top-lunes, since by Corollary 3.25,
any non-singleton top-lune can be written as a disjoint union of vertex-based top-
lunes. �

We refer to the description of Lie elements given by Lemma 10.7 or Lemma 10.8
as the Ree criterion. A Lie element may be visualized as a scalar assigned to each
chamber such that the sum of the scalars in every vertex-based top-lune is zero.
(The scalar assigned to C is xC .)

Exercise 10.9. Show that z ∈ Lie[A] iff the sum of the coefficients of z of chambers
in any non-singleton top-cone of A is zero.

10.1.4. Orthogonality with decomposable part. Let Γ[A]∗ denote the vector
space dual to Γ[A]. We use the letter M to denote the basis of Γ[A]∗ which is dual
to the H-basis of Γ[A]. Since Σ[A] acts on Γ[A] on the left, it acts on Γ[A]∗ on the
right. Using the definition

〈MD · HH , HC〉 = 〈MD, HH · HC〉,
we see that the right action is given by

(10.4) MD · HH =
∑

C:HC=D

MC .
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Note that the rhs is zero if H 6≤ D. This formula is an instance of (9.65).
Let Lie[A]⊥ denote the decomposable part of Γ[A]∗. By definition (9.67), it is

the span of the elements (10.4) as (H,D) varies over top-nested faces with H > O.
Equivalently, it is spanned by the elements

cL =
∑

C∈L

MC

as L varies over non-singleton top-lunes. (It suffices to take vertex-based top-lunes.)
Lemma 10.7 says that z is a Lie element iff 〈cL, z〉 = 0 for every non-singleton top-
lune L. Equivalently:

Lemma 10.10. The spaces Lie[A] and Lie[A]⊥ are orthogonal to each other under
the canonical pairing between Γ[A] and Γ[A]∗.

Since Lie[A] is the primitive part of Γ[A], what we are seeing above is an illus-
tration of the duality between primitive and decomposable parts (Proposition 9.58).

10.1.5. Opposition map. The opposition map preserves the space of Lie ele-
ments. This can be deduced from either the Friedrichs criterion or the Ree criterion.
In fact, the opposition map sends a Lie element either to itself or its negative:

Lemma 10.11. For z ∈ Lie[A], the coefficients xD and xD differ at most by a
sign. More precisely,

(10.5) xD = (−1)rk(A)xD.

Proof. Suppose z is a Lie element. Now apply the Witt identity (7.14) to the
scalars xC . By definition of a Lie element (10.1), the sum inside the parenthesis in
(7.14) is zero for H > O. So the lhs of (7.14) reduces to xD (coming from the term
H = O), and we get (10.5). �

We say a Lie element z is projective if it is a projective chamber element, that
is, the coefficients of HD and HD in z are equal for all D.

Lemma 10.12. If A has even rank, then all Lie elements are projective. If A has
odd rank, then there are no nonzero projective Lie elements (assuming that the field
characteristic is not 2).

Proof. This follows from (10.5). �

10.1.6. Garsia descent criterion. Consider the top-lune s(H,D) in a rank-three
simplicial arrangement shown below. (Only those three hyperplanes in the arrange-
ment which are relevant to the discussion are shown.)

DH

The top-lune s(H,D) consists of chambers C such that HC = D. This set can be
split into four parts (shown in dark, dark-medium, light-medium and light shades)
depending on the value of Des(C,D) (which is a face of H), see (7.1). When this
is the central face, we get only the chamber D shown in dark shade, when this is
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a vertex of H, we get chambers either in the dark-medium or the light-medium
shades, and when this is H, we get chambers in the light shade.

Suppose we are given a Lie element z ∈ Lie[A]. By the Ree criterion, the sum
of the coefficients of z of chambers in all four regions together in zero. Since the
dark shaded and dark-medium shaded regions together form a top-lune, the sum
of the coefficients of z of chambers in these two regions in also zero. Similarly,
the sum in the dark shaded and light-medium shaded regions is zero. By putting
these facts together, we deduce that the coefficient of D in z is equal to the sum
of the coefficients of z of chambers in the light shaded region. This property of Lie
elements is formalized below.

Lemma 10.13. Suppose A is a simplicial arrangement. Then z ∈ Lie[A] iff for
any top-nested face (K,D),

(10.6) xD = (−1)rk(K)
∑

C: Des(C,D)=K

xC ,

or equivalently, by (9.45),

KK,D · z = (−1)rk(K)xD HD.

The lhs of (10.6) is a specialization of the rhs when K is the central face. This
follows from (7.2).

Proof. Suppose z ∈ Lie[A]. Now apply the Witt identity (7.17) to the scalars xC .
By (10.1), the sum inside the parenthesis in (7.17) is zero for H > O. So the lhs of
(7.17) reduces to xD (coming from the term H = O). This proves (10.6).

Conversely, suppose (10.6) holds for all top-nested faces (K,D). Let H ≤ D
and H > O. Then, by (7.1),

∑

C:HC=D

xC =
∑

C: Des(C,D)≤H

xC =
∑

K:K≤H

∑

C: Des(C,D)=K

xC

=
∑

K:K≤H

(−1)rk(K)xD = 0.

(The second equality is the decomposition illustrated in the preceding figure.) Since
xD does not depend onK, the sum overK is 0 by (1.41). This verifies (10.1). Hence
z ∈ Lie[A]. �

We refer to the description of Lie elements given by Lemma 10.13 as the Garsia
criterion.

Exercise 10.14. For a simplicial arrangement, deduce Lemma 10.11 as a special
case of Lemma 10.13 by setting K = D.

10.1.7. Cartesian product. For any arrangements A and A′, the isomorphism
(9.78) restricts to the space of Lie elements:

(10.7) Lie[A×A′]
∼=−→ Lie[A]⊗ Lie[A′].

This can be checked using the Friedrichs criterion.
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10.2. Lie in small ranks. Antisymmetry and Jacobi identity

We discuss Lie elements of arrangements of small rank. The rank-zero case was
treated in Lemma 10.1. Lie elements of rank-one and rank-two arrangements play
an important role in Lie theory. The antisymmetry relation appears in rank one
and the Jacobi identity in rank two.

10.2.1. Rank one and antisymmetry. Consider the rank-one arrangement in
which the ambient space has dimension one, and there is only one hyperplane
consisting of the origin.

a −a

There is only one non-singleton top-lune consisting of the two chambers. It follows
that Lie[A] is one-dimensional. The coefficients of the two chambers are a and −a.
The simplest choices are a = 1 and a = −1. Either of them spans Lie[A], and their
sum is zero. This can be shown as follows.

(10.8)
( 1 1 )

+
( 11 )

= 0.

This is the antisymmetry relation. (By convention, 1 denotes −1.)

10.2.2. Rank two and Jacobi identity. Now consider the rank-two arrange-
ment of 3 lines.

b

a

c

b

a

c

There are six chambers. A non-singleton top-lune is either one of the six half-spaces
or the full ambient space. It follows that Lie[A] is two-dimensional. The coefficients
of the chambers (read in clockwise cyclic order) are a, b, c, a, b and c subject to
the condition a+ b+ c = 0. For example, one may take a = 1, b = −1, and c = 0.
Other similar choices are a = 0, b = 1, and c = −1, or a = −1, b = 0, and c = 1.
Any two of these yield a basis for Lie[A], and the sum of all three is 0. This can be
shown as follows.

(10.9)

1

1

0

1

1

0

+

1

0

1

1

0

1

+

0

1

1

0

1

1

= 0.

This is the Jacobi identity for the hexagon. (By convention, 1 denotes −1.)
The above analysis readily generalizes to the rank-two arrangement of n lines:

The hexagon gets replaced by a 2n-gon, and Lie[A] is (n − 1)-dimensional. The
coefficients of the chambers (read in clockwise cyclic order) are a1, . . . , an, a1, . . . , an
subject to the condition a1+· · ·+an = 0. Jacobi identity consists of n terms adding
up to 0. Each term is a 2n-gon whose two adjacent sides (and their opposites) have
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coefficients 1 and 1, and the remaining sides have coefficient 0. For instance:

(10.10)
0

11

0

0

1 1

0
+

1

10

0

1

1 0

0
+

1

00

1

1

0 0

1
+

0

01

1

0

0 1

1
= 0.

This is the Jacobi identity for the octagon.

Exercise 10.15. Verify directly the Garsia criterion (Lemma 10.13) for the rank-
two arrangement of n lines. The outline is as follows. For K = O, (10.6) is a
tautology; for K = D, it says that the coefficient of D equals that of D; for K a
vertex of D, it says that a1 = −(a2 + · · · + an), where a1, . . . , an are the chamber
coefficients in cyclic order starting at D.

10.3. Zie elements

We introduce Zie elements, and then discuss various characterizations for it
named after Friedrichs, Ree and Garsia. This parallels the discussion of Lie elements
given in Section 10.1. We are essentially replacing chambers with faces in the
discussion. This has the effect of replacing top-lunes with lunes (and having to deal
with their interiors and closures), and replacing descents between chambers with
descents between faces.

A Zie element is special if the central face appears in it with coefficient 1.
Special Zie elements are precisely those idempotents of the Tits algebra whose
support is the primitive idempotent of the Birkhoff algebra corresponding to the
minimum flat.

This section can be read in conjunction with Section 10.5 where Zie elements
in small ranks are worked out.

10.3.1. Zie elements. Consider the Tits algebra Σ[A]. Write a typical element
as

z =
∑

F

xFHF .

An element z ∈ Σ[A] is a Zie element if

(10.11a)
∑

F :HF=G

xF = 0 for all O < H ≤ G.

This is a linear system in the variables xF .
Equivalently, z ∈ Σ[A] is a Zie element if

(10.11b)
∑

F :HF≤G

xF = 0 for all O < H ≤ G.

To see this: Note that the equation (10.11b) for O < H ≤ G is the sum of the
equations (10.11a) for O < H ≤ G′ with G′ running between H and G. Hence the
claim follows from a triangularity argument on the poset of faces.

We denote the set of Zie elements by Zie[A]. It is a subspace of Σ[A]. As
for Lie elements, note that H = O is excluded from the defining equations. Also,
cisomorphic arrangements have the “same” Zie elements.

Lemma 10.16. If A has rank zero, then Zie[A] = Σ[A] = k.
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Proof. Suppose A has rank zero. Then, it has only one face, namely, the central
face, so (10.11a) is vacuously true. Hence Zie[A] = Σ[A], spanned by HO. �

Lemma 10.17. Suppose z is a Zie element. Then

(10.12)
∑

F : s(F )≤X

xF = 0 for all non-minimum flats X.

In particular, if A has rank at least one, then

(10.13)
∑

F

xF = 0.

The sum is over all faces F .

Proof. Consider the special case of (10.11a) in which O < H = G. Let X :=
s(H) = s(G). Recalling from (1.12) that GF = G iff s(F ) ≤ X, we obtain (10.12).
Letting X be the maximum flat yields (10.13). �

10.3.2. Special Zie elements. A Zie element z is special if the coefficient in z of
the central face is 1, that is, if xO = 1. Such elements do exist; examples are given
in Chapters 11 and 14. Special Zie elements form an affine space of dimension one
less than the dimension of Zie[A].

Lemma 10.18. For z ∈ Σ[A], the following conditions are equivalent.

(10.14) xO = 1 and
∑

F : s(F )≤X

xF = 0 for all non-minimum flats X.

(10.15)
∑

F : s(F )=X

xF = µ(⊥,X) for all flats X.

(10.16) s(z) = Q⊥, the Q-basis element defined in (9.1).

When z is a special Zie element, all the above conditions hold.

Proof. For the equivalence between the first two conditions: Denote the lhs of
(10.15) by f(X). In (10.14), the condition xO = 1 is the same as f(⊥) = 1, while
the equations say: for any Y > ⊥,

∑

X:X≤Y

f(X) = 0.

By (C.5a) and (C.5b), this linear system has a unique solution, namely, f(X) =
µ(⊥,X) for all X.

For the equivalence between the last two conditions: Note that

s(z) =
∑

F

xFHs(F ) =
( ∑

F : s(F )=X

xF
)
HX.

By (9.1), this equals Q⊥ iff the term in parenthesis is µ(⊥,X).
By Lemma 10.17, a special Zie element satisfies condition (10.14), and hence

the other two conditions as well. �
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10.3.3. Friedrichs primitive part criterion. The space of Zie elements is the
primitive part of the Tits algebra (as a left module over itself). This is the Friedrichs
criterion. It is elaborated below.

Lemma 10.19. We have

P(Σ[A]) = Zie[A].
Explicitly,

z ∈ Zie[A] ⇐⇒ HH · z = 0 for all H > O.

Proof. Let H be any face of A. Then

HH ·
(∑

F

xFHF
)
=

∑

F

xF HHF =
∑

G:H≤G

Å ∑

F :HF=G

xF
ã
HG.

This equals 0 iff ∑

F :HF=G

xF = 0 for all G ≥ H.

The result follows from (10.11a). �

We now discuss some consequences of the Friedrichs criterion.

Lemma 10.20. Every Lie element is a Zie element. Conversely, any Zie element
which is a linear combination of chambers is a Lie element. In other words,

Lie[A] = Zie[A] ∩ Γ[A].
Lemma 10.21. The subspace Zie[A] is a right ideal of Σ[A]. More precisely: If z
is a special Zie element, then Zie[A] is the right ideal of Σ[A] generated by z.

Proof. Let z be a special Zie element. For any element w of the Tits algebra, z ·w
is a Zie element since by Lemma 10.19,

HF · (z · w) = (HF · z) · w = 0

whenever F > O. Thus the right ideal generated by z is contained in Zie[A].
Equality holds since for any Zie element z′,

z · z′ =
(∑

F

xF HF
)
· z′ =

∑

F

xF HF · z′ = xOz′ = z′

again using Lemma 10.19. �

Lemma 10.22. Any Zie element is a quasi-idempotent. More precisely, any Zie
element z satisfies z2 = xOz. A nonzero Zie element is an idempotent iff it is
special.

Proof. Let z be a Zie element. By Lemma 10.19,

z · z =
(∑

F

xF HF
)
· z =

∑

F

xF (HF · z) = xOz.

This proves the first claim. Note that z is an idempotent iff xOz = z. Assuming z
to be nonzero, this happens precisely when xO = 1, that is, when z is special. �

Lemma 10.23. Conjugation of a special Zie element by an invertible element of
the Tits algebra produces another special Zie element.
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Proof. Let u be an invertible element and z be a special Zie element. We want
to show that u · z · u−1 is also a special Zie element. We may assume that the
coefficient of HO in u is 1. By Lemma 10.19, u · z = z. By Lemma 10.21, z · u−1 is
a Zie element, and it is special because the coefficient of HO in u−1 is also 1. �

Lemma 10.24. Let z be an element of the Tits algebra. Then z is a special Zie
element iff z is an idempotent and s(z) = Q⊥.

Proof. The forward implication follows from Lemmas 10.18 and 10.22. For the
backward implication: Pick a special Zie element, say z′. (We use here that such
an element exists.) In particular, z′ is an idempotent. Now s(z) = s(z′) = Q⊥.
Hence, by Theorem D.33, z and z′ are conjugate by an element of HO + rad(Σ),
where rad(Σ) is the radical of the Tits algebra. So, by Lemma 10.23, z is also a
special Zie element. �

Exercise 10.25. Show that: If z is a Zie element, then s(z) = xOQ⊥. Deduce that
a Zie element z belongs to the radical of the Tits algebra iff xO = 0.

10.3.4. Ree lune criterion. Recall from Section 3.2.2 that any nested face (H,G)
gives rise to a lune

s(H,G) = {F | HF = G and s(F ) = s(G)}.
Note that G always belongs to this lune. Further, this lune is a singleton (consisting
of G) iff H = O. All lunes arise in this manner from nested faces. The closure,
interior and boundary of s(H,G) are given by

{F | HF ≤ G}, {F | HF = G} and {F | HF < G}
respectively. This lune s(H,G) is a flat precisely when H = G, in which case its
closure equals its interior. The definition of a Zie element may now be rewritten as
follows.

Lemma 10.26. We have z ∈ Zie[A] iff
(10.17a)

∑

F∈Lo

xF = 0 for all non-singleton combinatorial lunes L

iff

(10.17b)
∑

F∈Cl(L)

xF = 0 for all non-singleton combinatorial lunes L,

where Lo and Cl(L) denote the interior and closure of L, respectively.

When L runs over non-minimum flats, both statements specialize to (10.12).

Lemma 10.27. We have z ∈ Zie[A] iff (10.17a) holds for all vertex-based combi-
natorial lunes iff (10.17b) holds for all vertex-based combinatorial lunes.

Proof. By Corollary 3.26, the interior of any non-singleton combinatorial lune
can be written as a disjoint union of the interiors of vertex-based combinatorial
lunes. This proves the first equivalence. The second equivalence then follows from
the usual triangularity argument. �

This is the Ree criterion. A Zie element may be visualized as a scalar assigned
to each face such that the sum of the scalars in the interior (closure) of every
vertex-based lune is 0. (The scalar assigned to F is xF .)
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10.3.5. Orthogonality with decomposable part. Let Σ[A]∗ denote the vector
space dual to Σ[A]. We use the letter M to denote the basis of Σ[A]∗ which is dual
to the H-basis of Σ[A]. We view Σ[A] as a left module over itself. Since Σ[A] acts
on itself on the left, it acts on Σ[A]∗ on the right. Using the definition

〈MG · HH , HF 〉 = 〈MG, HH · HF 〉,
we see that the right action is given by

(10.18) MG · HH =
∑

F :HF=G

MF .

Note that the rhs is zero if H 6≤ G. This formula is an instance of (9.65).
Let Zie[A]⊥ denote the decomposable part of Σ[A]∗. By definition (9.67), it is

the span of the elements (10.18) as (H,G) varies over nested faces with H > O.
Equivalently, it is spanned by the elements

fL =
∑

F∈Cl(L)

MF

as L varies over non-singleton lunes. (We can also take the interior Lo instead of
the closure Cl(L).) Lemma 10.26 says that z is a Zie element iff 〈fL, z〉 = 0 for
every non-singleton lune L. Equivalently:

Lemma 10.28. The spaces Zie[A] and Zie[A]⊥ are orthogonal to each other under
the canonical pairing between Σ[A] and Σ[A]∗.

Since Zie[A] is the primitive part of Σ[A], what we are then seeing above is
an illustration of the duality between primitive and decomposable parts (Proposi-
tion 9.58).

Exercise 10.29. Show that z ∈ Zie[A] iff the sum of the coefficients of z of faces
in the interior of any non-singleton cone is zero.

Exercise 10.30. Use the Ree criterion to deduce Lemma 10.20.

10.3.6. Opposition map. The opposition map preserves the space of Zie ele-
ments. This can be deduced from either the Friedrichs criterion or the Ree crite-
rion. We say a Zie element is projective if it belongs to the projective Tits algebra,
that is, if it is fixed by the opposition map. A related result is given below.

Lemma 10.31. If z ∈ Zie[A], then for any face G,

(10.19)
∑

F :F≤G

xF = (−1)rk(G)xG.

Proof. Suppose z is a Zie element. Now apply the Witt identity (7.19a) to the
scalars xF . By definition of a Zie element (10.11b), the sum inside the parenthesis
in (7.19a) is zero for H > O. So the lhs of (7.19a) reduces to

∑
F :F≤G x

F (coming
from the term H = O), and we get (10.19).

Alternatively, one can use (7.19b) and (10.11a). �

10.3.7. Garsia descent criterion. Consider the lune s(H,G) in a rank-three
simplicial arrangement shown below. (Only those three hyperplanes in the ar-
rangement which are relevant to the discussion are shown.)
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GH

The closure of the lune s(H,G) consists of faces F such that HF ≤ G. This set
can be split into four parts (shown in dark, dark-medium, light-medium and light
shades) depending on the value of Des(F,G) (which is necessarily a face of H),
see (7.3a). When this is the central face, we get faces of G shown in dark shade,
when this is a vertex of H, we get faces either in the dark-medium or light-medium
shaded regions, and when this is H, we get faces in the light shaded region. Note
very carefully the shades on the boundaries of these regions; compare and contrast
with the figure in Section 10.1.6.

Suppose we are given a Zie element z ∈ Zie[A]. By applying the Ree criterion,
arguing as in the Lie case, we deduce that the sum of the coefficients of z of faces in
the dark shaded region (that is, faces of G) is equal to the sum in the light shaded
region. This leads to the Garsia criterion:

Lemma 10.32. Suppose A is a simplicial arrangement. Then z ∈ Zie[A] iff for
any nested face (K,G),

(10.20)
∑

F :F≤G

xF = (−1)rk(K)
∑

F :GF=G,
Des(F,G)=K

xF .

The lhs is a specialization of the rhs when K is the central face. This follows
from (7.5a).

Proof. Suppose z ∈ Zie[A]. Now apply the Witt identity (7.21a) to the scalars
xF . By (10.11b), the sum inside the parenthesis in (7.21a) is zero for H > O. So
the lhs of (7.21a) reduces to

∑
F :F≤G x

G (coming from the term H = O). This
proves (10.20).

Conversely, suppose (10.20) holds for any pair of faces K ≤ G. Let H ≤ G and
H > O. Then, by (7.4a),

∑

F :HF≤G

xF =
∑

F :GF=G,
Des(F,G)≤H

xF =
∑

K:K≤H

∑

F :GF=G,
Des(F,G)=K

xF

=
∑

K:K≤H

(−1)rk(K)

Å ∑

F :F≤G

xF
ã

= 0.

(The second equality is the decomposition illustrated in the preceding figure.) The
term inside the parenthesis does not depend on K. So the sum over K is 0 by
(1.41). This verifies (10.11b). Hence z ∈ Zie[A]. �

There is another way to formulate the Garsia criterion by decomposing the
interior of a lune rather than its closure. It is illustrated below.
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GH

The interior of the lune s(H,G) consists of faces F such that HF = G. This set can
be split into four parts (shown as the four shaded regions) depending on the value
of Des(F,G) (which is necessarily a face of H), see (7.3b). Note very carefully how
the shades on the boundaries have changed from before. Now if z ∈ Zie[A], then
the coefficient of the face G in z equals the sum of the coefficients of z of faces in
the dark shaded region. (The light shaded region contains only one face, namely,
G.)

Lemma 10.33. Suppose A is a simplicial arrangement. Then z ∈ Zie[A] iff for
any nested face (K,G),

(10.21) xG = (−1)rk(K)
∑

F :GF=G,

Des(F,G)=K

xF .

The lhs is a specialization of the rhs when K is the central face. This follows
from (7.5b).

The proof is similar to the previous case, the relevant identity is (7.21b).

Exercise 10.34. For a simplicial arrangement, deduce Lemma 10.31 as a special
case of both Lemma 10.32 and Lemma 10.33 by setting K = G.

10.3.8. Cartesian product. Induced element under a flat. For any arrange-
ments A and A′, the isomorphism (9.77) restricts to the space of Zie elements:

(10.22) Zie[A×A′]
∼=−→ Zie[A]⊗ Zie[A′].

This can be checked using the Friedrichs criterion.
Similarly, the map (9.76) restricts to the space of Zie elements, that is, the

truncation of a Zie element of A to faces under a flat X yields a Zie element of AX.

10.4. Zie elements and primitive part of modules

Zie elements can be used to study the primitive part of any left module over
the Tits algebra. More precisely, a special Zie element projects a left module onto
its primitive part. This allows us to derive formulas for the dimensions of the space
of Lie and Zie elements.

10.4.1. Zie elements and primitive part of modules. Let z be an element
of the Tits algebra Σ and h a left Σ-module. Recall that Ψh(z) denotes the linear
operator on h given by left multiplication by z.

Proposition 10.35. If z is a Zie element, then the image of Ψh(z) is contained in
P(h). Moreover, Ψh(z) acts on P(h) by scalar multiplication by the coefficient of
the central face in z. If z is a special Zie element, then Ψh(z) projects h onto P(h).

Conversely: If Ψh(z) maps h to P(h) for every left module h, then z is a Zie
element.
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Proof. Let z =
∑
F x

F HF . Let h ∈ h. By Lemma 10.19,

HH · (z · h) = (HH · z) · h = 0

for all H > O. Thus z · h ∈ P(h) as required. If h itself is primitive, then

z · h =
∑

F

xF HF · h = xOh.

For the converse, choose h := Σ. Then z · HF is a Zie element for any face F .
Hence z = z · HO is a Zie element. �

Remark 10.36. For each z ∈ Σ, the linear map Ψh(z) is natural in h. Let F

denote the forgetful functor from the category of left Σ-modules to the category of
vector spaces. One may recover the Tits algebra as the algebra of endomorphisms
(natural transformations) of the functor F: the map

Σ→ End(F), z 7→ Ψ(z)

is an isomorphism. (This is a general fact for the category of modules over an
algebra.) Proposition 10.35 shows that one may similarly recover the space of Zie
elements as

Zie ∼= Hom(F,P).
10.4.2. Dimensions of Lie and Zie.

Proposition 10.37. For any left Σ-module h,

(10.23) dim(P(h)) = η⊥(h) =
∑

Y

µ(⊥,Y) ξY(h),

with ξX(h) and ηX(h) as in (9.50).

Proof. We use that special Zie elements z do exist. By Proposition 10.35, P(h) =
z · h. By Lemma 10.24, z is an idempotent which lifts Q⊥. Now apply (9.54). �

Let us apply (10.23) to h = Γ and h = Σ. Combining the Friedrichs crite-
rion (Lemmas 10.5 and 10.19) with (9.55) and (9.56), we obtain formulas for the
dimensions of the space of Lie and Zie elements:

Theorem 10.38. For any arrangement A,

(10.24) dim(Lie[A]) =
∑

X

µ(⊥,X) cX = |µ(A)|

where cX is the number of chambers in AX, and

(10.25) dim(Zie[A]) =
∑

X

µ(⊥,X) dX =
∑

X

|µ(AX)|,

where dX is the number of faces in AX. In each sum, X varies over all flats in the
arrangement.

10.5. Zie in small ranks

Let us try to understand Zie elements of arrangements of rank one and two.
The rank-zero case was treated in Lemma 10.16.
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10.5.1. Rank one. Let A be the rank-one arrangement consisting of the central
face, and chambers C and C. Then, the ambient space is the only non-singleton
lune of A. Hence,

(10.26) xO HO + xC HC + xC HC ∈ Zie[A] ⇐⇒ xO + xC + xC = 0.

Thus, Zie[A] is two-dimensional. This can be double-checked from (10.25):

dim(Zie[A]) = 1 · 3− 1 · 1 = 2.

Observe that any special Zie element is of the form

HO − p HC − (1− p) HC ,
where p is an arbitrary scalar. Let us compute the action of this element on Γ[A].
For instance,

(HO − p HC − (1− p) HC) · HC = HC − p HC − (1− p) HC
= (1− p) HC − (1− p) HC ,

which is a Lie element. Further,

(HO − p HC − (1− p) HC) · (HC − HC) = HC − HC .

So its action on a Lie element gives back the same Lie element. This is consistent
with Proposition 10.35.

Compare the above calculations with those in Section 9.4.5. In this case,
Lie[A] = rad(Γ[A]).
Exercise 10.39. Verify Lemma 10.24 for the rank-one arrangement. (Use the
description of idempotents given in Exercise 9.24.)

10.5.2. Rank two. Let A be the rank-two arrangement of n lines. Then, applying
(10.25),

dim(Zie[A]) = (4n+ 1)− 3n+ (n− 1) = 2n.

Let us look at the case n = 3. A Zie element is shown in the diagram below.

3

1

1

1

1

1

1

2

12

1

2 1

This is a quasi-idempotent element with xO = 3.
The Ree criterion says that the sum of the scalars in the closure (or interior)

of every non-singleton lune is zero. The three lines, the six half-spaces, and the
ambient space are the closures of non-singleton lunes. Among them, the lines and
half-spaces are vertex-based lunes. For a line, −2 + 3 − 1 = 0; for a half-space,
(−2+3−1)+(1−1+1−2+1) = 0; and for the ambient space, (−2+3−1)+(1−
1 + 1− 2 + 1) + (1− 1 + 1− 2 + 1) = 0. The ambient space is not a vertex-based
lune, so, as is evident, the last calculation is a consequence of the previous two.
The origin, the 6 rays, and the six sectors are the closures of singleton lunes, thus
there is no condition on the sum of their coefficients.
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Now let us check the Garsia criterion. Take G to be any one of the six edges.
Then ∑

F :F≤G

xG = 3− 2− 1 + 1 = 1 = xG.

This verifies (10.19). Now take K to be a vertex of G. Then the lhs of (10.20) is
as above, while the rhs is

(−1)(1 + 1− 2− 1) = 1

as required.

Exercise 10.40. Check that the action of the above Zie element on any chamber
produces a Lie element, while the action on a Lie element produces the same Lie
element multiplied by 3.

Exercise 10.41. For the arrangement A of n lines, check directly by solving the
linear system (10.11a) that dim(Zie[A]) = 2n.

10.6. Substitution product of Lie

We introduce the substitution product of Lie. It is a procedure to obtain Lie
elements of an arrangement by “multiplying” Lie elements of the arrangements
under and over its flats. This can be viewed as a restriction of the substitution
product of chambers (Section 4.8.1). The connection to the classical Lie operad is
given in Section 14.8.5.

Recall that every Lie element is a Zie element. The substitution product of Lie
can be generalized as follows. One can multiply a Lie element of the arrangement
under a flat with a Zie element of the arrangement over the same flat to obtain a
Zie element of the arrangement. This product can be viewed as a restriction of the
substitution product of chambers and faces (Section 4.8.3).

Similarly, one can multiply a chamber element of the arrangement under a flat
with a Lie element of the arrangement over the same flat to obtain a chamber
element of the arrangement. This product can be viewed as a restriction of the
substitution product of top-lunes and chambers (Section 4.8.4).

10.6.1. Substitution product of Lie. Recall the substitution product of cham-
bers (4.18). By linearizing, we obtain a map

(10.27) Γ[AX]⊗ Γ[AX]→ Γ[A]
for any flat X. We now show that this map restricts to the space of Lie elements.

Proposition 10.42. For any flat X, there is a unique linear map

(10.28) Lie[AX]⊗ Lie[AX]→ Lie[A]
such that the diagram

(10.29)

Γ[AX]⊗ Γ[AX] // Γ[A]

Lie[AX]⊗ Lie[AX] //

OO

Lie[A]

OO

commutes.

We call (10.28) the substitution product of Lie.
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Proof. An element of Lie[AX] is a scalar assigned to each face F of support X
such that the Ree criterion is satisfied in AX, while an element of Lie[AX] is a
scalar assigned to each chamber greater than F (where F is a fixed face of support
X) such that the Ree criterion is satisfied in AF .

v v

AX

2 5 3 4 1 3 ⊗ 1

1

AX

❴

��

v v

A

2 5 3 4 1 3

2 5 3 4 1 3

An illustration is provided in the diagram. The arrangement A has rank 3.
The flat X has rank 2, so it is a great circle. The arrangement AX is a 12-gon,
six of whose sides have been marked out. They comprise a top-lune of AX; note
that the assigned values add up to zero: 2 − 5 − 3 + 4 − 1 + 3 = 0. (For practical
purposes, the full 12-gon is not shown. But the six values shown determine the
remaining six values, since opposite sides have the same value by (10.5).) The
arrangement AX consists of two chambers (the hemispheres), with values say 1 and
−1. Substitution (10.27) assigns labels to 24 = 12 ∗ 2 faces, 12 of which are shown
above. For convenience, we assume that they are triangles.

We check that this assignment satisfies the Ree criterion. Accordingly, let L be
a non-singleton top-lune of A. If L does not contain any of the 24 triangles, then
the Ree criterion clearly holds. So suppose that L contains at least one of the 24
triangles.

v v

A

L

L

2 5 3 4 1 3

2 5 3 4 1 3

There are two cases.

• b(L) ≤ X.
In the picture, L is the semi-circular ball with b(L) = {v, v}. Note

that 6 of the 24 triangles belong to L, and the sum of their values is zero.
The reason is that in this case L ∧ X is a non-singleton top-lune of AX,
and the values in AX satisfy the Ree criterion.

• b(L) 6≤ X.
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In the picture, L is the oval. Note that 4 of the 24 triangles belong
to L, and the sum of their values is zero. In fact, the sum can be broken
into two parts and each part sums to zero (5+ 5 = 0 and 3+ 3 = 0). The
reason is that in this case, for any face F with support X which belongs to
the closure of L, L∧ΓF is a non-singleton top-lune of AF , and the values
in AF satisfy the Ree criterion.

The general case works in exactly the same manner as this illustration. �

Exercise 10.43. Prove Proposition 10.42 using the Friedrichs criterion. The out-
line is as follows. To check that HH acts by zero for H > O, split the analysis into
two cases depending on whether s(H) ≤ X or not. In the first case, use that the
first tensor factor is a Lie element and the fact that H > O. In the second case,
use that the second tensor factor is a Lie element and the fact that FH > F for
any F with support X.

Example 10.44. Let us understand how substitution works in rank two. Each
term in any Jacobi identity arises from the substitution product (10.28) on a rank-
one flat. For instance, the middle term in (10.9) arises as follows.

11

AX

⊗

1

1

AX

7−→
1

0

1

1

0

1

A

Example 10.45. Let us now go to rank three. The spherical model of the braid
arrangement A on [4] is shown below. We illustrate how the substitution product
can be used to generate elements of Lie[A].

bz

cy

p

p

p

p

cy

ax

bqzr
xa

zrbq

cryq
yqcr

xa

ax

bz

Pick any a, b and c subject to a+b+c = 0, any x, y and z subject to x+y+z = 0,
and any p, q and r subject to p + q + r = 0. Using this data, we assign labels to
chambers as shown in the figure: bq means b+ q, cr means −c− r, and so on. (We
use multiplicative notation for typesetting reasons.) Why is this a Lie element? To
see this, use (10.28) three times for three different flats and take their sum. In each
case AX and AX are cisomorphic to either the rank-one arrangement or the rank-
two arrangement of three lines. One flat is the central circle which is surrounded
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by p’s, q’s and r’s. The remaining two flats are of rank 1. For that, locate a pair
of opposite vertices which are surrounded by a’s, b’s and c’s, and another pair of
opposite vertices which are surrounded by x’s, y’s and z’s.

One can produce other Lie elements by substituting at other flats. We will see
later that Lie elements which arise in this manner provide a spanning set for all Lie
elements.

Exercise 10.46. Use Exercise 1.37 to check that: If w ∈ Γ[AX] and z ∈ Γ[AX]
are both nonzero, then the substitution product (10.27) applied to w ⊗ z yields a
nonzero element of Γ[A]. Deduce that the same is true with Γ replaced by Lie.

Exercise 10.47. Let X and Y be modular complements in the lattice of flats.
Each chamber F in AX is contained in a unique chamber of AY, which we denote
by YF . (Also see Exercise 3.10.) Show that if

∑
F x

F HF is a Lie element of AX,
then

∑
F x

F HYF is a Lie element of AY. This fact may fail if Y is a complement of
X which is not modular.

10.6.2. Iterated substitution product. The substitution product of Lie can be
written in the general form

(10.30) Lie[AY
X]⊗ Lie[AZ

Y]→ Lie[AZ
X]

for X ≤ Y ≤ Z. Compare with (4.19). Diagrams (4.20a) and (4.20b) yield the
following.

The diagram

(10.31a)

Lie[AY
X]⊗ Lie[AZ

Y]⊗ Lie[AW
Z ] //

��

Lie[AY
X]⊗ Lie[AW

Y ]

��

Lie[AZ
X]⊗ Lie[AW

Z ] // Lie[AW
X ]

commutes for any X ≤ Y ≤ Z ≤W.
The maps

(10.31b) Lie[AX
X]⊗ Lie[AY

X]→ Lie[AY
X] and Lie[AY

X]⊗ Lie[AY
Y]→ Lie[AY

X]

are the canonical identifications.

For any chain of flats X0 < X1 < · · · < Xk−1 < Xk, there is a linear map

(10.32) Lie[AX1

X0
]⊗ Lie[AX2

X1
]⊗ · · · ⊗ Lie[AXk

Xk−1
]→ Lie[AXk

X0
]

obtained by repeated application of (10.30). It is well-defined in view of (10.31a).
We call (10.32) the iterated substitution product of Lie.

Exercise 10.48. Show that: For any arrangement A, the space Lie[A] is nonzero.
(Recall that Lie[AY

X] is one-dimensional when X⋖Y. Now use iterated substitution
(10.32) and Exercise 10.46. Alternatively, use that dimemnsion of Lie[A] is |µ(A)|
which is nonzero by (1.44).)

10.6.3. Substitution product of Lie and Zie. By linearizing the substitution
product of chambers and faces (4.21), we obtain a map

(10.33) Γ[AX]⊗ Σ[AX]→ Σ[A]
for any flat X.
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Proposition 10.49. For any flat X, there is a unique linear map

(10.34) Lie[AX]⊗ Zie[AX]→ Zie[A]

such that the diagram

(10.35)

Γ[AX]⊗ Σ[AX] // Σ[A]

Lie[AX]⊗ Zie[AX] //

OO

Zie[A]

OO

commutes.

This result can be proved exactly like Proposition 10.42 using the Ree criterion
both for Lie and Zie elements. Alternatively, one may also use the Friedrichs
criterion along the lines of Exercise 10.43.

We call (10.34) the substitution product of Lie and Zie. One may check that:
For any X ≤ Y, the diagram

(10.36)

Lie[AX]⊗ Lie[AY
X]⊗ Zie[AY]

��

// Lie[AY]⊗ Zie[AY]

��

Lie[AX]⊗ Zie[AX] // Zie[A]

commutes. The top horizontal map involves (10.30) while the rest involve (10.34).

10.6.4. Substitution product of chambers and Lie. Let ÛΛ[A] denote the

space obtained by linearizing ÛΛ[A] with canonical basis H. Define an injective
linear map

(10.37) Γ[A]→ ÛΛ[A],
∑

C

xC HC 7→
∑

L

xL HL,

where xL :=
∑
C∈L x

C . In other words, xL is obtained by summing xC over all
chambers C contained in L.

Each chamber is a top-lune. However, note very carefully that (10.37) is not
the inclusion map of chambers into top-lunes. For example, for the rank-one ar-
rangement with chambers C and C, the map (10.37) is given by

a HC + b HC 7→ a HC + b HC + (a+ b) H⊤.

By linearizing the substitution product of top-lunes and chambers (4.23), we
obtain a map

(10.38) ÛΛ[AX]⊗ Γ[AX]→ ÛΛ[A]

for any flat X.

Proposition 10.50. For any flat X, there is a unique linear map

(10.39) Γ[AX]⊗ Lie[AX]→ Γ[A]
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such that the diagram

(10.40)

ÛΛ[AX]⊗ Γ[AX] // ÛΛ[A]

Γ[AX]⊗ Lie[AX] //

OO

Γ[A]

OO

commutes. The vertical maps are induced from (10.37).

We omit the proof. We mention that only the top-lunes s(H,D) with X = s(G)
for some H ≤ G ≤ D play a part in the commutativity of (10.40).

We call (10.39) the substitution product of Γ and Lie. One may check that it
is indeed the restriction of the map (10.27). For any X ≤ Y, the diagram

(10.41)

Γ[AX]⊗ Lie[AY
X]⊗ Lie[AY]

��

// Γ[AX]⊗ Lie[AX]

��

Γ[AY]⊗ Lie[AY] // Γ[A]
commutes. The top horizontal map involves (10.30) while the rest involve (10.39).

We now record a significant property of the substitution product of chambers
and Lie.

Lemma 10.51. The map
⊕

H

Γ[AH]⊗ Lie[AH] ։ rad(Γ[A])

is surjective. The sum is over all hyperplanes H.

Proof. For any adjacent chambers C and D whose common panel, say F , has
support Z,

HF ⊗ βZ,F (HC/F − HD/F ) 7→ HC − HD.

By Proposition 9.30, the element HC − HD belongs to the radical of Γ[A], and
further by Exercise 9.34, the radical is linearly spanned by such elements. The
result follows. �

A companion result for the substitution product of Lie and Zie is given later
in Exercise 13.60.

10.6.5. Projective case. Recall from Section 9.4.8 that Γ[A] has a subspace con-
sisting of projective chamber elements. The map (10.27) restricts to these sub-

spaces. Similarly, the spaces Σ[A] and ÛΛ[A] have projective analogues, and the
maps (10.33) and (10.38) restrict to those. A simple way to deduce this is as
follows.

Linearize the category of lunes (Section 4.4). By Lemma 4.39, the opposition
map acts on this category. So we have the linear subcategory which is invariant
under this action. Explicitly, its linear space of morphisms has a basis indexed by
projective lunes, and they compose as

(HL + HL) ◦ (HM + HM) = (HL◦M + HL◦M) + (HL◦M + HL◦M).

As explained in Section 4.8, the maps (10.27), (10.33) and (10.38) arise from the
composition operation on lunes, so they indeed have projective analogues.
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As a consequence, (10.28), (10.34) and (10.39) also restrict to projective Lie,
projective Zie and projective chamber elements.

Notes

Classical Lie elements. Lie elements for the braid arrangement (that is, the arrange-
ment of type A) have been extensively studied. Standard references are Reutenauer’s book
[342] and Garsia’s paper [183]. We discuss these Lie elements in Section 14.8. In modern
terms, they are elements of the classical Lie operad. In the older literature, results about
the classical Lie operad are often phrased in terms of the free Lie algebra. The term Lie
polynomials is used in this setting. Different characterizations of Lie polynomials are given
in [342, Theorem 1.4]. Similar discussion for Lie series is given in [342, Theorem 3.1].
Reutenauer’s criteria (iii) in Theorems 1.4 and 3.1 corresponds to our Friedrichs criterion
(or more precisely to Exercise 10.6). This originated in work of Friedrichs [175, footnote
on page 19]. Early papers related to this criterion are those of Cohn [115], Magnus [280,
Theorem I], Lyndon [278] and Finkelstein [170]. Reutenauer’s criteria (iv) in Theorem
3.1 corresponds to our Ree criterion (Lemma 10.8). (The equivalent Lemma 10.10 spe-
cialized to type A is stated later in Lemma 14.56.) This originated in work of Ree [336,
Theorem 2.2]. Lemma 10.13 for type A is due to Garsia [183, Theorem 2.1, (i) and (iii)].

In the discussion in Section 10.2.2: Suppose k = C. Let w denote the primitive cube-
root of unity. Then a = 1, b = w, and c = w2, and a = 1, b = w2, and c = w yields a
basis for Lie[A]. This is a special case of a result of Klyachko [244].

Type B Lie elements. Lie elements for the arrangement of type B are treated in
Section 14.9. They have appeared in the literature in a slightly different guise in the work
of Bergeron, Gottlieb and Wachs. For details, see the notes to Chapter 14.

Lie elements for arrangements. Lie elements for arbitrary arrangements do not seem
to have been explicitly considered in the literature. In fact, we mention that the linear
system (10.1) can be used to define Lie elements for any LRB. The Friedrichs and Ree
criteria continue to hold. Moreover, the substitution product of chambers restricts to Lie
elements yielding (10.28). The same proof works in this general context.
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CHAPTER 11

Eulerian idempotents

We saw that the Tits algebra is elementary and its split-semisimple quotient is
the Birkhoff algebra. The quotient map is the support map. Let us refer to a com-
plete system of primitive orthogonal idempotents of the Tits algebra as an Eulerian
family. (In the exposition, an Eulerian family is defined slightly differently and later
shown to be equivalent to a complete sytem.) Any Eulerian family lifts the prim-
itive idempotents of the Birkhoff algebra. There are two theoretically significant
methods to construct and characterize Eulerian families. The first method starts
with a homogeneous section of the support map. This is the Saliola construction.
The second method starts with a family of special Zie elements. Each Eulerian
family gives rise to a Q-basis of the Tits algebra. This is in contrast to the Birkhoff
algebra which has a unique complete system which also serves as the unique Q-
basis. These ideas are further developed in Chapter 15 through consideration of
the lune-incidence algebra with a summary given in Section 15.5.

The Saliola construction is recursive in nature and involves alternating sums.
Hence it is nontrivial to write down closed formulas for the Eulerian idempotents
in general. For a good reflection arrangement, we give cancelation-free formulas for
the Eulerian idempotents associated to the uniform section.

As an application, we discuss the extension problem for chambers. Any cham-
ber element of A induces a chamber element of AF by Tits projection on the face F .
The extension problem is to start with chamber elements of AF for each noncentral
face F > O which are “mutually compatible”, and construct chamber elements of
A whose Tits projections are these given elements. We show that the solution space
is a translate of the space of Lie elements.

11.1. Homogeneous sections of the support map

Fix an arrangement A. We define a class of (linear) sections of the support
map of A. We call them homogeneous sections.

11.1.1. Homogeneous sections. Recall the Birkhoff algebra Π[A], the Tits al-
gebra Σ[A] and the support map (9.30) relating them. Let

u : Π[A]→ Σ[A]

be any section of the support map. (The section is only required to be a linear
map, not an algebra map.) For each flat X, let uX := u(HX) denote the value of u
on HX. Thus

(11.1) s(uX) = HX.

287
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We say that a section u of the support map is homogeneous if each uX only
involves faces of support X. That is,

(11.2) uX =
∑

F : s(F )=X

uF HF

for scalars uF . Applying the support map and using (11.1), we obtain

(11.3)
∑

F : s(F )=X

uF = 1.

Note that u⊥ = HO. Conversely, a choice of elements uX of the form (11.2) with
property (11.3) determines a homogeneous section u.

Remark 11.1. For an arbitrary section, uX may also contain terms from flats
other than X. The condition for u to be a section is: For any X, the sum of the
coefficients of faces in uX with support Y is 1 if Y = X and 0 if Y 6= X.

Lemma 11.2. Let X be a flat, and G be a face with support X. Let uX be an
element of Σ[A] of the form (11.2). Then

HG · uX = HG ⇐⇒
∑

F : s(F )=X

uF = 1 ⇐⇒ uX · uX = uX and uX is nonzero.

Proof. By (1.13), s(F ) = s(G) implies GF = G. Hence,

HG · uX =
( ∑

F : s(F )=X

uF
)
HG and uX · uX =

( ∑

F : s(F )=X

uF
)
uX.

Both equivalences follow. Note the relevance of requiring uX to be nonzero. �

The preceding discussion yields the following.

Lemma 11.3. The following are equivalent.

(1) A homogeneous section u of A.
(2) A family of scalars (uF ) indexed by faces F , which satisfy (11.3) for each

flat X.
(3) A family of nonzero elements {uX}X∈Π indexed by flats of the form (11.2)

with

(11.4) uX · uX = uX.

In particular, uX is a nonzero idempotent of the Tits algebra.

Lemma 11.4. The dimension of the affine space of all homogeneous sections is
equal to the number of faces minus the number of flats.

Proof. Apply Lemma 11.3, item (2). For each flat we get the number of faces
with that support minus one. �

Suppose the base field is the real numbers and all scalars uF are nonnegative.
In this case, by Lemma 11.3, item (2), a homogeneous section constitutes a family
of probability distributions: a distribution on the set of faces supported on X, one
for each flat X.
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11.1.2. Set-theoretic sections. Consider the (set-theoretic) support map (1.2)
relating the Birkhoff monoid Π[A] and the Tits monoid Σ[A]. Let

sec : Π[A]→ Σ[A]
be any section of the support map. Note that sec(⊤) is an arbitrarily chosen
chamber. Linearizing sec yields a homogeneous section u. Explicitly, the scalars
uF are given by

uF :=

®
1 if F is in the image of sec,

0 otherwise.

In this case, we say that the homogeneous section u is set-theoretic.

11.1.3. The uniform section. Suppose that the field characteristic is 0. We say
that a homogeneous section u is uniform if uF = uG whenever F and G have the
same support. Equivalently, u is uniform if

uF =
1

cF
,

where cF is the number of faces with support s(F ).

11.1.4. Projective sections. We say that a homogeneous section u is projective

if uF = uF for all faces F .

Lemma 11.5. Assume the rank of the arrangement to be at least one. Let k be
any field. A projective section exists iff the characteristic of k is not 2.

Proof. A projective section is the same as a choice of scalars u{F,F}, one for each
projective face {F, F}, such that u{O,O} = 1, and for each non-minimum flat X,

2
∑

{F,F}: s(F )=X

u{F,F} = 1.

In particular, 2 u{P,P} = 1 for any vertex P . Clearly, these equations can be solved
iff the field characteristic is not 2. �

The uniform section (assuming characteristic 0) is clearly projective. In con-
trast, a set-theoretic section of an arrangement of rank at least one can never be
projective.

11.1.5. Example. Consider the rank-one arrangement with chambers C and C.
Homogeneous sections are characterized by an arbitrary scalar p via

uO = 1, uC = p, uC = 1− p.
There are two set-theoretic sections, namely,

uO = 1, uC = 1, uC = 0 and uO = 1, uC = 0, uC = 1.

These are the cases p = 1 and p = 0, respectively. There is only one projective
section and it is the uniform section. It is given by

uO = 1, uC = uC =
1

2
.

This is the case p = 1/2.
Now consider the rank-two arrangement of 3 lines. The figure on the left shows

a set-theoretic section, while the one on the right shows a projective section. The
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figure in the middle is the uniform section. The number written on the face F
stands for the coefficient uF .

1 1

01

0

1 0

0

0

0

1

0

0

1 1/2

1/21/2

1/2

1/2 1/2

1/6

1/6

1/6

1/6

1/6

1/6

1 1/2

1/21/2

1/2

1/2 1/2

1/3

0

1/6

1/3

0

1/6

11.1.6. Induced section over a flat. Recall that for any face H of A, the flats
of AH correspond to the flats of A which contain H. Whenever a flat X of A
contains H, we write X/H for the corresponding flat of AH .

Suppose u is a homogeneous section of A. For each G ≥ H, define

(11.5) uGH :=
∑

F :HF=G,
s(F )=s(G)

uF .

The sum is over all faces in the combinatorial lune s(H,G), see (3.8). In particular,
for any chamber D ≥ H,

(11.6) uDH :=
∑

C:HC=D

uC .

The sum is over all chambers in the combinatorial top-lune s(H,D), see (3.3).

Lemma 11.6. A homogeneous section u of A induces a homogeneous section uH
of AH , with the scalar associated to the face G/H being uGH .

Proof. Let X be any flat containing H. Then
∑

G/H: s(G/H)=X/H

uGH =
∑

G:G≥H,
s(G)=X

∑

F :HF=G,
s(F )=s(G)

uF

=
∑

F : s(F )=X

uF

= 1.

The first step used (11.5), while the last step used (11.3). By Lemma 11.3, uH is a
homogeneous section. �

For the three homogeneous sections u shown in the pictures in Section 11.1.5,
the respective induced homogeneous sections uF for F a vertex are shown below.

F 0

1
1

F 1/2

1
1/2

F 1/2

1
1/2

In the middle picture, the value 1/2 on an edge containing F was obtained as
1/6+1/6+1/6, while in the last picture, the value 1/2 was obtained as 1/3+1/6+0.
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Going back to the general case: Consistent with (11.2), for any face H, and
flat X containing H, put

(11.7) uX/H =
∑

G:G≥H,s(G)=X

uGH HG/H .

This is an element of Σ[AH ]. It is clear from (11.5) and (11.7) that

(11.8) uX/H = ∆H(uX),

with ∆H as in (9.70). Now let βG,F be as in (9.68). Using (9.71) and (9.72), we
deduce that βG,F (uX/F ) = uX/G for any F and G with the same support, and
∆G/H(uX/H) = uX/G for any G ≥ H. This can be expressed succintly as follows.

Lemma 11.7. The homogeneous sections uH of AH induced from a homogeneous
section u of A satisfy the following compatibility conditions. For any G ≥ H,

(11.9) (uH)G/H = uG,

and for any F and G with the same support,

(11.10) βG,F (uF ) = uG.

The following is an equivalent form of the identity (11.9). For all A ≤ H ≤ G,

(11.11) uGH =
∑

F :F≥A,HF=G,
s(F )=s(G)

uFA.

(The notations in the two identities do not correspond.)

Exercise 11.8. Let u be a homogeneous section of A. Check that:

• If u is set-theoretic arising from sec : Π[A] → Σ[A], then the induced
homogeneous section uH on AH is also set-theoretic and arises from the
section

secH : Π[AH ]→ Σ[AH ], secH(X/H) := H sec(X)/H.

• If u is projective, then so is the induced homogeneous section uH on AH ,

that is, uFH = uHFH for all H ≤ F .
However, this property is not true in general for the uniform section. For instance,
it fails in the smallest nonsimplicial arrangement in rank three (Section 1.2.5). It
also fails for the simplicial arrangement shown in Section 6.8.2.

11.1.7. Induced section under a flat. Suppose u is a homogeneous section of
A. Then, for a fixed flat X, restricting u to flats Y ≤ X yields a homogeneous
section of the arrangement AX, which we denote by uX.

11.1.8. Cartesian product. Suppose u is a homogeneous section of A, and u′

is a homogeneous section of A′. Then we obtain an induced homogeneous section
u× u′ on A×A′:

(u× u′)(F,F
′) := uF u′

F ′

.

Equivalently,

(u× u′)(X,X′) = uX ⊗ u′X′ .

If u and u′ are set-theoretic (uniform, projective), then so is u× u′.
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11.2. Eulerian idempotents

We now relate homogeneous sections to Eulerian families. The latter are fami-
lies of orthogonal idempotents in the Tits algebra. Connection of Eulerian families
with complete systems and algebra sections of the support map is treated in the
next section.

11.2.1. Eulerian families. Fix an arrangement A. An Eulerian family of A is a
set E := {EX}X∈Π indexed by flats, where each EX is an element of the Tits algebra
Σ[A] of the form

(11.12) EX =
∑

F : s(F )≥X

aF HF

with a nonzero base term, that is, aG 6= 0 for at least one face G of support X.
These elements are required to be idempotent and mutually orthogonal:

(11.13) EX · EY =

®
EX if X = Y,

0 if X 6= Y.

We refer to the EX as the Eulerian idempotents . The element E⊥ associated
to the minimum flat ⊥ is the first Eulerian idempotent . The nonzero base term
condition says that the coefficient of HO in E⊥ is nonzero.

We will prove the following result.

Proposition 11.9. Eulerian families of A are in correspondence with homogeneous
sections of the support map of A.

In particular, such families always exist.

11.2.2. From a homogeneous section to an Eulerian family. Saliola con-
struction. Suppose we are given a homogeneous section u. Define elements of
Σ[A] indexed by flats recursively by the formula

(11.14) EX := uX −
∑

Y:Y>X

uX · EY,

beginning with the maximum flat and proceeding down. Thus, E⊤ = u⊤, and for a
hyperplane X,

EX = uX − uX · E⊤ = uX − uX · u⊤,

and so on till we reach E⊥ indexed by the minimum flat. In EX, the term uX involves
faces with support X, while the remaining terms involve faces with support strictly
greater than X.

Example 11.10. Suppose the homogeneous section u is set-theoretic arising from
sec : Π[A]→ Σ[A]. Then formula (11.14) takes the simpler form:

EX := Hsec(X) −
∑

Y:Y>X

Hsec(X) · EY.

The first two steps are as follows.

• E⊤ = Hsec(⊤). This is a chamber. Call it HC .
• For any panel F in the image of sec, we have Es(F ) = HF − HFC .

In general, EX only contains faces in the star of sec(X).
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Lemma 11.11. We have

(11.15) uX · EX = EX,

(11.16) uX ·
( ∑

Y:Y≥X

EY
)
= uX,

(11.17) HF ·
( ∑

Y:Y≥s(F )

EY
)
= HF .

Proof. Formula (11.15) follows by premultiplying (11.14) with uX and then using
(11.4). Substituting it in the lhs of (11.14) and rearranging terms yields (11.16).
Premultiplying this with HF (where X = s(F )) and using Lemma 11.2 yields (11.17).

�

In particular, by setting X = ⊥ in (11.16) and using u⊥ = HO, or by setting
F = O in (11.17), we obtain:

(11.18) HO =
∑

X

EX.

Lemma 11.12. For any face F and flat X, if s(F ) 6≤ X, then HF · EX = 0. In
particular, HF · E⊥ = 0 for F > O.

Proof. We do a backward induction on the rank of X. If X = ⊤, then the
statement is vacuously true. This is the induction base. The induction step is
shown below. Put Z = s(F ).

(a)

HF · EX = HF · uX −
∑

Y:Y>X

HF · uX · EY

= HF · uX −
∑

Y:Y≥Z∨X

HF · uX · EY −
∑

Y:Y>X,Z 6≤Y

HF · uX · EY.

Each term in HF · uX has support Z ∨X. It follows from Lemma 11.2 that

HF · uX = HF · uX · uZ∨X.

This along with the induction hypothesis implies that for any Y > X, Z 6≤ Y,

HF · uX · EY = HF · uX · uZ∨X · EY = 0,

and hence the last term in (a) is zero. The first two terms are manipulated as
follows.

HF · uX −
∑

Y:Y≥Z∨X

HF · uX · EY = HF · uX ·
(
uZ∨X −

∑

Y:Y≥Z∨X

uZ∨X · EY
)
= 0.

In the last step, we used (11.16) to deduce that the term inside the parenthesis is
zero. �

We refer to Lemma 11.12 as the Saliola lemma. It is an important result which
will be repeatedly used in the text.

Lemma 11.13. Given a homogeneous section u, the elements EX defined by (11.14)
yield an Eulerian family.
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Proof. It is clear that each EX is of the form (11.12) and has a nonzero base term.
We need to check (11.13). We do a backward induction on the rank of X. By (11.4),
E⊤ = u⊤ is idempotent, and by the Saliola lemma, E⊤ ·EY = 0 for any Y < ⊤. This
is the induction base. The induction step is completed below.

• X 6≤ Y.
In this case, EX · EY = 0 by the Saliola lemma.

• X < Y.
In this case, by multiplying (11.14) on the right by EY, we obtain

EX · EY = uX · EY −
∑

Z:Z>X

uX · EZ · EY = uX · EY − uX · EY = 0.

In the second step, by the induction hypothesis, only the summand for
Z = Y contributed.
• X = Y.

In this case, by multiplying (11.14) on the right by EX, we obtain

EX · EX = uX · EX −
∑

Z:Z>X

uX · EZ · EX = uX · EX = EX.

In the second step, by the induction hypothesis or by the Saliola lemma,
the sum is zero. In the last step, we used (11.15).

�

We refer to this construction of an Eulerian family starting from a homogeneous
section as the Saliola construction.

Exercise 11.14. Show that E⊥ · u⊤ = 0 whenever ⊥ 6= ⊤.
11.2.3. From an Eulerian family to a homogeneous section. The base
term. Suppose E is an Eulerian family. Using (11.12), write

(11.19) EX = uX +
∑

F : s(F )>X

aF HF .

The element uX is the part of EX consisting of faces of support X. This is the base
term of EX. It is nonzero by hypothesis. The remaining terms are the higher terms
consisting of faces of support strictly greater than X. Since EX is an idempotent,

uX + higher terms = EX = EX · EX = uX · uX + higher terms.

Thus uX · uX = uX, and hence by Lemma 11.3 the uX yield a homogeneous section.

11.2.4. Equivalence between homogeneous sections and Eulerian fami-
lies. We claim that the two constructions discussed above are inverse to each other.
One direction is clear. The nontrivial direction is proved below.

Lemma 11.15. Suppose E is an Eulerian family. Then (11.14) holds with the uX
defined by (11.19).

Proof. Write

EX = uX −
( ∑

Y:Y>X

uX · EY
)
+ errX .

We view errX as the error term and would like to show it to be 0 for all X. We do
this by a backward induction on the rank of X.
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Clearly, E⊤ = u⊤ and hence err⊤ = 0. This is the induction base. For the
induction step: Suppose errY = 0 for all Y > X. In other words, suppose the EY
for Y > X are given by the Saliola construction (11.14). For Y > X,

0 = (EX − errX) · EY = EX · EY − errX ·EY = − errX ·EY.

The first step used Lemma 11.13 while the last step used orthogonality of the
Eulerian idempotents (11.13). Hence, errX ·EY = 0 for all Y > X. Also, by con-
struction, errX only contains faces with support strictly greater than X. Write
errX =

∑
xF HF . Suppose errX 6= 0. Then there exists a face F such that xF 6= 0

but xG = 0 for all G < F . In particular, s(F ) > X. Let us calculate the coefficient
of HF in errX ·Es(F ).

〈errX ·Es(F ), HF 〉 = 〈xF HF · Es(F ), HF 〉 = 〈xF HF · us(F ), HF 〉
= 〈xF HF , HF 〉 = xF 6= 0.

Thus errX ·Es(F ) 6= 0, which is a contradiction. Hence errX = 0 as required. �

This completes the proof of Proposition 11.9.

11.2.5. Visualizing an Eulerian idempotent. One also deduces from (11.14)
that Eulerian idempotents have a more rigid form than what is specified by (11.12),
namely,

(11.20) EX =
∑

F : s(F )=X

∑

G:G≥F

aGHG.

In other words, we need to sum only over those faces G which have a face F with
support X. Further, if F and F ′ both have support X, and G ≥ F and G′ ≥ F ′ are
such that F ′G = G′, then aGaF

′

= aG
′

aF . In other words, the coefficients of faces
in the star of F are in proportion to those in the star of F ′.

An illustration in rank three is given below. For the flat X shown as the red
line, the Eulerian idempotent EX involves edges on that line and the chambers in
the shaded region. (Only the front half is visible in the picture.)

X

11.2.6. Projective Eulerian families. Recall the projective Tits algebra from
Section 9.3.4. An Eulerian family E is projective if each Eulerian idempotent EX
belongs to the projective Tits algebra.

Proposition 11.16. Projective Eulerian families of A are in correspondence with
projective sections of the support map of A.

This is obtained by restricting the correspondence in Proposition 11.9.
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11.2.7. Over and under a flat. Cartesian product. We now see how the
correspondence between Eulerian families and homogeneous sections behaves under
passage to arrangements over and under a flat, and under taking cartesian product
of arrangements.

Suppose E is an Eulerian family of A. For any face H, and flat X containing
H, define

(11.21) EX/H := ∆H(EX),

with ∆H as in (9.70). Since it is an algebra homomorphism, it follows from (11.13)
that

EH := {EX/H}X≥s(H)

is a family of mutually orthogonal idempotents of Σ[AH ].

Lemma 11.17. Let u be a homogeneous section of A, and let E be its associated
Eulerian family. Then for any face H, EH is the Eulerian family of AH associated to
the homogeneous section uH . In particular, Es(H)/H is the first Eulerian idempotent
of AH .

Proof. Let E′X/H denote the Eulerian idempotents associated to uH . We want to

show E′X/H = EX/H . We do a backward induction on the rank of X. By (11.8),

u⊤/H = ∆H(u⊤), so the result holds for X = ⊤. This is the induction base. The
induction step is as follows.

E′X/H := uX/H −
∑

Y:Y>X

uX/H · E′Y/H

= ∆H(uX)−
∑

Y:Y>X

∆H(uX) ·∆H(EY)

= ∆H(uX)−
∑

Y:Y>X

∆H(uX · EY)

= ∆H(EX).

The definition is used in the first step, and the induction hypothesis is used in the
next step. The remaining steps used (11.8) and the fact that ∆H is an algebra
homomorphism. �

Suppose E := {EY} is an Eulerian family of A. For Y ≤ X, let EXY denote the
image of EY under (9.76). Since this map is an algebra homomorphism, it follows
from (11.13) that

EX := {EXY}Y≤X

is a family of mutually orthogonal idempotents of Σ[AX], that is,

(11.22) EXY · EXZ =

®
EXY if Y = Z,

0 if Y 6= Z.

Lemma 11.18. Let u be a homogeneous section of A, and let E be its associated
Eulerian family. Then for any flat X, EX is the Eulerian family of AX associated
to the homogeneous section uX.

Proof. This can be shown by induction on the rank of X similar to the proof of
Lemma 11.17. �
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Suppose E := {EX} is an Eulerian family of A, and E′ := {E′X′} is an Eulerian
family of A′. Then

E × E′ := {EX ⊗ E′X′}(X,X′)

is an Eulerian family of A×A′. More precisely:

Lemma 11.19. Let u and u′ be homogeneous sections of A and A′, and let E and
E′ be their associated Eulerian families. Then E×E′ is the Eulerian family of A×A′

associated to the homogeneous section u× u′.

11.3. Eulerian families, complete systems and algebra sections

We now show that any Eulerian family is a complete system of primitive or-
thogonal idempotents of the Tits algebra, and all complete systems are of this form.
Recall that for any elementary algebra, there is a correspondence between complete
systems and algebra sections (Theorem D.32). Hence, this result can be stated as
follows.

Theorem 11.20. The following pieces of data are equivalent.

• An Eulerian family E of A.
• A complete system of primitive orthogonal idempotents of Σ[A].
• An algebra section Π[A]→ Σ[A] of the support map.

11.3.1. Eulerian families and algebra sections. Let E be an Eulerian family
associated to the homogeneous section u. Applying the support map to (11.14) and
using (9.31) and (11.1) yields

s(EX) = HX −
∑

Y:Y>X

HX · s(EY).

Applying induction and using (9.1) and (9.4), we deduce that

(11.23) s(EX) = QX.

Thus, the Eulerian idempotents map to the primitive idempotents of the Birkhoff
algebra. Further, the map

(11.24) Π[A] →֒ Σ[A], QX 7→ EX

is an algebra section of the support map. This is because the EX are idempotent,
mutually orthogonal, and by (11.18), they add up to HO (the unit element). Since
algebra sections correspond to complete systems, we have:

Theorem 11.21. Any Eulerian family of A is a complete system of primitive
orthogonal idempotents of Σ[A].

For the converse: Recall from Theorem D.31 that any two algebra sections of
the support map are conjugate by an element of HO + rad(Σ). (The latter is a
subgroup of the group of invertible elements of the Tits algebra.) Now use the
result below.

Lemma 11.22. Conjugation of any Eulerian family by an invertible element of the
Tits algebra produces another Eulerian family.

Proof. Let E be an Eulerian family, and v be an invertible element. Put E′X :=
v ·EX ·v−1. Then clearly, the E′X are idempotent and mutually orthogonal, and each
E′X only involves faces of support greater than X. Further, s(E′X) = s(v) · s(EX) ·
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s(v−1) = s(EX) = QX, so E′X has a nonzero base term. Thus, E′ is an Eulerian
family. �

This completes the proof of Theorem 11.20.

Exercise 11.23. Check that formula (11.23) can be equivalently expressed as

(11.25) χX(EY) =

®
1 if X = Y,

0 otherwise,

where χX are the multiplicative characters of Σ[A] given by (9.47).

Exercise 11.24. Assume that the field characteristic is not 2. Recall from Propo-
sition 9.25 that the projective Tits algebra is elementary. Formulate the analogue
of Theorem 11.20 for the projective Tits algebra.

11.3.2. Conjugation is simply transitive. We know from Lemma 11.22 that
the group HO + rad(Σ) acts by conjugation on the set of all Eulerian families. By
looking at the base terms, one can write down the corresponding action on the set
of homogeneous sections. It is as follows.

Lemma 11.25. For z ∈ rad(Σ), the action of HO + z on u is

uX 7→ (HO + zX) · uX,

where zX denotes the part of z involving faces of support smaller than X. (Note
that z⊥ = 0.)

Proof. Let us write (HO + z) · uX · (HO + z)−1 as

(HO + zX + higher terms) · uX · (HO + terms under X + higher terms).

‘Terms under X’ refer to terms involving faces whose support is smaller than X.
Since we only want terms involving faces of support X, the higher terms can be
safely ignored. The ‘terms under X’ taken together belong to the radical, so by
(9.32), left multiplication by uX yields 0. Thus, we are left with (HO + zX) · uX. �

Lemma 11.26. The action of HO + rad(Σ) on the set of Eulerian families (or
homogeneous sections) is simply transitive: Given homogeneous sections u and u′,
there is a unique z ∈ rad(Σ) such that

u′X = (HO + zX) · uX

for all flats X.

Proof. Let zX denote the part of z consisting of faces with support X. To construct
z, we need to construct zX for each flat X. We do that by induction on the rank of
X. Note that z⊥ = 0 is the unique solution for X = ⊥. Now suppose that zY are
constructed for all Y < X, and they are unique. To construct zX, we need to solve
the equation (

HO +
∑

Y:Y<X

zY + zX
)
· uX = u′X.

By Lemma 11.2, zX · uX equals zX. Thus,

zX := u′X −
(
HO +

∑

Y:Y<X

zY
)
· uX

is the unique solution. (By (9.32), u′X − uX and hence zX indeed belongs to the
radical.) This completes the induction step. �
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11.3.3. Idempotents in the Tits algebra.

Lemma 11.27. For an idempotent e in the Tits algebra, the following are equiva-
lent.

(1) e is primitive.
(2) e = EX for some Eulerian family E and some flat X.
(3) s(e) = QX for some flat X.

In particular, any primitive idempotent is necessarily an Eulerian idempotent.

Proof. (1) implies (2). By applying Lemma D.4 to 1− e, we see that e belongs to
a complete system, and hence by Theorem 11.20, it belongs to an Eulerian family

(2) implies (3). This is the same as (11.23).
(3) implies (1). e is an idempotent which lifts the primitive idempotent QX, so

it itself must be primitive by Lemma D.28. �

Lemma 11.28. An element e of the Tits algebra is idempotent iff e = EX1
+· · ·+EXk

for some Eulerian family E and distinct flats Xi.

Proof. The backward implication is clear. For the forward implication: Applying
Lemma D.4 to both e and 1 − e, we see that e can be written as the sum of
mutually orthogonal primitive idempotents which belong to a complete system. By
Theorem 11.20, any such complete system is an Eulerian family. �

11.4. Q-bases of the Tits algebra

We introduce Q-bases of the Tits algebra. There is one such basis for every ho-
mogeneous section u, or equivalently, one for every Eulerian family E. We compare
the Q-bases with the (unique) Q-basis of the Birkhoff algebra.

An abstract approach to Q-bases is given later in Section 11.5.5.

11.4.1. Q-basis of the Tits algebra. Let E be an Eulerian family. For any face
F , put

(11.26) QF := HF · Es(F ).

In particular, QO = E⊥, and QC = HC for any chamber C.

Lemma 11.29. Each QF is a primitive idempotent, with

(11.27) s(QF ) = Qs(F ).

Further, the set {QF } is a basis of the Tits algebra Σ[A].
Proof. The following calculation shows that QF is an idempotent.

QF · QF = HF · Es(F ) · HF · Es(F ) = HF · Es(F ) · Es(F ) = HF · Es(F ) = QF .

Using (9.4) and (11.23), we deduce

s(QF ) = s(HF · Es(F )) = s(HF ) · s(Es(F )) = Hs(F ) · Qs(F ) = Qs(F ).

By Lemma 11.27, item (1), QF is primitive.
The element QF written in the H-basis only involves faces greater than F , and

further by Lemma 11.2, HF appears with coefficient 1. By triangularity, the set
{QF } is a basis of Σ[A]. �
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We refer to {QF } as the Q-basis. It follows from (11.2) and (11.15) that

(11.28) EX =
∑

F : s(F )=X

uF QF .

This is a more precise way of writing (11.20).

Exercise 11.30. Let u be a homogeneous section with associated Eulerian family
E and Q-basis. Fix a specific Q-basis element, say QF . Give an example of a homo-
geneous section u′ whose associated Eulerian family E′ satisfies QF = E′s(F ). (Since

QF is a primitive idempotent, such a u′ and E′ will exist by Lemma 11.27, item (2).)

11.4.2. Visualizing a Q-basis element. An illustration of a Q-basis element is
shown below.

X

F

On the left, we have redrawn the picture of the Eulerian idempotent EX from
Section 11.2.5. The picture on the right shows QF with s(F ) = X. It involves the
edge F and the two shaded chambers. In a sense, EX is local to X, while QF is local
to F . The passage between the two is governed by (11.26) and (11.28).

11.4.3. Rank one. Consider the rank-one arrangement with chambers C and C.
Fix an arbitrary scalar p. Recall from Section 11.1.5 that any homogeneous section

u is of the form uO = 1, uC = p, uC = 1− p. The associated Eulerian family E is

E⊤ = p HC + (1− p) HC and E⊥ = HO − p HC − (1− p) HC .
The Q-basis is

QC = HC , QC = HC , QO = HO − p HC − (1− p) HC .
Note very carefully that QO is not orthogonal to either QC or QC in general.

By Lemma 11.27, we conclude that E⊥ and E⊤, as p varies, yield all the primitive
idempotents. Further by Lemma 11.28, the only other idempotents are 0 and
E⊥ + E⊤ = HO. This agrees with the claim made in Exercise 9.24.

11.4.4. Product of H- and Q-bases elements. The following is a noncommuta-
tive analogue of (9.4).

Lemma 11.31. For any faces F and G,

(11.29) HF · QG =

®
QFG if GF = G,

0 if GF > G.

In particular, if F and G have the same support, then

(11.30) HF · QG = QF .
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Proof. For any F and G,

HF · QG = HF · HG · Es(G) = HFG · Es(G).

If GF = G, then s(FG) = s(G), and the above quantity equals QFG. If GF >
G, then s(FG) > s(G), and the above quantity equals 0 by the Saliola lemma
(Lemma 11.12). �

11.4.5. Change of basis formulas. Consider the matrix (uGH) with entries de-
fined by (11.5). This matrix can be inverted. More precisely: For F ≤ G, let aGF
be the unique scalars which satisfy aFF = 1 for all F , and

(11.31)
∑

K:F≤K≤G

uKF a
G
K = 0 =

∑

K:F≤K≤G

aKF u
G
K

for all F < G. Explicitly,

(11.32) aGF = −uGF +
∑

F<H<G

uHF u
G
H −

∑

F<H<K<G

uHF u
K
Hu

G
K + . . .

for all F < G. The first sum is over H, the second sum is over H and K, and so on.
Note that some of the aGF could be negative even when all the uGF are nonnegative.

Lemma 11.32. The H- and Q-bases of the Tits algebra are related by

(11.33) HF =
∑

K:F≤K

uKF QK and QF =
∑

G:F≤G

aGF HG.

In particular,

(11.34) HO =
∑

K

uKQK .

Proof. First note that (11.34) follows from (11.18) and (11.28). Now multiply
both sides of this identity on the left by HF , and then use (11.5) and (11.29). This
proves the first formula in (11.33), and the second formula then follows. �

We deduce from (11.28) and the second formula in (11.33) that for an Eulerian
family E associated to the homogeneous section u,

(11.35) EX =
∑

F : s(F )=X

∑

G:F≤G

uF aGF HG.

Exercise 11.33. Suppose the homogeneous section u is set-theoretic arising from
sec : Π[A]→ Σ[A]. Check that

HF =
∑

K

QK ,

where the sum is over all faces K for which there exists a face G in the image of
sec such that FG = K and GF = G. In particular, HO is obtained by summing
over all faces in the image of sec. (Also see Exercise 11.8).

Exercise 11.34. Let E be any Eulerian family. Establish the following identities
using the outline given below.

Es(F ) · QF = Es(F ), QF · Es(F ) = Es(F ) and QF · QG = QF if s(F ) = s(G).

Use (11.26) to obtain the first two identities and use either of them to deduce the
third. Alternatively, use (11.29) to obtain the third identity and then use (11.28)
to deduce the first two.
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Exercise 11.35. Fix a flat X. Let hX denote the linear span of QF , as F varies
over all faces with support X. Use (11.26) and (11.29) to deduce that:

• hX is a left ideal of Σ. Moreover, it is the left ideal of Σ generated by EX.
• The radical of hX is linearly spanned by elements of the form QF − QG,
where F and G both have support X.
• The quotient of hX by its radical is one-dimensional with multiplicative
character χX. (The latter is defined in (9.47).)

For X = ⊤, the left ideal h⊤ generated by E⊤ coincides with the left ideal of
chambers Γ. (For further perspective, see the discussion in Section 13.6.3.)

11.4.6. Over and under a flat. Cartesian product. The discussion of Sec-
tion 11.2.7 implies:

Lemma 11.36. A Q-basis of Σ[A] induces a Q-basis of Σ[AH ] for every face H and
a Q-basis of Σ[AX] for every flat X. Similarly, a Q-basis of Σ[A] and a Q-basis of
Σ[A′] induce a Q-basis of Σ[A×A′].

Aspects of the passage to the arrangement over a flat are discussed in more
detail below.

Lemma 11.37. For F ≥ H,

(11.36) HF/H =
∑

K:F≤K

uKF QK/H and QF/H =
∑

G:F≤G

aGF HG/H .

These are the change of basis formulas for the H- and Q-bases of Σ[AH ].

Proof. By either (11.9) or equivalently (11.11), the first formula is a restatement
of the first formula in (11.33). The second formula follows by inverting the matrix
of coefficients (uKF ) with H ≤ F ≤ K. The coefficients of the inverse will match
the aGF . �

Lemma 11.38. We have

(11.37) ∆G(QK) =

®
QGK/G if KG = K,

0 otherwise,
and µF (QK/F ) = QK ,

with ∆G as in (9.70) and µF as in (9.73). In particular,

(11.38) QF = µF (QF/F ).

Proof. For the first formula: By (11.26) and the fact that ∆G is an algebra
homomorphism,

∆G(QK) = ∆G(HK · Es(K)) = ∆G(HK) ·∆G(Es(K)).

If KG 6= K, then the rhs is zero by the Saliola lemma (Lemma 11.12). If KG = K,
then the calculation continues using (11.21) as follows.

∆G(HK) ·∆G(Es(K)) = HGK/G · Es(K)/G = QGK/G.

The last step again used (11.26) but for AG.
For the second formula:

µF (QK/F ) = µF (∆F (QK)) = HF · QK = QK .

We used the first formula, (9.74) and (11.29) in that order. Alternatively, one may
also use (9.73) and the second formula in (11.36). �
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Now QF/F = Es(F )/F is the first Eulerian idempotent of Σ[AF ] and µF is the
inclusion map. Thus, by (11.38), each Q-basis element of A is interpretable as the
first Eulerian idempotent of an arrangement over a flat of A.
Lemma 11.39. If F and G have the same support, then

(11.39) βG,F (QK/F ) = QGK/G,

with βG,F as in (9.68). In particular,

(11.40) βG,F (QF/F ) = QG/G.

Proof. This follows from (9.71) and the first formula in (11.37). �

11.4.7. Projective Tits algebra. Let E be a projective Eulerian family with
associated Q-basis. The Eulerian idempotents EX belong to the projective Tits
algebra, and hence so do the elements

(11.41) Q{O,O} := QO and Q{F,F} := QF + QF for F 6= O.

These elements relate by triangularity to the H-basis elements defined in (9.35).
So they constitute a basis of the projective Tits algebra, which we refer to as the
Q-basis.

11.5. Families of Zie idempotents

Zie elements were introduced in Section 10.3. Recall that a Zie element is
special if its coefficient of the central face is 1. We now show that an element of the
Tits algebra is a special Zie element iff it is the first Eulerian idempotent of some
Eulerian family. In particular, such elements exist. More generally, we consider
special Zie families made up of special Zie elements in arrangements over flats and
extend Proposition 11.9 as follows.

Theorem 11.40. The following pieces of data are equivalent.

• A homogeneous section u of A.
• An Eulerian family E of A.
• A special Zie family P of A.

Homogeneous sections are trivial to construct. All one needs to do is to assign
scalars to each face such that the sum in each flat is 1. In contrast, construction of
Eulerian families or of special Zie elements is completely nontrivial.

11.5.1. Special Zie families. A Zie family of A is a set P := {PX}X∈Π indexed
by flats, where each PX is a Zie element of the arrangement AX over X. A Zie
family P is special if each PX is a special Zie element of AX, and, in particular, P⊥

is a special Zie element of A.
11.5.2. From an Eulerian family to a special Zie family. Suppose E is an
Eulerian family. Recall: Using this family, one can define the Q-basis of Σ[A], with
basis element QF given by (11.26). Written in the H-basis, QF only involves faces
greater than F . The element QO equals the first Eulerian idempotent E⊥. Similarly,
the induced Eulerian family of AF yields a Q-basis of Σ[AF ] for any face F . The
element QF/F equals the first Eulerian idempotent Es(F )/F .

Now, for each flat X, define an element of Σ[AX] by

(11.42) PX := βX,F (QF/F ),
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where F is any face with support X, and βX,F is as in (9.69). (It follows from
(11.40) that the rhs does not depend on the specific choice of F .) In particular,

P⊥ = QO = E⊥.

The Saliola lemma (Lemma 11.12) and the Friedrichs criterion (Lemma 10.19)
imply that the first Eulerian idempotent E⊥ is a Zie element of A. Also it is clearly
special. Similarly, for each flat X, PX is a special Zie element of AX since QF/F is
the first Eulerian idempotent of Σ[AF ] and βX,F is an algebra isomorphism. Thus,
we have constructed a special Zie family {PX}.

11.5.3. From a special Zie family to an Eulerian family. We saw how to go
from an Eulerian family to a special Zie family. Now we show that this procedure
can be reversed. Accordingly:

• Suppose we are given a special Zie element PX of AX, one for each flat X
of A.

Starting from this data, we construct a homogeneous section u, and its associated
Eulerian family E and the Q-basis. In fact, we will first get hold of the Q-basis, and
use it to define E and u. Details follow.

For any face F with support X, define

(11.43) QF/F := βF,X(PX) and QF := µF (QF/F ),

where µF is as in (9.73). Observe that QF is of the form

(11.44) QF = HF +
∑

G:G>F

aGF HG

for some scalars aGF . (Since PX is special, the coefficient of HF in QF is 1.) By
triangularity, the set {QF } as F varies is a basis of Σ[A]. We next claim that
Lemma 11.31 holds.

• If F and G have the same support, then HF · QG = QF . This is (11.30).
(HF · QG = µF∆FµG(QG/G) = µFβF,G∆GµG(QG/G) = µFβF,G(QG/G)

= µF (QF/F ) = QF .)
• If GF = G, then HF · QG = QFG. This is the first alternative in (11.29).

(Using the previous case, HF · QG = HF · HG · QG = HFG · QG = QFG.)
• If GF > G, then HF · QG = 0. This is the second alternative in (11.29).

(Similarly, HF · QG = HF · HG · QG = HFG · QG = HFG · HGF · QG =
HFG·µG(HGF/G)·µG(QG/G) = HFG·µG(HGF/G·QG/G) = 0 by the Friedrichs
criterion since QG/G is a Zie element of Σ[AG].)

Further, for any face F ,

(11.45) s(QF ) = Qs(F ).

The required calculation is

s(QF ) = s(µFβF,X(PX)) = µX s(PX) = µX(QX/X) = QX,

with X = s(F ). The second step used the first diagram in Exercise 9.60, while the
third step used the forward implication of Lemma 10.24 for the arrangement AX.

Now we proceed to the construction of E and u. Since Q is a basis, there exist
unique scalars uF such that

(11.46) HO =
∑

F

uF QF .
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Now set

(11.47) EX :=
∑

F : s(F )=X

uF QF and uX :=
∑

F : s(F )=X

uF HF .

By construction, (11.18) holds, that is, the sum of the EX is HO. We now claim that
(11.3), (11.14) and (11.26) hold with Q as in (11.43) and EX and uX as in (11.47).

Applying the support map to (11.46) and using (11.45), we obtain

H⊥ =
∑

F

uF Qs(F ) =
∑

X

( ∑

F : s(F )=X

uF
)
QX.

A comparison with (9.2) shows that the sums in parenthesis are all 1. This proves
(11.3). Thus, the scalars uF indeed determine a homogeneous section u. Formulas
(11.30) and (11.3) imply (11.26). Using these along with the second alternative in
(11.29), we deduce:

uX · EX = EX and uX · EY = 0 if X 6< Y.

Now multiply both sides of (11.18) on the left by uX and use the above two identities
to obtain

uX = EX +
∑

Y:X<Y

uX · EY.

This proves (11.14), and the claim is established.
Thus, we obtain an Eulerian family starting with a special Zie family. This

construction is clearly inverse to the previous construction. This completes the
proof of Theorem 11.40.

Exercise 11.41. List all special Zie families of the rank-one arrangement using
(10.26). Compute the corresponding Eulerian families using the above procedure
and check that we indeed get all of them. (Eulerian families of the rank-one ar-
rangement are listed in Section 11.4.3.)

11.5.4. Special Zie elements. We record the following important characteriza-
tion of special Zie elements.

Lemma 11.42. For an element z of the Tits algebra, the following are equivalent.

(1) z is a special Zie element.
(2) z = E⊥, the first Eulerian idempotent of some Eulerian family E.
(3) z is an idempotent which lifts Q⊥.

Proof. For the equivalence between (2) and (3), set X = ⊥ in Lemma 11.27. The
equivalence between (1) and (2) can be viewed as the first step in the equivalence
between special Zie families and Eulerian families. More directly, (1) implies (3) by
the forward implication of Lemma 10.24, while (2) implies (1) by the Saliola lemma
and the Friedrichs criterion. �

This result subsumes Lemma 10.24. (Recall that the proof of the backward
implication of the latter made use of the existence of a special Zie element.) Also
observe that Lemma 10.23 is contained in Lemma 11.22.
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11.5.5. Abstract approach to Q-bases. In Section 11.4, we attached a Q-basis
to an Eulerian family. However, one can also define Q-bases directly without any
reference to Eulerian families. This is done as follows.

We say that a basis of the Tits algebra is a Q-basis if each basis element QF is
of the form (11.44) and Lemma 11.31 holds.

Proposition 11.43. Special Zie families of A are in correspondence with Q-bases
of the Tits algebra of A.

Proof. Starting with a special Zie family, we define the Q-basis via (11.43). Sub-
sequent analysis shows that (11.44) and (11.29) hold. Conversely, suppose we are
given a Q-basis. Using the second alternative in (11.29), we deduce by the Friedrichs
criterion that QO is a special Zie element. More generally, the element QF/F defined
via QF = µF (QF/F ) is a special Zie element of AF . Now define the special Zie fam-
ily P via (11.42). Formula (11.30) shows that PX does not depend on the specific
choice of F . �

It follows that abstract Q-bases are in correspondence with Eulerian families.
To go from an Eulerian family to a Q-basis, we use (11.26). To go from a Q-basis to
an Eulerian family, we use (11.46) and (11.47).

Exercise 11.44. Starting with the above definition of a Q-basis, deduce that each
QF is an idempotent.

11.5.6. Projective Zie families. A Zie family P is projective if each Zie element
PX belongs to the projective Tits algebra of AX.

Proposition 11.45. Projective Eulerian families of A are in correspondence with
projective special Zie families of A.

This is obtained by restricting the correspondence in Theorem 11.40.

Proof. Suppose each EX is projective. Then by Exercise 9.62, QF/F = ∆F (Es(F ))
is projective. So, by definition (11.42), each PX is projective. Conversely, suppose
P is a projective special Zie family. Then, with the Q-basis defined as in (11.43), the
opposition map sends each QF to QF . Now applying the opposition map to (11.46),

we see that uF = uF . So u is projective from which we deduce that E is projective
using Proposition 11.16. �

As with the Tits algebra, one can also take an abstract approach to Q-bases of
the projective Tits algebra. We say that a Q-basis of the Tits algebra is projective
if the opposition map sends QF to QF for each F (or equivalently, if each QF/F
belongs to the projective Tits algebra of AF ). Further, we say that a basis of the
projective Tits algebra is a Q-basis if it is obtained from a projective Q-basis of the
Tits algebra via (11.41).

Proposition 11.46. Projective special Zie families of A are in correspondence with
Q-bases of the projective Tits algebra of A.

This is obtained by restricting the correspondence in Proposition 11.43.
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11.5.7. Over and under a flat. Cartesian product. The compatibility be-
tween homogeneous sections and Eulerian families given in Lemmas 11.17, 11.18
and 11.19 can be extended to include special Zie families as follows.

Suppose PX is a Zie element of AX. For a flat X containing a face H, let
PX/H denote the Zie element of AX/H corresponding to PX. A special Zie family
P = {PX} of A induces a special Zie family of AH , namely,

PH := {PX/H}.
Lemma 11.47. Suppose for an arrangement A,

u ←→ E ←→ P

under the equivalences of Theorem 11.40. Then for the arrangement AH ,

uH ←→ EH ←→ PH .

Suppose PY is a Zie element of AY. Let X ≥ Y. Let PX
Y denote the Zie

element of AX
Y obtained by truncating to faces contained in X. A special Zie family

P = {PY} of A induces a special Zie family of AX, namely,

PX := {PX
Y}.

Lemma 11.48. Suppose for an arrangement A,
u ←→ E ←→ P

under the equivalences of Theorem 11.40. Then for the arrangement AX,

uX ←→ EX ←→ PX.

Suppose PX is a Zie element of AX and P′
X′ is a Zie element of AX′ . Then

PX ⊗ P′
X′ is a Zie element of (A × A′)(X,X′). A special Zie family P = {PX} of A

and a special Zie family P′ = {P′
X′} of A′ induces a special Zie family of A × A′,

namely,

P × P′ := {PX ⊗ P′
X′}(X,X′).

Lemma 11.49. Suppose for arrangements A and A′,

u ←→ E ←→ P and u′ ←→ E′ ←→ P′

under the equivalences of Theorem 11.40. Then for the arrangement A×A′,

u× u′ ←→ E × E′ ←→ P × P′.

Exercise 11.50. Make Lemma 11.36 explicit for abstract Q-bases. Further, ex-
tend Lemmas 11.47, 11.48 and 11.49 to include abstract Q-bases (by making use of
Proposition 11.43).

11.5.8. Naturality under partial-support maps. All preceding constructions
and results generalize to a left regular band. It is of interest to understand how
constructions for different LRBs relate under a morphism of monoids. For a partial-
support map, the situation is as follows.

Recall from Section 2.8 that for any partial-support relation ∼, the set of
partial-flats Σ∼ is a left regular band. Let s∼ : Σ→ Σ∼ denote the partial-support
map. It is a morphism of monoids. We use the same notation for its linearization.
Then a homogeneous section u, an Eulerian family E and a special Zie family P
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on Σ induce, respectively, a homogeneous section u∼, an Eulerian family E∼ and a
special Zie family P∼ on Σ∼. Further,

u ←→ E ←→ P implies u∼ ←→ E∼ ←→ P∼.

In this setup, we have

(11.48) s∼(QF ) = Qs∼(F ).

Now consider the specialization Σ∼ = Π. In this case, there is a unique ho-
mogeneous section, resulting in a unique Eulerian family, which is nothing but the
Q-basis of Π. Hence the support of any Eulerian family (and the associated Q-basis)
of Σ is the Q-basis of Π. This was the content of (11.23) and (11.27).

11.6. Eulerian idempotents for good reflection arrangements

Recall from Section 5.7 that a good reflection arrangement is a reflection ar-
rangement in which every arrangement under a flat is also a reflection arrangement.
We give cancelation-free formulas for Eulerian idempotents of good reflection ar-
rangements associated to the uniform section (assuming characteristic 0). Impor-
tant specializations of these formulas, namely, to the braid arrangement and the
arrangement of type B are discussed later in Sections 12.5 and 12.6.

11.6.1. The uniform section. Let u be the uniform section of a good reflection
arrangement A, that is, faces with the same support are assigned the same scalar.
In other words,

uF :=
1

cF
,

where cF is the number of faces of support s(F ). Then, for any face H, the induced
section uH on AH is also uniform. This follows from Lemma 5.31. This property
is indeed special, see the last part of Exercise 11.8 in this regard.

Lemma 11.51. For the uniform section of a good reflection arrangement A,

(11.49) uGF =
1

cGF
and aGF =

µ(AGF )
cGF

,

with aGF as in (11.31). (Recall that cGF denotes the number of chambers in AGF .)
Proof. The first formula follows from the preceding discussion. The second for-
mula then follows from Lemma 5.30. �

11.6.2. H- and Q-bases.

Lemma 11.52. For the uniform section of a good reflection arrangement A, the
H- and Q-bases are related by

(11.50) HF =
∑

G:F≤G

1

cGF
QG and QF =

∑

G:F≤G

µ(AGF )
cGF

HG.

Proof. This is obtained by specializing (11.33) using (11.49). �

In the sums, faces with the same support can be lumped together. For instance,

QF =
∑

X:X≥s(F )

µ(AX
F )

cXF

∑

G:F≤G, s(G)=X

HG.
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11.6.3. Eulerian idempotents.

Theorem 11.53. For a good reflection arrangement A, the Eulerian idempotents
for the uniform section are given by

EX =
1

cX

∑

F : s(F )=X

QF(11.51)

=
1

cX

∑

F : s(F )=X

∑

G:F≤G

µ(AGF )
cGF

HG,

where cX is the number of faces with support X.
In particular, the first Eulerian idempotent is

(11.52) E⊥ = QO =
∑

F

µ(AF )
cF

HF =
∑

X

µ(⊥,X)

cX

∑

F : s(F )=X

HF .

Proof. This follows from (11.28) and the second formula in (11.50). �

Here is another way to deduce the above formulas. Since A is a reflection
arrangement, the uniform section and hence E⊥ is invariant under the action of the
Coxeter group. In particular, the coefficients of all chambers in E⊥ must be equal.
Since E⊥ is a special Zie element, the sum of the chamber coefficients is µ(⊥,⊤) by
(10.15), so each coefficient is µ(⊥,⊤)

c⊤
. Let EX⊥ denote the part of E⊥ consisting of faces

of support smaller than X. By Lemma 11.18, EX⊥ is the first Eulerian idempotent
of AX, which is also a reflection arrangement and uX is uniform. Hence applying

the result just proved, the coefficient of any face of support X in E⊥ is µ(⊥,X)
cX . This

proves (11.52). This formula in turn can be used to deduce the second formula in
(11.50): Use that QF/F is the first Eulerian idempotent of AF for uF , and AF is
good and uF is uniform, and finally apply (11.38).

Corollary 11.54. For any arrangement, the element

(11.53)
∑

X

µ(⊥,X)

cX

∑

F : s(F )=X

HF

satisfies the equivalent conditions of Lemma 10.18. In addition, for a good reflection
arrangement, it is a special Zie element.

Proof. It is easiest to see that the element (11.53) satisfies the condition (10.15).
Moreover, for a good reflection arrangement, this element is the first Eulerian idem-
potent for the uniform section by Theorem 11.53, and hence is a special Zie element
by Lemma 11.42. �

Exercise 11.55. Show directly using the Friedrichs criterion (Lemma 10.19) that
(11.53) is a special Zie element for a good reflection arrangement. (Use the Weisner
formula (1.43a).) This result is false in general for reflection arrangements. A
counterexample is given in Corollary 11.75.

11.6.4. Lumping Eulerian idempotents. Let EX be the Eulerian idempotents
defined in (11.51). For k ≥ 0, set

(11.54) Ek :=
∑

X: rk(X)=k

EX.
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Note that the Ek form a family of orthogonal idempotents, but they are no longer
primitive. Using (11.51) and Lemma 5.30, we obtain:

Theorem 11.56. For a good reflection arrangement,

Ek =
∑

X

wy(AX, k)

cX

∑

F : s(F )=X

HF ,

where wy(A, k) are the Whitney numbers of the first kind defined in (1.52).

An alternative proof of this result is given after Theorem 12.50.

11.7. Extension problem and dimension of Lie

Recall the left module of chambers Γ[A]. Given elements vH ∈ Γ[AH ], one for
every noncentral face H, which are mutually compatible in a certain sense, can one
find an element of Γ[A] whose Tits projection on each H is precisely vH? This is the
extension problem. We show that this problem always has a solution and further
the solutions form an affine subspace which is a translate of Lie[A], the space of Lie
elements. Moreover, when the vH are projective, we can say the following: When
A has odd rank, there is a unique projective solution, and when A has even rank,
all solutions are necessarily projective.

As a consequence, we rederive that the dimension of Lie[A] is |µ(A)|, the ab-
solute value of the Möbius number of A. The Zaslavsky formula also emerges as a
byproduct.

11.7.1. Extension problem. For any function u on the set of chambers of A, let
uC denote the value of u on the chamber C. (Such a function may be identified
with the chamber element

∑
C u

CHC .) The content of u is defined to be
∑
C u

C .
For any face H, such a function u induces a function uH on the set of chambers of
AH , whose value on a chamber D/H is given by

(11.55) uDH :=
∑

C:HC=D

uC .

(Compare with (11.6).) Note that the content of uH (which is the sum of uDH over
D) is the same as the content of u. Further note by (10.1) that u is a Lie element
iff uH = 0 for all H > O.

Consider the following linear system in the variables uC :
∑

C:HC=D

uC = vDH .

There is one equation for each O < H ≤ D, and the vDH are specified constants.
This may be rephrased as follows. Given a function vH on the chambers of AH

for each H > O, find all functions u on the chambers of A such that for any face
H > O,

(11.56) uH = vH .

We call this the extension problem since it involves finding u by knowing its induced
values in all proper stars.

For the extension problem to have a solution, it is clear that the vH must satisfy
the following compatibility conditions. For any G ≥ H,

(11.57) (vH)G/H = vG,
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and for any F and G with the same support,

(11.58) βG,F (vF ) = vG.

(Compare with Lemma 11.7.) We show below that these conditions are also suffi-
cient to have a solution.

Theorem 11.57. Let A be any arrangement. Suppose for each face H > O, we are
given a function vH on the chambers of AH . Then, there exists a function u on the
chambers of A satisfying (11.56) for each H > O iff the vH satisfy the compatibility
conditions (11.57) and (11.58). Further, the affine space of all solutions for u has
dimension equal to the dimension of Lie[A].
Proof. Suppose u is a solution. Then

u′ is a solution ⇐⇒ u− u′ satisfies (u− u′)H = 0 for each H > O

⇐⇒ u− u′ is a Lie element.

Thus, the second part follows from the first.
We now show that the compatibility conditions imply the existence of u. Any

vH which satisfy (11.57) and (11.58) must each have the same content. So we can
normalize the content to be 1, unless the content of each vH is zero. Let us suppose
that this is not the case and proceed. We first give the gist of the construction.
Theorem 11.40 plays a key role.

• Pick any homogeneous section u′ of A.
• Construct a special Zie family P using u′ and the vH .
• Construct a homogeneous section u of A from the special Zie family P.

Due to the tweaking done using the vH , it will be different from u′ in
general. The scalars uD := uD yield a solution.

The construction of P goes as follows. Let P⊥ be the first Eulerian idempotent
of A associated to u′. (We ignore the higher Eulerian idempotents.) For each
H > O, define a homogeneous section vH on AH :

(vH)K :=

®
vKH if K is a chamber,

(u′)KH otherwise.

The first case uses the given functions vH of content 1, while the second case uses
the arbitrarily chosen homogeneous section u′. Let QH/H be the first Eulerian
idempotent of AH associated to vH . The compatibility relation (11.58) implies
that for any F and G with the same support,

βG,F (QF/F ) = QG/G.

This defines a special Zie element PX of AX, namely,

PX := βX,F (QF/F ),

where F is any face of support F . Now define u to be the homogeneous section of
A corresponding to the special Zie family P. Fix a H > O. By Lemma 11.47, the
special Zie family PH corresponds to the homogeneous section uH of AH . However,
by the compatibility relation (11.57), the same family also corresponds to the ho-
mogeneous section vH . Hence, uH = vH for all H > O. This says that uD := uD is
a solution.

Now let us deal with case when each vH has content zero. Take any function
p on chambers with content 1. Put v′H := vH + pH . These have content 1 and are
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mutually compatible. So applying the above result, there is a q such that qH = v′H
for all H > O. Then u := q − p is the desired solution. Even more explicitly, fix a
chamber C. Take p to be the function which is 1 on C and 0 on all other chambers.
Put

(v′H)D :=

®
vDH + 1 if D = HC,

vDH otherwise.

Let q be such that qH = v′H for allH > O. Then u is obtained from q by subtracting
1 from the value of C. �

A more direct argument is given after Theorem 15.39.

11.7.2. Projective case. We now consider the extension problem for projective
functions on chambers. Interestingly, the solution depends on the parity of rk(A).
We assume that the field characteristic is not 2.

Lemma 11.58. Let u be a projective function on the chambers of an arrangement
A. Then, for any chamber D and face H ≤ D,

(11.59)
1

2

∑

G:H<G≤D

(−1)rk(G)+1uDG =

®
(−1)rk(H)uDH if rk(AH) is odd,

0 if rk(AH) is even.

Proof. Apply the Witt identity (7.16) to obtain:

uDH +
∑

G:H<G≤D

(−1)rk(G/H)uDG = (−1)rk(D/H)uHDH .

Since u is projective, uDH = uHDH . Analyzing further according to the parity of
rk(D/H) yields (11.59). �

Theorem 11.59. Let A be any arrangement of odd rank. Suppose for each face
H > O, we are given a projective function vH on the chambers of AH which satisfy
the compatibility conditions (11.57) and (11.58). Then there is a unique projective
function u on the chambers of A satisfying (11.56) for each H > O. Explicitly, for
a chamber C, the scalar uC is given by

(11.60) uC =
1

2

∑

F :O<F≤C

(−1)rk(F )+1 vCF .

Proof. Formula (11.60) is obtained by setting H = O in (11.59). This proves
the uniqueness assertion. The same argument can be given in a different guise:
Suppose u and u′ are two projective solutions. Then u − u′ is a projective Lie
element. However, by Lemma 10.12, the only such element in odd rank is 0. So
u = u′ which proves uniqueness.

By Theorem 11.57, there exists a solution u. Since the vH are projective, u

defined by uC := uC is also a solution. Hence (u+ u)/2 is also a solution and it is
projective. This proves existence. �

Exercise 11.60. Check directly that (11.60) is a solution (without appealing to
Theorem 11.57).

Theorem 11.61. Let A be any arrangement of even rank. Suppose for each face
H > O, we are given a projective function vH on the chambers of AH which sat-
isfy the compatibility conditions (11.57) and (11.58). Then any function u on the
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chambers of A satisfying (11.56) for each H > O is necessarily projective, and the
affine space of all such u has dimension equal to the dimension of Lie[A].
Proof. Using Theorem 11.57 and arguing as in the second para of the previous
proof, a projective solution u exists. By (10.5), all Lie elements of even rank are
projective. Further, any solution is of the form u plus a Lie element. So it must be
projective. �

11.7.3. Dimension of Lie and Zaslavsky formula. We discuss some conse-
quences of the extension problem.

Lemma 11.62. For any arrangement A,
(11.61)

∑

X∈Π

dim(Lie[AX]) = dim(Γ[A]).

Note that the rhs is the same as the number of chambers in A.

Proof. The space of all functions u on chambers has dimension equal to the
number of chambers. We construct this space inductively. By Theorem 11.57,
the dimension of the space of choices for defining uG assuming uK has been defined
for all K > G, is dim(Lie[AG]). Also if F and G have the same support, then
uF = uG. So the dimension of the space of all functions u on chambers is the lhs
of (11.61). The result follows. �

Lemma 11.63. For any arrangement A of rank at least 1,

(11.62)
∑

X∈Π
rk(X) is even

dim(Lie[AX]) =
1

2
dim(Γ[A]) =

∑

X∈Π
rk(X) is odd

dim(Lie[AX]).

Proof. Proceeding as in the previous proof, we count the dimension of the space of
all projective functions u on chambers of A. In view of Theorems 11.59 and 11.61,
we obtain: ∑

X∈Π
rk(AX) is even

dim(Lie[AX]) =
1

2
dim(Γ[A]).

This in conjunction with (11.61) implies (11.62). �

Theorem 11.64. For any arrangement A,
(11.63) dim(Lie[A]) = (−1)rk(A)µ(A) = |µ(A)|.
Proof. We proceed by induction on the rank of A. We know from (11.62) that
for rank at least 1, ∑

X∈Π

(−1)rk(AX) dim(Lie[AX]) = 0.

Rewriting,

(−1)rk(A) dim(Lie[A]) = −
∑

X:X>⊥

(−1)rk(AX) dim(Lie[AX])

= −
∑

X:X>⊥

µ(AX)

= µ(A).
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The second step used the induction hypothesis, and the last step used (C.5b). This
completes the induction step and proves the first equality. The second equality
follows since this number must be nonnegative. �

The second equality in (11.63) is a nontrivial result, see Proposition 1.76. In-
terpreting the Möbius number as the dimension of Lie[A] up to sign is a nice way of
understanding this result. We further note that in view of (11.61), the Zaslavsky
formula (1.45) is a consequence of (11.63).

11.8. Rank-two arrangements

Let A be the rank-two arrangement of n lines. In the spherical model, this is
a polygon with 2n sides. We compute the Eulerian idempotents starting with an
arbitrary homogeneous section, and later specialize to the projective and uniform
cases.

Let u be any homogeneous section of A. This defines the Q-basis. The expres-
sions for the Q-basis elements in terms of the H-basis elements can be computed
using the second formula in (11.33). They are as follows.

QC = HC .

For any vertex P ,

QP = HP − uCP HC − uDP HD,

where C and D are the two edges which are greater than P .

QO = HO −
∑

P

uP HP +
∑

C

(−uC + uP uCP + uQuCQ) HC .

The first sum is over all vertices P , while the second sum is over all edges C, with
P and Q being its two vertices.

Using (11.28), we obtain the following formulas for the Eulerian idempotents.

E⊤ = u⊤ =
∑

C

uCHC .

For the line X supporting the vertices P and P ,

EX = uP QP + uP QP

= uP HP + uP HP − (uP uCP HC + uP uDP HD + uP uC
P
HC + uP uD

P
HD),

where C and D are the two edges which are greater than P .

E⊥ = QO = HO −
∑

P

uP HP +
∑

C

(−uC + uP uCP + uQuCQ) HC .

The first sum is over all vertices P , while the second sum is over all edges C, with
P and Q being its two vertices.

Proposition 11.65. For the rank-two arrangement of n lines, the Eulerian idem-
potents associated to any projective section u are given by

E⊤ =
∑

C

uCHC ,

EX =
1

2
HP +

1

2
HP −

1

4
(HC + HD + HC + HD),
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where X is the support of the vertices P and P , and C and D are the two edges
which are greater than P ,

(11.64) E⊥ = HO −
1

2

∑

P

HP +
∑

C

(−uC +
1

2
) HC .

Proof. In this case, uP = 1/2 for any vertex P , and uCP = 1/2 for any edge C ≥ P .
Substitute these in the previous formulas. �

Proposition 11.66. For the rank-two arrangement of n lines, the Eulerian idem-
potents associated to the uniform section are given by

E⊤ =
1

2n

∑

C

HC ,

EX =
1

2
HP +

1

2
HP −

1

4
(HC + HD + HC + HD),

where X is the support of the vertices P and P , and C and D are the two edges
which are greater than P ,

(11.65) E⊥ = HO −
1

2

∑

P

HP +
1

2

∑

C

n− 1

n
HC .

Proof. The additional ingredient from the projective case is that uC = 1/2n for
each edge C. So formula (11.64) simplifies. �

Exercise 11.67. Any rank-two arrangement is a good reflection arrangement.
Check that the formulas in Proposition 11.66 agree with those given by Theo-
rem 11.53.

11.9. Rank-three arrangements

For rank-three arrangements, we compute the first Eulerian idempotent of any
projective section. (The higher idempotents can be computed using the rank-two
case which we have discussed.) As a fun application, we show that the Möbius
number of any rank-three arrangement equals the number of hyperplanes minus
half the number of chambers. We also show that there is a unique projective
section whose induced sections both over and under any proper flat are uniform.

11.9.1. First Eulerian idempotent. Let A be any rank-three arrangement. Let
u be any homogeneous section of A. By the Witt identity (7.14), for any chamber
D,

uD −
( ∑

P<D

uDP
)
+

( ∑

E<D

uDE
)
− 1 = −uD.

The first sum is over all vertices P of D, while the second sum is over all edges E
of D. If u is projective, then

(11.66) uD =
1

2

Å ∑

P<D

uDP −
|E|
2

+ 1

ã
,

where |E| is the number of edges of D, and further for any P < E < D, uP = uEP =
uDE = 1/2.
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By (11.35), the first Eulerian idempotent of A is given by

E⊥ = HO −
∑

P

uP HP +
∑

E

(−uE + uP uEP + uQuEQ) HE

+
∑

D

(
− uD +

∑

P<D

uP uDP +
∑

E<D

uEuDE −
∑

P<E<D

uP uEP u
D
E

)
HD.

The first sum is over all vertices P . The second sum is over all edges E, with P
and Q being the vertices of E. The third sum is over all chambers D, the inside
sums being all over vertices P of D, all edges E of D and all incident vertex-edge
pairs P < E of D. If u is projective, then the above formula simplifies as follows.

Proposition 11.68. For any rank-three arrangement, the first Eulerian idempotent
of any projective section u is given by

(11.67) E⊥ = HO −
1

2

∑

P

HP +
∑

E

(−uE +
1

2
) HE −

∑

D

(1
2
− 1

2

∑

E<D

uE
)
HD.

11.9.2. Möbius number and the number of chambers. Let h(A) denote the
number of hyperplanes in A. Recall that µ(A) denotes the Möbius number of A,
and c(A) denotes the number of chambers in A.
Proposition 11.69. For any rank-three arrangement A,

(11.68) µ(A) = h(A)− 1

2
c(A).

Proof. Let u be any projective section of A. Its first Eulerian idempotent is given
by (11.67). By Lemma 11.42, this is a special Zie element. Hence by (10.15) applied
to the maximum flat ⊤,

µ(A) =
∑

C

(
− 1

2
+

1

2

∑

E:E<C

uE
)
= −1

2
c(A) + 1

2

∑

E<C

uE

= −1

2
c(A) +

∑

E

uE = −1

2
c(A) + h(A).

In the third step, we used that each edge E is contained in exactly two chambers.
For the last step, we used that the sum of uE for all edges supported in a hyperplane
is 1. �

Exercise 11.70. Deduce (11.68) directly by combining (1.44), the Zaslavsky for-
mula (1.45) and (C.5b) (applied to the lattice of flats).

Proposition 11.71. Suppose An is a sequence of simplicial rank-three arrange-
ments with the property that the number of edges in any rank-two flat grows indef-
initely with n. Then

lim
n

µ(An)
c(An)

= −1

2
.

Proof. For any edge E of An, let uEn be the reciprocal of the number of edges in
the support of E. Then given ǫ, for n sufficiently large,

h(An)
c(An)

=
1

c(An)
∑

E

uEn =
1

2c(An)
∑

C

∑

E<C

uEn <
ǫ

2
.
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For the last step, we note that since chambers are triangles, the inside sum always
has three terms, and each term can be made arbitrarily small by hypothesis. Thus
the ratio of the number of hyperplanes to the number of chambers goes to zero.
Now apply (11.68). �

Example 11.72. Let us look at the ratio of the Möbius number to the number of
chambers in some rank-three arrangements.

For type A3 = D3, the ratio is −1/4, for any wall of D4, the ratio is −9/32, for
type B3, the ratio is −5/16, and for type H3, the ratio is −3/8.

For n ≥ 3, let An be the arrangement of n lines, one of which is the equator, and
all the remaining n−1 lines pass through the north and south poles and are equally
spaced. In the language of projective geometry, this is called a near-pencil. It is
a good reflection arrangement, obtained as the cartesian product of the dihedral
arrangement of n− 1 lines with the rank-one arrangement. An explicit calculation
shows that

h(An) = n, µ(An) = 2− n and c(An) = 4n− 4

(thus verifying (11.68)). The limit of the ratio of µ(An) to c(An) is −1/4 and not
−1/2. Note that except the equator, all other lines always have 4 edges, so the
hypothesis of Proposition 11.71 is violated.

In the survey article [203], Grünbaum describes all known rank-three simplicial
arrangements. For instance, for his arrangement A(37, 1), µ(A) = −323 and c(A) =
720, and their ratio is approximately −0.4486111. The arrangement A(37, 1) is a
part of an infinite family denoted A(4m+ 1, 1) for m ≥ 2. This family does satisfy
the hypothesis of Proposition 11.71, and so the ratio tends to −1/2.

A companion to Proposition 11.71 is given below. It refers to the Takeuchi
element defined in Section 12.3.

Proposition 11.73. Suppose An is a sequence of simplicial rank-three arrange-
ments with the property that the number of edges in any rank-two flat grows indef-
initely with n. Then for the uniform section u,

lim
n

E⊥ −
1

2
(HO + Tak) = 0,

where Tak refers to the Takeuchi element (12.15).

The lhs means that given ǫ > 0, for sufficiently large n, the coefficient of every
face for the element inside the limit is smaller than ǫ.

Proof. This follows from (11.67). �

Note from (11.65) that the formula in Proposition 11.73 also holds for rank-
two arrangements. These observations can be understood from the first identity in
(12.25).

11.9.3. Canonical homogeneous section. Recall from Section 11.1 that a ho-
mogeneous section u of A induces a homogeneous section uF of AF for any face F ,
and a homogeneous section uX of AX for any flat X.

Since A has rank 3, an arrangement under or over a flat of A has rank between
0 and 3. This is tabulated below.
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F rank of AF X rank of AX

central face 3 ⊥ 0

vertex 2 antipodal points 1

edge 1 great circle 2

chamber 0 ⊤ 3

Proposition 11.74. There is a unique projective section u of A such that the
induced sections uF of AF for F > O and uX of AX for X 6= ⊤ are uniform.
Explicitly, for any vertex P , uP = 1/2, for any edge E, uE is the reciprocal of the
number of edges in the great circle supporting E, and for any chamber D,

uD =
1

2

Å∑

P

1

cDP
− |E|

2
+ 1

ã
,

where the sum is over all vertices P of D, and |E| is the number of edges of D. In
particular, for any triangle D,

uD =
1

2

Å∑

P

1

cDP
− 1

2

ã
.

We call this the canonical homogeneous section.

Proof. Uniformity of the sections uX for X 6= ⊤ implies the claims about uP and
uE . The nontrivial part is to understand the coefficients of chambers. For this,
we apply Theorem 11.59. It guarantees existence. Further, for any chamber D,
uDP = 1

cD
P

for any vertex P of D, and uDE = 1
2 for any edge E of D. Substitute these

in (11.60). Alternatively, one may also substitute in (11.66). �

11.9.4. Arrangement of type D4. Suppose A is any wall of the reflection ar-
rangement of type D4. Then A is of rank three and cisomorphic to the arrangement
shown in Section 6.8.2 which is reproduced below.

Let us compute the canonical homogeneous section. For any of the small triangles
D, the boundary of the stars of the three vertices are polygons of sizes 4, 6 and 6.
So by Proposition 11.74,

uD =
1

2

Å
1

4
+

1

6
+

1

6
− 1

2

ã
=

1

24
.

For any of the 8 large triangles D adjacent to the small triangles, the polygon sizes
are 6, 6 and 6, and so uD = 0. For the remaining 8 large triangles D, the polygon
sizes are again 4, 6 and 6, and so uD = 1/24.

The first Eulerian idempotent given by (11.67) specializes to:

(11.69) E⊥ = HO −
1

2

∑

P

HP +
1

3

∑

E

HE +
3

8

∑

E′

HE′ − 1

4

∑

D

HD −
7

24

∑

D′

HD′ .
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The first sum is over all 18 vertices P , the second sum is over the 24 edges E
whose support is a hexagon, the third sum is over the 24 edges E′ whose support
is an octagon, the fourth sum is over the 8 large triangles D adjacent to the small
triangles, and the last sum is over the remaining 24 triangles D′.

It follows that (11.69) is a special Zie element of A. Let us use this to illustrate
some properties of Zie elements. To illustrate (10.11a), consider the top-lune shown
in the figure. The interior of this lune consists of four edges and five triangles (one
of which is on the bottom side and not visible). The sum of their coefficients is
zero:

1

3
(2) +

3

8
(2)− 1

4
(1)− 7

24
(4) = 0.

The sum of the coefficients of all chambers is

−1

4
(8)− 7

24
(24) = −9,

which is the Möbius number of the lattice of flats of A. This is consistent with
(10.15).

Let us contrast this with the element (11.53). This is the Fulman element of
parameter 0 and is given by

(11.70) HO −
1

2

∑

P

HP +
1

3

∑

E

HE +
3

8

∑

E′

HE′ − 9

32

∑

D

HD.

It differs from (11.69) only in the chamber coefficients, all 32 triangles now have
the coefficient −9/32. We explain the calculation needed to arrive at (11.70): The
number cX for X of rank 0 is 1, of rank 1 is 2, of rank 2 is either 6 or 8, and of rank
3 is 32. The Möbius functions µ(⊥,X) are 1, −1, 2, 3 and −9, respectively.

We claim that (11.70) is not a Zie element of A. There are many ways to check
this. For instance, (10.11a) fails. The sum of the coefficients of faces in the interior
of the lune shown in the figure is not zero:

1

3
(2) +

3

8
(2)− 9

32
(5) ≈ 0.0104167 6= 0.

However the equivalent conditions of Lemma 10.18 hold. In particular, the sum of
the coefficients of all faces is zero:

1− 1

2
(18) +

1

3
(24) +

3

8
(24)− 9

32
(32) = 0.

Corollary 11.75. The element (11.53) for the arrangement of type D4 is not a
Zie element, and hence cannot be the first Eulerian idempotent of any homogeneous
section.

Proof. Let X be a wall of the D4 arrangement and let A denote the arrangement
under X of the D4 arrangement. The truncation of the element (11.53) to faces
smaller than X will yield the element (11.70). We noted above that this is not a
Zie element of A. Since truncations preserve Zie elements, the element we started
with cannot be a Zie element. �

Notes

Eulerian idempotents. The recursive construction (11.14) of Eulerian idempotents
starting with a homogeneous section is due to Saliola [347, Section 1.5.1], [350, Sec-
tion 5.1], [349, Section 5]. In the latter reference, his ℓX corresponds to our uX. His
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main result says that the Eulerian idempotents arising from his construction form a com-
plete system of primitive orthogonal idempotents of the Tits algebra. The proof that we
have given closely follows his exposition, the key observation being Lemma 11.12. The
second construction of Eulerian idempotents from a special Zie family is new. However,
the analogous construction for the invariant Tits algebra of the braid arrangement in a
special case is present in the literature. These are the Krob-Leclerc-Thibon idempotents
discussed later in Section 16.11.6.

Q-basis. The Q-basis for the Tits algebra was introduced by Saliola [347, Section 1.5.2],
[350, Section 5.2] via the equation (11.26). He did not use any specific notation for
this basis. For the braid arrangement, Schocker [358, Corollary 4.4 and Proposition
5.1] constructed a Q-basis starting with a special Zie family. He did not use the latter
terminology. That he indeed starts out with special Zie elements can be seen from his
Corollary 4.4 and the Friedrichs criterion for Zie elements. His formula (5.2) is our (11.29).
The result of Exercise 11.35 for the braid arrangement (except for the connection with
EX) is given in his Theorem 5.4 and Corollary 5.5. The precise setting of Schocker’s
construction is explained later in Section 12.5.5. It is analogous to the discussion of the
Krob-Leclerc-Thibon idempotents in Section 16.11.6. However, Schocker did not give the
general construction (11.47) of Eulerian idempotents. He only dealt with a special case
arising from Dynkin elements which is given in Exercise 14.63.
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CHAPTER 12

Diagonalizability

For any element of the Tits algebra, the sum of all its coefficients is an eigen-
value. When the element satisfies an additional hypothesis which we call the top-
separating condition, this eigenvalue has a unique eigenvector (up to scaling) in the
left module of chambers. There is an explicit formula for this eigenvector which
we call the Brown-Diaconis formula. While working over the reals, the eigenvector
can be interpreted as the stationary distribution of a random walk associated to
the given element. From this point of view, elements with nonnegative coefficients
are of interest. We also discuss the Billera-Brown-Diaconis formula which treats a
special case in rank-three arrangements.

Next, we consider the general problem of diagonalizability of elements of the
Tits algebra. An important sufficient condition for diagonalizability is that the
element be separating. The separating condition is similar to but stronger than
the top-separating condition. The key step in the proof is to determine the ho-
mogeneous section, called the eigensection, whose associated Eulerian family will
diagonalize the given element. The eigensection can be built by a separate compu-
tation in each flat, and in each case, one can employ the Brown-Diaconis formula.
This leads to the Brown formulas for the eigensection of a separating element, and
also for the associated Eulerian family.

We study in detail the Takeuchi element. It is defined via an “alternating”
sum of faces (similar to the Euler characteristic). The Takeuchi element is neither
separating nor does it have nonnegative coefficients, yet it is diagonalizable. Its
eigenvalues are ±1, and any projective section is an eigensection. Further, it acts
on the left module of chambers by sending a chamber to its opposite (up to sign).
We also consider a more general class of elements called the Fulman elements. For a
good reflection arrangement, the uniform section is an eigensection for the Fulman
elements which then leads to an explicit diagonalization (using the cancelation-free
formulas for the corresponding Eulerian idempotents). We specialize to the braid
arrangement and discuss in particular the Adams elements. We also give a similar
discussion for the arrangement of type B.

12.1. Stationary distribution

Let w be an element of the Tits algebra. Theorem 9.42 gives the eigenvalues of
w for the action on any module h. We would now like to work towards finding the
eigenvectors of w. It is particularly important to understand the eigenvectors of λ⊤
(the eigenvalue associated to the maximum flat) for the module h = Γ. The main
result is as follows. If λX 6= λ⊤ for all X 6= ⊤, then λ⊤ has a unique eigenvector
(normalized so that the sum of its coefficients is 1). If in addition w is a probability
distribution (assuming the base field to be R), then λ⊤ is the largest eigenvalue

321
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of w and its unique normalized eigenvector can be interpreted as the stationary
distribution of a random walk on chambers associated to w.

Notation 12.1. In this section, w, wF are elements of the Tits algebra, while wF ,
wGF are scalars. Similarly, u, uF are chamber elements, while uF , uCF are scalars.

12.1.1. Top-eigenvectors. Fix an element w =
∑
F w

F HF of the Tits algebra.
The content of w is defined to be the sum of the coefficients wF . For each flat X,
put

(12.1) λX =
∑

F : s(F )≤X

wF .

In particular, λ⊥ = wO, while λ⊤ is the content of w. We refer to the λX as the
eigenvalues of w.

Let u =
∑
C u

C HC be a chamber element. We say that u is a top-eigenvector
for w if u is of content 1 and

(12.2) w · u = λu

for some scalar λ, the eigenvalue. Thus, the sum of the uC is 1, and by taking
the content in (12.2), we see that λ = λ⊤ necessarily. Note in passing that an
eigenvector u of w with eigenvalue different from λ⊤ must have content 0.

Lemma 12.2. Let w be an element of the Tits algebra, and u be a chamber element
of content 1. Then u is a top-eigenvector of w iff for each chamber C,

(12.3) (λ⊤ − λ⊥)uC =
∑

F :O<F≤C

wFuCF ,

with uCF as in (11.55).

Proof. This is a straightforward calculation.

w · u =
(∑

H

wH HH
)
·
(∑

C

uC HC
)

=
∑

H,C

wHuC HHC

=
∑

D

Å ∑

H:H≤D

wH
( ∑

C:HC=D

uC
)ã

HD

=
∑

D

( ∑

H:H≤D

wHuDH
)
HD

Comparing with the coefficient of HD in λ⊤u, we obtain

λ⊤ u
D =

∑

H:H≤D

wHuDH .

The summand in the rhs corresponding to H = O is wOuDO = λ⊥u
D. Bringing it

to the lhs yields (12.3). �

Given w, for any face F , define wF := ∆F (w), with ∆F as in (9.70). It is an
element of the Tits algebra of AF . Explicitly,
(12.4) wF =

∑

G:G≥F

wGF HG/F , where wGF :=
∑

K:FK=G

wK .
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Observe that w and wF have the same content. In fact, the eigenvalues of wH are
those eigenvalues of w which are indexed by flats X containing H. An equivalent
result is given in Exercise 9.61.

Similarly, given u, for any face F , define uF := ∆F (u). Explicitly,

uF =
∑

C:C≥F

uCF HC/F .

It has the same content as u. Since ∆F is an algebra homomorphism, we have the
key fact:

Lemma 12.3. If u is a top-eigenvector for w, then uF is a top-eigenvector for wF ,
with the same eigenvalue.

Note very carefully that the rhs of (12.3) only involves the coefficients of uF
for F > O. In conjunction with Lemma 12.3, this suggests that one can construct
a top-eigenvector u of w by an inductive procedure by first constructing it in the
stars of all faces F > O. This is similar to the extension problem discussed in
Section 11.7, and we will make use of the basic setup there in what follows.

12.1.2. Brown-Diaconis formula. We say an element w of the Tits algebra is
top-separating if λX 6= λ⊤ for any X 6= ⊤. Note that if w is top-separating, then so
is wF for any face F .

Our goal now is to show that a top-separating element has a unique top-
eigenvector.

Lemma 12.4. Let w be an element of the Tits algebra such that λ⊤ 6= λ⊥. Suppose
for each face H > O, we are given a top-eigenvector vH of wH such that the vH
satisfy the compatibility conditions (11.57) and (11.58). Then there is a unique
top-eigenvector u of w satisfying (11.56) for each H > O. Explicitly, for a chamber
C, the scalar uC is given by

(12.5) uC =
1

λ⊤ − λ⊥
∑

F :O<F≤C

wF vCF .

Proof. Suppose u is a top-eigenvector of w satisfying (11.56) for each H > O.
Since λ⊤ 6= λ⊥, (12.3) can be rewritten as in (12.5). This proves uniqueness of u.
For existence of u, we check below that the u defined by (12.5) satisfies (11.56).

uDH =
∑

C:HC=D

uC

=
1

λ⊤ − λ⊥
∑

C:HC=D

∑

F :O<F≤C

wF vCF

=
1

λ⊤ − λ⊥
∑

F :O<F,HF≤D

wF
∑

C:F≤C,HC=D

vCF .

The condition HC = D in the inside sum can be replaced by FHC = FD, so by
(11.57), the inside sum equals vFDFH , and by (11.58), this further equals vDHF . This
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is illustrated below.

F

D

FD
C

H

HF

FH

(For some context on this picture, see the discussion in Section 3.4.7.)
Substituting, the calculation continues as follows.

uDH =
1

λ⊤ − λ⊥
∑

F :O<F,HF≤D

wF vDHF

=
1

λ⊤ − λ⊥
∑

G:H≤G≤D

vDG
∑

F :O<F,HF=G

wF

=
1

λ⊤ − λ⊥

Å
(wHH − λ⊥) vDH +

∑

G:H<G≤D

wGH v
D
G

ã

=
1

λ⊤ − λ⊥

Å
(wHH − λ⊥) vDH + (λ⊤ − wHH ) vDH

ã

= vDH .

In the third step, we broke the first sum depending on whether G = H or G > H,
and used (12.4). In the second-last step, we used (12.3) for the eigenvector vH of
wH .

Finally, to see that u has content 1, we recall that u and uH have the same
content, and uH = vH and vH has content 1. �

Theorem 12.5. Suppose w is a top-separating element of the Tits algebra. Then
w has a unique top-eigenvector u. Its eigenvalue is λ⊤. Explicitly, in rank at least
one, for a chamber C, the scalar uC is given by

(12.6) uC =
wC

λ⊤ − λ⊥
+

∑

O<F<C

wFwCF
(λ⊤ − λ⊥)(λ⊤ − λs(F ))

+

+
∑

O<F<G<C

wFwGFw
C
G

(λ⊤ − λ⊥)(λ⊤ − λs(F ))(λ⊤ − λs(G))
+ . . . .

The first sum is over F , the second sum is over F and G, and so on. (The top-
separating condition ensures that the denominators are nonzero.)

We refer to (12.6) as the Brown-Diaconis formula.

Proof. We show that w has a unique top-eigenvector u by induction on the rank
of A. For rank 0, C = O and clearly uC = 1 is the unique eigenvector. This is the
induction base. Since w is top-separating, so is wH for any face H. Hence by the in-
duction hypothesis, for each H > O, the element wH has a unique top-eigenvector,
say vH . By uniqueness, the vH must satisfy the compatibility conditions (11.57)
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and (11.58). Therefore by Lemma 12.4, w has a unique top-eigenvector u satis-
fying uH = vH . In conjunction with Lemma 12.3, this proves both existence and
uniqueness of u.

Formula (12.6) follows by inductively applying (12.5) to each uCF . �

Example 12.6. Let A be the rank-one arrangement with chambers C and C. An

element of the Tits algebra w is top-separating if wC + wC 6= 0. If this happens,
then w has a unique top-eigenvector u whose coefficients are

uC =
wC

wC + wC
and uC =

wC

wC + wC
.

Only the first term in (12.6) contributed.
For any rank-two arrangement, the unique top-eigenvector u of a top-separating

element w has coefficients

uC =
wC

λ⊤ − λ⊥
+

wPwCP
(λ⊤ − λ⊥)(λ⊤ − λs(P ))

+
wQwCQ

(λ⊤ − λ⊥)(λ⊤ − λs(Q))
,

where P and Q are the two vertices of C.

Exercise 12.7. In a rank-two arrangement, consider the element w = 1
f0

∑
P HP ,

where the sum is over all vertices P , and f0 is the number of vertices. Check that
w is a top-separating element, and its unique top-eigenvector is 1

f0

∑
C HC .

12.1.3. Billera-Brown-Diaconis formula. Let A be any rank-three arrange-
ment. Let f0 denote the number of vertices in A. Recall from Exercise 1.5 that f0
is at least 6. Consider the element of the Tits algebra defined by

(12.7) w =
1

f0

∑

P

HP ,

where the sum is over all vertices P . This element is clearly top-separating. Hence
by Theorem 12.5, it has a unique top-eigenvector.

Theorem 12.8. The unique top-eigenvector of (12.7) is given by

(12.8) uC =
i− 2

2(f0 − 2)
,

where i is the number of sides of the chamber C.

We refer to (12.8) as the Billera-Brown-Diaconis formula.

Proof. Let us apply (12.6). In this case: λ⊤ = 1, λ⊥ = 0. For a vertex P , an
edge E and a chamber C, wP = 1

f0
, wE = wC = 0,

λ⊤ − λs(P ) = 1− 2

f0
and

wCE
λ⊤ − λs(E)

=
1

2
.

Substituting these, we obtain

uC =
1

(f0 − 2)

Å ∑

O<P<C

wCP +
∑

O<P<E<C

1

2
wEP

ã
.

The term in parenthesis can be understood as follows. For any vertex K, let us
mark a vertex P of C with a circle if PK = C and with a semicircle if PK is an
edge E of C. Counting 1 for each circle and 1/2 for each semicircle and dividing
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the sum by f0 gives the contribution of the vertex K to the term in parenthesis.
Now let us combine the contributions of a pair of opposite vertices K and K. This
is illustrated below when C is a hexagonal face, with the contribution of K shown
in black, and that of K shown in white.

Observe that the contribution of either vertex is contiguous and their sum is always
4/f0 (though their individual contributions may differ resulting in the various pos-
sibilities shown above). In general, if C is an i-gon, then the total contribution is
(i − 2)/f0. Since there are f0/2 pairs of opposite vertices, the term in parenthesis
is (i− 2)/2 as required. �

12.1.4. Eigenvectors for nonnegative elements. Assume that the base field
is R. An element of the Tits algebra is nonnegative if all its coefficients are non-
negative. We now show that a nonnegative element has a top-eigenvector but it
may not be unique. This is in contrast to the previous result for top-separating
elements. Note that for a nonnegative element, λX ≤ λY when X ≤ Y. Therefore,
such an element is top-separating precisely if λX 6= λ⊤ for every hyperplane X.

Proposition 12.9. Every nonnegative element w in the Tits algebra has a top-
eigenvector.

Proof. Represent the action of w on Γ[A] by a matrix T whose entries are indexed
by pairs of chambers:

TD,C :=
∑

F :FC=D

wF ,

with D as the row index, and C as the column index. The column sums of T are
all equal to λ⊤, which is the content of w. So λ⊤ is an eigenvalue of T . (The
row vector with all entries 1 is an eigenvector). Hence it must have at least one
column-eigenvector with real entries. The problem with such an eigenvector is that
its content may be zero. However, if the entries of the matrix are nonnegative, then
a generalization of the Perron-Frobenius Theorem guarantees that we can find a
nonzero column-eigenvector with nonnegative entries [218, Lemma 8.3.1] (which
we can then normalize to have content 1). �

12.1.5. Stationary distribution. Suppose the scalars wF are nonnegative and
add up to 1. Then w can be interpreted as a probability distribution on the set of
faces. It induces a random walk on the set of chambers: Suppose we are currently
in chamber C. Then pick a face F at random (with probability wF ) and move to
FC. With this interpretation, a top-eigenvector u for w is the same as a stationary
distribution for this random walk (provided all coefficients of u are nonnegative).
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Theorem 12.10. Suppose w is a top-separating probability distribution on the set
of faces. Then the associated random walk has a unique stationary distribution u
given by the Brown-Diaconis formula (12.6).

This is essentially a restatement of Theorem 12.5 with a small additional obser-
vation. We need to know that the coefficients of the eigenvector u are nonnegative,
but this is clear from Brown-Diaconis formula. Alternatively, one may also apply
the Perron-Frobenius Theorem.

12.2. Diagonalizability and eigensections

Diagonalizable elements in an algebra are discussed in Section D.4. By defi-
nition, an element of the Tits algebra is diagonalizable if it can be expressed as
a linear combination of mutually orthogonal idempotents. We show that elements
which satisfy a separating condition or a nonnegativity condition are diagonaliz-
able. The key idea is to choose an appropriate homogeneous section u so that the
given element w can be expressed using the Eulerian family associated to u. We
refer to such a u as an eigensection of w.

Notation 12.11. In this section, w, wF , w
X, wX are elements of the Tits algebra,

while wF , wGF are scalars. Similarly, u, uF are homogeneous sections, while uF , uGF
are scalars.

12.2.1. Eigensections. For any element of the Tits algebra w =
∑
F w

F HF , set

(12.9) wX :=
∑

F : s(F )≤X

wF HF and wX :=
∑

F : s(F )=X

wF HF .

By definition,

wX =
∑

Y:Y≤X

wY.

Definition 12.12. Let w be an element of the Tits algebra and u be a homogeneous
section. We say that u is an eigensection for w if there exist scalars λ = (λX)
indexed by flats X, such that for any flat X,

(12.10) wX · uX = λX uX,

with uX as in (11.2).

Observe that an eigensection of w is the same as a family (uX), where each uX is
a top-eigenvector of wX in the arrangement AX. Since uX has content 1, taking the
content of both sides of (12.10), we note that λX is given by (12.1). In particular,
it depends only on w and not on the choice of u.

Proposition 12.13. Given a homogeneous section u and λ = (λX), there exists a
unique w with eigenvalues λ and eigensection u.

Proof. To construct w, we need to construct wX for each flat X. We do that by
induction on the rank of X. Setting X := ⊥ in (12.10) and using u⊥ = HO yields

w⊥ = w⊥ = λ⊥HO.

Now suppose that wY are uniquely constructed for all Y < X. To construct wX,
we need to solve the equation

(
wX +

∑

Y:Y<X

wY

)
· uX = λX uX.
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(This is a reformulation of (12.10).) By Lemma 11.2, wX · uX = wX always holds.
Thus

wX := λX uX −
( ∑

Y:Y<X

wY

)
· uX

is the unique solution. This completes the induction step. �

A more precise result is given below.

Proposition 12.14. Given a triple (w, λ, u),

(12.11) u is an eigensection of w with eigenvalues λ ⇐⇒ w =
∑

X

λX EX,

where E is the Eulerian family associated to u.

Proof. Forward implication. Since the sum of the EX is HO, it suffices to show
that w · EX = λX EX. This follows from:

w · EX = wX · EX = wX · uX · EX = λX uX · EX = λX EX.

The first equality used the Saliola lemma (Lemma 11.12). The remaining ones used
(11.15) and (12.10).

Backward implication. We provide two arguments. Applying Proposition 12.13,
let v be the unique element with eigenvalues λ and eigensection u. Now apply the
forward implication to (v, λ, u) to obtain

v =
∑

X

λX EX.

Therefore v = w. Alternatively: Truncating w =
∑

Y λY EY to faces of support
smaller than X,

wX =
∑

Y:Y≤X

λY EXY,

where EXY is the part of EY consisting of faces of support smaller than X. In
particular, EXX = uX. Hence

wX · uX =
∑

Y:Y≤X

λY EXY · EXX = λX EXX = λX uX.

The third equality used (11.22). �

We know from Theorems D.34 and 11.20 that every diagonalizable element can
be diagonalized using an Eulerian family. In conjunction with Proposition 12.14,
we obtain:

Corollary 12.15. An element of the Tits algebra is diagonalizable iff it has an
eigensection.

Exercise 12.16. Recall from Lemma 11.6 that a homogeneous section u of A
induces a homogeneous section uF of AF . Check that: If u is an eigensection for
w, then uF is an eigensection for wF .
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12.2.2. Diagonalizability for separating elements and Brown formulas.
We say an element w of the Tits algebra is separating if for any X < Y, we have
λX 6= λY. This condition is stronger than the top-separating condition. More
precisely, w is separating iff wX (viewed as an element of the Tits algebra of AX)
is top-separating for each X. Also, if w is separating, then so is wF for any face F .

Theorem 12.17. Suppose w is a separating element of the Tits algebra. Then w
has a unique eigensection u. Explicitly, uFF = 1 and for F < G,

(12.12) uGF =
wGF

λs(G) − λs(F )
+

∑

F<H<G

wHF w
G
H

(λs(G) − λs(F ))(λs(G) − λs(H))

+
∑

F<H<K<G

wHF w
K
Hw

G
K

(λs(G) − λs(F ))(λs(G) − λs(H))(λs(G) − λs(K))
+ . . . ,

and uG = uGO. The first sum is over H, the second sum is over H and K, and so
on. The scalars wGF are as in (12.4).

Moreover, w is diagonalizable, with

w =
∑

X

λX EX

for a unique Eulerian family E.

Proof. The last claim follows from the first by (12.11). For the first claim: To
construct u, we need to construct each uX. This is a top-eigenvector of wX in AX,
and we can apply Theorem 12.5. The special case F = O of formula (12.12) follows
from the Brown-Diaconis formula (12.6); for the case of arbitrary F , we employ in
addition Exercise 12.16. �

We would now like to invert the matrix (uGF ) defined by (12.12) by using formula
(11.32). The following identity is useful for that purpose.

Lemma 12.18. Let x0, x1, . . . , xn be distinct scalars. Then

(−1)n
n∏

i=1

1

xi − x0
=

∑

(a1,...,ak)�n

(−1)k
k∏

j=1

1

(xbj − xbj−1) . . . (xbj − xbj−1
)
,

where bj = a1 + · · ·+ aj and b0 = 0. The sum is over all compositions (a1, . . . , ak)
of n.

Proof. Note that xn−xn−1 appears in all terms in the rhs. Split the rhs into two
depending on whether ak = 1 or ak > 1. Denoting the rhs by f(x0, . . . , xn), this
yields the recursion

f(x0, . . . , xn) =
1

xn − xn−1

(
− f(x0, . . . , xn−1) + f(x0, . . . , xn−2, xn)

)
.

Note that in the second term, the variable xn−1 is absent. Solving this recursion
yields the result. �

Theorem 12.19. Let w be a separating element in the Tits algebra, and u be its
unique eigensection. Let E be the associated Eulerian family, and Q the associated
basis. Then

(12.13) EX =
∑

F : s(F )=X

∑

G:F≤G

uF aGF HG and QF =
∑

G:F≤G

aGF HG,
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where

(12.14) aGF = − wGF
λs(G) − λs(F )

+
∑

F<H<G

wHF w
G
H

(λs(H) − λs(F ))(λs(G) − λs(F ))

−
∑

F<H<K<G

wHF w
K
Hw

G
K

(λs(H) − λs(F ))(λs(K) − λs(F ))(λs(G) − λs(F ))
+ . . . .

The first sum is over H, the second sum is over H and K, and so on.

Proof. Formulas (12.13) are the same as the second formula in (11.33) and (11.35).
The nontrivial part is to obtain the formula for aGF . For this, substitute (12.12) in
(11.32), collect together the terms involving wGF , w

H
F w

G
H , and so on, and simplify

each coefficient using Lemma 12.18. This yields (12.14). �

We refer to (12.13), with uF and aGF given by (12.12) and (12.14), as the Brown
formulas for the Eulerian idempotents of a separating element. Note that (12.14)
is not a cancelation-free formula because of the alternating signs.

12.2.3. Diagonalizability for nonnegative elements. We now work over R
and show that a nonnegative element has a (not necessarily unique) eigensection.
Note that a nonnegative element is separating provided λX 6= λY whenever X has
codimension 1 in Y.

Theorem 12.20. Every nonnegative element w in the Tits algebra has an eigen-
section u, and hence is diagonalizable.

Proof. This can be deduced from Proposition 12.9 by passing to arrangements
under different flats. �

Remark 12.21. Theorem 12.17 generalizes to left regular bands (the same argu-
ments work). It may then be used to deduce Theorem 12.20 (again for LRBs) as
follows. Given any element w, let Σw denote the submonoid of Σ generated by those
faces F for which wF 6= 0. In particular, w belongs to the algebra Σw obtained
by linearizing Σw. The point is that Σw is a LRB but it may not come from any
arrangement.

Now suppose the base field is R and w is nonnegative. Then w is a separating
element of Σw, so Theorem 12.17 applies showing that w is diagonalizable in Σw
and hence in Σ. Note that this argument does not require the Perron-Frobenius
Theorem.

If w is nonnegative but not separating, then w may have more than one eigen-
section. However some of the eigenvalues λX will then coincide. Lumping together
the Eulerian idempotents with the same eigenvalue will give the diagonalization of
w and it will be independent of the chosen eigensection by uniqueness. For the
same reason, this diagonalization will coincide with the one constructed from Σw.

12.2.4. Jordan-Chevalley decomposition in rank 1. Consider the rank-one
arrangement with chambers C and C. Let w be an element of the Tits algebra.
Then w is nilpotent iff the coefficient of HO is zero and the sum of the coefficients
of HC and HC is zero. This is because nilpotent elements are precisely those whose
support is zero (Proposition 9.20).
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Similarly, w is diagonalizable iff w is either a scalar multiple of HO or the sum
of the coefficients of HC and HC is nonzero. To see this, recall from Section 11.4.3
that the Eulerian idempotents are

E⊤ = p HC + (1− p) HC and E⊥ = HO − p HC − (1− p) HC
with p arbitrary. Hence the diagonalizable elements have the form

a E⊥ + b E⊤ = a HO + (b− a)p HC + (b− a)(1− p) HC
from which the claim follows. Alternatively: Recall from Lemma 9.27 that the left
module of chambers Γ is faithful. Hence, by Corollary D.18, w is diagonalizable
iff ΨΓ(w) is diagonalizable. The latter condition was analyzed in Section 9.4.5 and
using it the claim follows.

In general, w can be uniquely expressed as a sum of a diagonalizable and a
nilpotent element which commute with each other. This is the Jordan-Chevalley
decomposition (Proposition D.44).

Lemma 12.22. For the rank-one arrangement with chambers C and C, the Jordan-
Chevalley decomposition is given by

aHO + b HC + c HC =

®
(aHO + b HC + c HC) + 0 if b+ c 6= 0,

aHO + (b HC + c HC) if b+ c = 0.

This follows from (and contains) the above classification of diagonalizable and
nilpotent elements. As a consequence, we note that w = HO + α HC − α HC , for
α 6= 0, is an element which is neither nilpotent nor diagonalizable.

Exercise 12.23. Show that no nonzero nilpotent element of the Tits algebra (of
any arrangement) commutes with a separating element.

12.2.5. Minimum polynomial. Recall from Theorem D.15 that an element w
is diagonalizable if its minimum polynomial factorizes into distinct linear factors.
Related ideas are presented below.

Lemma 12.24. Let w be any element of the Tits algebra. Then for any face F of
support X, the element HF · (w−λX) can only contain faces strictly greater than F .

Proof. This follows by noting that HF · (wX − λX) = 0. �

Lemma 12.25. For all elements w of the Tits algebra, we have
∏

X(w− λX) = 0.

Proof. Recall the poset of flats Π. Observe that w − λ⊥ does not contain the
central face. More generally, we claim that the product

∏
(w−λY), where Y varies

over some lower set of Π, cannot contain any face whose support occurs in this
lower set. This can be established by induction using Lemma 12.24. Applying the
claim to the full poset Π yields what we want.

Alternatively, one can show that HF ·
∏
(w − λY) = 0, the product being over

any upper set of Π which contains s(F ). Setting F equal to the central face yields
what we want. �

By a similar argument, one can show:

Lemma 12.26. For all separating elements w, we have (w − λ1) . . . (w − λk) = 0,
where λ1, . . . , λk are the distinct eigenvalues of w.

This gives a simple direct proof of the fact that separating elements are diago-
nalizable.
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12.3. Takeuchi element

We define the Takeuchi element of the Tits algebra by taking an “alternating”
sum of faces (the coefficient of each face F is either +1 or −1 depending on the
parity of the rank of F ). The Takeuchi element is diagonalizable (though it is
neither separating nor nonnegative in general). Its eigenvalues only take values ±1,
and its eigensections are precisely the projective sections. Thus, it can be expressed
as a linear combination of Eulerian idempotents with coefficients ±1. The Takeuchi
element has a commutative counterpart which belongs to the Birkhoff algebra. Even
more interestingly, we have the two-sided Takeuchi element, which is an element of
the Janus algebra.

In this discussion, we will make use of some identities from Chapter 7. Also we
assume that the field characteristic is not 2.

12.3.1. Takeuchi element. Fix an arrangement A. Consider the element of the
Tits algebra Σ[A] defined by

(12.15) Tak[A] :=
∑

F

(−1)rk(F ) HF .

The sum is over all faces F . We call this the Takeuchi element of A. If the
arrangement is clear from context, then we may only write Tak.

Lemma 12.27. The Takeuchi element has order 2:

(12.16) Tak · Tak = HO.

In particular, it is invertible, with its inverse being itself.

Proof. The required calculation is done below.

Tak · Tak =
(∑

H

(−1)rk(H) HH
)
·
(∑

F

(−1)rk(F ) HF
)

=
∑

G

( ∑

H,F :HF=G

(−1)rk(H)+rk(F )
)
HG

= HO

The last step used Lemma 7.30. �

Lemma 12.28. The Takeuchi element is diagonalizable. Its minimum polynomial
is (x+ 1)(x− 1). Explicitly,

(12.17) Tak =
(HO + Tak

2

)
−

(HO − Tak

2

)
.

The elements in parenthesis are orthogonal idempotents which add up to HO.

Proof. We see from (12.16) that (x+1)(x−1) is the minimum polynomial of Tak.
It follows from Theorem D.15 that Tak is diagonalizable. �

12.3.2. Commutative Takeuchi element. Applying the support map (9.30) to
(12.15), we obtain:

(12.18) s(Tak) =
∑

X

(−1)rk(X)cX HX.
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The sum is over all flats X and cX is the number of faces with support X. We
call this the commutative Takeuchi element of A. It is an element of the Birkhoff
algebra. On the Q-basis,

(12.19) s(Tak) =
∑

X

(−1)rk(X) QX.

This follows from (9.1) and (1.39).

12.3.3. Under and over operations. Recall that for any element w of the Tits
algebra Σ[A], one can define elements wX and wH by (12.9) and (12.4). These are
the under and over operations, respectively. They preserve the Takeuchi element
(up to sign). More precisely:

Lemma 12.29. For any face H and flat X,

(12.20) (−1)rk(H)Tak[A]H = Tak[AH ] and Tak[A]X = Tak[AX].

Proof. The first claim is a restatement of (7.12a). The second claim is clear. �

12.3.4. Action on chambers. The eigenvalues and eigenspaces for the action of
the Takeuchi element on the left module of chambers can be computed directly as
follows.

Lemma 12.30. We have

(12.21) Tak ·

Å∑

C

xC HC

ã
= (−1)rk(A)

∑

C

xC HC .

In particular: For any chamber C,

Tak · HC = (−1)rk(C) HC .

Proof. The necessary calculation is shown below.

Tak ·

Å∑

C

xC HC

ã
=

∑

H,C

(−1)rk(H)xC HHC

=
∑

D

Ñ
∑

H:H≤D

(−1)rk(H)

Å ∑

C:HC=D

xC
ãé

HD

=
∑

D

(−1)rk(D)xD HD.

The last step used the Witt identity (7.14). It is also possible to sum H and C in
the opposite order and use the descent identity (7.10). �

Thus, for any chamber C, the subspace spanned by HC and HC is invariant under
the action of Tak. Analyzing the action on each of these subspaces, we obtain:

Lemma 12.31. The action of the Takeuchi element on the left module of chambers
Γ[A] is diagonalizable, with eigenvalues +1 and −1, and with the elements

HC + (−1)rk(C) HC and HC − (−1)rk(C) HC ,

as C varies, yielding a basis for the +1 and −1 eigenspaces, respectively.
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Exercise 12.32. Generalize (12.21) as follows.

Tak ·

Å∑

F

xF HF

ã
=

∑

G

Å
(−1)rk(G)

∑

F :F≤G

xF
ã
HG.

(Use either (7.19b) or (7.11a).)

12.3.5. Eigenvalues and eigensections. Recall from Definition 12.12 that for
any element of the Tits algebra, there is a notion of eigenvalues and eigensections.

Lemma 12.33. The eigenvalues of the Takeuchi element are given by

(12.22) λX = (−1)rk(X).

Proof. This follows from (12.1) and (1.39). Alternatively, recall that the Tits
algebra is elementary with the Birkhoff algebra as its split-semisimple quotient
under the support map. As a consequence, λX is the coefficient of QX in s(Tak), see
(9.46) and (9.59). Now use (12.19). �

In particular, λX = λY whenever the ranks of X and Y differ by an even integer.
Thus the Takeuchi element is not separating if A has rank greater than 2. It is
interesting to note that

λ⊤ − λ⊥ =

®
−2 if A has odd rank,

0 if A has even rank.

In particular, Lemma 12.4 applies to the Takeuchi element only if A has odd rank.
We now turn to the computation of the eigensections. Recall that a homoge-

neous section u is projective if uF = uF for all faces F .

Lemma 12.34. Let u be any homogeneous section. Then u is an eigensection for
the Takeuchi element iff u is projective.

In particular, the uniform section (defined in characteristic 0) is an eigensection
of the Takeuchi element.

Proof. We need to solve the equations (12.10). First consider u⊤ =
∑
C uC HC .

Observe from (12.21) that

Tak · u⊤ = (−1)rk(A) u⊤ ⇐⇒ uC = uC for all chambers C.

Recall from (12.20) that for any flat X, the element TakX can be identified with the
Takeuchi element of AX. Hence by the above calculation, for any flat X,

TakX · uX = (−1)rk(X) uX ⇐⇒ uF = uF for all faces F of support X.

The result follows. �

Combining with Proposition 12.14, we obtain:

Lemma 12.35. For an Eulerian family E of a homogeneous section u,

(12.23) u is projective ⇐⇒ Tak =
∑

X

(−1)rk(X)EX.

Thus:

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



12.3. TAKEUCHI ELEMENT 335

Lemma 12.36. For the Eulerian family E of any projective section,

(12.24)
∑

F

(−1)rk(F ) HF =
∑

X

(−1)rk(X) EX.

In particular, this holds for the Eulerian family associated to the uniform section.

Lemma 12.37. For the Eulerian family E of any projective section,

(12.25)
1

2

(
HO + Tak

)
=

∑

X: rk(X) is even

EX and
1

2

(
HO − Tak

)
=

∑

X: rk(X) is odd

EX.

Proof. The rhs of (12.24) gives a diagonalization of the Takeuchi element. Now
lump together the Eulerian idempotents with eigenvalue +1 and those with eigen-
value −1, and compare with (12.17) to obtain (12.25). �

We remark that (12.24) is a nontrivial identity. Recall from (11.32) and (11.35)
that the coefficients of the Eulerian idempotents are given by an alternating sum;
so a lot of delicate cancelations are taking place in the rhs of (12.24). In fact, the
lhs is giving a cancelation-free formula for the rhs (though we did not start out
with this motivation).

Exercise 12.38. Check identity (12.24) for rank-two arrangements using the for-
mulas given in Proposition 11.65.

Exercise 12.39. For the Eulerian family associated to the uniform section of a
good reflection arrangement, check (12.24) explicitly using formula (11.51) and the
last identity in Lemma 5.30.

Exercise 12.40. Deduce Theorem 11.59 by specializing Lemma 12.4 to w = Tak.

12.3.6. Two-sided Takeuchi element. Fix an arrangement A. Consider the
element of the Janus algebra J[A] defined by

(12.26) Tak[A] :=
∑

F

(−1)rk(F ) H(F,F ).

The sum is over all faces F . We call this the two-sided Takeuchi element of A.
Projecting it on either coordinate yields the Takeuchi element. Thus, in diagram
(9.80):

J[A] //

��

Σop[A]
s

��

Σ[A]
s

// Π[A].

Tak ✤ //
❴

��

Tak❴

��

Tak
✤ // s(Tak).

Recall from Proposition 9.64 that the Janus algebra is elementary with the Birkhoff
algebra as its split-semisimple quotient. The quotient map is the composite in the
diagram above. We now deduce from (12.19) that the possible eigenvalues of the
two-sided Takeuchi element on any module (over the Janus algebra) are ±1, and
formula (12.22) holds.

Observe that

(12.27) Tak ·Tak =
∑

F,G

(−1)rk(F )+rk(G) H(FG,GF ).

The sum is over all faces F and G.
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Example 12.41. Consider the rank-one arrangement A with chambers C and C.
The two-sided Takeuchi element is given by

Tak[A] = HO,O − HC,C − HC,C .

It is not diagonalizable. Its minimum polynomial is (x− 1)2(x+ 1).

12.4. Characteristic elements

Fix an arrangement A. A characteristic element of parameter t is an element
of the Tits algebra whose eigenvalues are powers of t, more precisely, the eigenvalue
for X is trk(X). The Takeuchi element, for instance, is a characteristic element of
parameter −1. These elements are closely linked to the characteristic polynomial
of arrangements: For a characteristic element w of parameter t, the sum of the
coefficients of faces of support X in w equals the characteristic polynomial of AX

(in the variable t).
The Fulman element of parameter t is the characteristic element of parameter t

for which faces with the same support have the same coefficient. For a good reflec-
tion arrangement, the uniform section is an eigensection for the Fulman element,
thus giving an explicit diagonalization. The product of the Fulman elements of
parameters s and t is the Fulman element of parameter st. Further, the algebra
generated by all the Fulman elements is a split-semisimple commutative algebra of
dimension equal to the rank of the arrangement plus 1.

12.4.1. Characteristic elements. An element w of the Tits algebra Σ[A] is
called a characteristic element if there exists a scalar t such that

(12.28) λX(w) = trk(X),

for each flat X, with λX as in (12.1). The dependence of λX on w is made explicit
by writing it in parenthesis.

Observe that:

• If w is a characteristic element, then λ⊥(w) = 1, that is, the coefficient of
the central face in w is 1.

• If A has rank 0, then HO is a characteristic element of parameter t for all
t, and there are no other characteristic elements.
• If t 6= 0 and t is not a root of unity, then any characteristic element of

parameter t is separating, and in particular, has a unique eigensection.

Lemma 12.42. For any elements u, v of the Tits algebra, and for any flat X,

λX(u · v) = λX(u)λX(v).

In particular, if u is a characteristic element of parameter s and v is a characteristic
element of parameter t, then uv is a characteristic element of parameter st.

Proof. The linear functional λX is the same as the multiplicative character χX

defined in (9.48), so the above formula holds. This may also be checked directly.
The main observation is (u · v)X = uX · vX. Taking the sum of coefficients in the
H-basis on both sides yields the formula. �

Using Proposition 9.48, we deduce:

• For t 6= 0, any characteristic element of parameter t is invertible in the
Tits algebra, and its inverse is a characteristic element of parameter t−1.
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• Any characteristic element of parameter 0 is a zero divisor (assuming rank
of A to be at least 1).

12.4.2. Relation to characteristic polynomial. Recall the characteristic poly-
nomial of an arrangement from Section 1.13.4.

Lemma 12.43. Let w =
∑
F w

F HF be any element of the Tits algebra. Then w is
a characteristic element of parameter t iff for every flat X,

(12.29)
∑

F : s(F )=X

wF = χ(AX, t),

where χ(AX, t) is the characteristic polynomial of AX.

Proof. Denote the lhs of (12.29) by f(X). Note that

w is a characteristic element of parameter t

⇐⇒
∑

Y:Y≤X

f(Y) = trk(X) ⇐⇒ f(X) =
∑

Y:Y≤X

µ(Y,X) trk(Y).

Now apply definition (1.49). �

We now consider the special cases t = 0, 1,−1.
Lemma 12.44. Let w =

∑
F w

F HF be any element of the Tits algebra. Then: w
is a characteristic element of parameter 0 iff for every flat X,

(12.30a)
∑

F : s(F )=X

wF = µ(⊥,X);

w is a characteristic element of parameter 1 iff wO = 1 and for every non-minimum
flat X,

(12.30b)
∑

F : s(F )=X

wF = 0;

w is a characteristic element of parameter −1 iff for every flat X,

(12.30c)
∑

F : s(F )=X

wF = (−1)rk(X)cX,

where cX is the number of faces with support X.

Proof. We employ (12.29). The three cases follow from (1.50a), (1.50b) and
(1.50c), respectively. �

Corollary 12.45. We have:

(1) Any special Zie element is a characteristic element of parameter 0.
(2) The set of characteristic elements of parameter 1 is precisely HO+rad(Σ),

where rad(Σ) is the radical of the Tits algebra. In particular, HO is a
characteristic element of parameter 1.

(3) The Takeuchi element is a characteristic element of parameter −1.
Proof. For (1), use (12.30a) and (10.15). For (2), use (12.30b) and (9.32). For (3),
use (12.30c). This can also be seen directly by comparing (12.22) and (12.28). �

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



338 12. DIAGONALIZABILITY

12.4.3. Under and over operations. The under and over operations preserve
characteristic elements. More precisely:

Lemma 12.46. Suppose w is a characteristic element of parameter t, with t 6= 0.
Then:

• For any face H, the element t− rk(H)wH defined by (12.4) is a character-
istic element of parameter t of AH .

• For any flat X, the element wX defined by (12.9) is a characteristic ele-
ment of parameter t of AX.

Proof. The second claim is clear. For the first claim: For any X ≥ s(H),

λX/H(wH) = λX(w) = trk(X) = trk(H)trk(X/H). �

12.4.4. Fulman elements. Assume that k has characteristic zero. Let t be a
scalar. The Fulman element of parameter t is defined to be

(12.31) Fult[A] :=
∑

X

χ(AX, t)

cX

∑

F : s(F )=X

HF .

If the arrangement is clear from context, then we may only write Fult.

Lemma 12.47. The element Fult is a characteristic element of parameter t (in
which the coefficients of faces are distributed uniformly). Further, it is invariant
under any symmetry of A.
Proof. Faces with the same support X have the same coefficient in Fult, and
further their sum is χ(AX, t). Hence, the first part follows by Lemma 12.43. For
the second part, note that if a symmetry takes X to Y, then AX and AY are
cisomorphic, so they will have the same characteristic polynomial and the same
number of chambers. �

Lemma 12.48. For a good reflection arrangement A, for any face H and flat X,

Fult[A]H = trk(H)Fult[AH ] and Fult[A]X = Fult[AX].

Proof. The second claim is clear (and valid for any arrangement). For the first
claim, for a face G greater than H and with support X,

〈HH · Fult[A], HG〉 = 〈HH · Fult[AX], HG〉

=
1

cXH

∑

F : s(HF )=X

χ(As(F ), t)

cF

=
1

cXH

∑

Y: s(H)∨Y=X

χ(AY, t)

= trk(H)χ(AX
H , t)

cXH
.

Since A is good, AX is a reflection arrangement. The element HH · Fult[AX] is
invariant under all Coxeter symmetries of AX which fix H. So to calculate the
coefficient of HG, we can average the coefficients of all faces greater than H and
with support X (on which the symmetries act transitively). This is what was done
in the second step. In the last step, we used formula (1.51). �
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Lemma 12.49. For a good reflection arrangement A, the uniform section u is an
eigensection for Fult, and in particular Fult is diagonalizable.

Proof. Since Fult and u⊤ are invariant under the symmetries of A, so is Fult ·u⊤.
Since A is a reflection arrangement, its Coxeter symmetries act transitively on
chambers, and so Fult · u⊤ must be a multiple of u⊤. So u⊤ is an eigenvector
of Fult. For the general case, we apply this result to AX which is a reflection
arrangement (since A is assumed to be good). �

More generally: Suppose A is a good reflection arrangement, and w is an
element of the Tits algebra of A such that wX is invariant under the Coxeter
symmetries of AX for each flat X. Then the uniform section is an eigensection of
w.

Theorem 12.50. For a good reflection arrangement A,

(12.32) Fult =
∑

X

trk(X) EX =

rk(A)∑

k=0

tk Ek,

with EX as in (11.51), and Ek as in (11.54). Further, if t 6= 0 and t is not a root of
unity, then E is the unique Eulerian family for which (12.32) holds.

Proof. By Proposition 12.14 and Lemma 12.49, Fult can be diagonalized by the
Eulerian family associated to the uniform section (given in Theorem 11.53). The
first part follows. If t 6= 0 and t is not a root of unity, then Fult is separating and
uniqueness follows from Theorem 12.17. �

Viewing t as a formal parameter, Fult is a linear combination of faces whose
coefficients are polynomials in t. The element Ek is precisely the coefficient of tk.
In view of Lemma 1.83, this gives an alternative proof of Theorem 11.56.

We now consider the parameter values t = 0, 1,−1 of the Fulman element. For
t = 0, using (1.50a), we see that Ful0[A] is the same as the element given in (11.53).
Further, for any good reflection arrangement A, using (11.52),

(12.33a) Ful0[A] = E⊥,

the first Eulerian idempotent of the uniform section. This is consistent with (12.32).
For t = 1, using (1.50b), we see that only the minimum flat contributes to the

rhs of (12.31). Thus,

(12.33b) Ful1[A] = HO.

In this case, (12.32) is an instance of (11.18).
For t = −1, using (1.50c), we obtain

(12.33c) Ful−1[A] = Tak[A],
the Takeuchi element. In this case, (12.32) is an instance of (12.24).

12.4.5. Fulman algebra. Let F[A] denote the subalgebra of Σ[A] generated by
all the Fulman elements. We call F[A] the Fulman algebra.

Theorem 12.51. For a good reflection arrangement A, the Fulman algebra is a
split-semisimple commutative algebra of dimension rk(A) + 1. Explicitly,

F[A] ∼=−→ krk(A)+1, Fult 7→ (1, t, . . . , trk(A)).

If t 6= 0 and t is not a root of unity, then F[A] is generated by Fult.
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Proof. First note that the subalgebra of Σ[A] generated by the Ek, for k =
0, . . . , rk(A), is isomorphic to krk(A)+1. Now using Theorem 12.50 yields an in-
jective algebra homomorphism as above. To see that it is surjective, consider the
image of Fult for rk(A)+1 distinct choices of t, and note that these images are lin-
early independent, say from the determinant formula of the Vandermonde matrix.
The last claim follows similarly. �

Corollary 12.52. For a good reflection arrangement A, for any scalars s and t,

(12.34) Fuls · Fult = Fulst.

Proof. This follows from the isomorphism in Theorem 12.51. Alternatively, one
may argue directly as follows. First note from Lemma 12.42 that Fuls · Fult is a
characteristic element of parameter st. Further, this element is invariant under the
Coxeter symmetries of A. So all chambers must appear with the same coefficient.
Since by (12.29), the sum of these coefficients is χ(A, t), each coefficient must be
χ(A, t)/c(A), where c(A) is the number of chambers. Applying this argument to
each AX establishes (12.34). �

12.5. Type A Eulerian idempotents and Adams elements

Let A be the braid arrangement on [p] (Sections 6.3–6.6). We work with the
uniform section (so it is implicit that the field characteristic is 0). This defines the
Eulerian family E as well as the Q-basis. Recall that the braid arrangement is a
good reflection arrangement. This allows us to specialize the results of Section 11.6.
We first give the change of basis formulas between the H- and Q-bases, and then
cancelation-free formulas for the Eulerian idempotents in the H-basis. Further,
we consider an interesting family of elements indexed by integers called Adams
elements, and write down an explicit diagonalization for them. This family includes
the Takeuchi element (up to a sign), and is also closely related to the Fulman
elements. We conclude with a general construction of Eulerian families from Zie
elements which includes the above Eulerian family as a special case.

12.5.1. H- and Q-bases.

Lemma 12.53. For the uniform section, the H- and Q-bases are related by

(12.35) HF =
∑

G:F≤G

1

deg!(G/F )
QG and QF =

∑

G:F≤G

(−1)rk(G/F )

deg(G/F )
HG,

with degrees and factorials as in Section 6.6.3.

Proof. These formulas are a specialization of (11.50). The second formula used
(6.11). �

For p = 2, the change of basis formulas are

H1|2 = Q1|2, H2|1 = Q2|1, H12 = Q12 +
1

2
(Q1|2 + Q2|1), Q12 = H12 −

1

2
(H1|2 + H2|1).
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12.5.2. Eulerian idempotents.

Theorem 12.54. The Eulerian idempotents for the uniform section are given by

EX =
1

deg!(X)

∑

F : s(F )=X

QF(12.36)

=
1

deg!(X)

∑

F : s(F )=X

∑

G:F≤G

(−1)rk(G/F )

deg(G/F )
HG,

where deg!(X) is the factorial of the number of blocks of X.
In particular, the first Eulerian idempotent is

(12.37) E⊥ = QO =
∑

F

(−1)rk(F )

deg(F )
HF .

Proof. This is a specialization of Theorem 11.53. �

For p = 2, the two Eulerian idempotents are

E⊤ = E1,2 =
1

2
(H1|2 + H2|1) and E⊥ = E12 = H12 −

1

2
(H1|2 + H2|1).

For p = 3, the five Eulerian idempotents are

E⊤ = E1,2,3 =
1

6
(H1|2|3 + H1|3|2 + H2|3|1 + H2|1|3 + H3|1|2 + H3|2|1),

E1,23 =
1

2
(H1|23 + H23|1)−

1

4
(H1|2|3 + H1|3|2 + H2|3|1 + H3|2|1),

E2,13 =
1

2
(H2|13 + H13|2)−

1

4
(H2|1|3 + H2|3|1 + H1|3|2 + H3|2|1),

E3,12 =
1

2
(H3|12 + H12|3)−

1

4
(H3|1|2 + H3|2|1 + H1|2|3 + H2|1|3),

E⊥ = E123 = H123 −
1

2
(H1|23 + H23|1 + H2|13 + H13|2 + H3|12 + H12|3)

+
1

3
(H1|2|3 + H1|3|2 + H2|3|1 + H2|1|3 + H3|1|2 + H3|2|1).

Since the braid arrangement on [3] is cisomorphic to the rank-two arrangement of
3 lines, the above are special cases of the formulas in Proposition 11.65.

Now set

(12.38) Ek :=
∑

X: deg(X)=k

EX =
1

k!

∑

F : deg(F )=k

QF for 1 ≤ k ≤ p.

Warning. This convention does not match (11.54), where rank of X is employed.
However, for type A, usage of degree is standard and appears to be more convenient
than rank.

Put

(12.39) Tk :=
∑

F : deg(F )=k

HF .

Theorem 12.55. We have

(12.40) Ek =
∑

m:m≥k

s(m, k)
Tm

m!
,
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where s(m, k) are the Stirling numbers of the first kind.

Proof. This formula is a specialization of Theorem 11.56. This can be seen from
(6.13). For the switch from k + 1 to k, see the above warning. �

For p = 3,

E1 = T1−
T2

2!
+ 2

T3

3!

E2 =
T2

2!
− 3

T3

3!

E3 =
T3

3!
.

Lemma 12.56. We have

(12.41)

p∑

k=1

Ç
n

k

å
Tk =

p∑

k=1

nk Ek.

Proof. Express the binomial coefficients in the lhs as polynomials in n, collect the
coefficients of various powers of n, and use (12.40). �

12.5.3. Adams elements. For any integer n, define the Adams element of pa-
rameter n to be

(12.42) Adsn :=
∑

F

Ç
n

deg(F )

å
HF =

p∑

k=1

Ç
n

k

å
Tk.

By Lemma 6.9 and definition (12.1), we obtain:

Lemma 12.57. The eigenvalues of Adsn are given by λX = ndeg(X), one for each
set partition X.

Further:

Proposition 12.58. The Adams elements diagonalize as follows.

(12.43) Adsn =
∑

X

ndeg(X) EX =

p∑

k=1

nk Ek.

Proof. This is a restatement of Lemma 12.56. Alternatively, put w := Adsn.
Note that wX is invariant under the action of the symmetric group on the blocks
of X. So the uniform section is an eigensection of w. Hence (12.43) holds by
Proposition 12.14 in view of Lemma 12.57. �

As a consequence of (12.43):

Lemma 12.59. For any integers m and n,

(12.44) Adsm · Adsn = Adsmn.

Similarly:

Theorem 12.60. For the braid arrangement on [p], the subalgebra of the Tits
algebra generated by the elements Adsn is a split-semisimple commutative algebra,
with primitive idempotents Ek, for 1 ≤ k ≤ p.
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Let us now consider the parameter value n = −1. Using definition (12.42),

Ads−1 =
∑

F

(−1)deg(F ) HF .

This is the negative of the Takeuchi element (12.15). It diagonalizes as

Ads−1 =
∑

X

(−1)deg(X) EX =

p∑

k=1

(−1)k Ek.

This can also be seen as an instance of (12.24) (after taking negative of both sides).

Let us now relate the Adams elements to the Fulman elements. A comparison
of (6.12) with (12.31) shows that

Adsn = n Fuln,

where Fuln is the Fulman element of parameter n. In particular, Ads−1 = −Ful−1,
which is the negative of the Takeuchi element by (12.33c). This is consistent with
what we noted above.

The diagonalization (12.43) can also be deduced by multiplying both sides of
(12.32) by t and letting t = n. Similarly, (12.34) yields (12.44). Also, Theorem 12.60
can be deduced from Theorem 12.51.

Exercise 12.61. Check that Adsn is a separating element if n 6= 0, 1,−1.

12.5.4. Action on chambers. Let E⊥ be the first Eulerian idempotent given by
(12.37). A formula for its action on the left module of chambers is given below.

Proposition 12.62. For any chamber C,

(12.45) E⊥ · HC =
∑

D

(−1)s−1 1

s
(
p
s

)HD,

where s is the degree of Des(C,D), with the latter as in (7.1).

Proof. The crux of the calculation is shown below.

p−s∑

i=0

(−1)i
i+ s

Ç
p− s
i

å
=

∫ 1

0

xs−1(1− x)p−sdx =
1

s
(
p
s

) for 1 ≤ s ≤ p.

We omit the details. �

Viewing Σ[A] as a subspace of ÛQ[A] via (9.43), we have

(12.46) E⊥ =
∑

H≤D

(−1)s−1 1

s
(
p
s

)KH,D,

where s = deg(H). This follows by combining (12.45) and (9.45).

12.5.5. Eulerian idempotents from Zie elements. We now discuss a general
construction of a complete system of idempotents of the Tits algebra. The starting
data is as follows.

• Suppose for each nonempty subset S of [p], we are given an arbitrary
special Zie element Q(S) of the braid arrangement on S.
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For each composition F = (S1, . . . , Sk) of [p], put

(12.47) QF := µF (Q(S1), . . . , Q(Sk)).

The rhs is the external product from Section 6.3.13 defined on the H-basis by

µF (HH1
, . . . , HHp

) = HH ,

and extended by multilinearity. Here each Hi is a composition of Si and H is their
ordered concatenation. As F varies over all compositions of [p], the QF yield a basis
of the Tits algebra. So we can write

(12.48) HO =
∑

F

uF QF ,

for unique scalars uF . Now define

(12.49) EX :=
∑

F : s(F )=X

uF QF .

These are the required idempotents. Choosing each QS to be (12.37) recovers the
Eulerian idempotents (12.36) (with the uF coinciding with the uniform section).

The above is a special case of the construction in Section 11.5.3. Recall from
Section 6.3.11 that the arrangement over a flat of the braid arrangement is a carte-
sian product of smaller braid arrangements. Also, Zie elements are compatible with
cartesian product (10.22). Hence, each QF as defined in (12.47) yields a special Zie
element in the star of F . This is equivalent to a special Zie family. We see from
(11.46) and (11.47) that the resulting homogeneous section u and Eulerian family
E are precisely as defined above.

Exercise 12.63. Use the Friedrichs criterion (Lemma 10.19) to directly check that
the elements (12.47) satisfy (11.29). Deduce that they define an abstract Q-basis in
the sense of Section 11.5.5.

Exercise 12.64. For any nonempty subset I of [p], (12.47) applied to compositions
F of I defines a Q-basis of the braid arrangement on I. This in turn defines scalars
uGF and aGF via (11.33) for any compositions F and G of I with F ≤ G. When F is
the one-block composition of I, we shorten uGF and aGF to uG and aG, respectively.
Check that

uGF =
∏

i

u(G/F )i and aGF =
∏

i

a(G/F )i .

Recall that (G/F )i is the set composition consisting of those contiguous blocks of
G which refine the i-th block of F .

12.6. Type B Eulerian idempotents and Adams elements

Let A be the arrangement of type B on [p] (Section 6.7). We work with the
uniform section (so it is implicit that the field characteristic is 0). This defines
the Eulerian family E as well as the Q-basis. The arrangement of type B is a good
reflection arrangement. This allows us to specialize the results of Section 11.6.
We first give the change of basis formulas between the H- and Q-bases, and then
cancelation-free formulas for the Eulerian idempotents in the H-basis. Further, we
consider a family of elements indexed by integers called type B Adams elements,
and write down an explicit diagonalization for them. This family includes the
Takeuchi element.
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The discussion in this section largely proceeds in analogy with Section 12.5,
however there are some differences. In contrast to Adams elements, the type B
Adams elements indexed by odd integers and even integers work differently. For
instance, only those indexed by odd integers are Fulman elements.

12.6.1. H- and Q-bases.

Lemma 12.65. For the uniform section, the H- and Q-bases are related by

(12.50) HF =
∑

G:F≤G

1

deg!(G/F )
QG and QF =

∑

G:F≤G

(−1)rk(G/F )

deg(G/F )
HG,

with degrees and factorials as in Section 6.7.13.

Proof. These formulas are a specialization of (11.50). The second used (6.20). �

For p = 1, the change of basis formulas are

H0|1 = Q0|1, H0|1̄ = Q0|1̄, H01 = Q01 +
1

2
(Q0|1 + Q0|1̄), Q01 = H01 −

1

2
(H0|1 + H0|1̄).

12.6.2. Eulerian idempotents.

Theorem 12.66. The Eulerian idempotents for the uniform section are given by

EX =
1

deg!(X)

∑

F : s(F )=X

QF(12.51)

=
1

deg!(X)

∑

F : s(F )=X

∑

G:F≤G

(−1)rk(G/F )

deg(G/F )
HG.

In particular, the first Eulerian idempotent is

(12.52) E⊥ = QO =
∑

F

(−1)rk(F )

deg(F )
HF =

∑

F

Ç
−1/2
rk(F )

å
HF .

Proof. This is a special case of Theorem 11.53. The last step used (6.15). �

For instance, for p = 2, for the octagon,

E⊥ = QO = HO −
1

2

∑

P

HP +
3

8

∑

C

HC .

The first sum is over the eight vertices, and the second sum is over the eight edges.
This is also the n = 4 case of (11.64). In combinatorial notation,

E012 = H012 −
1

2
(H02|1 + H0|12 + H01|2 + H0|1̄2 + H02|1̄ + H0|1̄2̄ + H01|2̄ + H0|12̄)

+
3

8
(H0|2|1 + H0|1|2 + H0|1̄|2 + H0|2|1̄ + H0|2̄|1̄ + H0|1̄|2̄ + H0|1|2̄ + H0|2̄|1).

For p = 3,

E⊥ = QO = HO −
1

2

∑

P

HP +
3

8

∑

E

HE −
5

16

∑

C

HC .

The first sum is over all vertices, the second over all edges, and the third over all
triangles. This is an instance of (11.67) with uE = 1/8.
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Now set

(12.53) Ek :=
∑

X: rk(X)=k

EX and E′k :=
∑

X: rk(X)=k, z(X)={0}

EX.

The notation Ek is consistent with (11.54). This is in contrast to type A, see (12.38).
Also put

(12.54) Tk :=
∑

F : rk(F )=k

HF and T′k :=
∑

F : rk(F )=k, z(F )={0}

HF .

Theorem 12.67. We have

(12.55) Ek =
∑

m:m≥k

s±(m, k)
Tm

(2m)!!
and E′k =

1

2k

∑

m:m≥k

s(m, k)
T′m
m!

,

where s(m, k) and s±(m, k) are the Stirling numbers of types A and B.

Proof. The first formula is a specialization of Theorem 11.56. This can be seen
from (6.23). The combinatorics involved in the second formula is identical to that
in (12.40) and can be deduced from it. �

12.6.3. Type B Adams elements. For each integer n, we define the type B
Adams element of parameter n. The definition splits into two depending on the
parity of n as follows.

(12.56) Ads±2n+1 :=
∑

F

Ç
n

rk(F )

å
HF and Ads±2n :=

∑

F : z(F )={0}

Ç
n

rk(F )

å
HF .

The first sum is over all faces, while the second sum is over all faces whose zero
block is a singleton.

Proposition 12.68. The type B Adams elements diagonalize as follows.

(12.57a) Ads±2n+1 =
∑

X

(2n+ 1)rk(X) EX =

p∑

k=0

(2n+ 1)k Ek.

(12.57b) Ads±2n =
∑

X: z(X)={0}

(2n)rk(X) EX =

p∑

k=1

(2n)k E′k.

Proof. One can check that the uniform section is an eigensection for the type
B Adams elements. Hence these formulas follow from Lemma 6.19 and Proposi-
tion 12.14. �

For notational convenience, set E′0 = 0. Observe that, for any integer n (irre-
spective of parity),

(12.58) Ads±n =

p−1∑

k=0

χk(n)(Ek − E′k) +

p∑

k=1

χ′
k(n)E

′
k,

where

χ′
k(n) = nk and χk(n) =

®
nk if n is odd,

0 if n is even.

Note that χk(mn) = χk(m)χk(n) and χ
′
k(mn) = χ′

k(m)χ′
k(n).
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Theorem 12.69. For the arrangement of type B on [p], the subalgebra of the Tits
algebra generated by the elements Ads±n is a split-semisimple commutative algebra
of dimension 2p, with primitive idempotents E′k, for 1 ≤ k ≤ p, and Ek − E′k, for
0 ≤ k ≤ p− 1.

Proof. By definition, the E′k and Ek−E′k form an orthogonal family of idempotents
which add up to the unit element. So the algebra generated by them is isomorphic
to k2p. Let us denote it by A. By (12.58), the elements Ads±n belong to A. Further,
from the determinant formula of the Vandermonde matrix, we deduce that each Ek
and E′k is expressible as a linear combination of the Ads±n . So the algebra generated
by the Ads±n equals A. �

In conjunction with (12.58), we deduce that:

Lemma 12.70. For any integers m and n,

(12.59) Ads±m · Ads±n = Ads±mn.

Similarly, (12.57a) yields:

Theorem 12.71. For the arrangement of type B on [p], the subalgebra of the Tits
algebra generated by the elements Ads±2n+1 is a split-semisimple commutative algebra
of dimension p+ 1, with primitive idempotents Ek, for 0 ≤ k ≤ p.

We note that Ads±−1 is the Takeuchi element (12.15). It diagonalizes as

Ads±−1 =
∑

X

(−1)rk(X) EX =

p∑

k=0

(−1)k Ek.

Similarly, a comparison of (6.22) with (12.31) shows that

Ads±2n+1 = Ful2n+1.

Thus, Ads±2n+1 is the Fulman element of parameter 2n+1 (which is consistent with

the fact that Ads±−1 is the Takeuchi element). The implications are given below.

• The diagonalization (12.57a) is an instance of (12.32) for t = 2n+ 1.
• When m and n are both odd integers, (12.59) is an instance of (12.34).
• Theorem 12.71 is an instance of Theorem 12.51.

In contrast, the element Ads±2n is not the Fulman element of parameter 2n. In
fact, it is not even a characteristic element of parameter 2n: the eigenvalues of
Ads±2n are (2n)rk(X) only on flats X with z(X) = {0}, and zero on other flats. The
companion result to Theorem 12.71, which can be deduced from (12.57b), is given
below.

Theorem 12.72. For the arrangement of type B on [p], the subalgebra of the Tits
algebra generated by the elements Ads±2n is a split-semisimple commutative algebra
of dimension p+ 1, with primitive idempotents E′k, for 1 ≤ k ≤ p, and 1−∑

k E
′
k.

12.6.4. Action on chambers. Let E⊥ be the first Eulerian idempotent given by
(12.52). A formula for its action on the left module of chambers is given below.

Proposition 12.73. For any chamber C,

(12.60) E⊥ · HC =
∑

D

Ç
p− s− 1/2

p

å
HD,

where s is the rank of Des(C,D), with the latter as in (7.1).
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Proof. This reduces to the following instance of Vandermonde’s identity:

p∑

k=s

Ç
−1/2
k

åÇ
p− s
k − s

å
=

Ç
p− s− 1/2

p

å
for 0 ≤ s ≤ p.

We omit the details. �

Exercise 12.74. View Σ[A] as a subspace of ÛQ[A] via (9.43). Use (12.60) and
(9.45) to expand E⊥ in the K-basis of the latter space.

Notes

Diagonalizability and stationary distribution. The diagonalizability of a nonnega-
tive element of the real Tits algebra was shown by Brown and Diaconis [98, Theorem 1].
This result was generalized from hyperplane arrangements to left regular bands by Brown
[96, Theorems 1 and 5]. The two proofs are different. Brown also showed that his method
generalized to any field k provided the element is separating.

Brown also explicitly constructed a family of primitive orthogonal idempotents for
the Tits algebra which diagonalize the given separating element [96, Equations (24) and
(27)]. They are related to (12.13).

Our treatment of diagonalizability differs from that of Brown. We follow Saliola’s
method using the notion of eigensections [352]: Starting with an element w of the Tits
algebra, first construct an eigensection of w, and then apply the recursive construction
(11.14) to obtain the family of idempotents which diagonalize w. We applied the method
to separating elements; Saliola applies it to nonnegative elements to prove Theorem 12.20,
see [352, Theorem 4]. An exposition of Brown’s diagonalizability argument is given in
[340, Section IV.3].

Brown and Diaconis give a probabilistic description of the stationary distribution for a
separating element w [98, Theorem 2, part (b)]. This is equivalent to formula (12.6) which
then immediately yields the eigensection (12.12) of the given element w. The Eulerian
idempotents associated to this homogeneous section are precisely the ones constructed by
Brown. This has to be the case by uniqueness. For rank-three arrangements, Billera,
Brown and Diaconis considered the element with uniform weights on the vertices and
computed its stationary distribution (12.8), see [58, Theorem 1].

Steinberg [386] or [385, Section 14.5] gives a proof of diagonalizability by establishing
Lemma 12.26. Results for stationary distribution and diagonalizability in more general
contexts are given by Ayyer, Schilling, Steinberg and Thiéry [33, Theorems 4.3 and 4.10].

We have not discussed here the problem of estimating the rate at which the random
walk converges to the stationary distribution. The interested reader may look for instance
at [56, Section 5], [98, Theorem 2, part (c)] and [33, Section 4.5].

Results related to random walks induced on subarrangements are given in [28].

Takeuchi and Fulman elements. The Takeuchi element is related to the antipode of
a connected Hopf monoid in species [9, Formula (8.27)]. In turn this originates in work of
Sweedler and Takeuchi on the antipode of a connected Hopf algebra [391, Lemma 9.2.3],
[392, Proof of Lemma 14]. Also see [300, Lemma 5.2.10] or [9, Formula (2.55)]. The
existence of the antipode is already pointed out in [296, Proposition 8.2]. For a topological
analogue see [411, Chapter X.2.2]: if a connected CW-complex has an H-space structure,
then it is group-like, that is, the multiplication admits a homotopy inverse.

The Fulman element (up to normalization) was considered by Fulman [178, Defini-
tions 2 and 3], [176, Definition on page 154]. Theorem 12.50 (or the later Theorem 16.51)
is equivalent to [178, Theorem 3]. He lists out the irreducible good reflection arrange-
ments (Theorem 5.29) and proves this result by verifying it for each case. Our approach
gives a conceptual understanding of his calculations.
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Eulerian idempotents and Adams elements. The idempotents Ek and the elements
Adsn appeared in work of Reutenauer [341, Section 3] and Garsia [183, Section 7] on the
free Lie algebra, of Bayer and Diaconis [46, Section 3] on card shuffling (see below), of
Patras [315, Section II.2] on the polytope group, and of several authors on Hochschild and
cyclic homology [169, 188, 209, 272]. (In [272, Section 1], they are called λ-elements
and a different sign convention is used.) In these references, Ek and Adsn are viewed as
elements of the symmetric group algebra. See also [342, Sections 3.2 and 3.3].

The first Eulerian idempotent E1 appears in work of Hain [205]. A related idempotent
(the sum of all higher Eulerian idempotents except the first) goes back to Barr [43]; see
[188, Theorem 1.3]. The map on chambers (12.45) arising from the action of the first
Eulerian idempotent is present in early work of Solomon [369, Formula (1.2)] and is
also considered in [214, Theorem (19) and Lemma (21)], [341, Corollary 1.6] and [342,
Corollary 3.16].

We presented the Eulerian idempotents and the Adams elements as elements of the
Tits algebra of the braid arrangement. They are in fact elements of the Solomon descent
algebra. The precise connection between the two algebras is explained later in Theo-
rem 16.8; see the notes to Chapter 16 for further discussion. The latter is a subalgebra of
both the Tits algebra and the symmetric group algebra.

In the context of Hopf monoids in species, these elements are studied in [10, Section
14]. Formulas (12.36) for the Eulerian idempotents EX are [10, Formulas (243) and (244)].

The Adams elements are closely related to the convolution powers of the identity
of a connected Hopf algebra. This perspective goes back to Patras [316, Section 1] and
Gerstenhaber and Schack [189, Sections 1–3]; see also [273, Section 4.5], [104, Section
3.8], and [10, Section 14.4]. When the Hopf algebra is commutative, these operators
endow the underlying algebra with the structure of a λ-ring for which they serve as the
Adams operations (hence the name). See [317, Section 5]. The power maps x 7→ xn on a
topological group induce the Adams operations on its cohomology Hopf algebra.

In the Hopf algebra literature, the term Hopf powers or Sweedler powers is employed
for the convolution powers of the identity. See [239], [304], [238], [141], [314], [7].

Eulerian and Zie. The construction of a Q-basis starting with Zie elements in Sec-
tion 12.5.5 is present in work of Schocker [358, Section 5]. For related information, see
the notes to Chapter 11.

Riffle shuffle. A riffle shuffle is a method commonly employed to shuffle a deck of cards.
It is described mathematically by the Gilbert-Shannon-Reeds model: Cut the deck of cards
into two heaps according to a binomial distribution, and then riffle them together such
that cards drop from the left or right heaps with probability proportional to the number
of cards in each heap. The n-shuffle, for any integer n ≥ 2, can be defined in a similar
manner by cutting the deck of cards into n ordered heaps and riffling them together. The
2-shuffle is the same as the riffle shuffle.

The inverse n-shuffle works as follows: Label each card randomly with an integer from
1 to n. Move all the cards labeled 1 to the bottom of the deck, preserving their relative
order. Next move all the cards labeled 2 likewise, and proceed in this manner.

These shuffling methods were analyzed by Bayer and Diaconis [46]. Mathematically,
the inverse n-shuffle is an element of the group algebra of the symmetric group on p letters,
p being the size of the deck. It can be explicitly written down using rising sequences or
descents, and hence is an element of the Solomon descent algebra of the symmetric group.
Thus, it can also be expressed as an element of the Tits algebra. Up to normalization,
this is precisely the Adams element Adsn. This geometric interpretation was discovered
by Bidigare, Hanlon and Rockmore, Equation (12.42) is [56, Proposition 2.3].

The inverse m-shuffle followed by the inverse n-shuffle is the inverse mn-shuffle. This
relation is stated in (12.44). It can be seen directly and is one of the key observations
of Bayer and Diaconis [46, Lemma 1]. They show that the algebra generated by the
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350 12. DIAGONALIZABILITY

inverse riffle shuffle contains all the inverse n-shuffles and is a split-semisimple commutative
algebra. This is stated in Theorem 12.60.

An exposition of the above ideas is given in [281, Section 2.3.3]. Fine information
on riffle shuffling can be found in the comprehensive review by Diaconis [140]. For more
recent references, see [24], [116], [141, Section 5] and [271, Section 8.3].

Type B riffle shuffles. For type B, we work with a signed deck of cards, in which cards
may be face up or face down. The analogues of the n-shuffles (and in particular the riffle
shuffle) are non-obvious and are defined as follows, following [281, Section 2.4.2].

For riffle shuffling a signed deck of cards, first cut the deck into two heaps, making
the cut according to a binomial probability distribution, then turn the second heap face
up and then riffle them together such that cards drop from the left or right heaps with
probability proportional to the number of cards in each heap. More generally, for the
signed n-shuffle, cut the deck into n ordered heaps, turn the heaps in even positions face
up, and then riffle them.

Let us denote the inverse signed n-shuffle by Sn. It is convenient to split the descrip-
tion into two cases depending on the parity of n.

• S2: For every card, either flip or do not flip its sign with equal probability. The
cards with unchanged signs move to the top in the same relative order and the
rest move to the bottom in the reverse relative order. This is the inverse signed
riffle shuffle.

• S2n: Do an inverse n-shuffle (of type A) with labels 1, 2, . . . , n. Then within
each of the n blocks with a fixed label do an inverse signed riffle shuffle.

• S2n+1: Do an inverse (n+ 1)-shuffle (of type A) with labels 0, 1, 2, . . . , n. Then
do an inverse signed riffle shuffle on each block except the one labeled 0.

As for type A, the inverse signed n-shuffle can be expressed as an element of the Tits
algebra. Up to normalization, this is precisely the type B Adams element Ads

±
n . The

multiplicative identity (12.59) is deducible from the above descriptions.
The signed 2-shuffle, or the signed riffle shuffle, is described by Bayer and Diaconis

[46, Section 5.3]. The signed 3-shuffle and the algebra it generates is described by Bergeron
and Bergeron [49, Section 6, pages 127-128]. A unified treatment of the even and odd
shuffles is given independently by Fulman [177, Section 5] and in [281, Section 2.4.2].

Type D riffle shuffle. There are also riffle shuffles of type D, as considered in [281,
Section 2.5.2]. Here one departs the setting of good reflection arrangements and the
constructions become more involved.

For more examples involving shuffles, see [281, Chapter 2] and references therein. See
Section 2.2 in particular, where the notion of a shuffle algebra is introduced. Examples of
shuffle algebras are listed in Theorem 7.
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CHAPTER 13

Loewy series and Peirce decompositions

Recall from Section D.5 that for any module over an algebra, one can define
its radical series and socle series with the former contained termwise in the latter.
These are two extreme examples of Loewy series. For left modules over the Tits
algebra, we introduce a third series called the primitive series. It is a Loewy series
and hence trapped between the radical series and the socle series. The first non-
trivial term (from the bottom) in the primitive series is the primitive part of the
module. For the left module of chambers, all three series coincide. Dually, for right
modules, we introduce the decomposable series which is also a Loewy series. The
first nontrivial term (from the top) in the decomposable series is the decomposable
part of the module. For the right module of Zie elements, the radical, decomposable
and socle series all coincide.

Recall that decompositions arising from a system of orthogonal idempotents are
called Peirce decompositions (left, right, two-sided). Any Eulerian family yields a
left Peirce decomposition of a left module over the Tits algebra with components
indexed by flats. We provide formulas for the dimensions of the components and
relate them to terms in the primitive series. For instance, the component for the
minimum flat coincides with the primitive part of the module. For the left module
of chambers, the component indexed by a flat identifies with the space of Lie ele-
ments in the arrangement over that flat. This can be viewed as an algebraic form of
the Zaslavsky formula. Similarly, for the Tits algebra viewed as a left module over
itself, the component indexed by a flat identifies with the space of Zie elements in
the arrangement over that flat. There are similar results for the right Peirce decom-
positions of right modules. For the right module of Zie elements, the component
indexed by a flat identifies with the space of Lie elements in the arrangement under
that flat. Similarly, for the Tits algebra viewed as a right module over itself, the
component indexed by a flat identifies with the space of chamber elements in the
arrangement under that flat.

Since the Tits algebra is a bimodule over itself, any Eulerian family yields a
two-sided Peirce decomposition (obtained by combining the left and right Peirce
decompositions). The components are indexed by nested flats. A typical component
identifies with the space of Lie elements in the arrangement over the first flat and
under the second flat (taken from the nested flat). Further, this identification is
compatible with the substitution product of Lie. This can be used to describe the
powers of the radical of the Tits algebra and also compute its quiver.

All modules are assumed to be finite dimensional as per Convention 9.1.

Notation 13.1. In this chapter, r denotes the rank of the arrangement A.
351
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352 13. LOEWY SERIES AND PEIRCE DECOMPOSITIONS

13.1. Primitive series and decomposable series

We define the primitive series of any left module over the Tits algebra. The
primitive part of a left module is the first nontrivial term (from the bottom) in
its primitive series. Dually, we define the decomposable series of a right module.
The decomposable part of a right module is the first nontrivial term (from the top)
in its decomposable series. The primitive series and decomposable series are both
Loewy. Further, in each semisimple summand of the associated graded modules,
we determine the multiplicities of the simple modules.

13.1.1. Primitive series of a left module. Let h be a left Σ-module. Recall
from Section 9.7 that h has a primitive part P(h) defined by

z ∈ P(h) ⇐⇒ HF · z = 0 for all F > O.

More generally, for any flat X, define

(13.1) PX(h) := {z ∈ h | HH · z = 0 whenever s(H) 6≤ X}.
The linear span of HH with s(H) 6≤ X is an ideal of Σ, and PX(h) consists precisely
of those elements of h which are annihilated by this ideal.

Observe that for X ≤ Y,

PX(h) ⊆ PY(h)

with

P⊥(h) = P(h) and P⊤(h) = h.

Thus the PX(h) define a filtration of h indexed by flats.
Similarly, for any k ≥ 0, define

(13.2) Pk(h) := {z ∈ h | HH · z = 0 whenever rk(H) ≥ k}.
The linear span of HH with rk(H) ≥ k is an ideal of Σ, and Pk(h) consists precisely
of those elements of h which are annihilated by this ideal.

Observe that

0 = P0(h) ⊆ P1(h) ⊆ P2(h) ⊆ · · · ⊆ Pr+1(h) = h.

This is the primitive series of h. Note that the second term (from the bottom) is
indeed the primitive part of h, that is, P(h) = P1(h).

13.1.2. Decomposable series of a right module. Let h be a right Σ-module.
Consider the filtration of h defined in Lemma 9.52. It is indexed by flats, with the
X-component given by DX(h).

Now, for any k ≥ 0, define

(13.3) Dk(h) :=
∑

F : rk(F )≥k

h · HF =
∑

X: rk(X)≥k

DX(h).

In view of (9.64), it suffices to sum over F with rk(F ) = k in the first sum and over
X with rk(X) = k in the second sum.

Observe that D1(h) = D(h), the decomposable part of h defined in (9.67).
Further,

h = D0(h) ⊇ D1(h) ⊇ D2(h) ⊇ · · · ⊇ Dr+1(h) = 0.

This is the decomposable series of h.
Observe that:
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Lemma 13.2. The submodule Dr(h) is the invariant subspace of h for the multi-
plicative character χ⊤ defined in (9.49). In other words,

(13.4) x ∈ Dr(h) ⇐⇒ x · z = χ⊤(z)x for all z ∈ Σ.

Equivalently, Dr(h) is the sum of the simple submodules of h with multiplicative
character χ⊤. In particular, Dr(h) is semisimple.

Proposition 13.3. For a left Σ-module h, the spaces Pk(h) and Dk(h∗) are or-
thogonal to each other under the canonical pairing between h and h∗.

The special case k = 1 was given in Proposition 9.58.

13.1.3. Primitive and decomposable series are Loewy. Recall from Sec-
tion D.5.7 that a filtration of a module is a Loewy series if multiplying one term by
the radical puts it in the next (smaller) term, or equivalently, if successive quotients
are semisimple.

We now show that the primitive series and decomposable series are both Loewy.
Further, in each semisimple summand of the associated graded modules, we de-
termine the multiplicities of the simple modules. This refines the eigenvalue-
multiplicity theorem (Theorem 9.42).

Proposition 13.4. Let h be a right Σ-module. The decomposable series of h is a
Loewy series, that is, the quotient

Di(h)/Di+1(h),

for 0 ≤ i ≤ r, is semisimple. Further, the multiplicity of the simple module with
multiplicative character χX in the above quotient is ηX(h) if X has rank i, and zero
otherwise.

The special case i = r is mentioned in Lemma 13.2.

Proof. This result is contained in the second proof of Theorem 9.42 given in
Section 9.6. For convenience, we recall some of the ideas involved. As a consequence
of Lemma 9.55,

Di(h)/Di+1(h) ∼=
⊕

X: rk(X)=i

kX,

where kX is the quotient of DX(h) by the sum of DY(h) for Y > X. In kX only the
simple module with multiplicative character χX appears, and so its multiplicity is
the dimension of kX which is ηX(h). �

Exercise 13.5. Use Lemma 9.16 and (9.62) to check that

DX(h) · rad(Σ) ⊆
∑

Y:Y>X

DY(h).

Conclude that the decomposable series is Loewy. (This is a direct argument from
the definitions.)

Proposition 13.6. Let h be a left Σ-module. The primitive series of h is a Loewy
series, that is, the quotient

Pi+1(h)/Pi(h),
for 0 ≤ i ≤ r, is semisimple. Further, the multiplicity of the simple module with
multiplicative character χX in the above quotient is ηX(h) if X has rank i, and zero
otherwise.
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The special case i = 0 is mentioned in Lemma 9.57.

Proof. This result can be deduced from Proposition 13.4 by using the orthogonal-
ity relationship between primitive series and decomposable series given in Proposi-
tion 13.3. Details follow. For 0 ≤ i ≤ r, there is a canonical isomorphism

(Pi+1(h)/Pi(h))∗ ∼= Di(h∗)/Di+1(h
∗).

Since any simple module is one-dimensional, its dual is also simple and it has the
same multiplicative character. Thus the dual of a semisimple module is semisimple.
The above isomorphism now implies that Pi+1(h)/Pi(h) is semisimple. Further,
the multiplicity of a given simple module in this quotient equals its multiplicity in
Di(h∗)/Di+1(h

∗). Finally, recall from (9.58) that ηX(h) = ηX(h
∗). �

Exercise 13.7. Use Lemma 9.16 and (13.2) to check that

rad(Σ) · Pi+1(h) ⊆ Pi(h).

Conclude that the primitive series is Loewy. (This is a direct argument from the
definitions.)

13.2. Primitive series and socle series

Since the primitive series is Loewy, by general theory, it is contained termwise
in the socle series. We begin with an explicit proof of this fact. We then provide a
sufficient condition for the two series to coincide. We refer to this condition as the
disjoint-star property. It is satisfied by the left module of chambers.

13.2.1. Socle series of a module. Let h be a left Σ-module. Then, by (D.15),
the socle of h, denoted soc(h), is given by

x ∈ soc(h) ⇐⇒ z · x = 0 for all z ∈ rad(Σ).

The socle series of h is

0 ⊆ soc1(h) ⊆ soc2(h) ⊆ · · · ⊆ socrk(A)+1(h) = h,

where sock(h) consists of the elements annihilated by the ideal rad(Σ)k.

Lemma 13.8. For a left Σ-module h, the primitive series of h is contained termwise
in the socle series of h.

Proof. Since rad(Σ) consists of linear combinations of noncentral faces only, it
follows from (13.2) for k = 1 that P(h) ⊆ soc(h). More generally, by Lemma 9.17,
Pk(h) ⊆ sock(h). �

Lemma 13.10 below gives a sufficient condition for equality to hold.

Exercise 13.9. For a right Σ-module h, using definition (13.3) and Lemma 9.17,
check that the radical series of h is contained termwise in the decomposable series
of h. For h = Σ, this statement is in fact equivalent to Lemma 9.17 since Dk(Σ) is
linearly spanned by faces of rank at least k.
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13.2.2. Disjoint-star property. We say that a left Σ-module h satisfies the
disjoint-star property if for any flat X, the sum

∑

F :s(F )=X

HF · h

of subspaces inside h is direct. In particular, for any distinct faces F and G with the
same support, the spaces HF ·h and HG ·h intersect trivially, that is, HF ·h∩HG ·h =
0. (Lemma 9.51 shows that the disjoint-star property is not meaningful for right
modules.)

This property can also be defined set-theoretically for left modules over the
Tits monoid. We build on the discussion in Section 7.6.2. We say that a left Σ-set
h satisfies the disjoint-star property if for any distinct faces F and G with the same
support, hF ∩ hG = ∅, that is, the star of F and the star of G are disjoint.

Observe that a left Σ-set h has the disjoint-star property iff its linearization
has the disjoint-star property. By Exercise 1.37, the left Σ-sets Γ and Σ satisfy the
disjoint-star property, and hence so do their linearizations Γ and Σ.

Lemma 13.10. Let h be a left Σ-module with the disjoint-star property. Then the
primitive series and the socle series of h coincide, that is,

Pk(h) = sock(h)

for all k. In particular, P(h) = soc(h).

Proof. In view of Lemma 13.8, we need to show that the socle series is contained in
the primitive series. We first show that soc(h) ⊆ P(h). Accordingly, let x ∈ soc(h).
Let F be any noncentral face. Pick a face G with the same support as F which
is distinct from F . Since HF − HG ∈ rad(Σ), this element annihilates x. Hence
HF · x = HG · x. The lhs belongs to HF · h and the rhs to HG · h. Since these spaces
intersect trivially by the disjoint-star property, we conclude that HF · x = 0. Thus
x ∈ P(h) as required. The general claim sock(h) ⊆ Pk(h) follows along the same
lines by making use of Lemma 9.18. �

Recall from Section D.5.5 that the socle of a module is the sum of all its
simple submodules. Further, the socle is homogeneous if all these submodules are
isomorphic.

Lemma 13.11. Let h be a left Σ-module with the disjoint-star property. Then:

(1) Any simple submodule of h is contained in P(h).
(2) All simple submodules of h are isomorphic and have multiplicative char-

acter χ⊥.
(3) The socle of h is homogeneous.

Proof. (1) By definition, any simple submodule of h is contained in soc(h). The
latter equals P(h) by Lemma 13.10. Alternatively: Suppose k is a simple submodule
of h with multiplicative character χX as given in (9.47). If X = ⊥, then k is
contained in P(h) by the backward implication of (9.66). So suppose X 6= ⊥. Let
k be spanned by the element x 6= 0. Pick distinct faces F and G with support X.
Then HF · x = x = HG · x. But HF · h∩ HG · h = 0, so x = 0. This is a contradiction.

(2) Follows from (1) and the forward implication of (9.66).
(3) Follows from (2). �
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Lemma 13.12. The primitive series and the socle series of the left module of
chambers coincide. In particular,

P(Γ) = soc(Γ) = Lie.

Further, the socle of Γ is homogeneous.

Proof. This follows from Lemmas 13.10 and 13.11 (since the left module of cham-
bers satisfies the disjoint star property.) Also the primitive part of Γ is Lie by the
Friedrichs criterion (Lemma 10.5). �

Similarly:

Lemma 13.13. The primitive series and the socle series of Σ (viewed as a left
module over itself) coincide. In particular,

P(Σ) = soc(Σ) = Zie.

Further, the (left) socle of Σ is homogeneous.

Exercise 13.14. Deduce Corollary 9.31 using Lemma 13.12 and (D.16).

13.3. Radical series and primitive series

Since the primitive series is Loewy, by general theory, it contains the radical
series termwise. We now give an explicit proof of this fact.

13.3.1. Radical of the Tits algebra and Lie elements. Recall from Proposi-
tion 9.19 that rad(Σ)r+1 = 0 but rad(Σ)r 6= 0. The r-th power of the radical only
contains elements which are linear combinations of chambers. In fact, we show
below that these are Lie elements.

Lemma 13.15. We have rad(Σ)r ⊆ Lie.

In fact, we will see later in Proposition 13.61 that equality holds.

Proof. We proceed in a manner similar to the proof of Lemma 9.17. Consider
x1 ·x2 · . . . ·xr ∈ rad(Σ)r, where each xi is a homogeneous element of rad(Σ). Then

⊥ ≤ s(x1) ≤ s(x1 · x2) ≤ · · · ≤ s(x1 · . . . · xr).

If equality holds in any place, say s(x1 · . . . · xi−1) = s(x1 · . . . · xi), then s(xi) ≤
s(x1 · . . . · xi−1), and hence x1 · . . . · xi = 0 by Lemma 9.16. So suppose

⊥ < s(x1) < s(x1 · x2) < · · · < s(x1 · . . . · xr).

By rank considerations, x1 ·x2 · . . . ·xr is a linear combination of chambers. We now
show that it belongs to the primitive part of Γ. Accordingly, let F > O. Consider

s(HF ) ≤ s(HF · x1) ≤ s(HF · x1 · x2) ≤ · · · ≤ s(HF · x1 · . . . · xr).

Here equality is forced in at least one place, and by the same argument as above, we
conclude that HF ·x1 ·. . .·xr = 0. Hence, by the Friedrichs criterion, x1 ·x2 ·. . .·xr ∈
Lie, as required. �
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13.3.2. Radical series and primitive series.

Lemma 13.16. For a left Σ-module h,

Pk(Σ) · h ⊆ Pk(h),
where the latter is the k-th term of the primitive series of h as in (13.2).

This is straightforward from the definition. The special case k = 1 which deals
with the primitive part of h was addressed in Proposition 10.35.

Lemma 13.17. For 0 ≤ k ≤ r, and F a face of rank at least r − k + 1,

HF · rad(Σ)k = 0.

The special case k = r was considered in Lemma 13.15.

Proof. We proceed in a manner similar to the proof of Lemma 13.15. Accordingly,
consider x1·x2·. . .·xk ∈ rad(Σ)k, where each xi is a homogeneous element of rad(Σ).
Let F be a face of rank at least r − k + 1. Then

s(HF ) ≤ s(HF · x1) ≤ s(HF · x1 · x2) ≤ · · · ≤ s(HF · x1 · . . . · xk).

By rank considerations, equality is forced in at least one place. Say s(HF · x1 ·
. . . · xi−1) = s(HF · x1 · . . . · xi). Then s(xi) ≤ s(HF · x1 · . . . · xi−1), and hence
HF · x1 · . . . · xi = 0 by Lemma 9.16. Hence HF · x1 · . . . · xk = 0 as required. �

Lemma 13.18. For a left Σ-module h, the radical series of h is contained termwise
in the primitive series of h. Explicitly, for 0 ≤ k ≤ r,

rad(Σ)k · h ⊆ Pr−k+1(h).

In particular,

rad(Σ)k ⊆ Pr−k+1(Σ).

Proof. The second part follows from Lemma 13.17. The first part then follows
from Lemma 13.16. �

A sufficient condition for equality to hold is given later in Section 13.11.2.

Exercise 13.19. For a right Σ-module h, using (13.3) and Lemma 13.17, check
that the decomposable series of h is contained termwise in the socle series of h.
(The converse of Lemma 13.17 which is related to the reverse containment is given
in Exercise 13.79.)

13.4. Peirce decompositions, and primitive and decomposable series

Let h be a (left or right) module over the Tits algebra Σ. Any Eulerian family
yields a (left or right) Peirce decomposition of h indexed by flats, with the dimension
of the X-component being ηX(h). These numbers were defined in (9.51). They are
independent of the choice of the Eulerian family. For a left Σ-module h, the ⊥-
component of the left Peirce decomposition is precisely the primitive part P(h).
More generally, the higher components are related to the primitive series of h.
Similarly, for a right Σ-module h, the components of the right Peirce decomposition
are related to the decomposable series of h.
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13.4.1. Peirce decompositions.

Proposition 13.20. For any left Σ-module h and Eulerian family E,

(13.5) h =
⊕

X

EX · h,

with

(13.6) dim(EX · h) = ηX(h),

where ηX(h) are as in (9.51).
Similar statement holds for a right Σ-module.

Proof. This is a special case of Proposition D.40. �

We refer to (13.5) as the left Peirce decomposition of h. Similarly, for a right
Σ-module, we use the term right Peirce decomposition.

13.4.2. Primitive series.

Proposition 13.21. For any left Σ-module h and Eulerian family E,

(13.7) P(h) = E⊥ · h.

Proof. This follows from Proposition 10.35 since E⊥ is a special Zie element by
Lemma 11.42. �

The fact that dim(E⊥ · h) = η⊥(h) also follows from Proposition 10.37.

Proposition 13.22. For any left Σ-module h and Eulerian family E,

PX(h) =
⊕

Y:Y≤X

EY · h and Pk(h) =
⊕

Y: rk(Y)≤k−1

EY · h,

with PX(h) and Pk(h) as in (13.1) and (13.2).

Setting X = ⊥ or k = 1 recovers the previous result.

Proof. Consider the first claim. By the Saliola lemma (Lemma 11.12), the rhs is
contained in the lhs. Conversely, suppose x belongs to the lhs. Then, by (11.18),

x =
∑

Y

EY · x =
∑

Y:Y≤X

EY · x

which belongs to the rhs. In the second step, we used that EY only contains faces
of support Y or higher, so if Y 6≤ X, then EY · x = 0. The second claim can be
proved in the same manner. �

Corollary 13.23. For any left Σ-module h,

Pk(h) =
∑

X: rk(X)≤k−1

PX(h).

Note very carefully that this result makes no reference to any Eulerian family.
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13.4.3. Decomposable series.

Proposition 13.24. For any right Σ-module h and Eulerian family E,

DX(h) =
⊕

Y:Y≥X

h · EY and Dk(h) =
⊕

Y: rk(Y)≥k

h · EY,

with DX(h) and Dk(h) as in (9.62) and (13.3). In particular,

Dr(h) = h · E⊤.

Proof. The first claim follows from the two identities below. For any face F with
support X,

HF ·
( ∑

Y:Y≥X

EY
)
= HF and

( ∑

Y:Y≥X

EY
)
· HF =

∑

Y:Y≥X

EY.

The first identity is (11.17). For the second, note that EY · HF = EY since any face
in EY has support at least X.

In view of (13.3), the second claim follows from the first. �

Exercise 13.25. Use Proposition 13.24 to deduce Lemma 9.53.

13.4.4. Modules over the Birkhoff algebra. Take a Π-module h and view it
as a Σ-module via the support map. Since h is semisimple, we have soc(h) = h and
rad(h) = 0. Thus, the socle series ascends from 0 to h in one step, while the radical
series descends from h to 0 in one step. Now, let us take a look at the primitive
series of h. By Proposition 13.22 and (11.23),

PX(h) =
⊕

Y:Y≤X

QY · h and Pk(h) =
⊕

Y: rk(Y)≤k−1

QY · h.

(The first decomposition is also given in (9.26).) Thus, in contrast to the radical
and socle series, the primitive series is nontrivial in general. This gives examples
where the inclusions among these series are strict. For a concrete example, take h

to be the Birkhoff algebra Π itself.
Similar remarks apply to the decomposable series.

13.5. Left Peirce decomposition of chambers. Lie over flats

Recall that any Eulerian family yields a left Peirce decomposition of a left
module over the Tits algebra. Applied to the left module of chambers, this leads
to an algebraic form of the Zaslavsky formula. It involves expressing a chamber
element as a sum of Lie elements over flats. Similarly, the left Peirce decomposition
of the Tits algebra (as a left module over itself) breaks as a sum of Zie elements
over flats.

13.5.1. Algebraic form of Zaslavsky formula. Recall from Proposition 13.21
that for an Eulerian family E and a left Σ-module h, the summand E⊥ · h is the
primitive part of h. More generally, the summand EX · h is isomorphic to the prim-
itive part of a certain module over Σ[AX]; this module is constructed by projecting
h on some face of support X. We focus on the example of chambers.

For h = Γ, the module in question is Γ[AX], and the decomposition (13.5) can
thus be rephrased as

(13.8) Γ[A] ∼=
⊕

X

Lie[AX].
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(Recall from the Friedrichs criterion (Lemma 10.5) that Lie is the primitive part of
Γ.) The isomorphism (13.8) may be viewed as an algebraic form of the Zaslavsky
formula (1.45). Also see formulas (11.61) and (11.63) in this regard.

For h = Σ, the module in question is Σ[AX], and the decomposition (13.5) can
thus be rephrased as

(13.9) Σ[A] ∼=
⊕

X

Zie[AX].

(Recall from the Friedrichs criterion (Lemma 10.19) that Zie is the primitive part
of Σ.) The isomorphism (13.9) may be viewed as an algebraic form of (1.46).

The isomorphisms (13.8) and (13.9) are developed in more detail below.

13.5.2. Left Peirce decomposition of chambers. Recall the maps βF,X, βX,F ,
βG,F , µF and ∆F from Section 9.8.1.

Lemma 13.26. Fix a homogeneous section u with associated Eulerian family E.
For any flat X, there is a linear isomorphism

(13.10) Lie[AX]
∼=−→ EX · Γ[A], z 7→

∑

F : s(F )=X

uFµFβF,X(z).

In particular,

(13.11) Lie[A] = E⊥ · Γ[A].
The inverse of (13.10) is given by

EX · Γ[A]→ Lie[AX], z 7→ βX,F∆F (z),

where F is any face of support X.

We elaborate on the isomorphism (13.10). It says that EX · Γ[A] is the image
of the composite map

Lie[AX] →֒ Γ[AX]→
⊕

F : s(F )=X

Γ[AF ]→ Γ[A].

The second map projected on each F -component is βF,X, while the last map re-
stricted to each F -component is µF multiplied by the scalar uF . Informally, the
composite map distributes a Lie element of AX over the stars of faces F with
support X, with the star of F receiving weight uF .

Proof. First note that (13.11) is a special case of (13.7) in view of the Friedrichs
criterion. We now proceed to the general case. For a face F with support X,

Lie[AF ] = EX/F · Γ[AF ] = ∆F (EX) ·∆F (Γ[A]) = ∆F (EX · Γ[A]).
The first equality holds by (13.11) since EX/F is the first Eulerian idempotent of
AF . The second step used (11.21) and the fact that ∆F maps Γ[A] onto Γ[AF ].
The last step used that ∆F is an algebra homomorphism.

Let V be the image of the map

(a) Lie[AX]→
⊕

F : s(F )=X

Lie[AF ], z 7→
∑

F : s(F )=X

βF,X(z).

Explicitly, V consists of elements (zF ) such that βG,F (zF ) = zG. The map (a) is
injective, so V is isomorphic to Lie[AX].
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By our first calculation and (9.71), we have a surjective map

(b) EX · Γ[A]→ V, z 7→
∑

F : s(F )=X

∆F (z).

Moreover, for any z ∈ Γ[A],
∑

F : s(F )=X

uF µF∆F (EX · z) =
∑

F : s(F )=X

uF HF · (EX · z)

= uX · (EX · z)

= (uX · EX) · z

= EX · z.

The first step used (9.74), the second step used (11.2), while the last step used
(11.15). Thus, the map (b) is also injective, and its inverse is given by

(c) V → EX · Γ[A], (zF ) 7→
∑

F : s(F )=X

uFµF (zF ).

Composing (a) with (c) yields the isomorphism (13.10). �

Observe that:

Lemma 13.27. The isomorphism (13.10) arises from the composite map

Lie[AX]→ Γ[AX]⊗ Lie[AX]→ Γ[A],
where the first map sends z to (

∑
F : s(F )=X uF HF ) ⊗ z, and the second map is the

substitution product (10.39).

Proposition 13.28. For each homogeneous section u, there is a linear isomorphism

(13.12)
⊕

X

Lie[AX]
∼=−→ Γ[A], (zX) 7→

∑

X

∑

F : s(F )=X

uFµFβF,X(zX).

The direct sum is over all flats.
Further, for any X ≤ Y, the diagram

(13.13)

Lie[AY
X]⊗ Lie[AY]

��

// Lie[AX]

��

Γ[AY]⊗ Lie[AY] // Γ[A]

commutes. The horizontal maps are the substitution products (10.30) and (10.39),
while the vertical maps are the inclusions induced from (13.12).

Proof. The first part follows from Lemma 13.26. The second part follows from
Lemma 13.27 and (10.41). �

Exercise 13.29. Check that the isomorphism (13.12) restricts to
⊕

X6=⊤

Lie[AX]
∼=−→ rad(Γ[A]).

The direct sum in the lhs is over all non-maximum flats, while the rhs is the radical
of Γ[A], see (9.36). This result is an improvement on Lemma 10.4.
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13.5.3. Left Peirce decomposition of faces. Recall from Lemma 10.21 that
Zie[AX] is a right ideal of Σ[AX]. This yields a right action of Σ[A] on Zie[AX]
via the algebra homomorphism Σ[A] → Σ[AX] given in (9.75). Using the same
argument as with chamber elements, we deduce:

Lemma 13.30. Fix a homogeneous section u with associated Eulerian family E.
For any flat X, the map

Zie[AX]
∼=−→ EX · Σ[A], z 7→

∑

F : s(F )=X

uFµFβF,X(z)

is an isomorphism of right Σ[A]-modules, with inverse

EX · Σ[A]→ Zie[AX], z 7→ βX,F∆F (z),

where F is any face of support X.
For X = ⊥, the map is the identity, that is,

Zie[A] = E⊥ · Σ[A]
as right ideals of Σ[A]. Equivalently, Zie[A] is the right ideal of Σ[A] generated by
E⊥.

Proposition 13.31. For each homogeneous section u, there is a linear isomorphism

(13.14)
⊕

X

Zie[AX]
∼=−→ Σ[A], (zX) 7→

∑

X

∑

F : s(F )=X

uFµFβF,X(zX).

The direct sum is over all flats.

13.5.4. Rank one. Consider the rank-one arrangement with chambers C and C.
There are two flats, namely, ⊥ and ⊤. The spaces Lie[A⊥] and Lie[A⊤] are both one-
dimensional, with HC −HC and 1 ∈ k serving as basis elements, respectively. Recall

from Section 11.1.5 that any homogeneous section u of A is of the form uO = 1,

uC = p, uC = 1−p for an arbitrary scalar p. Now applying the isomorphism (13.12)
to the two basis elements above yields

HC − HC and p HC + (1− p) HC ,
and they indeed form a basis for Γ[A].
Exercise 13.32. Do a similar analysis of the isomorphism (13.14) in rank one.

Exercise 13.33. Analyze the isomorphisms (13.12) and (13.14) for the rank-two
arrangement of n lines. For simplicity, start with the case n = 3.

13.6. Right Peirce decomposition of Zie. Lie under flats

Recall from Lemma 10.21 that the space of Zie elements is a right ideal of the
Tits algebra. So any Eulerian family yields a right Peirce decomposition of the
space of Zie elements. The component indexed by a flat identifies with the space of
Lie elements in the arrangement under that flat. In other words, the space of Zie
elements breaks as a direct sum of spaces of Lie elements in arrangements under
flats. Further, this decomposition is compatible with the substitution products of
Lie and Zie.

Recall that an Eulerian family is equivalent to a Q-basis of the Tits algebra.
The latter is easier to work with in the present setting.
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13.6.1. Zie as a sum of Lie under flats. Given a Zie element z (written in the
H-basis), one may naively expect that for any flat X, the part of z consisting of
faces with support X is a Lie element of AX. This is not true in general. However,
this problem can be fixed using the Q-basis as follows.

Lemma 13.34. Fix a Q-basis. For any z ∈ Σ[A], write z = ∑
F xF QF . Then z is

a Zie element iff for each flat X, the element
∑

F : s(F )=X

xF HF

is a Lie element of AX.

Proof. By (11.29),

HH · z =
∑

F

xF HH · QF =
∑

F :FH=F

xF QHF =
∑

G:G≥H

( ∑

F :FH=F,
HF=G

xF
)
QG.

Rewrite the term in parenthesis using Exercise 1.12 and then apply Lemma 10.19
to get

z ∈ Zie[A] ⇐⇒
∑

F :HF=G,
s(F )=s(G)

xF = 0 for all O < H ≤ G.

Now group the equations in the rhs according to the support of G, and apply (10.1)
to each AX. �

Exercise 13.35. Deduce Lemma 10.20 using Lemma 13.34 and the fact that QC =
HC for any chamber C.

Lemma 13.36. For each Q-basis, there is a linear isomorphism

(13.15) Σ[A] ∼=−→ Σ[A], HF 7→ QF .

Further, for any X, the diagram

(13.16)

Γ[AX]⊗ Σ[AX]

��

// Σ[A]

��

Γ[AX]⊗ Σ[AX] // Σ[A]

commutes. Both horizontal maps are the substitution product (10.33). The vertical
maps are induced from (13.15).

Proof. The isomorphism is clear. The substitution product (10.33) can be ex-
pressed as HF ⊗ HK/F 7→ HK . By the second claim in (11.37), this is equivalent to
HF ⊗ QK/F 7→ QK . The commutativity of the diagram follows. �

Proposition 13.37. For each Q-basis, there is a linear isomorphism

(13.17)
⊕

X

Lie[AX]
∼=−→ Zie[A],

( ∑

F : s(F )=X

xF HF
)
7→

∑

F

xF QF .

The direct sum is over all flats.
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Further, for any X ≤ Y, the diagram

(13.18)

Lie[AX]⊗ Lie[AY
X]

��

// Lie[AY]

��

Lie[AX]⊗ Zie[AX] // Zie[A]
commutes. The horizontal maps are the substitution products (10.30) and (10.34),
while the vertical maps are the inclusions induced from (13.17).

Proof. The isomorphism (13.17) was obtained in Lemma 13.34. In view of (4.22),
(10.29) and (10.35), the commutativity of (13.18) follows from that of (13.16). �

In view of the isomorphism (13.17), compare the dimension formulas (10.24)
and (10.25).

Exercise 13.38. Check that the isomorphism (13.17) is the sum over X of the
composite maps

Lie[AX]→ Lie[AX]⊗ Zie[AX]→ Zie[A],
where the first map sends z to z⊗βX,F (QF ), and the second map is the substitution
product (10.34). Use this to deduce (13.18) from (10.36).

13.6.2. Rank one. Consider the rank-one arrangement A with chambers C and
C. Recall from Section 11.4.3 that the Q-basis is

QC = HC , QC = HC , QO = HO − p HC − (1− p) HC ,
where p is an arbitrary scalar. We calculate

xO QO + xC QC + xC QC = xO HO + (xC − xOp) HC + (xC − xO(1− p)) HC .

Employing (10.26), this is a Zie element iff xC + xC = 0. Thus,

xO QO + xC QC + xC QC is a Zie element ⇐⇒ xC HC + xC HC is a Lie element.

(Also xOHO is a Lie element of A⊥.) This explicitly verifies Lemma 13.34.

Exercise 13.39. Do a similar verification of Lemma 13.34 for the rank-two ar-
rangement of n lines. (Formulas for the Q-basis elements are given in Section 11.8.)

13.6.3. Right Peirce decomposition of faces. Let us begin with the right
Peirce decomposition of the Tits algebra. The component indexed by a flat identifies
with the space of chambers in the arrangement under that flat as follows.

Lemma 13.40. Let E be any Eulerian family of A. For any flat Y, the map

Γ[AY]
∼=−→ Σ[A] · EY, z 7→ z · EY

is an isomorphism of left Σ[A]-modules.
For Y = ⊤, the map is the identity, that is,

Γ[A] = Σ[A] · E⊤
as left ideals of Σ[A]. Equivalently, Γ[A] is the left ideal of Σ[A] generated by E⊤.

Here the action of Σ[A] on Γ[AY] is via the algebra homomorphism Σ[A] →
Σ[AY] given in (9.76). That is, to act by z, we first truncate z to faces contained
in Y and then act as usual.
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Proof. Observe using (11.26) that the above map sends HF to QF for any face F
with support Y. Further, the isomorphism (13.15) breaks as a direct sum over all
flats, with the Y-summand being the above map. In particular, the above map is
an isomorphism. The fact that it respects the action of Σ[A] can be deduced from
Lemma 11.31. The special case Y = ⊤ can also be seen directly since E⊤ is a linear
combination of chambers. �

Ideas closely related to Lemma 13.40 are present in Exercise 11.35.

Remark 13.41. For any Eulerian families E and E′ and flat Y, the idempotents
EY and E′Y are isomorphic. This follows from Theorem D.33. As a result, Σ[A] · EY
and Σ[A] · E′Y are isomorphic as left Σ[A]-modules. Lemma 13.40 gives an explicit
isomorphism by connecting both to Γ[AY].

13.6.4. Right Peirce decomposition of Zie. Recall from Lemma 10.21 that
the space of Zie elements is a right ideal of the Tits algebra. Indeed, its right Peirce
decomposition is given by (13.17) as elaborated below.

Lemma 13.42. Let E be any Eulerian family of A. For any flat Y, there is a
linear isomorphism

(13.19) Lie[AY]
∼=−→ Zie[A] · EY, z 7→ z · EY.

For Y = ⊤, the map is the identity, that is,

Lie[A] = Zie[A] · E⊤.

Proof. We observe as in the proof of Lemma 13.40 that the map (13.17) induces
the above map. Since (13.17) is an isomorphism, so is the above map. �

In the exercises below, Zie[A] is viewed as a right ideal of the Tits algebra.

Exercise 13.43. Check that the isomorphism (13.17) restricts to
⊕

X6=⊥

Lie[AX]
∼=−→ D(Zie[A]).

The direct sum in the lhs is over all non-minimum flats, while the rhs is the decom-
posable part of Zie[A].

Exercise 13.44. Check that D(Zie[A]) consists precisely of the Zie elements whose
coefficient of the central face is 0. In particular, it is a codimension-one subspace
of Zie[A].

Exercise 13.45. Check that D(Zie[A]) = Zie[A] ∩ rad(Σ[A]). (Combine Exer-
cises 10.25 and 13.44.)

Exercise 13.46. Show that

ξX(Zie[A]) =
∑

Y:Y≥X

|µ(AY)| and ηX(Zie[A]) = |µ(AX)|.

(To get the first formula, use (9.63) and Proposition 13.24 and Lemma 13.42. To
get the second formula, use Proposition 13.20 and Lemma 13.42. The two formulas
also imply each other in view of (9.51).)
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13.7. Two-sided Peirce decomposition of faces. Lie over & under flats

We now consider the two-sided Peirce decomposition of the Tits algebra (viewed
as a bimodule over itself), and identify its components with Lie elements in arrange-
ments over and under flats, with further compatibility with the substitution product
of Lie. This is done by combining the left and right Peirce decompositions discussed
in the preceding sections. There is also a projective analogue to this story which
identifies components of the two-sided Peirce decomposition of the projective Tits
algebra with projective Lie elements in arrangements over and under flats.

13.7.1. Two-sided Peirce decomposition of faces. For an Eulerian family E

of A, let EX ·Σ[A] · EY denote the subspace of Σ[A] consisting of all elements of the
form EX · z · EY with z an arbitrary element of Σ[A].

Lemma 13.47. For any Eulerian family E of A,

(13.20) Σ[A] =
⊕

X≤Y

EX · Σ[A] · EY.

The sum is over both X and Y.

Proof. The point to note is that

EX · Σ[A] · EY = 0 for X 6≤ Y.

This follows from the Saliola lemma (Lemma 11.12). �

We refer to (13.20) as the two-sided Peirce decomposition of the Tits algebra.
The decomposition depends on the choice of the Eulerian family.

Lemma 13.48. Let E be an Eulerian family of A. Then

(13.21) Γ[A] =
⊕

X

EX · Σ[A] · E⊤ and Γ[A] = rad(Γ[A])⊕ E⊤ · Σ[A] · E⊤.

Similarly,

(13.22) Zie[A] =
⊕

X

E⊥ · Σ[A] · EX and Zie[A] = E⊥ · Σ[A] · E⊥ ⊕D(Zie[A]).

Proof. Let us first deal with chambers. For the first identity, use Lemma 13.47 and
the second part of Lemma 13.40. The second can be seen directly since rad(Γ[A])
consists of chamber elements whose coefficients add up to 0, and E⊤ is a chamber
element whose coefficients add up to 1.

The story with Zie elements is similar. For the first identity, use Lemma 13.47
and the second part of Lemma 13.30. The second can be seen directly since
D(Zie[A]) consists of elements whose coefficient of the central face is 0, and E⊥
is a special Zie element, so its coefficient of the central face is 1. Alternatively, it
follows from the first and Proposition 13.24 for k = 1. �

This explains precisely how the left ideal of chambers and the right ideal of Zie
elements relate to the two-sided Peirce decomposition of the Tits algebra.
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Table 13.1. (Left, right, two-sided) Peirce decompositions.

Left Peirce decompositions

EX · Σ[A] = Zie[AX]

EX · Γ[A] = Lie[AX]

Right Peirce decompositions

Σ[A] · EY = Γ[AY]

Zie[A] · EY = Lie[AY]

Two-sided Peirce decomposition

EX · Σ[A] · EY

EX · Γ[AY] Zie[AX] · EY

Lie[AY
X]

13.7.2. Combining left and right Peirce decompositions. We studied the
left Peirce decomposition of chambers and faces in Section 13.5 and the right Peirce
decomposition of Zie and faces in Section 13.6. These results can be combined to
understand the two-sided Peirce decomposition of faces in two different ways. This
is summarized in Table 13.1. Details follow.

Proposition 13.49. Let E be any Eulerian family of A. For any X ≤ Y, there is
a natural vector space isomorphism

(13.23) Lie[AY
X]

∼=−→ EX · Σ[A] · EY.
Further, for any X ≤ Y ≤ Z, the diagram

(13.24)

Lie[AY
X]⊗ Lie[AZ

Y]
//

��

Lie[AZ
X]

��

EX · Σ[A] · EY ⊗ EY · Σ[A] · EZ // EX · Σ[A] · EZ
commutes. The top-horizontal map is the substitution product (10.30), while the
bottom-horizontal map is induced from the Tits product.

Proof. First method: Apply (13.10) to the arrangement AY and use Lemma 13.40
to obtain

Lie[AY
X]

∼=−→ EYX · Γ[AY]
∼=−→ EX · Σ[A] · EY.

(Here EYX is the Eulerian idempotent of AY for the flat X. It is obtained from
EX by truncating to faces contained in Y.) This yields the isomorphism (13.23).
Explicitly, it is given by

z 7→ αX(z) · EY,

where
αX(z) :=

∑

F : s(F )=X

uFµFβF,X(z).

Note that αX(z) · EY = EX · αX(z) · EY.
The commutativity of (13.24) follows from the identity

αX(x) · αY(y) = αX(x ◦ y),
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where x is a Lie element of AY
X, y is a Lie element of AZ

Y, and x ◦ y denotes the Lie
element of AZ

X obtained by substitution. This can be deduced from (10.29) and the
definition of (4.18).

Second method: Apply (13.19) to the arrangement AX and use Lemma 13.30
to obtain

Lie[AY
X]

∼=−→ Zie[AX] · EY/X
∼=−→ EX · Σ[A] · EY.

(Here EY/X is the Eulerian idempotent of AX for the flat Y.) One may check that
the composite map is the same as before. �

Lemma 13.50. The following diagrams commute.

(13.25)

Γ[AX]⊗ Lie[AY
X]

//

∼=

��

Γ[AY]

∼=

��

Σ[A] · EX ⊗ EX · Σ[A] · EY // Σ[A] · EY

The top horizontal map is the substitution product (10.39).

(13.26)

Lie[AY
X]⊗ Zie[AY] //

∼=

��

Zie[AX]

∼=

��

EX · Σ[A] · EY ⊗ EY · Σ[A] // EX · Σ[A]

The top horizontal map is the substitution product (10.34).

Proof. Diagram (13.25) is obtained by summing (13.24) over all X and using
(13.13) (and renaming Y and Z respectively to X and Y). Similarly, diagram
(13.26) is obtained by summing (13.24) over all Z and using (13.18). �

Exercise 13.51. Each component EX · Σ[A] · EY, for X ≤ Y, is nonzero. Further,
if w ∈ EX · Σ[A] · EY and z ∈ EY · Σ[A] · EZ are both nonzero, then their product
w · z is a nonzero element of EX · Σ[A] · EZ. (Use Exercises 10.46 and 10.48 and
Proposition 13.49.)

13.7.3. Cartan invariants. Using Proposition 13.49 and (10.24), we obtain:

Proposition 13.52. For any Eulerian family E,

dim(EX · Σ[A] · EY) =
®
|µ(X,Y)| if X ≤ Y,

0 otherwise.

The above numbers are by definition the Cartan invariants of the Tits algebra.

13.7.4. Summing the components. Consider the vector space

(13.27)
⊕

X≤Y

Lie[AY
X].

The sum is over both X and Y. This space carries an algebra structure. Elements
in the (X,Y)-summand are multiplied with elements in the (Y,Z)-summand by
substitution (10.30); the remaining products are all zero.
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Theorem 13.53. There is an algebra isomorphism
⊕

X≤Y

Lie[AY
X]

∼=−→ Σ[A]

obtained by summing the isomorphisms (13.23) over all X ≤ Y.

Exercise 13.54. Work out the isomorphism in Theorem 13.53 for the rank-one
arrangement by building on the discussion in Section 13.5.4.

The vector space

(13.28)
⊕

X

Γ[AX]

is a right module over the algebra (13.27). Elements in the X-summand are acted
upon by elements in the (X,Y)-summand by substitution (10.39) to yield an element
in the Y-summand; the remaining actions are all zero.

Lemma 13.55. The module (13.28) is isomorphic to the right regular representa-
tion of the algebra (13.27). Further, the diagram

(13.29)

(⊕
X Γ[AX]

)
⊗

(⊕
X≤Y Lie[AY

X]
)

//

��

⊕
Y Γ[AY]

��

Σ[A]⊗ Σ[A] // Σ[A]
commutes.

Proof. The isomorphism between (13.28) and (13.27) is obtained from the left
Peirce decomposition of chambers. The fact that it is a module map follows from
(13.13). This proves the first claim. Diagram (13.29) follows from (13.25). �

The vector space

(13.30)
⊕

Y

Zie[AY]

is a left module over the algebra (13.27). Elements in the (X,Y)-summand act
on elements in the Y-summand by substitution (10.34) to yield an element in the
X-summand; the remaining actions are all zero.

Lemma 13.56. The module (13.30) is isomorphic to the left regular representation
of the algebra (13.27). Further, the diagram

(13.31)

(⊕
X≤Y Lie[AY

X]
)
⊗

(⊕
Y Zie[AY]

)
//

��

⊕
X Zie[AX]

��

Σ[A]⊗ Σ[A] // Σ[A]
commutes.

Proof. The isomorphism between (13.30) and (13.27) is obtained from the right
Peirce decomposition of Zie. The fact that it is a module map follows from (13.18).
This proves the first claim. Diagram (13.31) follows from (13.26). �
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13.7.5. Projective Tits algebra. The preceding results have analogues for the
projective Tits algebra, some of which we briefly summarize below. We assume
that the field characteristic is not 2.

Consider the subspace of (13.27) consisting of projective Lie elements in each
AY

X. By Lemma 10.12, this subspace equals

(13.32)
⊕

rk(Y/X) is even

Lie[AY
X].

The sum is over all X ≤ Y such that the difference in their ranks is even. This
subspace is clearly a subalgebra of (13.27).

Theorem 13.57. There is an algebra isomorphism from (13.32) to the projective
Tits algebra.

An explicit isomorphism is obtained by fixing a projective Eulerian family and
restricting the resulting isomorphism in Theorem 13.53.

Proof. We need to revisit Lemmas 13.26 and 13.40 which entered into the proof
of Proposition 13.49. It is clear from the formulas that the isomorphisms in
Lemma 13.26 restrict to the projective setting. Similarly, by considering the iso-
morphism of the projective Tits algebra which sends H{F,F} to Q{F,F}, we deduce

that the isomorphism in Lemma 13.40 restricts to the projective setting. �

The Cartan invariants of the projective Tits algebra are defined in a similar
manner to the Tits algebra. They are |µ(X,Y)| if rk(Y/X) is even, and 0 in all
other cases.

13.8. Generation of Lie elements in rank one

We now show that Lie elements of any arrangement are generated by Lie ele-
ments in rank one by iterated substitution. The proof makes use of the description
of the left Peirce decomposition of chambers in terms of Lie elements over flats.

Let A be an arrangement of rank r. The iterated substitution product of Lie
(10.32) yields the map

(13.33)
⊕

z

Lie[AX1 ]⊗ Lie[AX2

X1
]⊗ · · · ⊗ Lie[AXr−1

]→ Lie[A].

The sum is over all maximal chains of flats z = (⊥⋖X1 ⋖ · · ·⋖Xr−1 ⋖⊤).
Lemma 13.58. The map (13.33) is surjective.

Proof. Fix an Eulerian family E. For any flat Y and chain of flats Y⋖Y1 ⋖ · · ·⋖
Yk ⋖⊤, consider the composite map

Lie[AY1

Y ]⊗ Lie[AY2

Y1
]⊗ · · · ⊗ Lie[AYk

]→ Lie[AY]→ EY · Γ[A]
obtained by iterated substitution followed by (13.10). When Y = ⊤, this map is

k = Lie[A⊤]→ Γ[A], 1 7→ E⊤.

(Recall that E⊤ is a linear combination of chambers whose coefficients add up to
1.) By summing these maps, we obtain

(13.34)
⊕

Y

⊕

z

Lie[AY1

Y ]⊗ Lie[AY2

Y1
]⊗ · · · ⊗ Lie[AYk

]→ Γ[A].
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The outside sum is over all flats Y, while the inside sum is over all maximal chains
from Y to ⊤.

To prove the lemma, it suffices to show that (13.34) is surjective. We do this by
an induction on the rank of A. First note that E⊤ belongs to the image of (13.34).
Next, for any hyperplane Z, consider the composite map
Å ⊕

Y:Y≤Z

⊕

z′

Lie[AY1

Y ]⊗Lie[AY2

Y1
]⊗· · ·⊗Lie[AZ

Yk
]

ã
⊗Lie[AZ] ։ Γ[AZ]⊗Lie[AZ]→ Γ[A],

where z′ runs over maximal chains from Y to Z. The first map on the first tensor
factor is (13.34) applied to AZ, while the second map is (10.39). By (13.13), the
composite is indeed the restriction of (13.34). Since the rank of AZ is strictly
smaller than the rank of A, by induction hypothesis, the first map is surjective. By
summing over all hyperplanes Z and applying Lemma 10.51, we see that rad(Γ[A])
is contained in the image of (13.34). This codimension-one subspace along with E⊤
spans Γ[A], so (13.34) is surjective. �

Lemma 13.59. Let E be any Eulerian family of A. For any flats X < Y, the map
⊕

z

EX · Σ[A] · EX1
⊗ EX1

· Σ[A] · EX2
⊗ · · · ⊗ EXk

· Σ[A] · EY ։ EX · Σ[A] · EY

induced from the Tits product is surjective. The sum is over all maximal chains of
flats z = (X⋖X1 ⋖ · · ·⋖Xk ⋖Y).

Proof. Apply Lemma 13.58 to the arrangementAY
X and use Proposition 13.49. �

Exercise 13.60. Use (13.22) and (13.26) in conjunction with Lemma 13.59 to show
that: The map ⊕

X is rank-one

Lie[AX]⊗ Zie[AX] ։ D(Zie[A])

is surjective. The sum is over all rank-one flats X. (This result is a companion to
Lemma 10.51.)

13.9. Rigidity of the left module of chambers

Recall that the radical of a finite-dimensional algebra is a nilpotent ideal. We
show that the largest nonzero power of the radical of the Tits algebra coincides
with the space of Lie elements. We apply this result to prove that radical series,
socle series and primitive series of the left module of chambers coincide. This means
precisely that the left module of chambers is rigid.

We mention that the results of this section are obtained independently and in
greater generality in Section 13.11.

13.9.1. Radical of the Tits algebra and Lie elements. We now strengthen
the result of Lemma 13.15.

Proposition 13.61. We have rad(Σ)r = Lie.

Proof. We need to show that the rhs is contained in the lhs. For this, we apply
Lemma 13.58. The image of the z-summand in (13.33) is spanned by the element

(HF1
− HG1

) · . . . · (HFr
− HGr

),

where O⋖F1⋖ · · ·⋖Fr is any maximal chain of faces, with s(Fi) = Xi for 1 ≤ i ≤ r
and Gi is the face opposite to Fi in the star of Fi−1 (with the convention F0 = O).
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By (9.32) applied to each factor, the above element is in rad(Σ)r. So by surjectivity
of the map (13.33), we are done. �

13.9.2. Radical series of the left module of chambers. Consider the radical
series of the left module of chambers Γ, namely,

0 ⊆ rad(Σ)r · Γ ⊆ · · · ⊆ rad(Σ)2 · Γ ⊆ rad(Σ) · Γ ⊆ Γ.

The associated graded Σ-module is
r⊕

i=0

rad(Σ)i · Γ/ rad(Σ)i+1 · Γ.

Each summand is a semisimple Σ-module. We know from BHR (Theorem 9.44) and
related discussion that in the above direct sum, the simple module with multiplica-
tive character χX as given in (9.47) appears with multiplicity ηX(Γ) = |µ(X,⊤)|.
The finer information of the multiplicity in each graded piece is given by the fol-
lowing result.

Proposition 13.62. For the semisimple Σ-module

rad(Σ)i · Γ/ rad(Σ)i+1 · Γ,

the multiplicity of the simple module with multiplicative character χX is |µ(X,⊤)|
if X has codimension i, and zero otherwise.

Let us first spell out the two end cases.

• i = 0: Recall that rad(Σ) · Γ is the radical of Γ. By (9.36), the quotient
Γ/ rad(Σ) · Γ is one-dimensional in which all chambers are equivalent to
one another. The element HF sends HC to HFC but these two elements are
equivalent, thus HF acts by identity on the quotient. So, the action is by
the multiplicative character χ⊤ given in (9.49).
• i = r: Since rad(Σ)r+1 · Γ = 0, by Proposition 13.61, the module in

question is Lie whose dimension is |µ(⊥,⊤)|. By the Friedrichs criterion
(Lemma 10.5), all noncentral faces act by zero on Lie. Thus, the action is
by the multiplicative character χ⊥ given in (9.49).

Proof. Put J [A] := rad(Σ[A]). For clarity, we make the dependence on A explicit.
Fix an index i and put k := J [A]i·Γ[A]/J [A]i+1·Γ[A]. For each flat X of codimension
i, it suffices to locate a submodule kX of k of dimension |µ(X,⊤)| on which the
action is by the multiplicative character χX. For that, fix a face F of support X,
and consider the space

J [AF ]i · Γ[AF ] = Lie[AF ].
(The equality is an instance of Proposition 13.61.) This space has the right dimen-
sion, namely, |µ(X,⊤)|. View it as a subspace of J [A]i · Γ[A] (by viewing each face
of AF as a face of A). Let kX denote its image in the quotient k. By Lemma 13.17,
HF ·J [A]i+1 ·Γ[A] = 0, so no nonzero element of J [A]i+1 ·Γ[A] can lie entirely in the
star of F . Hence kX also has dimension |µ(X,⊤)|. Further: If H is not contained
in X, then by the Friedrichs criterion, one can deduce that HH acts by zero on kX.
Now suppose H is contained in X. Then HH sends any element in the star of F to
an element in the star of HF . Since HF −HHF ∈ J [A], the difference between these
two elements belongs to J [A]i+1 · Γ[A], hence HH acts by the identity on kX. It
follows that the action on kX is by the multiplicative character χX as required. �
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13.9.3. Series comparison. We can now compare the three different filtrations
of the left module of chambers.

Theorem 13.63. The left module of chambers Γ is rigid. That is, its radical series,
primitive series and socle series all coincide. Explicitly, for 0 ≤ k ≤ r,

rad(Σ)k · Γ = Pr−k+1(Γ) = socr−k+1(Γ),

and the dimension of each of these spaces is
∑

Y: rk(Y)≤r−k

|µ(Y,⊤)|.

Proof. By Lemma 13.12, the primitive series and socle series of Γ coincide. By
Lemma 13.18, the radical series is contained termwise in the primitive series. Fur-
ther, using Proposition 13.22 and formulas (9.55) and (13.6) for the primitive series,
and Proposition 13.62 for the radical series, we note that the above dimension for-
mula is valid for both, hence they must coincide. For the primitive series, one may
also employ Proposition 13.6 and (9.55). �

In conjunction with Exercise 9.46, we conclude that Γ is rigid but not uniserial
for r ≥ 2.

Exercise 13.64. The special case k = r in Lemma 13.18 says that rad(Σ)r ⊆ P(Σ),
or equivalently, Lie ⊆ Zie by Proposition 13.61 and the Friedrichs criterion. This
inclusion is strict for r ≥ 1 (since for instance special Zie elements exist). Deduce
that for Σ (viewed as a left module over itself), the radical series does not equal
the primitive series for r ≥ 1, and in particular, Σ is not rigid for r ≥ 1.

13.10. Quiver of the Tits algebra

We saw that components of the two-sided Peirce decomposition of faces identify
with Lie elements in arrangements over and under flats. We have also seen that Lie
elements are generated in rank one. Using these two facts, one can get a handle
on the powers of the radical of the Tits algebra and also compute its quiver. In a
similar manner, one can also compute the quiver of the projective Tits algebra.

13.10.1. Powers of the radical.

Proposition 13.65. We have

(13.35) rad(Σ[A])i =
⊕

rk(Y/X)≥i

EX · Σ[A] · EY.

The sum is over all X ≤ Y such that the codimension of X in Y is greater than i.
In particular,

(13.36) rad(Σ[A]) =
⊕

X<Y

EX · Σ[A] · EY

and

(13.37) rad(Σ[A])r = E⊥ · Σ[A] · E⊤ = Lie[A].

Note that this result includes Proposition 13.61.
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Proof. We first establish the expression for rad(Σ[A]) using (13.20). Since s(EX) =
QX, it follows that EX · Σ[A] · EY, for X < Y, belongs to the kernel of the support
map, and hence to the radical. Further, by Proposition 13.49, EX ·Σ[A] · EX is one-
dimensional and maps isomorphically to the linear span of QX. The claim about
rad(Σ[A]) follows. We deduce from here that rad(Σ[A])i is contained in the sum of
EX · Σ[A] · EY over all rk(Y/X) ≥ i. Conversely, by Lemma 13.59, any such term
is contained in rad(Σ[A])i since it is generated by terms of the form EX ·Σ[A] · EY,
with X⋖Y. �

Exercise 13.66. Combine (13.21) and (13.22) respectively with (13.36) to deduce
the results of Exercises 9.33 and 13.45.

Exercise 13.67. Combine (13.21), (13.22) and (13.37) to deduce Lemma 10.20.

13.10.2. Quiver. Recall from Section D.8.9 that every elementary algebra has an
associated quiver.

Theorem 13.68. The quiver of the Tits algebra is as follows. The vertices are
flats, and there is exactly one arrow from Y to X when X ⋖ Y, and no arrows
otherwise. In other words, the quiver is the Hasse diagram of the poset of flats.

Proof. The split-semisimple quotient of the Tits algebra is the Birkhoff algebra.
Hence the vertices of its quiver are flats. The arrows can be computed from (13.35).
Put J := rad(Σ[A]). Note that

J/J2 ∼=
⊕

X⋖Y

EX · Σ[A] · EY.

Thus, EX · (J/J2) · EY is zero unless X ⋖ Y. Let us assume this to be the case.
Then by Proposition 13.49, EX · (J/J2) · EY is isomorphic to Lie[AY

X] which is one-
dimensional. �

Exercise 13.69. Compare the quivers of the Tits algebra and the algebra of upper
triangular matrices to deduce the result of Exercise 9.23. (See Exercise C.15 in this
regard.)

13.10.3. Projective Tits algebra. We assume that the field characteristic is not
2.

Theorem 13.70. The quiver of the projective Tits algebra is as follows. The
vertices are flats, and there are |µ(X,Y)| arrows from Y to X when rk(Y/X) = 2,
and no arrows otherwise.

Proof. The split-semisimple quotient of the projective Tits algebra is the Birkhoff
algebra. Hence the vertices of its quiver are flats. Let J denote the radical of the
projective Tits algebra. Then

J/J2 ∼=
⊕

rk(Y/X)=2

Lie[AY
X]

(Since Lie elements are generated in rank 1, it follows that projective Lie elements
are generated in rank 2.) If rk(Y/X) = 2, then EX · (J/J2) · EY is isomorphic
to Lie[AY

X] which has dimension |µ(X,Y)|. In all other cases, EX · (J/J2) · EY is
zero. �
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Exercise 13.71. Write down the analogue of Proposition 13.65 for the projective
Tits algebra. In particular, check that the nilpotency index of its radical is as stated
in Exercise 9.26.

13.11. Applications of Peirce decompositions to Loewy series

The two-sided Peirce decomposition of the powers of the radical of the Tits
algebra can be used to study the different Loewy series of modules that we have
been considering. We elaborate this technique by reproving some of the earlier
results as well as obtaining new ones. In particular, we show that the right module
of Zie elements is rigid. This is a companion of the result that the left module of
chambers is rigid.

13.11.1. Primitive and decomposable series are Loewy. We begin by giving
quick proofs of Propositions 13.4 and 13.6.

Lemma 13.72. For any left Σ-module h and Eulerian family E,

rad(Σ) · (EX · h) ⊆
⊕

Y:Y<X

EY · h.

In particular,

rad(Σ) · EX ⊆
⊕

Y:Y<X

EY · Σ.

Similar statement holds for a right Σ-module with the sum over all Y with Y > X.

Proof. The second fact follows from (13.36). Multiplying by h on the right then
yields the first fact. �

Second proof of Proposition 13.6. Proposition 13.22 and Lemma 13.72 to-
gether imply that rad(Σ) ·Pi+1(h) ⊆ Pi(h). So rad(Σ) acts by zero on the quotient
Pi+1(h)/Pi(h). Further, it can be identified with the direct sum of EX · h over all
X of rank i. Observe that the summand EX · h only contains the simple module
with multiplicative character χX. So the multiplicity of this simple module is the
dimension of EX · h which is ηX(h) by (13.6). �

Similarly, one can give a second proof of Proposition 13.4 by employing Propo-
sition 13.24 and Lemma 13.72 (for a right Σ-module).

13.11.2. Sufficient condition for equality of radical and primitive series.
Recall from general theory or explicitly from Lemma 13.18 that the radical series
is contained termwise in the primitive series. We now give a sufficient condition for
equality to hold.

Consider the following condition on a left Σ-module h:

(13.38) Γ · h = h.

Recall that Γ is the ideal of chambers. The lhs is the submodule of h spanned by
elements of the form z · h with z ∈ Γ and h ∈ h.

Proposition 13.73. Let h be a left Σ-module which satisfies condition (13.38).
Then, for any Eulerian family E,

rad(Σ)i · h =
⊕

X: rk(X)≤r−i

EX · h = Pr−i+1(h).

In particular, the radical series and the primitive series of h coincide.
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Proof. By applying the decomposition of rad(Σ)i in (13.35) on h, we deduce that
rad(Σ)i · h is contained in the direct sum above. This can also be deduced from
Lemma 13.18 and Proposition 13.22. This is for any h. For the reverse containment,
we use condition (13.38) to obtain

EX · h = EX · Γ · h = EX · Σ · E⊤ · h ⊆ rad(Σ)i · h

whenever X has codimension greater than i. �

Note that the left module of chambers Γ satisfies condition (13.38). This gives
another way to obtain Proposition 13.62, namely, use Proposition 13.73 in conjunc-
tion with Proposition 13.6.

Starting with any left Σ-module h, set k := Γ · h. This defines a new left Σ-
module which indeed satisfies the condition Γ · k = k. For example, starting with
h = Σ yields k = Γ.

Something similar can be done for right Σ-modules. This is summarized in the
exercise below.

Exercise 13.74. Show that: For the right ideal Zie, the radical series and decom-
posable series coincide. (Use (13.22), (13.35) and Proposition 13.24.) The same is
true for any right Σ-module h which satisfies the condition

h · Zie = h.

Exercise 13.75. Check that: For a semisimple left Σ-module h, the submodule
Γ · h is the invariant subspace of h for the multiplicative character χ⊤. Similarly,
for a semisimple right Σ-module h, the submodule h · Zie is the invariant subspace
of h for the multiplicative character χ⊥.

13.11.3. Rigidity of the right module of Zie elements. We now compare
decomposable and socle series.

Lemma 13.76. The decomposable series and the socle series of Σ (viewed as a
right module over itself) coincide. In particular,

Dr(Σ) = soc(Σ) = Γ.

Further, the (right) socle of Σ is homogeneous.

Proof. We employ Propositions 13.24 and 13.65. We have Dr−k+1(Σ) ⊆ sock(Σ).
For the reverse inclusion: Let z ∈ sock(Σ), that is, z is annihilated on the right by
rad(Σ)k. Now write z =

∑
X≤Y zX,Y where zX,Y ∈ EX · Σ · EY. Let Y be any flat

with rk(Y) ≤ r − k. We want to show that zX,Y = 0. For this, use Exercise 13.51
to pick a nonzero w ∈ EY · Σ · EZ with rk(Z/Y) = k. The hypothesis implies that
zX,Y · w = 0. So again using Exercise 13.51, zX,Y = 0 as required.

The homogeneity of the socle can be seen directly or as a special case of
Lemma 13.2. �

In a similar manner, by employing (13.22), we obtain:

Lemma 13.77. The decomposable series and the socle series of Zie coincide. In
particular,

Dr(Zie) = soc(Zie) = Lie.

Further, the socle of Zie is homogeneous.
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Theorem 13.78. The right module Zie is rigid. That is, its radical series, decom-
posable series and socle series all coincide.

Proof. Combine Exercise 13.74 and Lemma 13.77. �

Exercise 13.79. Use Lemma 13.76 to deduce the converse of Lemma 13.17 which
says: Suppose z is an element of the Tits algebra which is annihilated on the right
by rad(Σ)k for some 0 ≤ k ≤ r. Then z can be written as a linear combination of
faces each of rank at least r− k+1. The special case k = 1 says: if z is annihilated
on the right by rad(Σ), then z can be written as a linear combination of chambers.

Exercise 13.80. Give alternative proofs of Lemmas 13.12 and 13.13 by using the
proof method of Lemma 13.76.

13.11.4. Series comparison. Here is a summary of how the different series relate
for the modules of faces, chambers and Zie elements. We assume that r ≥ 1.

Module Series comparison

ΣΣ Radical series 6= Primitive series = Socle series

ΣΣ Radical series 6= Decomposable series = Socle series

ΣΓ Radical series = Primitive series = Socle series

ZieΣ Radical series = Decomposable series = Socle series

We have used subscripts to distinguish left and right modules. We point out
that Lie 6= Zie and Lie 6= Γ suffice for equality to fail in the first and second row,
respectively.

13.11.5. Socles. The Tits algebra has both a left and a right socle. Further, the
left socle being a right ideal has a right socle, while the right socle being a left ideal
has a left socle. These socles are summarized below.

(13.39) soc(ΣΣ) = Zie, soc(ΣΣ) = Γ, soc(ZieΣ) = Lie = soc(ΣΓ).

As a consequence,

Lie = soc(ΣΣ) ∩ soc(ΣΣ)

= {z ∈ Σ | x · z = 0 = z · x for all x ∈ rad(Σ)}.

Notes

Primitive series. Modules over the Tits algebra are intimately connected to cocom-
mutative connected bialgebras. (See notes to Chapter 9.) The primitive series of a left
module over the Tits algebra corresponds to the coradical filtration of a cocommutative
connected bialgebra. The decomposable series of a right module corresponds to the aug-
mentation filtration of a commutative connected bialgebra (the filtration by powers of
the augmentation ideal). The fact that the primitive series is Loewy (Proposition 13.6)
corresponds to the fact that the associated graded bialgebra to a connected bialgebra is
always commutative (a result of Sweedler [391, Thm. 11.2.5.a]).
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Quiver of the Tits algebra. The Cartan invariants and quiver of the Tits algebra of the
braid arrangement were computed by Schocker [358, Theorems 6.4 and 8.1] by studying
the combinatorics of a specific Q-basis and Eulerian family that he constructed. This is
elaborated in Exercise 14.63 and involves elements of classical Lie theory. Schocker in
his Section 7 also describes the radical series of the Tits algebra in terms of his chosen
Eulerian family.

The Cartan invariants and quiver for an arbitrary arrangement (Proposition 13.52
and Theorem 13.68) were computed by Saliola [350, Proposition 6.4 and Corollary 8.4].
Lemma 13.40 is given in the proof of his Proposition 6.2. (The action of Σ[A] on Γ[AY]
is present in earlier work of Brown and Diaconis [98, page 1844].) The two-sided Peirce
decomposition (13.20) plays an important role in Saliola’s work. Lemma 13.59 is contained
in [349, Lemma 6.5]. Saliola does not mention any connection with Lie theory, but our
argument for Lemma 13.59 is essentially the same as his. We also point out that the quiver
relations described in [350, Proposition 8.5] or [349, Lemma 6.6] are what correspond to
the Jacobi identities. For more on this, see the notes to Chapter 14.

Starting with any basis for the space of Lie elements of AY
X, one obtains a basis for

the space EX · Σ · EY. More arbitrarily, by Lemma 13.58, one obtains a spanning set for
this space by iterated substitution of Lie elements in maximal chains which start at X
and end in Y. The special case when Y is the maximal flat is of interest, since EX ·Σ · E⊤

functions as an eigenspace for the random walk on chambers. In this regard, see [352,
Section 4] and [132, Theorem 3.4].

Proposition 13.49 and Theorem 13.53 are valid for any LRB. We mention that the
quiver of the free left regular band was computed by Brown, and this result was generalized
to all left regular bands by Saliola [348, Theorems 6.2, 8.1 and 13.1]. For related results
and generalizations, see [135], [290], [289] and [385, Chapter 17].
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CHAPTER 14

Dynkin idempotents

We discuss a construction of special Zie elements of an arrangement A. The
starting data is a generic half-space h. The Zie element is defined as an alternating
sum of faces contained in h. We call this the Dynkin element associated to h. It
is like a semi-Takeuchi element. Its action on chambers gives rise to a basis of the
space of Lie elements which we call the Dynkin basis. This yields another proof of
the fact that the dimension of the space of Lie elements is the absolute value of the
Möbius number of A.

We discuss the notion of orientation of an arrangement in terms of maximal
chains in its poset of faces. We then prove the Joyal-Klyachko-Stanley (JKS) the-
orem which identifies, up to orientation, the top-cohomology of the lattice of flats
with the space of Lie elements. In effect, it says that the space of Lie elements is
freely generated by the orientation space in rank one subject to the Jacobi identi-
ties in rank two. (There is also an analogue of the JKS theorem which relates the
top-cohomology of the poset of faces with the space of chambers.) The dual of the
Dynkin basis is, up to orientation, a basis for the top-homology of the lattice of
flats. This is the Björner-Wachs basis. We also discuss another pair of dual bases,
the Björner basis for top-homology and the Lyndon basis for top-cohomology.

We begin by illustrating these ideas on rank-two arrangements and the co-
ordinate arrangement. We then move on to the important example of the braid
arrangement which motivates most of our terminology. Contact with the classical
Lie bracket, antisymmetry, Jacobi identity, Lie operad, binary trees, the classical
JKS theorem, the Dynkin-Specht-Wever theorem and the Lyndon basis is made
here. A similar discussion is given for the arrangement of type B.

14.1. Dynkin elements

A Dynkin element is a special Zie element of A constructed from a generic half-
space h. It can be used to prove the Zaslavsky formula for the number of bounded
chambers of an essential affine arrangement.

14.1.1. Dynkin element. Generic half-spaces are discussed in Section 1.9.1. Let
h be a generic half-space wrt A, and let H denote its bounding hyperplane. Now
define

(14.1) θh :=
∑

F :F⊆h

(−1)rk(F ) HF ∈ Σ[A].

The sum is over all faces F of A which are contained in the fixed half-space h. These
are precisely those faces of A which are not cut by H and which are on the h-side
of H. We refer to θh as the Dynkin element associated to the generic half-space h.
The central face is contained in h and since its rank is zero, it appears in θh with
coefficient 1.

379
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380 14. DYNKIN IDEMPOTENTS

Note that the Dynkin elements associated to two half-spaces coincide iff the
two half-spaces are equivalent. Thus, the number of distinct Dynkin elements is
the number of equivalence classes of generic half-spaces which by Lemma 1.50, is

also the number of chambers in the adjoint arrangement “A.
For any generic h and any non-minimum flat X, h ∩ X is a generic half-space

wrt the arrangement AX. Note that the Dynkin element θh∩X is the truncation of
θh to faces smaller than X, that is,

(14.2) θh∩X = (θh)
X,

with notation as in (12.9).

Proposition 14.1. For any generic half-space h, the Dynkin element θh is a special
Zie element. In particular, it is an idempotent.

Proof. Let A′ denote the arrangement obtained by adding the base of h to A. It
is discussed in Section 1.9.1.

To show that θh is a Zie element, we verify that it satisfies the Ree criterion
(10.17b). Accordingly, let L be any non-singleton combinatorial lune of A. Equiv-
alently, the base of L is not the minimum flat. We need to show that

∑

F :F∈Cl(L),F⊆h

(−1)rk(F ) = 0.

In view of (14.2), by passing to the arrangement under the case of L, we may assume
that L is a top-lune. Let L′ be the combinatorial top-lune of A′ whose underlying
geometric cone is the same as that of L. We claim that the base of h must cut L′:
If not, then either h or h contains L′. This implies that b(h) contains b(L′) which
contradicts the fact that b(h) is a generic hyperplane. As a consequence, L′ ∧ h
contains a chamber and in particular, it cannot be a flat. Hence by Proposition 2.27,
L′ ∧ h must be a topological ball. So its reduced Euler characteristic is zero. This
yields: ∑

F∈Cl(L′∧h)

(−1)rk(F ) = 0.

This is almost what we want. The only difference is that here we have also counted
faces contained in b(h) and their adjoining faces contained in h. (These are among
those faces which were created by the addition of h.) However their contribution
cancels since the ranks of corresponding faces differ by one. Thus, θh is a Zie
element, as required. Since its coefficient of the central face is 1, it is special.

The above argument is illustrated in the following diagram.

L

h

The generic hyperplane is shown dotted, and the half-space h is the region to the
right of it. The lune L is the shaded region. It is bounded by two semicircles and
is fully visible. The faces in Cl(L) which are contained in h are those either on the
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14.1. DYNKIN ELEMENTS 381

red lines or inside the region defined by the red lines (consisting of a triangle and
a quadrilateral). Topologically, this set is a ball with an edge hanging out. �

Corollary 14.2. The number of chambers contained in any generic half-space wrt
A is given by |µ(A)|.
Proof. Apply (10.15) to the special Zie element θh for the flat X = ⊤. �

Proposition 14.3. Let z =
∑
F⊆h x

F HF for some generic half-space h. Then z
is a special Zie element iff z = θh.

Proof. The backward implication was proved in Proposition 14.1. For the forward
implication: By induction on rank, we may assume that xF = (−1)rk(F ) for all
faces F which are not chambers. Then z − θh is a Zie element, which is a linear
combination of chambers, so it is a Lie element by Lemma 10.20. Since it is entirely
contained in an half-space, we conclude from Lemma 10.11 that it must be 0. Thus,
z = θh as required. �

Corollary 14.4. Let h be a generic half-space, and z =
∑
F⊆h x

F HF be such that
∑

F : s(F )=X, F⊆h

xF = µ(⊥,X)

for all flats X. Then

θh = (HO − (HO − z)r+1)r+1,

where r = rk(A).
By Lemma 10.18, the condition on z is equivalent to the condition s(z) = Q⊥.

Proof. Put z′ = (HO−(HO−z)r+1)r+1. Then from the claim in the first paragraph
of the proof of Lemma D.28, z′ is an idempotent which lifts Q⊥. Further, just like z,
it only involves faces contained in h. From Lemma 10.24, we first deduce that z′ is
a special Zie element, and next from Proposition 14.3, we deduce that z′ = θh. �

Example 14.5. Let A be the rank-one arrangement with chambers C and C. The
origin is a generic hyperplane. In this case, A = A′. Thus, there are two generic
half-spaces, and HO−HC and HO−HC are the two Dynkin elements. Note that they
are special Zie elements. In this case, all preceding results can be checked directly.

14.1.2. Symmetrized Dynkin element. Suppose A is a reflection arrangement
and W is its Coxeter group. Fix a generic half-space h wrt A as in the preceding
discussion. Define

(14.3) dh :=
∑

h′

θh′ ,

where the sum is over all half-spaces h′ of the form w ·h for some w ∈W . We refer
to dh as the symmetrized Dynkin element associated to h. It is invariant under the
action of W .

Proposition 14.6. The symmetrized Dynkin element dh is a Zie element. Further,
it is a quasi-idempotent, that is,

(14.4) d2h = αhdh,

where αh is the size of the orbit of h under W .
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Proof. By Proposition 14.1, each θh′ is a Zie element. So their sum which is
dh is also a Zie element. This proves the first claim. In dh, the coefficient of the
central face is the size of the orbit of h. The second claim follows from the first by
Lemma 10.22. �

14.1.3. Zaslavsky formula for number of bounded chambers. As an appli-
cation, we obtain the Zaslavsky formula for the number of bounded chambers of an
essential affine arrangement. The term essential affine means that the hyperplanes
are not required to pass through the origin and the minimum faces are points (ge-
ometrically). For instance, the arrangement of three parallel lines in the plane is
not essential. It can be made essential by cutting with a transverse line.

Theorem 14.7. For any essential affine arrangement A, the number of bounded
chambers equals

|
∑

X

µ(X,⊤)|,

where X runs over all flats of A.

Proof. Let A′ denote the central arrangement obtained by coning A. The hyper-
plane H which is parallel to the ambient space of A and passes through the origin
is generic wrt A′. Let h be the half-space with base H which contains the ambient
space of A. Observe that the chambers of A′ contained in h correspond to the
bounded chambers of A. By Corollary 14.2, their cardinality is |µ(A′)|. Now by
(C.5b),

µ(A′) = −
∑

X

µ(X,⊤),

where X varies over all non-minimum flats of A′. But the non-minimum flats of A′

correspond to flats of A. The result follows. �

Second proof. A direct proof along the lines of the argument in Theorem 1.77
is sketched below. It uses the fact that the cell complex of all bounded faces of an
essential affine arrangement is contractible [75, Theorem 4.5.7, part (ii)]. Augment
the poset of flats of A by a minimum element ⊥. Let aX denote the number of
bounded faces of support X. By convention a⊥ = 1. Put

f(X) := (−1)rk(X)aX.

Then

g(Y) :=
∑

X:X≤Y

f(X) = 0,

being the reduced Euler characteristic of a contractible cell complex. Hence by
Möbius inversion (C.12), f(⊤) = µ(⊥,⊤), which then yields the desired formula.

�

14.2. Dynkin basis for the space of Lie elements

Recall the space of Lie elements Lie[A]. Any generic half-space h wrt A gives
rise to a basis of Lie[A]. We call this the Dynkin basis. It is obtained via the action
of the Dynkin element θh on those chambers which are contained in h.
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14.2.1. Action on chambers and Lie elements. Recall that the Tits algebra
Σ[A] acts on the left module of chambers Γ[A].
Proposition 14.8. The Dynkin element θh is an idempotent operator and projects
Γ[A] onto Lie[A].
Proof. This follows from Propositions 10.35 and 14.1 and the Friedrichs criterion
which says that Lie[A] is the primitive part of Γ[A] (Lemma 10.5). �

The symmetrized Dynkin element dh also sends Γ[A] onto Lie[A], and acts on
the latter by scalar multiplication by αh, with αh as in (14.4). (We are implicitly
assuming characteristic 0.)

We now work towards a formula for the action of the Dynkin element on cham-
bers. For a generic half-space h, and chambers C and D, put

A = {H ∈ Σ[A] | HC = D} and B = {H ∈ Σ[A] | H ≤ D,H ⊆ h}.
Both A and B consist of faces of D, with D ∈ A and O ∈ B. Further,

(14.5) 〈θh · HC , HD〉 =
∑

H∈A∩B

(−1)rk(H).

The lhs denotes the coefficient of HD in θh · HC . We would like to understand the
rhs.

Simplicial case. For simplicity, let us first assume the arrangement to be simplicial.
For a generic half-space h and a chamber D, let h(D) denote the largest face of D
which is contained in h.

h

This is illustrated above in rank 3. The half-space h is the shaded region. Since
the arrangement is simplicial, each chamber D is a triangle, and there are four
possibilities for h(D) depending on how the vertices of D lie wrt h. Each case is
shown separately with the face h(D) being the central face, a vertex, an edge or
the triangle.

Lemma 14.9. Let A be a simplicial arrangement. Then

(14.6) θh · HC =
∑

D: Des(C,D)=h(D)

(−1)rk(h(D)) HD.

Proof. Using (7.1) and the definition of h(D), we obtain

A = {H | Des(C,D) ≤ H ≤ D} and B = {H | H ≤ h(D)}.
Combining and substituting in (14.5), we obtain

〈θh · HC , HD〉 =
∑

H: Des(C,D)≤H≤h(D)

(−1)rk(H).

The indexing set (which could be empty) is a Boolean poset. So the sum will be
zero unless the set is a singleton, that is, Des(C,D) = h(D). �
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Lemma 14.10. If Des(C,D) = h(D), then C ⊆ h.

C

GG

ED
G′

GD

h h

Proof. For simplicity of notation, put G := h(D). Let G′ be the face of D
complementary to G. Then observe that

Des(C,D) = h(D) ⇐⇒ C lies in the gallery interval [E :GD],

where E is the chamber opposite to D in the star of G′. But this entire gallery
interval lies in the interior of h. (In the figure, the latter is the region between the
two dotted lines.) So if Des(C,D) = h(D), then C is contained in h. �

Proposition 14.11. Let A be a simplicial arrangement. Then

(14.7) θh · HC =

®
HC + (−1)rk(A)HC +

∑
D(−1)rk(h(D))HD if C ⊆ h,

0 otherwise.

The sum is over chambers D which are cut by the base of h (so that part of D lies
in h and part in h) and which satisfy Des(C,D) = h(D).

Proof. The second case follows from Lemmas 14.9 and 14.10. So suppose that
C ⊆ h. Then

Des(C,D) = h(D) = O ⇐⇒ D = C and Des(C,D) = h(D) = D ⇐⇒ D = C.

This yields the terms HC and (−1)rk(A)HC . In the remaining cases, O < h(D) < D
and hence D is cut by the base of h. �

General case. Let us now deal with the general case where A is not assumed to be
simplicial.

Lemma 14.12. We have

〈θh · HC , HC〉 =
®
1 if C ⊆ h,

0 otherwise,
and 〈θh · HC , HC〉 =

®
(−1)rk(A) if C ⊆ h,

0 otherwise.

Proof. We work with formula (14.5). Suppose D = C. Then A consists of all
faces of D. If C ⊆ h, then B is a singleton consisting of the central face and the
sum in the rhs of (14.5) is 1. If not, then the sum is the negative of the reduced
Euler characteristic of a ball and hence 0.

Suppose D = C. Then A is a singleton consisting of D. If D ⊆ h, then A ∩ B
consists of D, and the sum in the rhs of (14.5) is (−1)rk(A). If not, then A ∩ B is
empty, and the sum is zero. �

Lemma 14.13. Suppose either (D 6= C and D ⊆ h) or (D 6= C and D ⊆ h). Then
〈θh · HC , HD〉 = 0.
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Proof. Let us consider the first case. Since D ⊆ h, B consists of all faces of D.
So the rhs of (14.5) is the same as (7.10), which is zero since D 6= C.

Now consider the second case. Since D ⊆ h, B consists of only the central face.
Further, since D 6= C, the central face does not belong to A. Thus A∩B is empty,
and the sum is zero. �

Lemma 14.14. If C 6⊆ h, then θh · HC = 0.

Proof. Suppose C 6⊆ h. If D ⊆ h, then D 6= C, and if D ⊆ h, then D 6= C.
Hence, by Lemma 14.13, 〈θh · HC , HD〉 = 0 holds if either D ⊆ h or D ⊆ h. So we
may assume that D is cut by h. Let A′ be the arrangement obtained by adding H,
which is the base of h, to A. Note that C ∩ h and D ∩ h are chambers in A′, and
they cannot be opposite since they are both contained in h. Put

A′ = {H ∈ Σ[A′] | H(C ∩ h) = D ∩ h}.
By (7.10), ∑

H∈A′

(−1)rk(H) = 0.

Now A′ contains A∩B as a subset. In addition, it contains some faces which either
lie on the panel D ∩ H or intersect it in a face of one smaller dimension. Since
H is generic, such faces occur in pairs (for instance, D ∩ h and D ∩ H is one such
pair). By Proposition 7.12, we deduce that either both faces in a pair belong to A′

or neither. Since their ranks differ by 1, their contribution cancels. So the rhs of
(14.5) evaluates to 0. �

Proposition 14.15. We have

(14.8) θh · HC =

®
HC + (−1)rk(A)HC +

∑
D aC,DHD if C ⊆ h,

0 otherwise.

The sum is over chambers D which are cut by the base of h, and the aC,D are
certain integer coefficients.

Proof. The second case was proved in Lemma 14.14. The first case follows from
Lemmas 14.12 and 14.13. �

14.2.2. Dynkin basis.

Proposition 14.16. For any generic half-space h wrt A, the set

(14.9) {θh · HC | C ⊆ h}
is a basis of Lie[A]. In particular, the dimension of Lie[A] is |µ(A)|.
Proof. For C ⊆ h, by the first case of formula (14.8), the term HC only occurs in
θh · HC , so these elements are linearly independent. Further, by Proposition 14.8,
these elements span Lie[A]. Hence they form a basis. The second statement then
follows from Corollary 14.2. �

We call (14.9) the Dynkin basis associated to h.

Exercise 14.17. Show that: If the rank of A is even, then the Dynkin bases
associated to h and h coincide, and if the rank of A is odd, then the two are
negatives of each other.
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Exercise 14.18. Show that there cannot exist a nonzero Lie element which involves
only chambers cut by a generic hyperplane.

Exercise 14.19. Prove Lemma 10.11 as follows. Pick a half-space h such that h
contains the given chamber D. Check using (14.8) that (10.5) is true for the Lie
elements θh · HC .

Exercise 14.20. Let A be a simplicial arrangement. For a generic half-space h,
and chambers C and D, check that: Des(C,D) is the face of D complementary to

Des(C,D), while h(D) is the face of D complementary to h(D). Check using (14.7)
that (10.5) is true for the Lie elements θh · HC .

14.3. Orientation space

We discuss the notion of orientation for any arrangement.

14.3.1. Orientation space. For any arrangement A, let Eo[A] denote the space
spanned by maximal chains in the poset of faces Σ[A] subject to the relations: If
two maximal chains differ in exactly one position, then they are negatives of each
other. We call Eo[A] the orientation space of A. We denote the image of a maximal
chain f in the orientation space by [f ]. An orientation of A is an element of Eo[A]
of the form [f ] for some maximal chain f .

Example 14.21. Let A be the rank-one arrangement with chambers C and C.
There are two maximal chains, namely, O ⋖ C and O ⋖ C. Since they differ in
exactly one position, we write

[O ⋖ C] = −[O ⋖ C].

So Eo[A] is one-dimensional. It has two orientations, namely, [O⋖C] which we call
the right orientation, and [O ⋖ C] which we call the left orientation.

Example 14.22. Let A be the rank-two arrangement of n lines. A maximal chain
has the form O ⋖ P ⋖ C. There are 4n maximal chains. The relations can be
expressed as

[O ⋖ P ⋖ C] = −[O ⋖Q⋖ C],

where P and Q are the two vertices of C, and

[O ⋖ P ⋖ C] = −[O ⋖ P ⋖D],

where C and D are the two chambers greater than P . Again we note that Eo[A]
is one-dimensional. There are two orientations, which we can think of as clockwise
and anticlockwise. This is illustrated below for n = 3.

The six maximal chains which give the anticlockwise orientation are shown on the
left, while the six which give the clockwise orientation are shown on the right.
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14.3.2. Connection with orientation of real vector spaces. Recall the famil-
iar notion of orientation of a finite-dimensional real vector spaceW . An orientation
is an equivalence class of ordered bases of W , where two bases are equivalent if the
determinant of the linear transformation that takes one to the other is positive.
Thus,W has two orientations, say σ and τ . Let Det(W ) denote the one-dimensional
space spanned by σ and τ subject to the relation σ = −τ .
Lemma 14.23. The orientation space of any arrangement is one-dimensional. In
fact,

(14.10) Eo[A] ∼=−→ Det(⊤/⊥),
where ⊤/⊥ is the quotient of the maximum flat (ambient space) by the minimum
flat (center) of A.
Proof. Let O ⋖ F1 ⋖ · · · ⋖ Fn be a maximal chain of faces. For each Fi, choose
any vector in the ambient space in the interior of Fi. Let vFi

denote its image in
the quotient ⊤/⊥. Then the ordered basis (vF1

, . . . , vFn
) represents an orientation

of ⊤/⊥. This orientation does not depend on the specific choice of the vectors.
Moreover, if two maximal chains differ in exactly one position, then they give rise to
opposite orientations. This yields the map (14.10). It is surjective by construction.
Further, by Lemma 1.32 and Proposition B.10, one can pass from one maximal
chain to another by a sequence of maximal chains in which two consecutive chains
differ in exactly one position. Hence (14.10) must be an isomorphism. �

Thus, any arrangement has two orientations. We will use the letter σ to denote
an orientation; the opposite orientation will be −σ.
Exercise 14.24. Check that a half-flat of A is the same as a triple (X, σ,Y),
where X⋖Y are flats and σ is an orientation of the rank-one arrangement AY

X. The
opposite half-flat then corresponds to (X,−σ,Y).

14.3.3. Concatenation of orientations. There is a canonical isomorphism

(14.11) Eo[A]⊗ Eo[A] ∼=−→ k, σ ⊗ σ 7→ 1,

where σ is either of the two orientations of A. Changing σ to −σ incurs two minus
signs, so the map is well-defined.

For any flat X, there is an isomorphism

(14.12) Eo[AX]⊗ Eo[AX]
∼=−→ Eo[A], σ1 ⊗ σ2 7→ τ,

where τ is obtained by “concatenating” σ1 and σ2: Suppose c1 is a maximal chain
of faces in AX which represents σ1. Let c′1 denote the corresponding chain in A.
It ends at a face with support X. Call that face F . Similarly, let c2 be a maximal
chain of faces in AX which represents σ2. By using the canonical identification

Σ[AX]
∼=−→ Σ[A]F , we obtain a chain c′2 in A which starts at F . The concatenation

of c′1 and c′2 is a maximal chain in A. Its class is the required τ .
In terms of the identification (14.10), the map (14.12) can be described as

follows. Let V denote the ambient space of A, and U denote the ambient space
of AX. An orientation of U/O and on V/U together determines an orientation of
V/O.

Iterating this procedure yields an isomorphism

(14.13) Eo[AX1 ]⊗ Eo[AX2

X1
]⊗ · · · ⊗ Eo[AXk

]
∼=−→ Eo[A]
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for any strict chain of flats (⊥ < X1 < · · · < Xk < ⊤).

14.3.4. Signature space. We mention here another interesting construction of
a one-dimensional space from an arrangement. Start with Γ[A], the vector space
with basis indexed by chambers in A. Take its quotient by the subspace spanned
by elements of the form

HC − (−1)dist(C,D)HD,

as C and D vary over chambers. Since chambers are gallery connected and the
distance function υ−1 given in (8.17) is log-antisymmetric, the quotient space is
one-dimensional. We call it the signature space of A and denote it by E−[A].

14.4. Joyal-Klyachko-Stanley. Presentation of Lie

We review poset (co)homology with emphasis on the poset of flats of an arrange-
ment. The Joyal-Klyachko-Stanley (JKS) theorem identifies, up to orientation, the
top-cohomology of the lattice of flats with the space of Lie elements through the
unbracketing operation. We discuss the Björner-Wachs basis for the top-homology
of the lattice of flats, and show that its dual basis for top-cohomology identifies
with the Dynkin basis for the space of Lie elements. Both bases are defined relative
to a generic half-space. We also explain how the JKS theorem is equivalent to a
presentation of the space of Lie elements with the relations being anti-symmetry
and Jacobi identity.

We give two proofs of the JKS theorem, each with its own advantage. The
first proof makes critical use of the duality between the Björner-Wachs and Dynkin
bases. The existence of the substitution product of Lie is a consequence of this
proof. The second proof is basis-free, but it relies on Lemma 13.58 which says that
the space of Lie elements is generated in rank one. The existence of the Björner-
Wachs basis is a consequence of this proof.

14.4.1. Order (co)homology of a poset. Fix a field k. Let P be a graded poset
of rank r ≥ 1 with minimum element ⊥ and maximum element ⊤. The strict chains
in P starting at ⊥ and ending at ⊤ (or equivalently, the strict chains in P \{⊥,⊤})
form a simplicial complex ∆(P ). This is the order complex of P . Each chain defines
a simplex. The order (co)homology of P is the reduced simplicial (co)homology of
∆(P ) over the field k. Let us make this more explicit.

The chain complex for the order homology of P is as follows. For−1 ≤ k ≤ r−2,
the chain group Ck(P ) is the vector space over k with basis consisting of strict chains
⊥ < x1 < · · · < xk+1 < ⊤. The remaining chain groups are 0. Note that Cr−2(P )
has a basis of maximal chains, while C−1(P ) is one-dimensional and spanned by the
chain ⊥ < ⊤. The boundary operator ∂k : Ck(P )→ Ck−1(P ) is given by

∂k(⊥ < x1 < · · · < xk+1 < ⊤) =
k+1∑

i=1

(−1)i(⊥ < x1 < · · · < x̂i < · · · < xk+1 < ⊤),

where by standard convention, x̂i means that xi has been deleted from the chain.
The cochain complex is obtained by dualizing the chain complex. We denote the

cochain groups by Ck(P ) and the coboundary operators by δk : Ck(P )→ Ck+1(P ).
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Explicitly,

(14.14) δk(⊥ < x1 < · · · < xk+1 < ⊤)∗

=
k+2∑

i=1

(−1)i
∑

xi−1<x<xi

(⊥ < x1 < · · · < xi−1 < x < xi < · · · < xk+1 < ⊤)∗,

with the convention that x0 = ⊥ and xk+2 = ⊤. The superscript ∗ stands for the
dual basis.

We write Hk(P ) and Hk(P ) for the homology and cohomology groups in po-
sition k. They are duals of each other, with the duality induced by the duality
between the chain and cochain complexes. The top-dimensional homology and
cohomology groups of P are Hr−2(P ) and Hr−2(P ).

Proposition 14.25. If P is a geometric lattice, then P has (co)homology only in
the top dimension, where it is k|µ(⊥,⊤)|. In particular, for any arrangement A, the
lattice of flats Π[A] has (co)homology only in the top dimension, where it is k|µ(A)|.

Geometric lattice is a standard notion from lattice theory (Section B.3.2).
The main point for us is that the (opposite of the) lattice of flats is geometric
(Lemma 1.28). We list here some well-known general facts (without proof) which
lead to the above result. If P is geometric, then the simplicial complex ∆(P ) is pure
and shellable [67]. So it is homotopy equivalent to a wedge of (r − 2)-dimensional
spheres, hence it has (co)homology only in dimension r−2. Further, its rank, up to
sign, is the Euler characteristic of the (co)chain complex, so it must be |µ(⊥,⊤)|.

For any geometric lattice P of rank r, define its Whitney (co)homology by

(14.15) WHk(P ) :=
⊕

x:
r−rk(x)=k

Hk−2(x,⊤) and WHk(P ) :=
⊕

x:
r−rk(x)=k

Hk−2(x,⊤).

The index k varies between 0 and r. The summand for x computes the top order
(co)homology of the interval [x,⊤] and has dimension |µ(x,⊤)|. Observe that

WHr(P ) = Hr−2(P ) and WHr(P ) = Hr−2(P ).

By convention, WH0(P ) =WH0(P ) = k. Thus,

dimWHk(P ) = (−1)kwy(P, r − k),
where wy denotes the Whitney numbers of the first kind. (The definition given in
(1.52) extends to any geometric lattice.)

We let WH∗(P ) denote the direct sum of all Whitney homology groups of P .
Similarly, WH∗(P ) denotes the direct sum of all Whitney cohomology groups.

14.4.2. Björner-Wachs basis for homology. Fix an arrangement A. For any
strict chain of faces f = (F1 < · · · < Fk), define its support by

s(f) := (s(F1) < · · · < s(Fk)).

This is a strict chain of flats. For any chamber C, define

(14.16) BWC :=
(∑

f

(σ : f) s(f)
)
⊗ σ,
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where σ is any orientation of A, the sum is over maximal chains of faces f which
end in C, and

(σ : f) =

®
1 if σ = [f ],

−1 if σ = −[f ].
Note that if σ is changed to −σ, then the signs inside the sum also negate, so BWC
is well-defined. It may also be expressed as

(14.17) BWC =
∑

f

s(f)⊗ [f ],

with f varying as in (14.16).

Lemma 14.26. Consider the element of Cr−2(Π[A]) given by the term inside the
parenthesis in (14.16). It is a cycle, that is, ∂r−2 applied to it is 0; so it is an
element of Hr−2(Π[A]).

Proof. Applying ∂r−2 to the element yields a sum over strict chains g which end
in C. Any such g contains a unique pair H < K of faces whose ranks differ by 2.
There are exactly two faces that lie between H and K, so g can be extended to a
maximal chain in exactly two ways, and these have opposite orientations. Thus,
the coefficient of s(g) is zero, as claimed.

Topologically, what has happened is the following. A strict chain of faces ending
in C can be identified with a face in the barycentric subdivision of the boundary
of C. The latter is a simplicial sphere. So a cycle can be constructed by taking a
linear combination with ±1 coefficients of the top-simplices, which in this case are
maximal chains ending at C. �

Proposition 14.27. For any generic half-space h wrt A, the set

(14.18) {BWC | C ⊆ h}
is a basis of Hr−2(Π[A])⊗ Eo[A], where r = rk(A).

Proof. See [77, Theorem 4.2]. �

We call (14.18) the Björner-Wachs basis associated to h. For simplicity, we
abbreviate it to BW-basis. We will make critical use of the BW-basis in the proof of
the JKS theorem below. Later in Section 14.4.7, we will give a second basis-free
proof of the JKS theorem and deduce Proposition 14.27 as a consequence.

Exercise 14.28. For a maximal chain of faces f , let f denote the maximal chain
obtained by replacing each face occuring in f by its opposite. Show that [f ] =
(−1)rk(A)[f ]. Use this to deduce that

BWC = (−1)rk(A)BWC

for any chamber C.

14.4.3. Joyal-Klyachko-Stanley. Put r := rk(A). For a maximal chain of faces
f , let last(f) denote the last face in the chain f (which is necessarily a chamber).

We now define a linear map

(14.19) Cr−2(Π[A])⊗ Eo[A]→ Γ[A].

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



14.4. JOYAL-KLYACHKO-STANLEY. PRESENTATION OF LIE 391

We provide a number of definitions and then indicate why they coincide. In some
cases, the map is only specified on a spanning set with the understanding that it is
extended linearly.

The map (14.19) is given by

(14.20a) ϕ⊗ σ 7→
∑

f

ϕ
(
s(f)

)
(σ : f) Hlast(f),

where ϕ is a cochain, σ is an orientation, and the sum is over all maximal chains
of faces f .

The map (14.19) is given by

(14.20b) z∗ ⊗ σ 7→
∑

f : s(f)=z

(σ : f) Hlast(f),

where z is any maximal chain of flats and σ is an orientation.
The map (14.19) is given by

(14.20c) z∗ ⊗ σ 7→
∑

D

±HD,

where z is any maximal chain of flats and σ is an orientation. The sum is over those
chambers D for which there exists a maximal chain of faces f with last(f) = D
and s(f) = z. The coefficient of HD is +1 if [f ] = σ and −1 if [f ] = −σ.

The map (14.19) is given by

(14.20d) α 7→
∑

D

〈α, BWD〉 HD,

where 〈 , 〉 is the canonical pairing between Cr−2(Π[A]) and Cr−2(Π[A]) tensored
with (14.11).

The map (14.19) is given by

(14.20e) s(f)∗ ⊗ [f ] 7→ (HF1
− HG1

) · . . . · (HFr
− HGr

),

where f = (O⋖ F1 ⋖ · · ·⋖ Fr) is a maximal chain of faces, and for 1 ≤ i ≤ r, Gi is
the face opposite to Fi in the star of Fi−1 (with the convention F0 = O).

Lemma 14.29. Definitions (14.20a)–(14.20e) all coincide.

Proof. Let us begin from (14.20a). Evaluating it on z∗ ⊗ σ yields (14.20b). By
Proposition 1.17, distinct faces of a chamber have distinct supports. Hence there
can be at most one chamber D such that last(f) = D and s(f) = z. This yields
(14.20c). Using definition (14.16), this then verifies (14.20d) on the basis elements
α = z∗⊗σ. For (14.20e): Observe that there are exactly 2r chains of faces k whose
support is s(f), and they are given by

k = (O ⋖K1 ⋖K1K2 ⋖ · · ·⋖K1 . . .Kr),

where each Ki is either Fi or Gi. (Also see Exercise 1.39.) Thus the term HD
appears in the rhs of (14.20e) iff there exists a maximal chain of faces k ending at
D whose support is s(f). Further, the coefficient of HD is +1 if [k] = [f ] and −1 if
[k] = −[f ]. (This follows from a small orientation argument.) This is the same as
(14.20c). �
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In view of (9.32), each HFi
− HGi

belongs to the radical of the Tits algebra,
so their product is in the r-th power of the radical which is contained in Lie[A] by
Lemma 13.15. Thus, the rhs of (14.20e) is a Lie element. As a consequence, (14.19)
induces a map

(14.21) Cr−2(Π[A])⊗ Eo[A]→ Lie[A].

We refer to the image of z∗ ⊗ σ under (14.20c) as the unbracketing of z wrt
σ. It determines a Lie element. For convenience, we may sometimes just say
‘unbracketing of a maximal chain’ keeping the orientation implicit. An illustration
is given below.

Let X1 denote the support of the thick vertex, and X2 denote the thick line. Un-
bracketing the maximal chain z = (⊥ < X1 < X2 < ⊤) yields a sum of 8 chambers
with coefficients ±1. Four of them are seen in the picture, while the remaining four
are on the backside. The chambers in light shade have one coefficient, while those
in dark shade have the opposite coefficient.

Exercise 14.30. Prove (10.5) by checking that a Lie element arising by unbrack-
eting a maximal chain of flats has this property.

A coboundary relation is an element of Cr−2(Π[A]) of the form δr−3(z
∗) for

some strict chain of flats z. (The coboundary map is given in (14.14).) Note
that the top cohomology group Hr−2(Π[A]) is the quotient of Cr−2(Π[A]) by the
subspace spanned by the coboundary relations.

Lemma 14.31. The map (14.19) sends any coboundary relation (tensored with an
orientation) to zero.

Proof. This follows from (14.20d) and Lemma 14.26 in view of the fact that any
coboundary relation evaluated on a cycle is zero. �

Thus (14.21) induces a map

(14.22) Hr−2(Π[A])⊗ Eo[A]→ Lie[A].

By tensoring both sides by Eo[A] and using (14.11), it can be expressed in the
equivalent form:

(14.23) Hr−2(Π[A])→ Lie[A]⊗ Eo[A].

Theorem 14.32. The maps (14.22) and (14.23) are natural isomorphisms. Nat-
urality is wrt cisomorphisms of arrangements.
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Naturality means that for any cisomorphism between arrangements A and A′,
the diagram

Hr−2(Π[A])⊗ Eo[A] //

��

Lie[A]

��

Hr−2(Π[A′])⊗ Eo[A′] // Lie[A′]

commutes. This is true because a cisomorphism preserves flats, gallery distances,
opposite faces, and the Tits product (Section 1.11), and the entities involved in the
map are expressible in terms of these notions.

Proof. Let us write ψ for the map (14.22). Both sides of this map have the same
dimension, namely, |µ(A)|, so it suffices to show that ψ is injective. Fix a generic
half-space h. Let

(14.24) {BW∗C | C ⊆ h}
be the basis of Hr−2(Π[A]) ⊗ Eo[A] dual to the BW-basis (14.18) associated to h.
Let us compute ψ(BW∗C). Pick any cochain α which represents BW∗C . Then ψ(BW∗C)

is the same as the map (14.19) applied to α. Now for any chamber D inside h,

〈α, BWD〉 = 〈BW∗C , BWD〉 =
®
1 if C = D,

0 otherwise.

(Note very carefully that up to orientation the first pairing is between cochains and
chains, while the second is between cohomology and homology.) Formula (14.20d)
implies that ψ(BW∗C) involves HC but no other chamber inside h. So these elements,

as C varies inside h, are linearly independent, and ψ is injective. �

We call this the Joyal-Klyachko-Stanley theorem, or JKS for short. We refer to
(14.22) as the JKS isomorphism.

Corollary 14.33. The Björner-Wachs basis (14.18) and the Dynkin basis (14.9)
are duals via the JKS isomorphism (14.22). More precisely, the map (14.22) sends
the dual BW-basis (14.24) to the Dynkin basis.

Proof. For C ⊆ h, let AC denote the inverse of θh ·HC under (14.22). Recall from
(14.8) that θh · HC involves HC but no other chamber inside h. Hence by (14.20d),
for any C,D ⊆ h,

〈AC , BWD〉 =
®
1 if C = D,

0 otherwise.

This shows that AC = BW∗C , as required. �

14.4.4. Whitney cohomology. The JKS theorem allows us to describe the Whit-
ney cohomology (14.15) of the poset of flats in terms of Lie elements:

Theorem 14.34. For each 0 ≤ k ≤ rk(A), there is a natural isomorphism

WHk(Π[A])⊗ Eo[A] ∼=−→
⊕

X: rk(AX)=k

Eo[AX]⊗ Lie[AX].

These induce a natural isomorphism

(14.25) WH∗(Π[A])⊗ Eo[A] ∼=−→
⊕

X

Eo[AX]⊗ Lie[AX].
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Proof. This follows by using the JKS isomorphism (14.23) for each AX in con-
junction with (14.12). �

We deduce from the Zaslavsky formula (1.45) that

(14.26) dimWH∗(Π[A]) = c(A),
the number of chambers in A.
14.4.5. Presentation of Lie. Lie elements of any arrangement are “generated”
by Lie elements of rank-one arrangements with the “relations” being Jacobi identi-
ties in rank-two arrangements (Section 10.2). We refer to this as the presentation
of Lie[A]. The existence of this presentation is equivalent to the JKS theorem. This
is explained below.

For the rank-one arrangement A with chambers C and C,

Eo[A] ∼=−→ Lie[A], [O ⋖ C] 7→ HC − HC .

(Both spaces are 1-dimensional.) This isomorphism is an instance of (14.22).
Now suppose A is the rank-two arrangement of n lines. Then (14.21) along

with the identification (14.12) can be rewritten as
n⊕

i=1

Eo[AXi ]⊗ Eo[AXi
]→ Lie[A],

where the Xi are the n lines (one-dimensional flats) of A. This map is surjective.
The lhs is n-dimensional while the rhs is (n−1)-dimensional. The kernel is spanned
by the element

(14.27)
n∑

i=1

τ i ⊗ τi

where τ i and τi are orientations of AXi and AXi
such that their concatenation is

(say) the anticlockwise orientation of A. This element corresponds to the Jacobi
identity.

Now let A be arbitrary. The map (14.21) can be rewritten as

(14.28)
⊕

z

Eo[AX1 ]⊗ Eo[AX2

X1
]⊗ · · · ⊗ Eo[AXr−1

]→ Lie[A],

where the sum is over all maximal chains of flats z = (⊥ ⋖ X1 ⋖ · · · ⋖ Xr−1 ⋖ ⊤).
(In this rewriting, the second tensor factor Eo[A] in the lhs of (14.21) is identified
with the summands in the lhs above via (14.13).) Theorem 14.32 says that the
kernel of (14.28) is the subspace generated by (14.27). (The latter corresponds to
the coboundary relations.) To summarize:

Theorem 14.35. The space Lie[A] is freely generated by the orientation space in
rank one subject to the Jacobi identities in rank two.

14.4.6. Concatenation of chains. It is convenient to write Htop(Π[A]) for the
top-dimensional cohomology of the lattice of flats of A. For any flat X, there is a
map

(14.29) Htop(Π[AX])⊗Htop(Π[AX])→ Htop(Π[A])
obtained by concatenating: A maximal chain of flats in AX can be identified with
a chain of flats in A ending at X, while a maximal chain of flats in AX can be
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identified with a chain of flats in A starting at X. So, concatenating the two yields
a maximal chain of flats in A. The map (14.29) is obtained by passing to the
homology classes.

Exercise 14.36. Combining (14.29) with (14.12) and using the JKS isomorphism
(14.22), we obtain a map

Lie[AX]⊗ Lie[AX]→ Lie[A].
Check that this coincides with the substitution product of Lie defined in (10.28).
(Use (14.20e) to verify the commutativity of (10.29).)

14.4.7. Second proof of JKS. We now give a second proof of the JKS theorem.
The starting point is the substitution product of Lie defined in (10.28). By iterated
substitution, we obtain the map (13.33). Observe that this map is the same as the
map (14.28). By Lemma 13.58, this map is surjective. Going back, this says that
the JKS map (14.22) is surjective. Since both sides of the JKS map have the same
dimension, we deduce that the JKS map is an isomorphism. Note that this also
proves Theorem 14.35.

The above proof of the JKS theorem is basis-free. In fact, following up on this
approach, one can use the argument in Corollary 14.33 to deduce both Proposi-
tion 14.27 and Corollary 14.33.

14.4.8. JKS and cartesian product. JKS is compatible with taking cartesian
product of arrangements.

Lemma 14.37. We have isomorphisms

Eo[A]⊗ Eo[A′]
∼=−→ Eo[A×A′]

Htop(Π[A])⊗Htop(Π[A′])
∼=−→ Htop(Π[A×A′])

Lie[A]⊗ Lie[A′]
∼=−→ Lie[A×A′].

Proof. Recall that A and A′ arise, respectively, as the arrangements under and
over a certain flat of A×A′. The above maps then arise as special cases of (14.12),
(14.29) and (10.28). The first map is clearly an isomorphism. The isomorphism for
Lie is given in (10.7). This forces the middle map to be an isomorphism as well. �

Thus, the JKS isomorphism for A×A′ can be identified with the tensor product
of the JKS isomorphisms for A and A′.

14.4.9. Order cohomology of flats and Tits algebra. In Section 13.7, we saw
a connection between Lie elements and the Tits algebra (Proposition 13.49 and
Theorem 13.53). By using the JKS isomorphism (14.22), these results can also be
stated as a connection between order cohomology of the lattice of flats and the Tits
algebra:

Proposition 14.38. Let E be any Eulerian family of A. For flats X ≤ Y, there is
an isomorphism

(14.30) Htop(Π[AY
X])⊗ Eo[AY

X]
∼=−→ EX · Σ[A] · EY.

The map (14.30) involves unbracketing a maximal chain from X to Y using
a specified orientation of AY

X and viewing the resulting Lie element of AY
X as an

element of EX · Σ[A] · EY.
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Theorem 14.39. There is an algebra isomorphism

(14.31)
⊕

X≤Y

Htop(Π[AY
X])⊗ Eo[AY

X]
∼=−→ Σ[A]

obtained by summing (14.30) over all X ≤ Y. The product on order cohomology is
induced from concatenation of chains (14.29).

14.4.10. Order cohomology of poset of faces. The poset of faces Σ[A] has a
minimum element, but many maximal elements. So the definition of order coho-
mology does not directly apply. One way to rectify this is as follows.

For each chamber D, consider the interval [O,D]. This poset has a minimum
and a maximum. Its order complex ∆ is the barycentric subdivision of the boundary
of D. Thus, the order cohomology of [O,D] is k in the top dimension, and 0
otherwise. Now let

(14.32) C•(Σ[A]) :=
⊕

D

C•([O,D]),

where the summands in the rhs are the cochain complexes that compute order
cohomology. This complex has cohomology only in top dimension, where it is
kc(A), with c(A) being the number of chambers. More explicitly, consider the map

(14.33) Cr−2(Σ[A])⊗ Eo[A]→ Γ[A], f∗ ⊗ σ 7→ (σ : f) Hlast(f).

The coboundary relations are spanned by f∗+g∗, where f and g are maximal chains
from O to say D which differ in exactly one positition. Hence, (σ : f) = −(σ : g),
and f∗ + g∗ maps to zero. As a consequence:

Theorem 14.40. There is a natural isomorphism

Hr−2(Σ[A])⊗ Eo[A] ∼=−→ Γ[A].
Naturality is wrt cisomorphisms of arrangements.

This is the analogue of the JKS theorem for the poset of faces. Moreover, the
two results relate to one another as follows. The map

C•(Π[A])→ C•(Σ[A]), z∗ 7→
∑

f : s(f)=z

f∗

is a cochain map. It induces the commutative diagram

(14.34)

Hr−2(Π[A])⊗ Eo[A]

��

∼= // Lie[A]

��

Hr−2(Σ[A])⊗ Eo[A] ∼=
// Γ[A].

This follows by comparing (14.21) and (14.33).

14.5. Björner and Lyndon bases

We discuss another pair of dual bases for the top (co)homology of the lattice
of flats. They are constructed out of ordered coordinate charts.
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14.5.1. Ordered coordinate charts and labeled chains. An ordered coordi-
nate chart is a sequence (H1, . . . ,Hr) of hyperplanes taken from the arrangement
A such that the intersection of all the Hi is the minimum flat, and r = rk(A). A
hyperplane-labeled maximal chain consists of a diagram

⊥ H1
X1

H2
. . .

Hr−1

Xr−1
Hr ⊤

such that (⊥ ⋖ X1 ⋖ · · · ⋖ Xr−1 ⋖ ⊤) is a maximal chain of flats, and for each i,
Hi contains Xi−1 but not Xi. (For uniformity, we may write ⊥ = X0 and ⊤ = Xr.)
For convenience, we shorten ‘hyperplane-labeled maximal chain’ to ‘labeled chain’.

Lemma 14.41. Ordered coordinate charts and labeled chains are equivalent no-
tions.

Proof. The labels of a labeled chain form an ordered coordinate chart. Conversely,
given an ordered coordinate chart, the flats can be constructed by

Xr−1 = Hr, Xr−2 = Hr ∧Hr−1, . . . , X1 = Hr ∧ . . . ∧H2. �

We will use the letters g and h to denote labeled chains (as for charts). For a
labeled chain g, we let cf(g) denote the maximal chain of flats underlying g.

A choice function is a function γ which assigns to every non-maximum flat X
a hyperplane H containing X. We write γ(X) = H. For instance, any linear order
ℓ on the set of hyperplanes gives rise to a choice function γ: For any flat X, define
γ(X) to be the first hyperplane in ℓ among those that contain X.

Let γ be a choice function. A labeled chain is γ-compatible if γ(Xi) = Hi+1 for
each i. Let B(γ) denote the set of such γ-compatible labeled chains.

Lemma 14.42. Suppose γ is a choice function. For any flat X, let γX be the
induced choice function on AX. Then there is a bijection

⊔

X: rk(X)=1,X6≤H

B(γX) −→ B(γ),

where γ(⊥) = H.

Proof. For any rank-one flat X not contained in H, appending ⊥ H1
(on the

left) to any γX-compatible labeled chain in AX yields a γ-compatible labeled chain
in A (from which X can be recovered uniquely). �

Lemma 14.43. For a choice function γ, the number of γ-compatible labeled chains
is |µ(A)|.

Proof. Let g(A) denote the cardinality of B(γ). Then by Lemma 14.42,

g(A) =
∑

X: rk(X)=1,X6≤H

g(AX),

where γ(⊥) = H. By induction, the Weisner formula (1.43b) and (1.44), we conclude
that g(A) = |µ(A)|. �
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14.5.2. Björner basis. For an ordered coordinate chart g = (H1, . . . ,Hr), let

(14.35) Bg :=∑

σ∈Sr

sgn(σ) (⊥ = Hσ(1) ∧ . . . ∧Hσ(r) ⋖ · · ·⋖Hσ(r−1) ∧Hσ(r) ⋖Hσ(r) ⋖⊤).

Here Sr is the permutation group on r letters, and sgn(σ) denotes the sign of the
permutation σ.

All maximal chains of flats that occur in Bg are distinct. The summand for
σ = id is precisely cf(g) with g viewed as a labeled chain. Each Bg is, to start with,
an element of the chain group Cr−2(Π[A]), but in fact, one can check that it is a
cycle, that is, an element of the homology group Hr−2(Π[A]).
Lemma 14.44. Suppose g and h are any γ-compatible labeled chains. Then cf(g)
appears in Bh iff g = h, in which case it appears once and with coefficient +1.

Proof. Suppose cf(g) appears in Bh. Since g and h are γ-compatible, the first
hyperplane in both equals γ(⊥). The rank-one flat in cf(g) and cf(h) are not
contained in γ(⊥), and since cf(g) appears in Bh, we deduce that these rank-one
flats coincide, and equal say X1. Then the second hyperplane in both g and h
equals γ(X1). We continue in this manner to deduce that g = h. �

Proposition 14.45. Let γ be any choice function. The set of elements Bg, as g
varies over all γ-compatible labeled chains, is a basis of Hr−2(Π[A]).
Proof. By Lemma 14.44, the Bg, as g varies over all γ-compatible labeled chains,
are linearly independent. By Lemma 14.43, their cardinality equals the dimension
of Hr−2(Π[A]). So they form a basis. �

We refer to this as the Björner basis of Hr−2(Π[A]). It depends on a choice
function γ.

14.5.3. Lyndon basis. For any labeled chain g, consider the dual element

cf(g)∗ ∈ Cr−2(Π[A]).
We write Lg for its image in the quotient Hr−2(Π[A]).
Proposition 14.46. Let γ be any choice function. The set of elements Lg, as g
varies over all γ-compatible labeled chains, is a basis of Hr−2(Π[A]). Further, for
γ-compatible labeled chains g and h,

(14.36) 〈Lg, Bh〉 =
®
1 if g = h,

0 otherwise,

under the canonical pairing between cohomology and homology.

Proof. Under the canonical pairing between Cr−2(Π[A]) and Cr−2(Π[A]),

〈cf(g)∗, Bh〉 =
®
1 if g = h,

0 otherwise.

This is a restatement of Lemma 14.44. This proves (14.36) and the result follows.
�
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We refer to this as the Lyndon basis of Hr−2(Π[A]). It is dual to the Björner
basis. Using the JKS isomorphism (14.23), this yields a basis of Lie[A] ⊗ Eo[A]
which we continue to refer as the Lyndon basis.

Proposition 14.47. Let H be any hyperplane. Then there is an isomorphism
⊕

X: rk(X)=1,X6≤H

Htop(Π[AX])→ Htop(Π[A]).

The map on the X-summand is obtained by extending a maximal chain in [X,⊤]
to a maximal chain in [⊥,⊤]. This is a special case of (14.29) after noting that
Htop(Π[AX]) = k when X has rank 1.

Proof. Pick any choice function γ with γ(⊥) = H. Then from the bijection in
Lemma 14.42, we see that the union over X of the Lyndon basis of each summand
in the lhs maps to the Lyndon basis of the rhs. �

Equivalently:

Proposition 14.48. Let H be any hyperplane. Then the map induced from (10.28)

⊕

X: rk(X)=1,X6≤H

Lie[AX]⊗ Lie[AX]
∼=−→ Lie[A]

is an isomorphism.

The previous two results were proved using the Lyndon basis but neither state-
ment makes any reference to it. In fact, these results provide an inductive procedure
for the construction of new bases. For instance, picking a basis for Lie[AX] for each
rank-one flat X not contained in a fixed hyperplane leads to a basis for Lie[A].

Dualizing the map in Proposition 14.47 (and taking inverse) yields

(14.37)
⊕

X: rk(X)=1,X6≤H

Htop(Π[AX])
∼=−→ Htop(Π[A]).

On the X-summand, this map is explicitly given as follows. For any maximal chain
(X⋖Y1 ⋖ · · ·⋖Yr−2 ⋖⊤) in [X,⊤], define a linear combination of maximal chains
by intersecting with H at all possible positions and inserting signs:

(14.38) (⊥⋖X⋖Y1 ⋖ · · ·⋖Yr−2 ⋖⊤)

+
r−2∑

i=1

(−1)i(⊥⋖Y1 ∧H⋖ · · ·⋖Yi ∧H⋖Yi ⋖ · · ·⋖Yr−2 ⋖⊤)

+ (−1)r−1(⊥⋖Y1 ∧H⋖ · · ·⋖Yr−2 ∧H⋖H⋖⊤).

Linearizing yields a map Ctop(Π[AX]) → Ctop(Π[A]) which preserves cycles and is
the required map.

Proof. The map (14.37) preserves the Björner basis since the dual map in Propo-
sition 14.47 preserves the Lyndon basis. Thus, to show that (14.38) is the correct
formula, we only need to check that it preserves the Björner basis. This is a
straightforward observation. �
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14.6. Coordinate arrangement

We specialize A to the coordinate arrangement of rank n (Section 6.1). It
consists of the hyperplanes xi = 0 for 1 ≤ i ≤ n. By convention, let xi > 0 be the
+ side and xi < 0 be the − side. Faces correspond to n-tuples consisting of +, −
and 0 signs, while chambers correspond to n-tuples consisting of + and − signs.

14.6.1. Lie elements. The space Lie[A] is one-dimensional and is spanned by the
element

(14.39)
∑

D

(−1)m(D) HD,

where the sum is over all chambers D, and m(D) is the number of + signs in the
sign sequence of D. For n = 1, 2, the spanning Lie elements are

H− − H+ and H−− − H+− − H−+ + H++.

To see this: Recall that a vertex-based top-lune is a pair of adjacent chambers.
Hence, by the Ree criterion, the sum of the coefficients of two adjacent chambers
in a Lie element is 0. Since adjacent chambers are related by one sign change, the
result follows.

Another way to see this is to use (10.7) and the fact that A is the n-fold
cartesian product of the rank-one arrangement. Thus, the spanning element of
Lie[A] is the n-fold tensor product of H− − H+, which is the spanning Lie element
in rank one.

Also recall that µ(A) = (−1)n. This is consistent with (10.24).

Exercise 14.49. Make the isomorphism (13.12) explicit for the coordinate arrange-
ment. The rank-one case n = 1 was explained in Section 13.5.4.

14.6.2. Substitution product. The substitution product (10.28) is as follows.
Recall that a flat X of A is the same as a subset of [n]. A Lie element of AX is the
same as a Lie element on the coordinates present in X, while a Lie element of AX

is the same as a Lie element on the coordinates not present in X. The tensor of the
two yields a Lie element of A. Observe that this map is indeed the restriction of
the substitution product of chambers (Section 6.1.7).

14.6.3. JKS. Specializing Theorem 14.32, we obtain:

Theorem 14.50. There is an isomorphism of Zn2 -modules

Hr−2(Π[A])⊗ Eo[A] ∼=−→ Lie[A].
All spaces are one-dimensional. On Lie[A] and Eo[A], the generator of each Z2

factor multiplies by −1, while on Hr−2(Π[A]), it acts by the identity.

One can also see this result directly. Since Π[A] is the Boolean poset, its
order complex is a topological sphere. So Hr−2(Π[A]) is one-dimensional and any
maximal chain of flats is a basis element. Further, unbracketing of any such maximal
chain produces a Lie element with ±1 coefficients of the chambers. Also note that
any coboundary relation is the sum of two maximal chains which differ in exactly
one position, and unbracketing them produces Lie elements which are negatives of
each other.

Another way is to start with the n = 1 case for which the result is a triviality,
take n-fold cartesian product, and use the compatibilities given in Section 14.4.8.
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14.6.4. Dynkin elements. The hyperplane H defined by x1 + · · · + xn = 0 is
generic wrt the coordinate arrangement of rank n. Let h be the half-space x1 +
· · ·+xn ≥ 0. It contains only one chamber C, namely, the one whose sign sequence
has all signs +. Barring this chamber and its opposite, the remaining chambers are
all cut by H. The Dynkin element can be written as

θh =
∑

F :F≤C

(−1)m(F ) HF ,

where m(F ) is the number of + signs in the sign sequence of F . Observe that

θh · HC =
∑

D

(−1)m(D) HD,

where the rhs is the spanning Lie element given in (14.39). This formula is an
instance of (14.7).

Exercise 14.51. Use the Ree criterion to check that θh is a special Zie element.
(This was the method used to prove Proposition 14.1, but the point is that the
argument is much simpler in the present case.) Alternatively, use the Friedrichs
criterion to prove this fact.

Exercise 14.52. Show that Zie[A] has dimension 2n and that the set of all Dynkin
elements form a basis for it.

Exercise 14.53. Check that for any choice function γ, there is exactly one γ-
compatible labeled chain.

14.7. Rank-two arrangements

Let A be the rank-two arrangement of n lines, with n ≥ 2. The spherical
model is the 2n-gon. A line passing through the origin is generic wrt A if it cuts
two opposite sides of the 2n-gon. For definiteness, we demand that the lines bisect
the two sides that they cut. We discuss the Dynkin basis, Lyndon basis and JKS
theorem for this arrangement. Lie and Zie elements were discussed in Sections 10.2.2
and 10.5.2.

14.7.1. Hexagon. Let us first consider the case n = 3 which is the hexagon.

11

1

1

1

1

+ 1

1

11

1

1

+ 1 1

1

1

1

1

= 3 1

11

1

1 1

2

1

2

1

2

1

(By convention, 1 denotes−1.) The summands in the lhs represent Dynkin elements
associated to three half-spaces as shown. These three half-spaces form an orbit
under the Coxeter symmetries of the hexagon. (Reflection in a dotted line is not
an allowed symmetry.) Hence their sum is a symmetrized Dynkin element d which
is shown in the rhs. It is clear that there is another orbit consisting of three half-
spaces (which pick the other side of the dotted line). This gives rise to another
symmetrized Dynkin element d. As indicated by the notation, d and d are related
by the opposition map.
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14.7.2. Octagon. Let us now consider the case n = 4 which is the octagon. Here
there are eight generic half-spaces, and unlike the previous case, they form a single
orbit. So there is only one symmetrized Dynkin element as shown below.

1

1
1

1

1

11

1

+ other terms = 8 3

3
3

3

3

3
3

3

4

44

4

4

4 4

4

14.7.3. General case. There are two cases depending on whether n is even or
odd. The analysis is similar to that of the octagon and hexagon, respectively.

If n = 2k, then all generic half-spaces lie in the same orbit. So there is exactly
one symmetrized Dynkin element. Explicitly, it is given by

d =
∑

F

aF HF ,

with

(14.40) aF :=





4k if F = O,

−2k if F is a vertex,

2k − 1 if F is an edge.

For k = 2, this gives the formula for the octagon.
If n = 2k+1, then there are two orbits of generic half-spaces. So there are two

symmetrized Dynkin elements. They are opposites of each other. Explicitly, the
coefficients are given by

(14.41) aF :=





2k + 1 if F = O,

−k or − (k + 1) if F is a vertex,

k if F is an edge.

There are two types of vertices. Vertices of one type have coefficient k and of the
other type have coefficient k+1. For k = 1, this gives the formula for the hexagon.

Exercise 14.54. For the arrangement A of n lines, check that the set of all Dynkin
elements form a basis of Zie[A]. (Recall from Section 10.5.2 that the dimension of
the latter is 2n.)

Exercise 14.55. Consider the rank-two arrangement of 3 lines, and let h be a
generic half-space. Let P , Q and R be the vertices and C and D be the chambers
contained in h. Check that the possible choices for z in Corollary 14.4 are

zα,β = HO − HP − HQ − HR + α HC + β HD

with α+β = 2. Check by explicit calculation that (HO− (HO−zα,β)3)3 = z1,1 = θh.

14.7.4. Dynkin basis. In a 2n-gon, fix any two opposite chambers, say D and
D. Let h be one of the two half-spaces whose base bisects D and D. Then the set

{HC + HC − HD − HD | C ⊆ h}
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is a basis for Lie[A]. It has n − 1 elements. This is precisely the Dynkin basis
associated to h and also to h (consistent with Exercise 14.17). For instance, for
n = 4, a choice for the Dynkin basis is shown below.

1

00

1

1

0 0

1

1

01

0

1

0 1

0

1

10

0

1

1 0

0

We now describe the action of the symmetrized Dynkin elements on chambers.
For n even,

(14.42) d · HC = (n− 1) HC + (n− 1) HC −
∑

D 6=C,C

HD.

For n odd, there are two symmetrized Dynkin elements. The action of one of them
is given by

(14.43) d · HC =
n− 1

2
HC +

n− 1

2
HC −

∑

D∈A

HD,

where A consists of edges which are either at odd distance from C while moving
clockwise till C, or at even distance from C while moving anticlockwise till C. The
action of d is similar with odd and even swapping places.

14.7.5. JKS. Any maximal chain of flats has the form ⊥ ⋖ H ⋖ ⊤. So maximal
chains correspond to hyperplanes. The top-cohomology Htop(Π[A]) is spanned by
all maximal chains subject to the coboundary relation

∑

H

(⊥⋖H⋖⊤)∗.

The sum is over all hyperplanes. In particular, Htop(Π[A]) has dimension n− 1.
Unbracketing a maximal chain ⊥ ⋖ H ⋖ ⊤ yields a Lie element of the form

HC + HC − HD − HD, where C and D are adjacent, and their common panel has
support H. These elements, as H varies, span Lie[A] with the coboundary relation
mapping to the Jacobi identity. This is illustrated below for n = 3.

1

1

0

1

1

0

+

1

0

1

1

0

1

+

0

1

1

0

1

1

= 0.

In the figure, the orientation chosen for unbracketing is the anticlockwise direction.
(An illustration of how terms in the Jacobi identity arise from from the substitution
product of Lie is given in Example 10.44.)

14.7.6. Lyndon basis. Since ⊥ is the only non-maximum flat which is not a
hyperplane, a choice function is the same as choosing a hyperplane. Accordingly,
fix a hyperplane H. The Lyndon basis is given by maximal chains

(⊥⋖H′ ⋖⊤)∗,
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where H′ varies over all hyperplanes distinct from H. There are n− 1 of them. Fix
a half-space h with base H. Then by unbracketing each of these maximal chains,
we see that

{HC + HC − HD − HD | C,D ⊆ h, and C is adjacent to D and to the left of D}
is a basis for Lie[A].

14.8. Classical (type A) Lie elements

We specialize A to the braid arrangement on [n] (Sections 6.3–6.6). For con-
venience, we shorten all notations of the form p[A] to p[n]. For instance, we write
Π[n] for Π[A]. In case we work with the braid arrangement on a finite set I, we
will write p[I].

Classical Lie elements are defined using bracket expressions. Such expressions
are closely linked to binary trees which is turn are related to maximal chains of faces
in the braid arrangement which in turn is the combinatorics involved in the JKS
isomorphism. Unbracketing a bracket expression allows us to view a Lie element as
a linear combination of linear orders.

Any coordinate hyperplane is generic wrt the braid arrangement. The corre-
sponding (symmetrized) Dynkin elements act on chambers via the left- and right-
bracketing operators. In particular, we obtain the Dynkin-Specht-Wever theorem
which says that the image of the left-bracketing operator on chambers is the space
of Lie elements. Along with the Dynkin basis, we also discuss the Björner-Wachs
basis and the Lyndon basis.

We assume that the field characteristic is 0.

14.8.1. Classical Lie elements. Let Lie[n] denote the space of Lie elements. It is
the primitive part of the space of linear orders Γ[n]. Using Theorem 14.35, one can
deduce the following more classical way of defining Lie elements. More explanation
is given in the discussion below on the JKS theorem.

Recall the external product on linear orders from Section 6.3.13 given by or-
dered concatenation. We extend it by multilinearity on the H-basis. Now for any
I = S ⊔ T , and linear orders ℓ1 on S and ℓ2 on T , put

(14.44) [Hℓ1 , Hℓ2 ] := µ(S,T )(Hℓ1 , Hℓ2)− µ(T,S)(Hℓ2 , Hℓ1) = Hℓ1·ℓ2 − Hℓ2·ℓ1 ,

where ℓ1 · ℓ2 is the linear order in which elements of S precede the elements of T .
We refer to this as the unbracketing operation. Lie elements are those elements of
Γ[n] which are generated by these unbracketing operations from linear orders on
singletons in the set [n].

For example, Lie[2] is one-dimensional and spanned by

[H1, H2] = −[H2, H1] = H1|2 − H2|1.

The space Lie[3] is 2-dimensional and spanned by elements of the form

[[H1, H3], H2] = [H1|3 − H3|1, H2] = H1|3|2 − H3|1|2 − H2|1|3 + H2|3|1.

An element of Lie[4] is shown below.

[[H1, H3], [H2, H4]] = [H1|3 − H3|1, H2|4 − H4|2]

= H1|3|2|4 − H2|4|1|3 − H3|1|2|4 + H2|4|3|1 − H1|3|4|2 + H4|2|1|3 + H3|1|4|2 − H4|2|3|1.
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These unbracketing operations satisfy antisymmetry and Jacobi identity. Further,
when two bracket expressions define the same Lie element, one can pass from one
to the other by using these two relations.

Given [n] = S ⊔ T , where S and T are nonempty sets, and ℓ1 and ℓ2 are linear
orders on S and T , respectively, let ℓ1 � ℓ2 denote the sum of all shuffles of ℓ1
and ℓ2. Define Lie⊥[n] to be the span of elements of the form ℓ1 � ℓ2. This is the
decomposable part of Γ∗[n].

For example, Lie⊥[2] is one-dimensional and spanned by

M1|2 + M2|1

(which is the shuffle of 1 and 2). The space Lie⊥[3] is 4-dimensional:

M1|2|3 + M1|3|2 + M3|1|2, M2|1|3 + M2|3|1 + M3|2|1,

M1|3|2 + M1|2|3 + M2|1|3, and M3|1|2 + M3|2|1 + M2|3|1

form a basis. (They are shuffles of 1|2 and 3, 2|1 and 3, 1|3 and 2, and 3|1 and 2.)

Lemma 14.56. The subspaces Lie[n] and Lie⊥[n] are orthogonal to each other under
the canonical pairing between Γ[A] and Γ[A]∗.

Proof. This is a specialization of Lemma 10.10. �

For n = 2, the orthogonality is illustrated below.

2|1

1|2
1|2 + 2|11|2 − 2|1

The vector in the north-west direction belongs to Lie[2], while the one in the north-

east direction belongs to Lie⊥[2].

14.8.2. JKS. Recall the symmetric group Sn on n letters. It is the Coxeter group
of the braid arrangement on [n]. Specializing Theorem 14.32, we obtain:

Theorem 14.57. There is an isomorphism of Sn-modules

(14.45) Hr−2(Π[n])⊗ Eo[n]
∼=−→ Lie[n].

Let us describe it explicitly. For clarity, we work with the braid arrangement
on a finite set I. Setting I = [n] would yield the above map. A maximal chain of
faces f corresponds to a binary tree with |I| leaves each with a distinct label from
I, and whose internal nodes are linearly ordered in such a manner that each node
appears before both of its children. (In particular, the linear order begins with the
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root.) An illustration of the bijection for I = {a, b, c, d, e} is shown below.

(abcde⋖ ab|cde⋖ ab|cd|e⋖ a|b|cd|e⋖ a|b|c|d|e) ←→

1

3

a b

2

4

c d

e

Now a binary tree gives rise to a bracket expression, and hence yields a Lie element.
Continuing the example, with f denoting the maximal chain of faces, the map is

s(f)∗ ⊗ [f ] 7→ [[Ha, Hb], [[Hc, Hd], He]].

Unbracketing the rhs results in a linear combination of linear orders on {a, b, c, d, e},
and this is what (14.20e) gives.

14.8.3. Orientation and signature spaces. We explain the relation between
the orientation space Eo[n] and the signature space E−[n].

Let mc[n] denote the space spanned by maximal chains of faces. Consider the
map

Γ[n]→ mc[n], Hl1|l2|...|ln 7→ (O,F1, F2, . . . , Fn−1),

where

F1 = l1|l2 . . . ln, F2 = l1|l2|l3 . . . ln, . . . , Fn−1 = l1|l2| . . . |ln.
In other words, Fi consists of the first i singletons followed by the remaining ele-
ments. One may check that by passing to quotients, this map induces an isomor-
phism of Sn-modules

E−[n]
∼=−→ Eo[n].

The key observation is that maximal chains of faces arising from adjacent chambers
have opposite orientations.

The image of the element Hl1|...|ln in E−[n] may be denoted l1 ∧ · · · ∧ ln, with
the usual understanding that switching two adjacent letters incurs a minus sign.
Thus, E−[n] (and hence Eo[n]) coincides with the sign representation of Sn.

14.8.4. Whitney cohomology. We now relate Whitney cohomology of the lat-
tice of flats to Lie elements. For the braid arrangement A on [n], recall that AX is
also a braid arrangement on the number of blocks of X, while AX is the cartesian
product of braid arrangements, one for each block of X. Since Eo[n] is the sign rep-
resentation of Sn, the rhs of (14.25) can be identified with

∧
Lie[n], the multilinear

part of the exterior algebra on the free Lie algebra on [n].
Explicitly, for n = 2, this space is two-dimensional with basis

H1 ∧ H2 and [H1, H2];

thus, it is a direct sum of two sign representations. For n = 3, this space is 6-
dimensional with basis

[[H1, H2], H3], [[H1, H3], H2], H1∧[H2, H3], H2∧[H1, H3], H3∧[H1, H2], H1∧H2∧H3.
The relations are antisymmetry of the wedge, as well as antisymmetry and Jacobi
identity of the bracket.

Thus, specializing Theorem 14.34, we obtain:
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Theorem 14.58. There is an isomorphism of Sn-modules

WH∗(Π[n])⊗ Eo[n] −→
∧

Lie[n].

14.8.5. Classical Lie operad. Let A be the braid arrangement on the set I. For
a partition X of I, the substitution product (10.28) is as follows. An element of
Lie[AX] is a bracket expression on the blocks of X, while an element of Lie[AX] is
a family of bracket expressions, one on each block of X. The two together specify
a bracket expression on I, which is an element of Lie[A]. For example, for the
partition X = {abd, fg, ce},
([[Hfg, Hce], Habd], {[Ha, [Hd, Hb]], [Hg, Hf ], [Hc, He]}) 7→ [[[Hg, Hf ], [Hc, He]], [Ha, [Hd, Hb]]].

Bracket expressions on finite sets with these structure maps constitute the classical
Lie operad .

Using the structure maps of the classical associative operad in Section 6.5.10,
one can check that diagram (10.29) indeed commutes.

14.8.6. Linear orders as symmetrized Lie elements. Proposition 13.28 for
the uniform section of the braid arrangement on I specializes as follows.

Proposition 14.59. Fix a finite set I. The linear map
⊕

X⊢I

⊗

S∈X

Lie[S]→ Γ[I],
⊗

S∈X

zS 7→
1

deg!(X)

∑

F=(S1,...,Sk)�I,
s(F )=X

µF (zS1
, zS2

, . . . , zSk
)

is an isomorphism.

In the expression for the map, the sum is over compositions F of I, and µF
refers to the external product on linear orders given by ordered concatenation. An
illustration on the partition X = {ace, bd} is given below.

[Hc, [Ha, He]]⊗ [Hd, Hb] 7→
1

2

(
µace,bd([Hc, [Ha, He]], [Hd, Hb]) + µbd,ace([Hd, Hb], [Hc, [Ha, He]])

)
.

14.8.7. Dynkin elements. Recall that the braid arrangement is not essential.
Let H0 denote the hyperplane x1 + · · ·+ xn = 0. The arrangement under this flat
of the braid arrangement is the essential braid arrangement. Its faces are indexed
by set compositions.

For 1 ≤ i ≤ n, let Hi denote the intersection of the coordinate hyperplane
xi = 0 with H0. This is a generic hyperplane wrt the essential braid arrangement.
Let hi denote the half-space of Hi corresponding to xi ≥ 0. Observe that:

Lemma 14.60. A set composition F is contained in hi iff i belongs to the last
block of F .

Let θi denote the Dynkin element associated to hi. Thus,

(14.46) θi =
∑

F

(−1)rk(F ) HF ,

where the sum is over all set compositions F whose last block contains i. The
half-spaces {hi}1≤i≤n form an orbit under the action of the symmetric group. So
the symmetrized Dynkin elements of all the θi are the same and given by their sum

dn := θ1 + · · ·+ θn.
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Explicitly,

(14.47) dn =
∑

F

(−1)rk(F ) wF HF ,

where wF is the size of the last block of F . The sign in front is the negative of the
parity of the number of blocks of F . For example,

d2 = 2 H12 − H1|2 − H2|1

and

d3 = 3 H123 − 2 H1|23 − 2 H2|13 − 2 H3|12 − H12|3 − H13|2 − H23|1

+ H1|2|3 + H2|1|3 + H1|3|2 + H2|3|1 + H3|1|2 + H3|2|1.

The preceding discussion also applies to the braid arrangement on I. There is a
Dynkin element θi one for each i ∈ I. Their sum is a symmetrized Dynkin element
which we denote by dI . It is an element of Σ[I].

Let hi denote the half-space opposite to hi. It corresponds to the points xi ≤ 0.
Let θi be the Dynkin element associated to hi. Explicitly, θi is given as in (14.46),
where the sum is over all set compositions F whose first block contains i. The
symmetrized Dynkin element can be expressed as

dn =
∑

F

(−1)rk(F ) wF HF ,

where wF is the size of the first block of F .

The symmetrized Dynkin elements dn and dn are Zie elements of Σ[n]. This is
an instance of Proposition 14.6. Further, by (14.4),

d2n = ndn.

Note that dn/n is a special Zie element.

Exercise 14.61. Show that, up to equivalence, the rank-three braid arrangement
A has 32 generic half-spaces. (This is consistent with (6.10) in view of Lemma 1.50.)
Only 8 of these are accounted for by the hi and their opposites. Write down the
Dynkin elements for the other 24 half-spaces. Check that the dimension of Zie[A] is
26. Hence the set of Dynkin elements is not linearly independent. Give one explicit
linear dependency relation.

14.8.8. Complete system from Zie elements. We discuss a special case of
the construction given in Section 12.5.5. Fix a finite set I. For each composition
F = (S1, . . . , Sk) of I, put

(14.48) QF := µF
( dS1

|S1|
, . . . ,

dSk

|Sk|
)
.

The Dynkin elements are multiplied using the external product. This defines a
Q-basis. It has a corresponding Eulerian family E and a homogeneous section u.
The first Eulerian idempotent is

E{I} = Q(I) =
dI
|I| .
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The homogeneous section is determined by (12.48). It is given by the following
formula. For each composition α = (a1, . . . , ak), put

(14.49) uα :=
k∏

i=1

ai
a1 + · · ·+ ai

.

For any set composition F , let

(14.50) uF := ut(F ).

To see that this is the correct formula, we need to understand the cancelations in
the rhs of (12.48). For any noncentral face G, we want to show that the coeffi-
cient of HG is zero. The contributions come from faces F ≤ G. Consider those F
whose first block equals the first block of G. To any such F , there is a correspond-
ing F ′ obtained by merging its first two blocks. The key observation is that the
contributions of F and F ′ cancel. Thus, we obtain:

Theorem 14.62. Let QF be as in (14.48) and uF as in (14.50). As X varies over
all compositions of I, the elements

EX :=
∑

F :s(F )=X

uF QF

form a complete system of primitive orthogonal idempotents of the Tits algebra of
the braid arrangement on I.

Exercise 14.63. For any ordered set S, consider zS := θmaxS , the Dynkin element
in (14.46). The sum is over all compositions of S whose last block contains the
maximum element of S. Now fix a positive integer n. For each composition F =
(S1, . . . , Sk) of [n], put

QF := µF (zS1
, . . . , zSk

),

where for each Si, we use the order induced from [n]. This yields a Q-basis for
the Tits algebra of the braid arrangement on [n]. Show that the corresponding
homogeneous section u determined by (12.48) is set-theoretic and given by

uF =

®
1 if maxS1 < · · · < maxSk with F = (S1, . . . , Sk),

0 otherwise.

This leads to a complete system as in Theorem 14.62. For instance, for n = 2,

Q1|2 = z1z2 = H1H2 = H1|2, Q2|1 = z2z1 = H2H1 = H2|1, Q12 = z12 = H12 − H1|2,

with corresponding u given by u12 = 1, u1|2 = 1 and u2|1 = 0, and Eulerian family
E given by E1,2 = H1|2 and E12 = H12 − H1|2.

14.8.9. Dynkin-Specht-Wever theorem. Let ℓ and ℓ′ be linear orders on some
finite set. We say that ℓ′ is peakless wrt ℓ if in the linear order of ℓ, the entries of
ℓ′ decrease (till they reach the first entry of ℓ) and then increase.

For example, for

ℓ = 3|1|5|2|4 and ℓ′ = 4|1|3|5|2,
ℓ′ is peakless wrt ℓ since 4 > 1 > 3 < 5 < 2 in the order 3 < 1 < 5 < 2 < 4.
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Lemma 14.64. For a linear order ℓ = i1|i2| . . . |in,
(14.51) [. . . [Hi1 , Hi2 ], . . . , Hin ] =

∑

I=S⊔T
i1∈T

(−1)|S|H
ℓ|S ·ℓ|T

=
∑

(−1)kHℓ′ .

The second sum is over all ℓ′ which are peakless wrt ℓ, and k is the number of
elements that precede i1 in ℓ′.

Proof. Expanding
[
. . . [Hi1 , Hi2 ], . . . , Hin

]
yields a sum of elements of the form

±Hℓ′ , where each linear order ℓ′ arises from a sequence of 2n−1 choices as follows.
First we choose whether i2 precedes or follows i1. Then we choose whether i3
precedes or follows both of i1 and i2. We continue in this manner until we finally
choose whether in precedes or follows all the other elements. Each time we choose
to precede, a minus sign is picked up. Let S consist of those elements ij that were
chosen to precede the elements i1, . . . , ij−1, and T of the remaining elements of I.
Then i1 belongs to T . In the linear order ℓ′, the elements of S appear first, and
reversed from the manner in which they appear in ℓ; the elements of T appear last
and in the same manner as in ℓ. Thus, ℓ′ = ℓ|S · ℓ|T and the element that appears
in the expansion is (−1)|S|H

ℓ|S ·ℓ|T
. �

Recall that hk(D) denotes the largest face of D which is contained in the half-
space hk (corresponding to xk ≥ 0). Explicitly, hk(D) is the largest face of D for
which k is in the last block. For example,

h2(4|5|2|1|3) = 4|5|213.
For any chambers C and D,

Des(C,D) = hk(D) ⇐⇒ The first entry of C is k, and D is peakless wrt C.

This is straightforward to check.

Lemma 14.65. For k ∈ I and i1|i2| . . . |in a linear order on I,

(14.52) θk · Hi1|i2|...|in =

®
[. . . [Hi1 , Hi2 ], . . . , Hin ] if i1 = k,

0 otherwise.

Proof. We use formula (14.6) in conjunction with the previous observation for
C = i1|i2| . . . |in: If i1 6= k, then Des(C,D) = hk(D) has no solutions, so the lhs is
zero. If i1 = k, then the lhs is a signed sum over all D which are peakless wrt C.
By (14.51), this sum is precisely [. . . [Hi1 , Hi2 ], . . . , Hin ]. �

Since dI is the sum of the θk, we obtain:

Lemma 14.66. For any linear order i1|i2| . . . |in on I,

(14.53) dI · Hi1|i2|...|in = [. . . [Hi1 , Hi2 ], . . . , Hin ].

In words, dI is the left bracketing operator on Γ[I].

If we use dI instead of dI , then we get the right-bracketing operator.

Theorem 14.67. The image of the left bracketing operator on Γ[I] is Lie[I]. In
addition, Lie[I] is the eigenspace of eigenvalue |I| of this linear operator.

This is the Dynkin-Specht-Wever theorem.

Exercise 14.68. Establish (14.52) directly by induction on n.
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Exercise 14.69. Check that formula (14.53) is consistent with (14.43) when I has
three elements.

14.8.10. Dynkin basis. Recall from Proposition 14.16 that to any generic half-
space is associated a Dynkin basis of the space of Lie elements. Let us understand
this explicitly for the half-space hk. A linear order i1|i2| . . . |in on I is contained in
hk iff i1 = k. To get the Dynkin basis, we need to apply θk on each of these linear
orders. Formula (14.52) now implies:

Proposition 14.70. For a fixed k ∈ I, the elements

[. . . [Hi1 , Hi2 ], . . . , Hin ],

as i1|i2| . . . |in varies over all linear orders on I with i1 = k, form a basis of Lie[I].
This is the Dynkin basis associated to the half-space hk.

14.8.11. Dynkin element inside top-nested faces and pairs of chambers.

Recall from Section 9.4.7 that Σ[I] can be viewed as a subspace of ÛQ[I], which in
turn can be viewed as a subspace of Γ[I]∗ ⊗ Γ[I]. For the latter, we put

KC,D := MC ⊗ HD.

The formulas for the Dynkin element viewed inside these larger spaces are as follows.

Lemma 14.71. We have

(14.54) dI =
∑

(−1)rk(H) KH,D and dI =
∑

(−1)rk(Des(C,D)) KC,D.

The first sum is over all pairs H ≤ D such that all blocks of H, except possibly the
last, are singletons. The second sum is over all C and D such that D is peakless wrt
C. In this situation, rk(Des(C,D)) is the number of elements in D which precede
i1, where i1 is the first element of C.

Proof. The calculation for the first formula is as follows. Using (9.42),
∑

(−1)rk(H)KH,D =
∑

K≤D

(−1)rk(K)
∑

H

HK,D =
∑

K≤D

(−1)rk(K)wKHK,D.

In the middle expression, the inside sum is over all H between K and D such that
all blocks of H, except possibly the last, are singletons. The key observation is that
there are wK such choices for H, where wK is the size of the last block of K.

The second formula follows from the first by using (9.44). The key point is
that the condition on the blocks of H translates to the peakless condition on D
wrt C. Observe that the second formula, assuming (14.51), gives another proof of
(14.53). �

14.8.12. q-Dynkin element. For any scalar q, define the q-Dynkin element by

(14.55) dI,q :=
∑

F

(−1)rk(F ) q|I|−w
F

(1 + q + · · ·+ qw
F−1) HF .

The sum is over all compositions F of I, and wF is the size of the last block of F .
For example,

d2,q = (1 + q) H12 − q H1|2 − q H2|1
and

d3,q = (1+ q+ q2) H123 − q(1 + q) (H1|23 + H2|13 + H3|12)− q2 (H12|3 + H13|2 + H23|1)

+ q2 (H1|2|3 + H2|1|3 + H1|3|2 + H2|3|1 + H3|1|2 + H3|2|1).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



412 14. DYNKIN IDEMPOTENTS

Setting q = 1 recovers dI , while q = −1 yields

(14.56) dI,−1 = (−1)|I|−1
∑

F :wF is odd

(−1)rk(F )HF .

Also note that dI,0 = H(I).
The q-Dynkin element viewed inside the spaces of nested faces and pairs of

chambers is given by

(14.57) dI,q =
∑

(−q)rk(H) KH,D and dI,q =
∑

(−q)rk(Des(C,D)) KC,D.

The conditions on H, C and D are as in (14.54). Observe that for q = −1, the
signs go away.

For any I = S ⊔ T , and linear orders ℓ1 on S and ℓ2 on T , put

[Hℓ1 , Hℓ2 ]q := Hℓ1·ℓ2 − q Hℓ2·ℓ1 .
This is the q-commutator . Formula (14.51) generalizes, with (−1) replaced by (−q),
and (14.53) generalizes to

(14.58) dI,q · Hi1|i2|...|in = [. . . [Hi1 , Hi2 ]q, . . . , Hin ]q.

Thus dI,q is the left q-bracketing operator on Γ[I].

14.8.13. Björner-Wachs basis. For a chamber C = i1| . . . |in, let
fC := (i1 . . . in ⋖ i1 . . . in−1|in ⋖ i1 . . . in−2|in−1|in ⋖ · · ·⋖ i1| . . . |in).

This is a maximal chain of faces ending at C (obtained by putting bars from right
to left). Under the correspondence between maximal chains and binary trees, the
maximal chain fC goes to the ‘left-comb’ binary tree in which the right child of each
internal node is a leaf. The internal nodes are ordered in the only way possible.

Note from (14.17) that

(14.59) BWC =
(∑

f

± s(f)
)
⊗ [fC ],

where the sum is over all maximal chains of faces f ending at C. The sign of s(f)
is +1 if [f ] = [fC ] and −1 if [f ] = −[fC ]. In particular, BWC contains the term
s(fC)⊗ [fC ] (with a plus sign).

Recall the generic half-space hk corresponding to xk ≥ 0. A linear order
i1|i2| . . . |in on [n] is contained in hk iff i1 = k. Thus, the BW-basis associated
to the half-space hk consists of the elements BWC , as C varies over all linear orders
of [n] starting with k.

Proposition 14.72. The dual of the BW-basis associated to the half-space hk is
given by

(14.60) BW∗C = s(fC)
∗ ⊗ [fC ],

where C varies over all linear orders of [n] starting with k.

In the rhs, when we write s(fC)
∗, we mean the cohomology class of s(fC)

∗.

Proof. Let P denote the vertex (two-block set composition) whose first block
consists of the singleton k. Note that the BW-basis is indexed by chambers in the
star of P . If C and D are two such chambers, then it is easy to check that s(fC)
appears in BWD iff C = D. The claim follows.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



14.8. CLASSICAL (TYPE A) LIE ELEMENTS 413

Alternatively: In view of Corollary 14.33, it suffices to check that the JKS
isomorphism sends BW∗C to θk · HC . Since fC corresponds to the left-comb binary
tree, the JKS isomorphism sends it to the Lie element obtained by left-bracketing.
By (14.52), this is precisely θk · HC . �

Let us illustrate for n = 3 for the half-space h1. The BW-basis consists of the
two elements

BW1|2|3 =
(
({123}⋖ {12, 3}⋖ {1, 2, 3})− ({123}⋖ {1, 23}⋖ {1, 2, 3})

)
⊗ [f1|2|3]

and

BW1|3|2 =
(
({123}⋖ {13, 2}⋖ {1, 2, 3})− ({123}⋖ {1, 23}⋖ {1, 2, 3})

)
⊗ [f1|3|2].

Note that {12, 3} and {1, 23} are the supports of the two vertices of 1|2|3. These
gave the two terms in BW1|2|3.

The dual BW-basis consists of

BW∗1|2|3 = ({123}⋖ {12, 3}⋖ {1, 2, 3})∗ ⊗ [f1|2|3]

and

BW∗1|3|2 = ({123}⋖ {13, 2}⋖ {1, 2, 3})∗ ⊗ [f1|3|2].

These are simpler and have only one term each.

14.8.14. Lyndon basis. Fix a chamber C in the braid arrangement on I. To each
chamber D whose first element coincides with the first element of C, we associate
a maximal chain of faces fC,D ending in D as follows. Let us use combinatorial
notation and write ℓ for the linear order of C. Similarly, let w denote the linear
order of D. By assumption, the first element of w is the same as the first element
of ℓ. One can uniquely write w as a concatenation uv, where the first element of v
is the second element of ℓ. Then the chain fC,D starts as I ⋖ S|T , where S is the
underlying set of u and T is the underlying set of v. To get the higher terms of
fC,D, we recursively apply this procedure first on u wrt the restricted linear order
ℓ|S and then on v wrt ℓ|T .

For example, for C = a|b|c|d, there are six chambers D which have the same
first element as C. The resulting maximal chains of faces fC,D are shown below.

(abcd⋖ a|bcd⋖ a|b|cd⋖ a|b|c|d) [Ha, [Hb, [Hc, Hd]]]

(abcd⋖ a|bdc⋖ a|bd|c⋖ a|b|d|c) [Ha, [[Hb, Hd], Hc]]

(abcd⋖ ac|bd⋖ a|c|bd⋖ a|c|b|d) [[Ha, Hc], [Hb, Hd]]

(abcd⋖ ad|bc⋖ a|d|bc⋖ a|d|b|c) [[Ha, Hd], [Hb, Hc]]

(abcd⋖ acd|b⋖ a|cd|b⋖ a|c|d|b) [[Ha, [Hc, Hd]], Hb]

(abcd⋖ adc|b⋖ ad|c|b⋖ a|d|c|b) [[[Ha, Hd], Hc], Hb]

The corresponding Lie elements obtained from the map (14.45) are shown on the
right. One can check that this is a basis of Lie[I] for I = {a, b, c, d}. The general
result is:

Proposition 14.73. Fix a chamber C. The Lie elements corresponding to fC,D,
as D varies over all chambers with the same first element as C, form a basis for
Lie[I].
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This basis is a manifestation of the Lyndon basis as we now proceed to explain.

The chamber C determines a linear order on I. Put the lexicographic order on
the set of hyperplanes. (Recall that a hyperplane is a pair (i, j) with i, j ∈ I and
i < j.) This induces a choice function γC : For each partition X of I, γC(X) is the
smallest hyperplane (i, j) such that both i and j appear in the same block of X.
The main observation is:

Lemma 14.74. The set of chambers D with the same first element as C is in
bijection with the set of γC-compatible labeled chains.

Proof. We explain the map in the forward direction. Suppose D is a chamber
with the same first element as C. Then s(fC,D) is a maximal chain of flats. Denote
it temporarily by (⊥⋖X1⋖ · · ·⋖Xr−1⋖⊤). Label the edge joining Xk and Xk+1 by
the hyperplane (i, j), where i and j are the two smallest elements in the block of Xk
that is split to obtain Xk+1. This is the desired labeled chain. It is straightforward
to verify that this is a bijection. �

Recall from Proposition 14.46 that a choice function gives rise to a Lyndon
basis. It follows from the above proof that:

Lemma 14.75. The Lyndon basis associated to the choice function γC consists
of the classes of s(fC,D)

∗, with D varying over all chambers with the same first
element as C.

As a consequence, the images of s(fC,D)
∗ ⊗ [fC,D] under the map (14.45) is a

basis of Lie[I], and Proposition 14.73 follows.

14.9. Type B Lie elements

We specialize A to the arrangement of type B (Section 6.7). Recall the notation

I = I ⊔ I ⊔{0} and [n] = [n]⊔ [n]⊔{0}. These sets have a canonical involution. We
use the terms involution-exclusive and involution-inclusive subsets in this context.
We will shorten all notations of the form g[A] to g[I] or g[n] as may be the case.

We write Lie[I] for the space of Lie elements. For clarity, we call these type B
Lie elements. They sit inside Γ[I] which is spanned by type B linear orders. This
inclusion can be understood through the combinatorics of brackets, the interesting
part is that now there are two commutators to consider. The bracket expressions
are related to type B binary trees which is turn are related to maximal chains of
faces in the type B arrangement. This is the combinatorics involved in the JKS
isomorphism.

The hyperplane orthogonal to the vector (1, 2, . . . , 2n−1) is generic wrt the ar-
rangement of type B on [n]. We give an explicit formula for the action of the corre-
sponding symmetrized Dynkin element on chambers. The coefficients are products
of some subset of odd numbers between 1 and 2n − 1. The largest coefficient is
(2n− 1)!!, which is the absolute value of the Möbius number of the arrangement.

We assume that the field characteristic is 0.

14.9.1. Type B Lie elements. To construct type B Lie elements, we need to
consider two different commutators. They are as follows.

For any disjoint involution-exclusive nonempty subsets S and T , and linear
orders ℓ1 on S and ℓ2 on T , put

(14.61) [Hℓ1 , Hℓ2 ] := Hℓ1·ℓ2 − Hℓ2·ℓ1 ,
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where ℓ1 · ℓ2 is the linear order in which elements of S precede the elements of T .
This is the same operation as in (14.44).

For any involution-inclusive subset S and involution-exclusive nonempty subset
T disjoint from each other, and type B linear order ℓ1 on S and linear order ℓ2 on
T , put

(14.62) [Hℓ1 , Hℓ2 ] := Hℓ1·ℓ2 − Hℓ1·ℓ2 ,

where ℓ2 is the linear order on T obtained by reversing ℓ2 and switching the parity
of each letter. Note that we are using a thicker bracket here to distinguish it from
the previous bracket.

Type B Lie elements are those elements of Γ[I] which are generated by these
unbracketing operations from singletons {a}, where a is any element of I, including
0. For example, Lie[a, 0, a] is one-dimensional and spanned by

(14.63) [H0, Ha] = −[H0, Ha] = H0|a − H0|a.

The first equality is the antisymmetry relation of type B.
Typical elements of Lie[a, b, 0, a, b] are

[[H0, Ha], Hb] = [H0|a − H0|a, Hb] = H0|a|b − H0|a|b − H0|a|b + H0|a|b,

[H0, [Ha, Hb]] = [H0, Ha|b − Hb|a] = H0|a|b − H0|b|a − H0|b|a + H0|a|b.

One may check that

(14.64) [[H0, Ha], Hb]+ [H0, [Hb, Ha]]+ [[H0, Hb], Ha]+ [H0, [Ha, Hb]] = 0.

Expanding out yields a sum of 16 terms which cancel in pairs. This is the Jacobi
identity of type B.

An element of Lie[a, b, c, 0, a, b, c] is shown below.

[[H0, Ha], [Hb, Hc]] = [H0|a − H0|a, Hb|c − Hc|b]

= H0|a|b|c − H0|a|c|b − H0|a|b|c + H0|a|c|b − H0|a|c|b + H0|a|b|c + H0|a|c|b − H0|a|b|c.

To get antisymmetry and Jacobi identity in general, we replace each letter by
a Lie monomial. A bar on top of a Lie monomial means that we take bar of each
letter and also reverse the bracket expression. For example,

[Ha, Hb] := [Hb, Ha] and [Ha, [Hb, Hc]] := [[Hc, Hb], Ha].

This is consistent with the way the bar operation was defined on linear orders in
(14.62). Thus,

[H0, [Ha, Hb]] = −[H0, [Hb, Ha]] and [H0, [Ha, [Hb, Hc]]] = −[H0, [[Hc, Hb], Ha]]

are instances of antisymmetry, while

[[H0, Ha], [Hb, Hc]]+ [H0, [[Hb, Hc], Ha]]+ [[H0, [Hb, Hc]], Ha]+ [H0, [Ha, [Hb, Hc]]] = 0

is an instance of the Jacobi identity.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



416 14. DYNKIN IDEMPOTENTS

14.9.2. Type B binary trees. A type B binary tree on I is a binary tree with
|I|+1 leaves with the leftmost leaf labeled 0 and the remaining leaves labeled from
I with exactly one of i and i occuring for each i ∈ I. For instance,

0 a b c

and

0

a b̄

c

are type B binary trees on I = {a, b, c, 0, a, b, c}. A type B binary tree gives rise
to a bracket expression, and hence yields a type B Lie element. For instance, the
above type B binary trees yield the Lie elements

[[H0, Ha], [Hb, Hc]] and [H0, [[Ha, Hb], Hc]].

Unbracketing them results in a linear combination of type B linear orders.

14.9.3. JKS. Let S±n denote the signed symmetric group on n letters. This is the
Coxeter group of the arrangement of type B on [n]. Specializing Theorem 14.32,
we obtain:

Theorem 14.76. There is an isomorphism of S±n -modules

Hr−2(Π[n])⊗ Eo[n]→ Lie[n].

Let us describe this map explicitly. For clarity, we work with the arrangement
of type B on a finite set I. A maximal chain of faces f corresponds to a type B
binary tree on I whose internal nodes are linearly ordered in such a manner that
each node appears before both of its children. An illustration of the bijection for
I = {a, b, c, 0, a, b, c} is shown below.

(0abc⋖ 0a|bc⋖ 0|a|bc⋖ 0|a|b|c) ←→

1

2

0 a

3

b c

A type B binary tree gives rise to a bracket expression, and hence yields a type B
Lie element. Continuing the above example, with f denoting the maximal chain of
faces, the map is

s(f)∗ ⊗ [f ] 7→ [[H0, Ha], [Hb, Hc]].

14.9.4. Orientation and signature spaces. We explain the relation between
the orientation space Eo[n] and the signature space E−[n].

Let mc[n] denote the space spanned by maximal chains of faces. Consider the
map

Γ[n]→ mc[n], H0|l1|l2|...|ln 7→ (O,F1, F2, . . . , Fn),

where

F1 = 0|l1 . . . ln, F2 = 0|l1|l2 . . . ln, . . . , Fn = 0|l1|l2| . . . |ln
with Fi having i nonzero blocks and z(Fi) = {0}. By passing to quotients, this
map induces an isomorphism of S±n -modules

E−[n]
∼=−→ Eo[n].
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The key observation is that maximal chains of faces arising from adjacent chambers
have opposite orientations.

The image of the element H0|l1|...|ln in E−[n] may be denoted 0 ∧ l1 ∧ · · · ∧ ln,
with the understanding that switching li and li+1, or changing li to li incurs a
minus sign. We call this the sign representation of S±n .

14.9.5. Whitney cohomology. We now relate Whitney cohomology of the poset
of flats to Lie elements. Let A denote the type B arrangement of rank n. Set

∧
Lie[n] :=

⊕

X

Eo[AX]⊗ Lie[AX].

To describe this space more explicitly, we first recall three facts.

• AX is also a type B arrangement on the number of blocks of X.
• AX is the cartesian product of the type B arrangement on the zero block
of X with braid arrangements, one for each nonzero block of X.
• Eo[n] is the sign representation of S±n .

Now we describe
∧
Lie[n]. It is linearly spanned by elements of the form x0 ⊗

(x1 ∧ · · · ∧ xk), where x0 is a type B Lie element while the rest are type A Lie
elements, and each letter from 1 to n appears (with either parity) in exactly one
of the xi. For relations: We have linearity in each variable along with the usual
antisymmetry and Jacobi identity for Lie elements (of type B in x0 and of type A
in the rest). In addition, interchanging xi and xi+1 or switching the parity of all
letters in xi (for x ≥ 1) incurs a minus sign.

For instance, for n = 1, this space is two-dimensional with basis

[H0, H1] = −[H0, H1] and H0 ⊗ H1 = −(H0 ⊗ H1).

For n = 2, this space is 8-dimensional with basis

[H0, [H1, H2]], [H0, [H1, H2]], [[H0, H1], H2], [H0, H1]⊗ H2, [H0, H2]⊗ H1,

H0 ⊗ [H1, H2], H0 ⊗ [H1, H2], H0 ⊗ (H1 ∧ H2).
There are many ways in which a particular basis element can be written. For
instance,

[H0, H2]⊗ H1 = −[H0, H2]⊗ H1 = [H0, H2]⊗ H1,

H0 ⊗ (H1 ∧ H2) = −(H0 ⊗ (H1 ∧ H2)) = H0 ⊗ (H2 ∧ H1).
In general,

∧
Lie[n] has dimension (2n)!!, which is the number of chambers in

A. Specializing Theorem 14.34, we obtain:

Theorem 14.77. There is an isomorphism of S±n -modules

WH∗(Π[n])⊗ Eo[n] −→
∧

Lie[n].

14.9.6. Substitution product. For a type B partition X on the set I, the sub-
stitution product (10.28) is as follows. An element of Lie[AX] is a type B Lie
element on the blocks of X, while an element of Lie[AX] consists of a type B Lie
element on the zero block of X and type A Lie elements, one on each nonzero
block of X. (Recall that the nonzero blocks occur in pairs (J, J). It is understood
here that the Lie element on J is the bar of the Lie element on J .) This data
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together specifies a type B Lie element on I. For example, for the type B partition
X = {ce, fg, dba0abd, fg, ce},

([[H0abd, Hfg], Hce], {[[H0, Ha], [Hb, Hd]], [He, Hc], [Hc, He], [Hf , Hg], [Hg, Hf ]})
7→ [[[[H0, Ha], [Hb, Hd]], [Hf , Hg]], [He, Hc]].

This may also be expressed as

([[H0abd, Hfg], Hce], {[[H0, Ha], [Hb, Hd]], [He, Hc], [Hf , Hg]})
7→ [[[[H0, Ha], [Hb, Hd]], [Hf , Hg]], [He, Hc]].

Using the substitution product of chambers in Section 6.7.12, one can check that
diagram (10.29) indeed commutes.

Exercise 14.78. Make Proposition 13.28 explicit for the uniform section of the
arrangement of type B on I. This is the type B analogue of Proposition 14.59.

14.9.7. Another viewpoint on Lie. Let L denote the Lie subalgebra of the free
Lie algebra on [n]⊔ [n] which is invariant under the canonical involution i 7→ i. (In
this action, the bracket expression is kept the same, and not reversed.) Let E [n]
denote the multilinear part of the universal enveloping algebra of L. Explicitly, E [1]
is one-dimensional and spanned by H1 + H1. Similarly, E [2] is 3-dimensional with
basis

[H1, H2] + [H1, H2], [H1, H2] + [H1, H2], (H1 + H1) · (H2 + H2).

Here · represents the product in the universal enveloping algebra. Thus, we have
the relation

(H1 + H1) · (H2 + H2)− (H2 + H2) · (H1 + H1)

= [H1 + H1, H2 + H2] = ([H1, H2] + [H1, H2]) + ([H1, H2] + [H1, H2]).

In general, E [n] has a basis consisting of elements which are products of symmetrized
Lie monomials. An example of such an element for n = 5 is

([H3, H5] + [H3, H5]) · ([H1, H2] + [H1, H2]) · (H4 + H4).

Theorem 14.79. There is an isomorphism of S±n -modules

E [n]⊗ Eo[n]
∼=−→ Lie[n]⊗ Eo[n].

Note very carefully that we have put Eo[n] in the lhs. This is the sign repre-
sentation of the usual symmetric group Sn. The signed symmetric group S±n acts
on it by ignoring parity.

We illustrate the isomorphism on the above example.

([H3, H5] + [H3, H5]) · ([H1, H2] + [H1, H2]) · (H4 + H4)⊗ (3 ∧ 5 ∧ 1 ∧ 2 ∧ 4) 7→
[[[H0, [H3, H5]], [H1, H2]], H4]⊗ (3 ∧ 5 ∧ 1 ∧ 2 ∧ 4).

This map is well-defined by type B antisymmetry. The universal enveloping algebra
relation corresponds to the type B Jacobi identity.

Combining with Theorem 14.76, we obtain:

Theorem 14.80. There is an isomorphism of S±n -modules

Hr−2(Π[n])⊗ Eo[n]
∼=−→ E [n].
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14.9.8. Dynkin elements. Let A be the arrangement of type B on I. In this
subsection and the next, we work with an alternative combinatorial formulation of
faces and chambers which is as follows. A chamber C is the same as a linear order
ℓC on I ∪ {0} in which 0 appears first, along with a parity function

ǫC : I → {1,−1}.

This is the same as a type B linear order. More generally, a face F is the same as a
set composition ℓF on I ∪ {0} in which 0 appears in the first block (also called the
zero block), along with a parity function ǫF : I ′ → {1,−1}, where I ′ is the union
of the nonzero blocks of ℓF . This is the same as a type B set composition.

Now fix a chamber C. Consider the function

pC : I → R, pC(a) = ǫC(a) 2
k−2,

where k is the position of a ∈ I in the linear order ℓC . Note that pC is a point in
the interior of the chamber C. Let hC denote the half-space containing C whose
base is orthogonal to (the vector determined by) pC . The half-space hC is then
generic wrt A. The faces contained in hC can be described as follows.

Lemma 14.81. We have F ⊆ hC iff F and C satisfy the following compatibility
property. The largest element (wrt the linear order ℓC), say a, in the last nonzero
block of ℓF satisfies ǫF (a) = ǫC(a), similarly the largest element, say b, in the last
two nonzero blocks of F satisfies ǫF (b) = ǫC(b), and so on till we touch the zero
block of F .

Proof. Note that F ⊆ hC iff every point in F has a nonnegative inner product
with the vector pC . The latter condition can be analysed by repeatedly using the
simple inequality 2k > 1 + · · ·+ 2k−1. The outline of the argument is given below.

Forward implication. Suppose F and C are not compatible. Then there is an
element, say a, which is largest (wrt the linear order ℓC) in some final segment of
nonzero blocks of ℓF , and ǫF (a) 6= ǫC(a). Consider the point q whose value on a
is ǫF (a) if a belongs to this final segment, and 0 otherwise. Then q belongs to the
face F but its inner product with pC is strictly negative.

Backward implication. Suppose F and C are compatible. The set of blocks of
ℓF can be uniquely partitioned into contiguous sets of blocks such that the largest
element (wrt the linear order ℓC) in any partition occurs in the last block (of that
partition). Now let q be any point in F . Then the inner product of q with pC can
be split as a sum over these partitions, and each partition makes a nonnegative
contribution. �

The Dynkin element θhC
, which we abbreviate to θC , is

θC =
∑

F⊆hC

(−1)rk(F )HF .

The sum is over all faces F which are compatible with the chamber C in the sense
of Lemma 14.81. Since the central face has no nonzero blocks, it is compatible with
every chamber. This is consistent with the fact that the central face is contained
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in every half-space.

pC

hC

C

The figure illustrates the situation when I has two elements. Denoting the fixed
chamber by C = 0|a|b,

θC = H0ab − H0|āb − H0a|b − H0|ab − H0b|a + H0|ā|b + H0|a|b + H0|b|a.

It is the linear combination given by the central face minus 4 contiguous vertices
plus the 3 edges in-between.

If a Coxeter symmetry takes chamber C to chamber D, then it takes the point
pC to the point pD. It follows that the set of half-spaces {hC} form a single orbit
under the action of the signed symmetric group. Thus the symmetrized Dynkin
element is given by

dI =
∑

C

θC .

14.9.9. Action of symmetrized Dynkin element. Fix n to be the cardinality
of I, that is, n = |I|. Let T be any subset of S := {s0, s1, . . . , sn−1}. Put

(14.65) αT =
n−1∏

i=1

T (i),

where

T (i) =

®
2n− 2i+ 1 if si−1, si ∈ T , or si−1, si 6∈ T ,
1 otherwise.

This is a product of some subset of odd numbers between 3 and 2n − 1 (both
inclusive). Note that αT = αS\T . One extreme case is when T is either ∅ or S in
which case αT = (2n − 1)!!. The other extreme case is when T and S \ T consist
of alternate elements of S, that is, either s0, s2, · · · ∈ T and s1, s3, · · · ∈ S \ T , or
vice-versa in which case αT = 1.

For example, for n = 2,

α∅ = αs0,s1 = 3, αs0 = αs1 = 1,

and for n = 3,

α∅ = αs0,s1,s2 = 15, αs0 = αs1,s2 = 3, αs1 = αs0,s2 = 1, αs2 = αs0,s1 = 5.

Lemma 14.82. We have ∑

T :T⊆S

αT = (2n)!!,

which is the order of the signed symmetric group on n letters.
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This will follow from the considerations below. For n = 2 and n = 3, the sum
of the αT is 8 and 48, respectively, which can be readily checked from the above
calculations.

The type of any face F , denoted t(F ), is a subset of S defined as follows.
si ∈ t(F ) if the total size of any initial segment of blocks of F is i+1. For example,
for n = 4,

t(0a|bc|d) = {s1, s3}, t(0|ab|c|d) = {s0, s2, s3}.
In other words, the locations of the bars of F are encoded in its type. (This
description of the type map is equivalent to the one given in Section 6.7.8.)

Lemma 14.83. Let D and E be chambers. For any 0 ≤ i ≤ |I|, let ℓD,i denote
the restriction of ℓD to the last |I| − i elements. Let a denote the largest element
in ℓD,i wrt the linear order ℓE. Then

si ∈ t(hE(D)) ⇐⇒ ǫE(a) = ǫD(a).

Proof. Let P be the vertex of D of type si. Then ℓP has two blocks, and the
nonzero block is precisely the underlying set of ℓD,i. Thus, by Lemma 14.81, P ⊆
hE iff ǫE(a) = ǫP (a). Now the first condition is the same as the condition si ∈
t(hE(D)). Also, since P is a face of D, ǫP (a) is the same as ǫD(a). �

Theorem 14.84. We have

dI · HC =
∑

D

(−1)rk(Des(C,D))αt(Des(C,D))HD,

where t(Des(C,D)) is the type of the face Des(C,D), and αT is as in (14.65).

Proof. The arrangement of type B is simplicial. Thus, by Lemma 14.9,

dI · HC =
∑

D

(−1)rk(Des(C,D))αC,DHD,

where αC,D is the number of chambers E for which hE(D) = Des(C,D). For
notational simplicity, put T = t(Des(C,D)). Also write D = 0|p1| . . . |pn. We now
give an algorithm that lists all E for which the type of hE(D) is T . It works by
inserting the elements pn, . . . , p1 in that order (each with same or reversed parity).
It begins by inserting pn into the empty list. Now suppose that pn, . . . , pi+1 have
been inserted. While inserting pi, there are four cases. We employ Lemma 14.83
in each case.

• Suppose si−1 ∈ T, si 6∈ T . Then pi must be inserted to the right end of
the list with same parity.
• Suppose si−1 6∈ T, si ∈ T . Then pi must be inserted to the right end of
the list with parity reversed.
• Suppose si−1, si ∈ T . Then pi can be inserted either to the right end of

the list with same parity, or in any of the remaining n− i positions with
any parity.
• Suppose si−1, si 6∈ T . Then pi can be inserted either to the right end of

the list with parity reversed, or in any of the remaining n − i positions
with any parity.

Thus, for inserting pi, there is a unique choice in the first two cases, and 2n−2i+1
choices in the next two cases. This shows that αC,D equals αT as required. �
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When I has 2 elements, the αT values are 1 and 3, and the above formula
specializes to (14.42) for n = 4. (Recall that in this case, the arrangement of type
B is cisomorphic to the rank-two arrangement of 4 lines.)

Proposition 14.85. For any T ⊆ S, αT equals the number of chambers E such
that t(hE(D)) = T , where D is any fixed chamber. Dually, αT equals the number
of chambers D such that t(hE(D)) = T , where E is any fixed chamber.

Proof. The first part is contained in the proof of Theorem 14.84. Consider the
set of all pairs (D,E) such that t(hE(D)) = T . The signed symmetric group acts
freely on this set. So we can count the number of orbits either by fixing D or by
fixing E. Since doing it the first way gives αT , so must doing it the second way. �

By either interpretation, we deduce that the sum of the αT equals the number of
chambers. This proves Lemma 14.82. We may also rederive (6.18) as a consequence.

Corollary 14.86. The absolute value of the Möbius number of the arrangement of
type B on [n] is (2n− 1)!! (which also equals αS or α∅).

Proof. Put T = S in the second interpretation of αT given by Proposition 14.85.
A chamber D satisfies t(hE(D)) = S precisely when it is contained in the half-space
hE (which is generic). Now apply Proposition 14.16. �

Notes

Counting of bounded chambers. Theorem 14.7 is due to Zaslavsky [420, Theorem
C and Corollary 2.2]. It is also proved in [75, Theorem 4.6.5]. Corollary 14.2 is given in
[197, Theorem 3.2].

Poset homology. Proposition 14.25 is due to Folkman [172, Theorem 4.1]. The sketch
for our proof is taken from [69, Theorem 2.1]. Whitney homology for geometric lattices
was introduced by Bac lawski [35]. Its connection with the formulation given here is
explained in [71, Exercise 7.53]. For more information on poset topology, see the survey
article by Wachs [404].

JKS. The results in Section 14.4.9 relating order homology of the lattice of flats and
the Tits algebra are due to Saliola [350, Propositions 10.1 and 10.5]. The map (14.30) is
equivalent to his map ϕ defined in [350, Section 8.3.1]. An important part of his argument
is Lemma 13.59 which in closely linked to Lemma 13.58. (See the notes to Chapter 13.)
The latter was used in the second basis-free proof of JKS.

Recall that Lie elements can be defined for any LRB. Generalizing the presentation
of Lie[A] given by Theorem 14.35 to LRBs is however nontrivial. Important progress on
this problem has been made by Margolis, Saliola and Steinberg [288, Theorems 4.1 and
4.2, and Corollary 4.3] (without any mention of Lie theory).

Björner basis and Björner-Wachs basis. The Björner basis for homology of the lattice
of flats was constructed by Björner [69]. He implicitly uses a choice function to first
construct neat base-families and then the basis elements using (14.35). Proposition 14.45
corresponds to [69, Theorem 4.2]. Lemma 14.43 corresponds to [69, Proposition 3.6]. He
also defines the map (14.38) and shows that it preserves the basis elements [69, Lemmas
2.2 and 4.1]. A later survey with emphasis on the matroid aspects is given in [71].

The Björner-Wachs basis was introduced by Björner and Wachs [77] using the tech-
nique of generic hyperplanes. They give specific choices of a generic hyperplane for types
A, B and D. We have made use of these in our discussion on types A and B. Lem-
mas 14.60 and 14.81 are given in [77, Propositions 6.2 and 7.2]. A small distinction is
that the latter describe only the chambers contained in the generic half-space (as opposed
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to all faces). The counting argument using insertions given in the proof of Theorem 14.84
generalizes the argument given in [77, Corollary 7.4]. More precisely, Björner and Wachs
are counting αS in a dual manner, as stated in the second part of Proposition 14.85.

We defined the Björner-Wachs basis for top-homology tensored with the orientation
space, rather than just for top-homology. This avoids the orientation-fixing issue. We
made the choice C ⊆ h in (14.18) so that the BW-basis became exactly dual to the Dynkin
basis.

Type A. The left-bracketing operator and Theorem 14.67 (in the context of Lie polyno-
mials) appeared in work of Dynkin [153]; also see the papers of Specht [371] and Wever
[410], and the later paper of Ree [336, Theorem 2.3]. The Dynkin basis in Proposi-
tion 14.70 is called the (left) comb basis by Barcelo-Sundaram [42, Theorem 1.3] and
Wachs [403]. A discussion of Dynkin idempotents (without mention of generic hyper-

planes) is given in [10, Sections 14.5 and 14.6]. The elements θ1 and dn are considered
by Schocker [358, Lemma 4.5 and Section 9.1]. The Q-basis and the complete system
in Exercise 14.63 also occur in his work [358, Corollary 6.3]. He works with minimum
instead of maximum elements. For related information, see the notes to Chapter 11. For
information about q-Dynkin elements, see the notes to Chapter 16. Proposition 14.73 is
a classical result. A direct proof is given by Garsia [183, Sections 3 and 4, Theorem 4.4].

The character of Hr−2(Π[n]) was computed by Stanley [376, Lemma 7.1]. Via Hopf-
Lefschetz Theorem [36, Theorem 1.1], it coincides with the Möbius number of the subposet
of Π[n] fixed by the permutation whose character we are computing. The formula for
this Möbius number follows from a result of Hanlon [207, Theorem 4]. Stanley [376,
Theorem 7.3] or [404, Theorem 4.4.7] further relates this character to the character of
a representation of Sn induced from a certain 1-dimensional representation of the cyclic
group of order n. (A different proof of Stanley’s result was given by Sundaram [390,
Example 1.6].) By a result of Klyachko [244], the latter is the same as the character of
Lie[n]. (The character of the degree n-component of the free Lie algebra on n generators
was computed much earlier by Brandt [93, Theorem III]. ) Putting the two together implies
Theorem 14.57. (A more general character result is given by Robinson and Whitehouse
[344, Theorem 3.1].) This result was first stated in the present form by Joyal [233,
Theorem 4, Chapter 4]. His proof used species and he also computed the character using
this technique [233, Proposition 4, Chapter 4]. The connection of this result to Koszul
duality was explained by Fresse [174, Prolog and Epilog]. The first combinatorial proof
was given by Barcelo [39, Theorem 10.1] by identifying the dual of the Björner basis with
the Lyndon basis using the bijection of Lemma 14.74. The bijection is explained at the
beginning of [39, Section 10]: Chambers D with the same first element as C correspond
to Lyndon permutations, and γC-compatible labeled chains correspond to NBC bases.
The description of the JKS isomorphism (14.45) by relating chains and Lie elements to
binary trees (similar to what we do) is given by Wachs [403, Theorem 5.4]. She proves
Theorem 14.57 by checking that the cohomology relations corresponds to Jacobi dentities.
The same argument is sketched in [404, Sections 1.5 and 1.6]. The bases (14.59) and
(14.60) are also considered by Wachs [403, Proposition 2.3] under the name splitting
basis. The fact that the former is a specialization of the BW-basis for an appropriate choice
of half-space is pointed out in [77, Theorem 6.3]. The fact that the dual splitting basis
goes to the comb basis of Lie[n] under the JKS isomorphism is given in [403, Theorems
4.3 and 5.5]. Wachs mentions that the first of these results was obtained jointly with S.
Sundaram. She also explains the Björner-Lyndon duality in [403, Proposition 2.2 and
Theorem 4.1].

Theorem 14.58 can be deduced from a character computation of Lehrer and Solomon
[267, Corollary 4.6]. This result explicitly appeared in work of Barcelo and Bergeron [40,
Theorem 3.1]. (They phrase it in terms of the Orlik-Solomon algebra which is isomorphic
to Whitney homology.) They prove it by extending the duality between the Björner and
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Lyndon bases on Lie[n] (established by Barcelo [39]) to
∧

Lie[n]. The same isomorphism
is explained in a basis-free manner (similar to what we do) by Wachs [403, Theorem 7.2].

The description of the classical Lie operad given in Section 14.8.5 can be found for
instance in [9, Example B.5]. There are also other ways to formulate this operad, see for
instance [291, Definition 1.28] and [275, Section 13.2]. Proposition 14.59 is the operadic
version of the classical result that the tensor algebra is the symmetrization of the free Lie
algebra [342, Theorem 3.7].

Type B. Bergeron [51] generalized his work with Barcelo to type B. He uses the term
‘pair of hedge-rows’ for a type B binary tree, and denotes the space E [n] by L(n,∅)(n).
His Theorem 4.1 is equivalent to our Theorem 14.77. (He works with the Orlik-Solomon
algebra rather than Whitney homology, and with E [n] rather than Lie[n].) The cohomology
space Hr−2(Π[n]) is studied by Gottlieb and Wachs [191, Theorem 5.6 and Corollary 5.7].
They associate to a maximal chain of flats a type B binary tree, and give a presentation
of the cohomology space using such trees. They introduce elementary relations of types
1, 2, 3 and 4. They give a similar presentation of E [n] in their Theorem 6.1. Their
Corollary 7.4 is our Theorem 14.80. In their Corollary 8.6, they generalize this result to
components of Whitney homology. This corresponds to Bergeron’s Theorem 4.1 and to
our Theorem 14.77. We mention that Gottlieb and Wachs obtain their results in the more
general setting of Dowling lattices. Bergeron, Gottlieb and Wachs do not consider the
object Lie[n]. (The precise relation between E [n] and Lie[n] is given in Theorem 14.79.)
For results related to character computations, see [208, 266, 51].

The dual BW-basis is not expressible using a single maximal chain of flats in contrast to
type A (14.60). This is because there are chambers in type B contained in a generic half-
space h which have no contact with any of the chambers cut by b(h). Even the octagon
presents such an example. This is consistent with the observation in [191, Theorem 9.2],
whic gives a nice basis for cohomology but it is not the dual BW-basis. It picks maximal
chains (not linear combinations) to represent cohomology classes just like the Lyndon
basis.
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CHAPTER 15

Incidence algebras

Incidence algebras are reviewed in Section C.1. We begin with the flat-incidence
algebra. It is the incidence algebra of the poset of flats. It is related to the Birkhoff
algebra in the sense that the zeta function and the Möbius function intervene in
the change of basis formulas between the H- and Q-bases.

Next, we introduce the lune-incidence algebra, which is a certain reduced inci-
dence algebra of the poset of faces. It can also be viewed as the incidence algebra
of the category of lunes. In particular, it has a basis indexed by lunes. In this al-
gebra, one can define noncommutative zeta functions and noncommutative Möbius
functions, which are inverse to each other. This algebra connects to the Tits al-
gebra. Recall that homogeneous sections and special Zie families can be used to
construct and characterize Eulerian families. The punchline is that homogeneous
sections correspond to noncommutative zeta functions, while special Zie families
correspond to noncommutative Möbius functions. In effect, noncommutative zeta
and Möbius functions intervene in the change of basis formulas between the H- and
Q-bases of the Tits algebra.

There are three important subspaces of the lune-incidence algebra that we
consider, namely, the Lie-incidence algebra, the space of additive functions and the
space of Weisner functions. All three subspaces have the same dimension given by
the number of faces in the arrangement. The Lie-incidence algebra is a subalgebra
of the lune-incidence algebra. Its elements can be identified with Lie elements
in arrangements over and under various flats. In fact, it is isomorphic to the Tits
algebra. The space of additive functions contains the space of noncommutative zeta
functions. It is a right module over the Lie-incidence algebra with action induced
from the product in the lune-incidence algebra. In fact, it is isomorphic to the right
regular representation of the Lie-incidence algebra. Similarly, the space of Weisner
functions contains the space of noncommutative Möbius functions. It is a left
module over the Lie-incidence algebra isomorphic to the left regular representation.

There are similarities between the flat-incidence algebra, lune-incidence algebra
and Lie-incidence algebra. All three algebras are elementary, with the Birkhoff
algebra as their split-semisimple quotient. Their quivers have flats as their vertices,
and arrows can go only from a flat to a smaller flat which it covers.

An encompassing picture for these observations involves a generalization of the
classical notion of operad.

15.1. Flat-incidence algebra

The flat-incidence algebra is the incidence algebra of the poset of flats. We
discuss this briefly.

425

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



426 15. INCIDENCE ALGEBRAS

15.1.1. Flat-incidence algebra. Recall that a nested flat is a pair of flats (X,Y)
with X ≤ Y. Let Iflat[A] denote the incidence algebra of the poset of flats. We
call it the flat-incidence algebra. It consists of functions f on nested flats, with the
product of f and g given by

(15.1) (fg)(X,Z) =
∑

Y:X≤Y≤Z

f(X,Y)g(Y,Z).

This is a specialization of (C.1).
Incidence algebras are compatible with cartesian product of posets. As a con-

sequence: For arrangements A and A′,

(15.2) Iflat[A×A′] = Iflat[A]⊗ Iflat[A′].

15.1.2. A substitution product. For any arrangement A, let E[A] = k. For any
flat X, we have the map

(15.3) E[AX]⊗ E[AX]→ E[A], k⊗ k
∼=−→ k.

We call this the substitution product of E.
Consider the vector space ⊕

X≤Y

E[AY
X].

The sum is over both X and Y. This space carries an algebra structure. Elements
in the (X,Y)-summand are multiplied with elements in the (Y,Z)-summand by
substitution; the remaining products are all zero.

There is an isomorphism of algebras

(15.4) Iflat[A]
∼=−→

⊕

X≤Y

E[AY
X].

Given f ∈ Iflat[A], its image under (15.4) in the (X,Y)-summand is the scalar
f(X,Y).

15.1.3. Flat-incidence module. Let Mflat[A] denote the incidence module of the
poset of flats. We call it the flat-incidence module. It consists of functions on flats.
The module structure is given by

(15.5) (fg)(X) =
∑

Y:X≤Y

f(X,Y)g(Y).

This is a specialization of (C.10).
In view of (15.4), we note that there is an isomorphism of modules

(15.6) Mflat[A]
∼=−→

⊕

X

E[AX].

15.1.4. Radical of the flat-incidence algebra. Structure results on incidence
algebras are given in Section C.2. We now specialize some of them to the flat-
incidence algebra.

Proposition 15.1. The flat-incidence algebra is elementary. Its split-semisimple
quotient is the Birkhoff algebra, with the quotient map

(15.7) Iflat[A] ։ Π[A], f 7→
∑

X

f(X,X) QX.
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In particular, the radical of the flat-incidence algebra consists of functions which
are zero on nested flats of the form (X,X).

Proof. This is a special case of Proposition C.10. �

Theorem 15.2. The quiver of the flat-incidence algebra is as follows. The vertices
are flats, and there is exactly one arrow from Y to X when X⋖ Y, and no arrows
otherwise. In other words, the quiver is the Hasse diagram of the poset of flats.

Proof. This is a special case of Theorem C.14. �

15.2. Lune-incidence algebra

We introduce the lune-incidence algebra. It is a certain reduced incidence
algebra of the poset of faces. It has a basis indexed by lunes. It can also be
viewed as the incidence algebra of the category of lunes, and is thus linked to the
substitution product of chambers. It is related to the flat-incidence algebra via the
base-case map. We also introduce the lune-incidence module. The lune-incidence
algebra is elementary, and we describe its radical series and quiver.

Familiarity with the notions and results from Chapters 3 and 4 is a prerequisite
for this section.

15.2.1. Face-incidence algebra. Recall that a nested face is a pair of faces
(F,H) with F ≤ H. Let Iface[A] denote the incidence algebra of the poset of
faces. We call it the face-incidence algebra. It consists of functions f on nested
faces, with the product of f and g given by

(15.8) (fg)(F,H) =
∑

G:F≤G≤H

f(F,G)g(G,H).

15.2.2. Lune-incidence algebra. Recall the equivalence relation (3.13) on the
set of nested faces. For convenience, it is reproduced below.

(15.9) (A,F ) ∼ (B,G) ⇐⇒ AB = A, BA = B, AG = F and BF = G.

Let Ilune[A] denote the subspace of Iface[A] consisting of those functions f on nested
faces such that f(A,F ) = f(B,G) whenever (A,F ) ∼ (B,G).

Lemma 15.3. The equivalence relation (15.9) is order-compatible, or equivalently,
Ilune[A] is a subalgebra of Iface[A]. It has a basis indexed by lunes.

Proof. The poset isomorphism in Lemma 1.35 restricts to an isomorphism be-
tween intervals [A,F ] and [B,G] when (A,F ) ∼ (B,G). Proposition C.16 then
ensures that the relation is order-compatible. Since equivalence classes correspond
to lunes (Proposition 3.13), the remaining assertion holds. �

We refer to Ilune[A] as the lune-incidence algebra. It is an example of a reduced
incidence algebra of the poset of faces.

The relation (15.9) is strictly stronger than poset isomorphism. For example,
(F, F ) ∼ (G,G) only if F and G have the same support, while [F, F ] and [G,G] are
always isomorphic as posets, being singletons.
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15.2.3. Substitution product of chambers. Consider the vector space
⊕

X≤Y

Γ[AY
X].

The sum is over both X and Y. This space carries an algebra structure. Elements
in the (X,Y)-summand are multiplied with elements in the (Y,Z)-summand by
substitution (10.27); the remaining products are all zero.

Lemma 15.4. There is an isomorphism of algebras

(15.10) Ilune[A]
∼=−→

⊕

X≤Y

Γ[AY
X].

Given f ∈ Ilune[A], its image under (15.10) in the (X,Y)-summand is the
element

(15.11)
∑

F :F≥A, s(F )=Y

f(A,F ) HF/A,

where A is a fixed face of support X.

15.2.4. Base-case map. We relate the lune-incidence algebra to the flat-incidence
algebra. The former is the reduced incidence algebra of the poset of faces under
the relation (15.9). We may view the latter as the reduced incidence algebra of the
poset of flats under the equality relation.

Proposition 15.5. There is an algebra homomorphism

(15.12) bc : Ilune[A]→ Iflat[A]
given by

bc(f)(X,Y) =
∑

F :F≥A, s(F )=Y

f(A,F ),

where A is a fixed face of support X.

Proof. Proposition 3.14 implies that the support map s : Σ→ Π creates relations,
in the sense of Section C.3. Indeed, it says that both conditions (C.19) and (C.22)
hold. The result then follows from Proposition C.18. �

Second proof. A comparison of (15.4) and (15.10) shows that the map bc is
induced from maps Γ[A]→ E[A], asA varies, which send all basis elements to 1. The
fact that it is an algebra homomorphism is then encapsulated in the commutative
diagram

(15.13)

Γ[AX]⊗ Γ[AX] //

��

Γ[A]

��

E[AX]⊗ E[AX] // E[A].

�

We call bc the base-case map. Its relationship with the base-case map in (4.4)
is explained in (15.15) below.
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15.2.5. Category of lunes. Incidence algebras can be defined for any locally
finite category (Section C.1.13). Recall the category of lunes from Section 4.4. It
is a finite category.

Proposition 15.6. The lune-incidence algebra is the incidence algebra of the cat-
egory of lunes. Explicitly, it consists of functions f on lunes, with the product of f
and g given by

(15.14) (fg)(N) =
∑

L◦M=N

f(L)g(M).

The sum is over both L and M. The unit element is the function which is 1 on
flats, and 0 on lunes which are not flats.

In the language of Proposition 15.6, the base-case map (15.12) is given by

(15.15) bc(f)(X,Y) =
∑

L: b(L)=X, c(L)=Y

f(L).

The sum is over all lunes L whose base is X and case is Y, or equivalently, over all
lunes L whose base-case is (X,Y).

Exercise 15.7. Use formula (15.15) along with (15.14) to deduce that the base-
case map is an algebra homomorphism. (This is formally equivalent to the second
proof of Proposition 15.5.)

Incidence algebras are compatible with cartesian product of categories. Also
recall from Section 4.4.4 that the category of lunes is compatible with cartesian
product of arrangements. As a consequence of Proposition 15.6: For arrangements
A and A′,

(15.16) Ilune[A×A′] = Ilune[A]⊗ Ilune[A′].

15.2.6. Lune-incidence module. Recall the equivalence relation (3.7) on the
set of top-nested faces. Define the vector space Mlune[A] as follows. It consists of
functions g on top-nested faces such that g(A,C) = g(B,D) whenever (A,C) ∼
(B,D). This is a left module over the lune-incidence algebra with action given by

(15.17) (fg)(F,C) =
∑

G:F≤G≤C

f(F,G)g(G,C).

We call it the lune-incidence module. It has a basis indexed by top-lunes. Along
the lines of Proposition 15.6, we obtain:

Proposition 15.8. The lune-incidence module consists of functions g on top-lunes,
with the action of f on g given by

(15.18) (fg)(N) =
∑

L◦M=N

f(L)g(M).

Here N is a top-lune. (Note that this forces M to be a top-lune.)

Observe that the lune-incidence module can be viewed as a left ideal of the
lune-incidence algebra consisting of functions which are 0 on lunes which are not
top-lunes. Further, the isomorphism of algebras (15.10) induces an isomorphism of
left ideals

(15.19) Mlune[A]
∼=−→

⊕

X

Γ[AX].
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15.2.7. Radical of the lune-incidence algebra. We work with the description
given in Proposition 15.6.

Proposition 15.9. The lune-incidence algebra is elementary. Its split-semisimple
quotient is the Birkhoff algebra, with the quotient map

(15.20) Ilune[A] ։ Π[A], f 7→
∑

X

f(X) QX.

In particular, the radical of the lune-incidence algebra consists of functions on lunes
which vanish on flats.

Proof. Let J denote the set of functions on lunes which are zero on flats. Observe
that J is a nilpotent ideal and all nilpotent elements belong to J . Hence J is the
radical of the lune-incidence algebra. All claims follow. �

Proposition 15.10. For each flat X, let eX denote the function on lunes which is
1 on X and 0 otherwise. The eX, as X varies, is a complete system of primitive
orthogonal idempotents of Ilune[A].
Proof. We only have to note that the map QX 7→ eX is an algebra section of
(15.20). �

Recall from (3.2) that sk(L) denotes the slack of the lune L.

Proposition 15.11. The i-th power of the radical of the lune-incidence algebra
consists of functions f on lunes such that f(L) = 0 whenever sk(L) < i.

Proof. This can be deduced from Exercise 4.43 and the description of the radical
given in Proposition 15.9. �

As a consequence:

Proposition 15.12. The nilpotency index of the radical of the lune-incidence al-
gebra is r+1, where r is the rank of the arrangement. The r-th power of the radical
consists of functions which are zero on all lunes which are not chambers.

The powers of the radical can also be described using the identification (15.10).
The i-th power equals ⊕

rk(Y/X)≥i

Γ[AY
X].

The sum is over all X ≤ Y such that the codimension of X in Y is greater than i.
In particular, the radical is

⊕
X<Y Γ[AY

X] and the r-th power is Γ[A].
Theorem 15.13. The quiver of the lune-incidence algebra is as follows. The ver-
tices are flats, and there are exactly two arrows from Y to X when X⋖ Y, and no
arrows otherwise.

Proof. The split-semisimple quotient of the lune-incidence algebra is the Birkhoff
algebra. Hence the vertices of its quiver are flats. The arrows can be computed from
Proposition 15.11. Note that J/J2 ∼= ⊕

X⋖Y eXIlune eY, where J is the radical of the
lune-incidence algebra, and the eX are as in Proposition 15.10. Thus, eX(J/J

2)eY
is zero unless X⋖Y, and in this case, its dimension is 2. This is because, for X⋖Y,
there are two lunes with base X and case Y. They correspond to the two chambers
in the rank-one arrangement AY

X. �
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15.2.8. Projective lune-incidence algebra. Every nested face (A,F ) has an
opposite nested face given by (A,AF ). Note that (A,F ) is its own opposite iff
A = F . Let ≡ denote the equivalence relation on nested faces in which opposite
nested faces are equivalent. A function f on nested faces is projective if f(A,F ) =
f(A,AF ) for all nested faces (A,F ).

Let ∼′ denote the equivalence relation on nested faces generated by ∼ and ≡.
Explicitly, in view of (3.14),

(15.21) (A,F ) ∼′ (B,G) ⇐⇒ Either (A,F ) ∼ (B,G) or (A,F ) ∼ (B,BG).

The relation (A,F ) ≡ (A,AF ) is covered by the second alternative. The equivalence
classes under ∼′ are projective lunes.

Lemma 15.14. The equivalence relation (15.21) is order-compatible. In other
words, the space of all projective functions in the lune-incidence algebra form a
subalgebra. It has a basis indexed by projective lunes.

Proof. We extend the proof of Lemma 15.3 to include the case (A,F ) ≡ (A,AF )
as follows. The intervals [A,F ] and [A,AF ] are isomorphic under the map K 7→
AK. Further, (A,K) ≡ (A,AK), and (K,F ) ∼ (AK,AKF ) ≡ (AK,AF ). Note
very carefully that the last step employs both ∼ and ≡. �

We call this the projective lune-incidence algebra.
A function f on lunes is projective if f(L) = f(L). In the language of Propo-

sition 15.6, the projective lune-incidence algebra is the subalgebra of the lune-
incidence algebra consisting of projective functions. The fact that it is a subalgebra
can also be deduced from Lemma 4.39.

Exercise 15.15. Show that the equivalence relation ≡ on nested faces is not order-
compatible in general. In fact, order-compatibility fails in rank-two arrangements.

The subspace of the lune-incidence module consisting of projective functions
(either on top-nested faces or on top-lunes depending on viewpoint) is a module
over the projective lune-incidence algebra. We call this the projective lune-incidence
module.

15.2.9. Rank one. Let A be the arrangement of rank one. It has four lunes,
namely, the flats ⊥ and ⊤ and chambers C and C. Except ⊥, the rest are top-lunes.
The lune-incidence algebra of A consists of functions f on lunes, with product of
f and g given by

(15.22)
(fg)(⊥) = f(⊥)g(⊥), (fg)(C) = f(⊥)g(C) + f(C)g(⊤),
(fg)(⊤) = f(⊤)g(⊤), (fg)(C) = f(⊥)g(C) + f(C)g(⊤).

It is the incidence algebra of the category with two objects and two parallel (non-
identity) arrows (Example 4.28). Its radical is the ideal consisting of functions f
on lunes for which f(⊥) = f(⊤) = 0.

The lune-incidence module is the left ideal consisting of functions f on lunes
for which f(⊥) = 0.

For the projective case, we impose the additional condition f(C) = f(C).
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15.3. Noncommutative zeta and Möbius functions

Noncommutative zeta functions are elements of the lune-incidence algebra char-
acterized by lune-additivity. Similarly, noncommutative Möbius functions are ele-
ments of this algebra characterized by the noncommutative Weisner formula. In-
terestingly, these functions are not unique, but they are inverse to each other.
They can be seen to correspond to homogeneous sections and special Zie families,
respectively.

15.3.1. Noncommutative zeta functions. Recall the lune-incidence algebra
Ilune[A]. A noncommutative zeta function is an element ζ ∈ Ilune[A] such that
ζ(A,A) = 1 for all A and

(15.23) ζ(H,G) =
∑

F :F≥A,HF=G,
s(F )=s(G)

ζ(A,F )

for all A ≤ H ≤ G. Note that when A = H, it holds automatically, as the only F
that contributes to the sum is F = G.

Lemma 15.16. All noncommutative zeta functions ζ ∈ Ilune[A] have the same
base-case: the zeta function ζ ∈ Iflat[A].

Proof. Fix X ≤ Y, and a face A of support X. Let G be any face greater than A
with support Y. Then

bc(ζ)(X,Y) =
∑

F :F≥A, s(F )=Y

ζ(A,F ) = ζ(G,G) = 1.

For the second step, we put H = G in (15.23). �

Lemma 15.17. A noncommutative zeta function is equivalent to a homogeneous
section of the support map.

Proof. Given ζ, put uF := ζ(O,F ). Putting A = O and H = G in (15.23), we
see that (11.3) holds. Thus, (uF ) is a homogeneous section. Conversely, given a
homogeneous section u, put ζ(H,G) := uGH . Then ζ defines a noncommutative zeta
function: (11.10) says that it belongs to the lune-incidence algebra, while (11.11)
is the same as (15.23). �

Exercise 15.18. A noncommutative zeta function ζ is

• set-theoretic if the scalars ζ(O,F ) are either 0 or 1, and among all faces
F of a given support, exactly one ζ(O,F ) is 1,

• projective if ζ(O,F ) = ζ(O,F ) for all faces F , and
• uniform if ζ(O,F ) = ζ(O,G) whenever F and G have the same support.

Check that: Under the identification in Lemma 15.17, the above correspond to
set-theoretic, projective and uniform sections, respectively.

Exercise 15.19. Check that a noncommutative zeta function ζ is projective if
ζ(A,F ) = ζ(A,AF ) for all A ≤ F . (This is equivalent to the second assertion in
Exercise 11.8.)

In the language of Proposition 15.6:
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Lemma 15.20. A noncommutative zeta function is the same as a function ζ on
lunes such that ζ(Z) = 1 for any flat Z, and for any lune M and flat X with
X ≤ b(M),

(15.24) ζ(M) =
∑

L: b(L)=X,L≤M
c(L)=c(M)

ζ(L).

The sum is over all lunes L which are contained in M, have base X and the same
case as M.

A comparison with (3.24) shows that ζ is a function on lunes which is 1 on flats
and additive over any lune decomposition of a lune (into smaller lunes). We refer
to either (15.23) or (15.24) as lune-additivity .

Lemma 15.21. Let ζ be a noncommutative zeta function. Then:
For any combinatorial lune M,

(15.25) ζ(M) =
∑

F∈M

ζ(F ).

The sum is over all top-dimensional faces F of M.
For any flats X ≤ Y,

(15.26)
∑

L: b(L)=X, c(L)=Y

ζ(L) = ζ(Y).

Proof. Setting X = ⊥ in (15.24) yields (15.25). (Recall that faces are the only
lunes whose base is the minimum flat.)

Similarly, setting M = Y in (15.24) yields (15.26). �

Observe that condition (15.25) implies and hence is equivalent to (15.24). This
is also the content of Lemma 15.17.

15.3.2. Noncommutative Möbius functions. A noncommutative Möbius func-
tion is an element µ ∈ Ilune[A] such that µ(A,A) = 1 for all A and

(15.27)
∑

F :F≥A,HF=G

µ(A,F ) = 0

for all A < H ≤ G.
Lemma 15.22. All noncommutative Möbius functions µ ∈ Ilune[A] have the same
base-case: the Möbius function µ ∈ Iflat[A].
Proof. We check that bc(µ) satisfies the Weisner formula (C.7a), that is, for
Z < Y ≤W, ∑

X:X≥Z,Y∨X=W

bc(µ)(Z,X) = 0.

Fix a face A of support Z, and face H greater than A of support Y. Then
∑

X:X≥Z,Y∨X=W

bc(µ)(Z,X) =
∑

F :F≥A,Y∨s(F )=W

µ(A,F )

=
∑

F :F≥A, s(HF )=W

µ(A,F )

=
∑

G: s(G)=W

∑

F :F≥A,HF=G

µ(A,F ) = 0. �
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Lemma 15.23. A noncommutative Möbius function is equivalent to a special Zie
family.

Proof. Given µ, for each F , the element xF :=
∑
G:F≤G µ(F,G) HG/F is a Zie

element of AF . (The Friedrichs criterion reduces to the noncommutative Weisner
formula.) The special Zie family P can now be defined as follows. For each flat
X, pick a face F with support X, and let PX := βX,F (xF ). Since µ belongs to the
lune-incidence algebra, this does not depend on the choice of F . These steps can
be reversed. �

Exercise 15.24. By definition, a noncommutative Möbius function is projective
if µ(A,F ) = µ(A,AF ) for all A ≤ F . Check that: Under the identification in
Lemma 15.23, a projective noncommutative Möbius function corresponds to a pro-
jective special Zie family.

In the language of Proposition 15.6:

Lemma 15.25. A noncommutative Möbius function is the same as a function µ

on lunes such that µ(Z) = 1 for any flat Z, and for any lune M and flat X with
X < b(M),

(15.28)
∑

L: b(L)=X,L�M

µ(L) = 0.

The sum is over all lunes L whose base is X and whose interior is contained in the
interior of M, see (4.7).

We refer to either (15.27) or (15.28) as the noncommutative Weisner formula.

Lemma 15.26. Let µ be a noncommutative Möbius function. Then:
For any lune M which is not a face,

(15.29)
∑

F∈Mo

µ(F ) = 0.

The sum is over all interior faces F of M.
For any flats X < Y,

(15.30)
∑

L: b(L)=X, c(L)≤Y

µ(L) = 0.

Proof. Setting X = ⊥ in (15.28) yields (15.29). (Recall that faces are the only
lunes whose base is the minimum flat.)

Similarly, setting M = Y in (15.28) and using (4.8) yields (15.30). �

15.3.3. Zeta and Möbius as inverses. The main result is the following.

Theorem 15.27. In the lune-incidence algebra, the inverse of a noncommutative
zeta function is a noncommutative Möbius function, and vice-versa.

This is a part of a more general result given in Theorem 15.40. For convenience,
we indicate here a way to obtain this result directly.

Sketch of a direct proof. Let us start afresh forgetting all that we discussed
about the Tits algebra. Let Σ denote the linearization of the set of faces, and let
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H and Q be two bases of Σ indexed by faces. Consider the following two binary
operations on Σ.

HF ·1 HG = HFG and HF ·2 QG =

®
QFG if GF = G,

0 if GF > G.

The theorem follows from the following two lemmas.

Lemma 15.28. Suppose µ ∈ Ilune[A] such that µ(A,A) = 1 for all A, and H and
Q are related by

QF =
∑

G:F≤G

µ(F,G) HG.

Then µ is a noncommutative Möbius function iff the above two operations coincide.

To prove this, start with the second operation, express QG in the H-basis, and
compare this with the first operation. We omit the details.

Lemma 15.29. Suppose ζ ∈ Ilune[A] such that ζ(A,A) = 1 for all A, and H and Q

are related by

HF =
∑

K:F≤K

ζ(F,K) QK .

Then ζ is a noncommutative zeta function iff the above two operations coincide.

This is similar. We start with the first operation, express HG in the Q-basis,
and compare this with the second operation. �

Exercise 15.30. Use Lemma 15.17 or (15.25) to deduce that all noncommutative
zeta functions form an affine space whose dimension equals the number of faces
minus the number of flats. Use Lemma 15.23 and formulas (1.46) and (10.25) to
do the same for all noncommutative Möbius functions. (By general principles, the
dimensions must be equal. So alternatively, one can use this fact and induction to
deduce formula (10.25).)

Exercise 15.31. Using Lemma D.25, item (2), deduce that: Projective noncom-
mutative zeta and Möbius functions are in bijection with each other under taking
inverses in the projective lune-incidence algebra. Both sets form affine spaces whose
dimension equals the number of projective faces minus the number of flats (assum-
ing that the field characteristic is not 2).

15.3.4. Examples. Some examples of noncommutative zeta and Möbius functions
are given below.

Example 15.32. Consider the rank-one arrangement with chambers C and C.
Now fix an arbitrary scalar p.

Any noncommutative zeta function ζ is of the form

ζ(O,O) = ζ(C,C) = ζ(C,C) = 1, ζ(O,C) = p, ζ(O,C) = 1− p.
Lune-additivity says

ζ(O,C) + ζ(O,C) = 1.

To find the inverse, we solve the equations

ζ(O,O)µ(O,C) + ζ(O,C)µ(C,C) = 0, ζ(O,O)µ(O,C) + ζ(O,C)µ(C,C) = 0.

Thus, the corresponding noncommutative Möbius function µ is given by

µ(O,O) = µ(C,C) = µ(C,C) = 1, µ(O,C) = −p, µ(O,C) = p− 1.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



436 15. INCIDENCE ALGEBRAS

The noncommutative Weisner formula says

µ(O,O) + µ(O,C) + µ(O,C) = 0.

As functions on lunes, we write

ζ(⊥) = ζ(⊤) = 1, ζ(C) = p, ζ(C) = 1− p,
µ(⊥) = µ(⊤) = 1, µ(C) = −p, µ(C) = p− 1.

There is a unique projective noncommutative zeta function and a unique pro-
jective noncommutative Möbius function; they correspond to p = 1/2.

Example 15.33. For a good reflection arrangement, a canonical choice is

ζ(F,G) =
1

cGF
and µ(F,G) =

µ(AGF )
cGF

.

They arise from the uniform section in view of (11.49). The 1 in the numerator
of the first fraction can be read as a zeta value. One may also check directly that
µ(F,G) satisfies the noncommutative Weisner formula.

Example 15.34. Another nice example arises from a separating element of the
Tits algebra (Section 12.2.2). The noncommutative zeta and Möbius functions are
given by formulas (12.12) and (12.14).

Exercise 15.35. Write down the noncommutative zeta and Möbius functions of
Example 15.33 for the braid arrangement. Consider (15.23) and (15.27) with A = O
for these functions. Recover the count of shuffles as a multinomial coefficient in
Exercise 6.13 from the former. Deduce the following identity from the latter:

(15.31)

p1+···+pk∑

p=max{p1,...,pk}

(−1)p
p

Ç
p

p1, . . . , pk

å

qs

= 0.

Exercise 15.36. Take a look at Section 14.8.8. Write down the noncommuta-
tive zeta and Möbius functions for the braid arrangement corresponding to the
homogeneous section (14.49) and Q-basis (14.48). Do the same for the example in
Exercise 14.63. (Use Exercise 12.64.)

15.3.5. Noncommutative Hall formula. Given a noncommutative zeta func-
tion ζ, its inverse µ is given by

(15.32) µ(A,F ) =
∑

k≥0

(−1)k
∑

A=G0<G1<···<Gk=F

ζ(G0, G1) . . . ζ(Gk−1, Gk).

This is a special case of (C.4) and is equivalent to (11.32).
In terms of lunes, the inverse is given by

(15.33) µ(L) =
∑

k≥0

(−1)k
∑

L1◦···◦Lk=L

ζ(L1) . . . ζ(Lk).

The sum is over all sequences of composable lunes (in the category of lunes) which
are not flats (identity morphisms). The summand corresponding to k = 0 is 0
unless L is a flat, in which case it is 1. We refer to (15.33) as the noncommutative
Hall formula.
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15.3.6. Left regular bands. Theorem 15.27 generalizes to any left regular band
(LRB). Recall that every LRB carries the structure of a poset via (E.2) which then
has an incidence algebra. The relation (15.9) is an equivalence relation which is
order-compatible, so it yields a subalgebra of the incidence algebra. Lune-additivity
(15.23) and noncommutative Weisner formula (15.27) make sense, and we use them
to define noncommutative zeta functions and noncommutative Möbius functions.
They are inverses of each other in this subalgebra; the proof sketched above goes
through.

For the Tits monoid, this subalgebra is the lune-incidence algebra, and we
recover Theorem 15.27. For the Birkhoff monoid, the relation (15.9) is trivial,
and this subalgebra is the flat-incidence algebra. In this case, there is a unique
zeta function and a unique Möbius function, and they are inverses of each other.
Formula (15.23) reduces to the tautology 1 = 1, while (15.27) reduces to the Weisner
formula (1.43a).

15.4. Noncommutative Möbius inversion. Group-likes and primitives

We introduce noncommutative Möbius inversion for the lune-incidence module.
We then define the notion of group-likes and primitives in the lune-incidence mod-
ule, and show that they correspond to each other under noncommutative Möbius
inversion.

15.4.1. Noncommutative Möbius inversion. Recall the lune-incidence mod-
ule Mlune[A]. Let ζ be a noncommutative zeta function, and µ be its inverse. Then
for functions f and g in Mlune[A],

(15.34) g(F,C) =
∑

G:F≤G≤C

ζ(F,G)f(G,C) ⇐⇒ f(F,C) =
∑

G:F≤G≤C

µ(F,G)g(G,C).

This is equivalent to g = ζf ⇐⇒ f = µg. We call this noncommutative Möbius
inversion. In this situation, we say that g is the exponential of f , and f is the
logarithm of g.

15.4.2. Group-likes and primitives. We say g ∈ Mlune[A] is group-like if it
satisfies

(15.35) g(H,D) =
∑

C:C≥A,HC=D

g(A,C)

for all A ≤ H ≤ D.

Lemma 15.37. A group-like g is equivalent to a choice of scalars g(O,C), one for
each chamber C.

Proof. Similar to the proof of Lemma 15.17. �

Similarly, we say f ∈ Mlune[A] is primitive if it satisfies

(15.36)
∑

C:C≥A,HC=D

f(A,C) = 0

for all A < H ≤ D.

Lemma 15.38. A primitive f is equivalent to a choice of a Lie element of AX,
one for each flat X.
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Proof. Similar to the proof of Lemma 15.23. For each face A, the Lie element in
AA is given by

∑
C:C≥A f(A,C)HC/A. �

Theorem 15.39. Let ζ be a noncommutative zeta function, and µ be its inverse.
Then under the correspondence (15.34), f is primitive iff g is group-like.

Proof. Suppose f is primitive. We check that g is group-like. For A ≤ H ≤ D,
∑

C:C≥A,HC=D

g(A,C) =
∑

C:C≥A,HC=D

∑

K:A≤K≤C

ζ(A,K)f(K,C)

=
∑

K:A≤K,HK≤D

ζ(A,K)
∑

C:C≥K,HC=D

f(K,C)

=
∑

K:A≤K,HK≤D,
KH=K

ζ(A,K)f(K,KD)

=
∑

K:A≤K,HK≤D,
KH=K

ζ(A,K)f(HK,D)

=
∑

G:H≤G≤D

Å ∑

K:A≤K,HK=G,
s(K)=s(G)

ζ(A,K)

ã
f(G,D)

=
∑

G:H≤G≤D

ζ(H,G)f(G,D)

= g(H,D).

The first and last steps used the definition (15.34). The second step interchanged
the order of the sums. Since f is primitive, by (15.36) the inner sum is zero unless
KH = K. (Otherwise KH > K and HC = D is the same as KHC = KD.)
This was used in the third step. The fourth step used that (K,KD) ∼ (HK,D).
In the fifth step, we introduced a new variable G for HK. The sixth step used
lune-additivity (15.23).

Conversely, suppose g is group-like. We check below that f is primitive. For
A < H ≤ D,

∑

C:C≥A,HC=D

f(A,C) =
∑

C:C≥A,HC=D

∑

K:A≤K≤C

µ(A,K)g(K,C)

=
∑

K:A≤K,HK≤D

µ(A,K)
∑

C:C≥K,HC=D

g(K,C)

=
∑

K:A≤K,HK≤D

µ(A,K)g(KH,KD)

=
∑

K:A≤K,HK≤D

µ(A,K)g(HK,D)

=
∑

G:H≤G≤D

Å ∑

K:A≤K,HK=G

µ(A,K)

ã
f(G,D)

= 0.

The first step used the definition (15.34). The second step interchanged the order of
the sums. The third step used that g is group-like (15.35) and the fact thatHC = D
is the same as KHC = KD. The fourth step used that (KH,KD) ∼ (HK,D).
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In the fifth step, we introduced a new variable G for HK. The last step used the
noncommutative Weisner formula (15.27). �

An application is given below.

Second proof of Theorem 11.57. Fix a noncommutative zeta function ζ, and
let µ be its inverse. Put g(H,D) := vDH for all H > O. We want to extend g to
a function on all top-nested faces such that g is group-like in the sense of (15.35).
The conditions (11.57) and (11.58) say that the given data is consistent with g
being group-like. Define f(H,D) for all H > O using (15.34). We extend f to
a function on all top-nested faces by picking a Lie element

∑
C x

CHC and setting
f(O,C) := xC . By Lemma 15.38, f is primitive in the sense of (15.36). Now define
g(O,D) using (15.34). By Theorem 15.39, g is group-like. �

15.5. Characterizations of Eulerian families

Recall that in Chapter 11, we characterized Eulerian families of the Tits algebra
in terms of homogeneous sections and special Zie families. Noncommutative zeta
and Möbius functions can now be added to the story. Similar considerations apply
to the projective Tits algebra.

15.5.1. Tits algebra.

Theorem 15.40. The following pieces of data are equivalent.

(1) A noncommutative zeta function ζ of A.
(2) A homogeneous section u of A.
(3) An Eulerian family E of A.
(4) A complete system of primitive orthogonal idempotents of Σ[A].
(5) An algebra section of the support map s : Σ[A]→ Π[A].
(6) A Q-basis of the Tits algebra of A.
(7) A special Zie family P of A.
(8) A noncommutative Möbius function µ of A.

Proof. Combine Lemmas 15.17 and 15.23 with Theorems 11.20 and 11.40 and
Proposition 11.43. �

For convenience, the interactions between the different pieces of data are sum-
marized in Table 15.1.

Formulas (11.33) relating the H- and Q-bases can be rewritten as

(15.37) HF =
∑

K:F≤K

ζ(F,K) QK and QF =
∑

G:F≤G

µ(F,G) HG.

In particular, ζ and µ are inverses of each other in the lune-incidence algebra. This
gives a proof of Theorem 15.27.

The Q-basis expansion (11.28) for the Eulerian idempotents can be written as

(15.38) EX =
∑

F : s(F )=X

ζ(O,F ) QF .

Exercise 15.41. Show that: In rank at least one,

(15.39) QO ·
(∑

C

ζ(O,C) HC
)
= 0.

This is equivalent to the result of Exercise 11.14.
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Table 15.1. Interactions in a nutshell.

(1)→ (2) uF := ζ(O,F )

(2)→ (1) ζ(H,G) := uGH with uH := ∆H(u)

(2)→ (3) EX := uX −
∑

Y:Y>X uX · EY with uX :=
∑
F : s(F )=X uF HF

(3)→ (2) uX is the base term of EX

(3)→ (4) An Eulerian family {EX} is a complete system of Σ[A]
(3)→ (5) s(EX) = QX and QX 7→ EX is an algebra section of s

(4)↔ (5) General fact about elementary algebras

(3)→ (6) QF := HF · Es(F )

(6)→ (2), (3) HO =
∑
F uF QF and EX :=

∑
F : s(F )=X uF QF

(6)→ (7) PX := βX,F (∆F (QF ))

(7)→ (6) QF := µF (βF,X(PX))

(7)→ (8)
∑
G:F≤G µ(F,G) HG/F = βF,X(PX)

(8)→ (7) PX := βX,F (
∑
G:F≤G µ(F,G) HG/F )

15.5.2. Projective Tits algebra. The analogue of Theorem 15.40 for the pro-
jective Tits algebra is given below.

Theorem 15.42. Assume that the field characterstic is not 2. The following pieces
of data are equivalent.

(1) A projective noncommutative zeta function of A.
(2) A projective section of A.
(3) A projective Eulerian family of A.
(4) A complete system of the projective Tits algebra.
(5) An algebra section from the Birkhoff algebra to the projective Tits algebra.
(6) A Q-basis of the projective Tits algebra of A.
(7) A projective special Zie family of A.
(8) A projective noncommutative Möbius function of A.

Proof. Combine Exercises 15.18 and 15.24 with Propositions 11.16, 11.45 and
11.46 and Exercise 11.24. �

15.5.3. Left regular bands. Theorem 15.40 generalizes to any left regular band
(extending the considerations in Section 15.3.6). In particular, by Example E.2, it
applies to any lattice (including the Birkhoff monoid). In this case, each piece of
data in Theorem 15.40 is unique: there is a unique zeta function, a unique complete
system of primitive orthogonal idempotents, a unique Möbius function and so on.
Also note that Q⊥ is the unique special Zie element. Compare (15.37) with (D.22).

15.6. Lie-incidence algebra

We introduce the Lie-incidence algebra. It is constructed as a subalgebra of
the lune-incidence algebra. The conditions defining this subalgebra are similar to
the conditions defining Lie elements as a subspace of chambers. This connection
is made precise. The dimension of the Lie-incidence algebra equals the number
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of faces. In fact, the Lie-incidence algebra is isomorphic to the Tits algebra; the
isomorphism depends on the choice of an Eulerian family. We also introduce the
Lie-incidence module. It is isomorphic to the left module of chambers.

15.6.1. Subspace of the lune-incidence algebra. Recall the lune-incidence
algebra Ilune[A]. Let ILie[A] denote the subspace of Ilune[A] consisting of functions
f on nested faces which satisfy

(15.40)
∑

F :F≥A,HF=G,
s(F )=s(G)

f(A,F ) = 0

for all A < H ≤ G. This is a linear system of equations.
In the language of Proposition 15.6:

Proposition 15.43. The subspace ILie[A] consists of functions f on lunes such
that for any lune M and flat X with X < b(M),

(15.41)
∑

L: b(L)=X,L≤M
c(L)=c(M)

f(L) = 0.

In view of (3.24), the sum in (15.41) is over all lunes L which appear in the
lune decomposition of M over the flat X. Since X is strictly smaller than b(M), this
decomposition is nontrivial. The simplest case is when X ⋖ b(M) and M is a flat.
For instance, X could be a hyperplane and M the maximum flat. This yields the
following.

For f ∈ ILie[A],
(15.42) f(L) + f(L) = 0

for any half-flat L. (Recall that a half-flat is a lune L for which b(L) ⋖ c(L).) In
particular, for f ∈ ILie[A],

f(h) + f(h) = 0

for any half-space h.
Also note that the equations (15.41) do not impose any contraints on the value

of f on flats.

15.6.2. Lie-incidence algebra. We now proceed to show that ILie[A] is a sub-
algebra of the lune-incidence algebra Ilune[A]. We begin with some preliminary
lemmas.

Lemma 15.44. Let f and g be any functions on lunes. Then, for any lune N′,

(15.43)
∑

L,M:
L◦M�N′

f(L)g(M) =
∑

L′,M′:
L′◦M′=N′

∑

L,M:
L�L′,M�M′

c(L)=b(M)

f(L)g(M).

In addition, for any flats X ≤ Z,

(15.44)
∑

L,M:
L◦M�N′,

b(L)=X, c(M)=Z

f(L)g(M) =
∑

L′,M′:
L′◦M′=N′

∑

L,M:
L�L′,M�M′

c(L)=b(M)
b(L)=X, c(M)=Z

f(L)g(M).

Proof. This follows from Corollary 4.34. �
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Lemma 15.45. Let f and g be functions on lunes such that for any L′ ◦M′ = N′

with X < b(N′) and Z = c(N′),

(15.45)

∑

L,M:
L�L′,M�M′

c(L)=b(M)
b(L)=X, c(M)=Z

f(L)g(M) = 0.

Then fg ∈ ILie[A].

Proof. Let us analyze the condition fg ∈ ILie[A] using (15.41). It says that for
any lune N′ and flat X with X < b(N′),

∑

N:N≤N′, b(N)=X, c(N)=Z

(fg)(N) = 0,

where Z := c(N′). Equivalently,

∑

L,M:
L◦M≤N′, b(L)=X, c(M)=Z

f(L)g(M) = 0.

Since M and N′ have the same case, L ◦M ≤ N′ is the same as L ◦M � N′. Thus,
fg ∈ ILie[A] is equivalent to the lhs of (15.44) being zero. Condition (15.45) says
that the inner sum in the rhs of (15.44) is zero. The result follows. �

Proposition 15.46. The subspace ILie[A] is a subalgebra of the lune-incidence
algebra Ilune[A]. That is, functions on lunes satisfying (15.41) are closed under the
product (15.14).

Proof. Let f, g ∈ ILie[A]. We want to show that fg ∈ ILie[A]. For this, we
employ Lemma 15.45 and show that (15.45) holds. Accordingly, let L′ ◦M′ = N′

with X < b(N′) and Z = c(N′). Depending on whether c(L) = b(M) is greater than
b(N′) or not, we split the sum in the lhs of (15.45) into two smaller sums.

c(L) = b(M) ≥ b(N′). The first smaller sum can be manipulated as follows.

∑

M:
M�M′

c(M)=Z

g(M)

Å ∑

L:
L�L′

c(L)=b(M)≥b(L′)
b(L)=X

f(L)

ã
=

∑

M:
M�M′

b(M)=c(L′)
c(M)=Z

g(M)

Å ∑

L:
L�L′

c(L)=c(L′)
b(L)=X

f(L)

ã
= 0

since f satisfies (15.41). (The conditions L � L′ and c(L) ≥ b(L′) imply that
c(L) = c(L′). Also, since L and L′ have the same case, L � L′ is the same as
L ≤ L′.) In this case, one can also deduce from Corollary 3.17 that M = M′ (since
they have the same base and same case).

This case is illustrated below. The lune N′ is the fully visible vertex-based
top-lune shown in dark shade, and X = ⊥. The lune L′ is the semicircle shown
as a thick line, while M′ = M is the hemisphere containing N′ whose bounding
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hyperplane includes L′.

L

M

N′

L′

L

M

N′

L′

L

M

N′

L′

The lune L can be either of the three edges of L′ (demarcated by the two black
vertices) as indicated in the three pictures. The sum of f(L), as L varies over the
three edges, is zero.

c(L) = b(M) 6≥ b(N′). The second smaller sum can be manipulated as follows.

∑

L:
L�L′

b(L)=X

f(L)

Å ∑

M:
M�M′

c(L)=b(M) 6≥b(L′)
c(M)=Z

g(M)

ã
=

∑

L:
L�L′

c(L)6≥b(L′)
b(L)=X

f(L)

Å ∑

M:
M�M′

b(M)=c(L)
c(M)=Z

g(M)

ã
= 0

since g satisfies (15.41). (The conditions L � L′ and c(L) 6≥ b(L′) imply that
c(L) < c(L′). Thus, b(M) < b(M′). Also, since M and M ′ have the same case,
M � M′ is the same as M ≤ M′.)

This case is illustrated below. The lune N′ is the fully visible vertex-based top-
lune shown shaded, and X = ⊥. The lune L is the black vertex, L′ is the semicircle
shown as a thick line, while M′ is the hemisphere containing N′ whose bounding
hyperplane includes L′.

M

L

M′

N′

L′

M

L

M′

N′

L′

M

L

M′

N′

L′

The lune M can be either of the three vertex-based top-lunes as indicated in the
three pictures. The sum of g(M), as M varies over the three lunes, is zero. �

We refer to ILie[A] as the Lie-incidence algebra. The motivation for this termi-
nology is given below.

15.6.3. Substitution product of Lie. Recall the algebra (13.27) obtained by
summing Lie elements in arrangements over and under flats with product induced
from the substitution product of Lie.

Lemma 15.47. There is an isomorphism of algebras

(15.46) ILie[A]
∼=−→

⊕

X≤Y

Lie[AY
X]
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such that the diagram of algebras

(15.47)

Ilune[A]
∼= //

⊕
X≤Y Γ[AY

X]

ILie[A] ∼=
//

OO

⊕
X≤Y Lie[AY

X].

OO

commutes.

The top horizontal map is the algebra isomorphism (15.10). The vertical maps
are the canonical inclusions. The inclusion on the right is an algebra homomorphism
by (10.29).

Proof. We only need to check the existence of the bottom horizontal map. By
(10.1), we see that condition (15.40) translates to the fact that (15.11) is a Lie
element in AY

X. Alternatively, we see that condition (15.41) relates to Lie using the
Ree criterion (Lemma 10.7) applied to each AY

X. �

An upshot of this discussion is that Propositions 10.42 and 15.46 imply each
other. The two proofs are essentially the same; the two cases considered in the proof
of Proposition 10.42 correspond to the two cases in the proof of Proposition 15.46.

Proposition 15.48. The dimension of the Lie-incidence algebra ILie[A] equals the
number of faces of A.
Proof. This follows from (15.46), (10.24) and (1.46). �

For arrangements A and A′,

(15.48) ILie[A×A′] = ILie[A]⊗ ILie[A′].

This is a restriction of the identification (15.16). One way to deduce this is to use
(10.7) and (15.46).

15.6.4. Lie-incidence module. Recall the lune-incidence module Mlune[A]. Let
MLie[A] denote the subspace of Mlune[A] consisting of functions g on top-nested
faces which satisfy

(15.49)
∑

C:C≥A,HC=D

g(A,C) = 0

for all A < H ≤ D.
In the language of Proposition 15.8:

Proposition 15.49. The subspace MLie[A] consists of functions g on top-lunes
such that for any top-lune M and flat X with X < b(M),

(15.50)
∑

L: b(L)=X,L≤M

g(L) = 0.

The subspace MLie[A] is a left module over the Lie-incidence algebra with the
action given by restricting (15.17). We call it the Lie-incidence module. It can
also be viewed as a left ideal. The isomorphism of algebras (15.46) induces an
isomorphism of left ideals

(15.51) MLie[A]
∼=−→

⊕

X

Lie[AX].
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This map is also a restriction of (15.19).

Proposition 15.50. The dimension of the Lie-incidence module MLie[A] equals
the number of chambers of A.

Proof. This follows from (15.51), (10.24) and (1.45). �

15.6.5. Rank one. Let A be the arrangement of rank one. It has four lunes,
namely, the flats ⊥ and ⊤ and chambers C and C. The Lie-incidence algebra of
A has dimension three: Elements are functions f on lunes, with f(⊥) and f(⊤)
arbitrary, and f(C)+f(C) = 0. The latter condition is an instance of (15.42). The
product of f and g is given by (15.22). (This is the product in the lune-incidence
algebra of A.)

The Lie-incidence module of A has dimension two: It is the left ideal of the
Lie-incidence algebra consisting of functions f which satisfy in addition f(⊥) = 0.

15.6.6. Connection with Tits algebra. Recall from Theorem 13.53 that there is
an intimate connection between the Tits algebra and Lie elements in arrangements
under and over flats. Combining this result with Lemma 15.47, we obtain:

Theorem 15.51. There is an algebra isomorphism

ILie[A]
∼=−→ Σ[A]

from the Lie-incidence algebra to the Tits algebra. It induces an isomorphism

MLie[A]
∼=−→ Γ[A]

from the Lie-incidence module to the left module of chambers.

This is consistent with the results obtained in Propositions 15.48 and 15.50. As
a consequence, results about powers of the radical and quiver of the Tits algebra
obtained in Section 13.10 apply to the Lie-incidence algebra.

15.6.7. Projective Lie-incidence algebra. The projective Lie-incidence alge-
bra is the subalgebra of the Lie-incidence algebra consisting of projective functions.
It is isomorphic to

⊕

rk(Y/X) is even

Lie[AY
X]

(assuming that the field characteristic is not 2). The sum is over all X ≤ Y such that
the difference in their ranks is even. This follows from (15.46) and Lemma 10.12.
In conjunction with Theorem 13.57, we obtain:

Theorem 15.52. The projective Lie-incidence algebra is isomorphic to the projec-
tive Tits algebra.

An explicit isomorphism is obtained by fixing a projective Eulerian family and
restricting the resulting isomorphism in Theorem 15.51.
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15.7. Additive and Weisner functions on lunes

We consider additive and Weisner functions on lunes. These define linear sub-
spaces inside the lune-incidence algebra which respectively contain the affine sub-
spaces of noncommutative zeta and Möbius functions. Further, they are respec-
tively right and left modules over the Lie-incidence algebra, with actions induced
from the product of the lune-incidence algebra. In fact, these modules are isomor-
phic to the right and left regular representations of the Lie-incidence algebra, and
in turn to the right and left regular representations of the Tits algebra.

15.7.1. Additive functions on lunes. A function on lunes is additive if it satis-
fies condition (15.24). Let Zet[A] denote the set of all additive functions on lunes.
It is a linear subspace of the lune-incidence algebra Ilune[A].

Note that a noncommutative zeta function is the same as an additive function
on lunes which is 1 on all flats. Let Zet1[A] denote the set of all noncommutative
zeta functions. It is an affine subspace of Zet[A]. Let Zet0[A] denote the linear
subspace which is parallel to it. Explicitly, it consists of additive functions which
are 0 on all flats.

Lemma 15.53. There is a linear isomorphism

(15.52) Zet[A] ∼=−→
⊕

X

Γ[AX], f 7→
( ∑

F : s(F )=X

f(F ) HF
)
.

The direct sum is over all flats. In particular, the dimension of Zet[A] equals the
number of faces.

Proof. The isomorphism extends the identification in Lemma 15.17 by removing
the condition on the value of the function on flats. �

One may check that for arrangements A and A′,

Zet[A×A′] ∼= Zet[A]⊗ Zet[A′].

15.7.2. Weisner functions on lunes. A function on lunes is Weisner if it satis-
fies condition (15.28). Let Mob[A] denote the set of all Weisner functions on lunes.
It is a linear subspace of Ilune[A].

Note that a noncommutative Möbius function is the same as a Weisner function
on lunes which is 1 on all flats. Let Mob1[A] denote the set of all noncommutative
Möbius functions. It is an affine subspace of Mob[A]. Let Mob0[A] denote the
linear subspace which is parallel to it. Explicitly, it consists of Weisner functions
which are 0 on all flats.

Lemma 15.54. A Weisner function is equivalent to a Zie family. More precisely:
There is a linear isomorphism

(15.53) Mob[A] ∼=−→
⊕

X

Zie[AX], f 7→
( ∑

L: b(L)=X

f(L) HL
)
.

The direct sum is over all flats. In particular, the dimension of Mob[A] equals the
number of faces.

Proof. The isomorphism extends the identification in Lemma 15.23 by removing
the condition on the value of the function on flats. As a result, we obtain a Zie
family instead of a special Zie family. The dimension claim follows from (1.46) and
(10.25). Alternatively, use the isomorphism (13.9). �
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One may check that for arrangements A and A′,

Mob[A×A′] ∼= Mob[A]⊗Mob[A′].

15.7.3. Product of Weisner and additive functions. Interestingly, the prod-
uct of a Weisner function and an additive function taken in the lune-incidence
algebra lands inside the Lie-incidence algebra.

Proposition 15.55. There exists a unique linear map

Mob[A]⊗ Zet[A]→ ILie[A]
such that the diagram

Mob[A]⊗ Zet[A] //

��

ILie[A]

��

Ilune[A]⊗ Ilune[A] // Ilune[A]
commutes.

Proof. Let f ∈ Mob[A] and g ∈ Zet[A]. We want to show that fg ∈ ILie[A].
For this, we employ Lemma 15.45 and show that (15.45) holds. Accordingly, let
L′ ◦M′ = N′ with X < b(N′) and Z = c(N′). The required calculation is shown
below.

∑

L,M:
L�L′,M�M′

c(L)=b(M)
b(L)=X, c(M)=Z

f(L)g(M) =
∑

L:
L�L′,b(L)=X

f(L)

Å ∑

M:
M�M′

c(L)=b(M)
c(M)=Z

g(M)

ã

=

Å ∑

L:
L�L′,b(L)=X

f(L)

ã
g(M′) = 0.

The second equality used g ∈ Zet[A], while the third used f ∈ Mob[A]. (Since M
and M ′ have the same case, M � M′ is the same as M ≤ M′.) �

15.7.4. Additive functions as a right module. We now show that the space of
additive functions is a right module over the Lie-incidence algebra. We start with
a preliminary lemma. It is a companion of Lemma 15.45 and has a similar proof.

Lemma 15.56. Let f and g be functions on lunes such that for any L′ ◦M′ = N′

with X ≤ b(N′) and Z = c(N′),

(15.54)

∑

L,M:
L�L′,M�M′

c(L)=b(M)
b(L)=X, c(M)=Z

f(L)g(M) = f(L′)g(M′).

Then fg ∈ Zet[A].
Proof. We analyze the condition fg ∈ Zet[A] using (15.24). It says that for any
lune N′ and flat X with X ≤ b(N′),

∑

N:N≤N′, b(N)=X, c(N)=Z

(fg)(N) = (fg)(N′),
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where Z := c(N′). Equivalently,
∑

L,M:
L◦M≤N′, b(L)=X, c(M)=Z

f(L)g(M) =
∑

L′,M′:
L′◦M′=N′

f(L′)g(M′).

Since M and N′ have the same case, L ◦M ≤ N′ is the same as L ◦M � N′. Now
rewrite the above lhs as a double sum using (15.44). Condition (15.54) arises by
equating the summands on both sides for each L′ and M′. �

Proposition 15.57. The space of additive functions is a right module over the
Lie-incidence algebra. The module structure is such that the diagram

Zet[A]⊗ ILie[A] //

��

Zet[A]

��

Ilune[A]⊗ Ilune[A] // Ilune[A]
commutes.

Proof. The analysis is similar to the proof of Proposition 15.46. Let f ∈ Zet[A]
and g ∈ ILie[A]. We want to show that fg ∈ Zet[A]. For this, we employ
Lemma 15.56 and show that (15.54) holds. Accordingly, let L′ ◦ M′ = N′ with
X ≤ b(N′) and Z = c(N′). Depending on whether c(L) = b(M) is greater than
b(N′) or not, we split the sum in the lhs of (15.54) into two smaller sums. As we
will see, the first smaller sum equals the rhs, while the second smaller sum is zero.

c(L) = b(M) ≥ b(N′). The first smaller sum can be manipulated as follows.

∑

M:
M�M′

c(M)=Z

g(M)

Å ∑

L:
L�L′

c(L)=b(M)≥b(L′)
b(L)=X

f(L)

ã
=

∑

M:
M�M′

b(M)=c(L′)
c(M)=Z

g(M)

Å ∑

L:
L�L′

c(L)=c(L′)
b(L)=X

f(L)

ã

=
∑

M:
M�M′

b(M)=c(L′)
c(M)=Z

g(M)f(L′) = g(M′)f(L′).

The conditions L � L′ and c(L) ≥ b(L′) imply that c(L) = c(L′). This was used in
the first step. Since L and L′ have the same case, L � L′ is the same as L ≤ L′.
Since f satisfies (15.24), we get the second step. Finally, from Corollary 3.17, we
deduce that M = M′ (since they have the same base and same case). This was used
in the last step.

c(L) = b(M) 6≥ b(N′). The second smaller sum can be manipulated as follows.

∑

L:
L�L′

b(L)=X

f(L)

Å ∑

M:
M�M′

c(L)=b(M) 6≥b(L′)
c(M)=Z

g(M)

ã
=

∑

L:
L�L′

c(L)6≥b(L′)
b(L)=X

f(L)

Å ∑

M:
M�M′

b(M)=c(L)
c(M)=Z

g(M)

ã
= 0

since g satisfies (15.41). (The conditions L � L′ and c(L) 6≥ b(L′) imply that
c(L) < c(L′). Thus, b(M) < b(M′). Also, since M and M ′ have the same case,
M � M′ is the same as M ≤ M′.) �
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Proposition 15.58. The space of additive functions is isomorphic to the Lie-
incidence algebra, viewed as a right module over itself. More precisely, for any
noncommutative zeta function ζ, the map

ILie[A]
∼=−→ Zet[A], f 7→ ζf

is an isomorphism of right ILie[A]-modules.

More generally, instead of ζ, one may take any additive function which is
invertible in the lune-incidence algebra. These are additive functions which are
nonzero on each flat.

Proof. By Theorem 15.27, we have ζ−1 ∈ Mob[A]. So, in view of Proposi-
tion 15.55, there is a map

Zet[A]→ ILie[A], g 7→ ζ−1g,

and it is clearly inverse to the map stated in the proposition. �

Recall from (15.46) that ILie[A] is isomorphic to the algebra
⊕

X≤Y Lie[AY
X].

Further, recall the right module (13.28) over the latter algebra obtained by summing
chamber elements in arrangements under flats. Observe that:

Lemma 15.59. The map (15.52) is an isomorphism of right modules in the sense
that the diagram

(15.55)

Zet[A]⊗ ILie[A] //

∼=

��

Zet[A]
∼=

��(⊕
X Γ[AX]

)
⊗
(⊕

X≤Y Lie[AY
X]
)

//
⊕

Y Γ[AY]

commutes.

An upshot of this discussion is that Propositions 10.50 and 15.57 imply each
other. We further point out that the results obtained in Propositions 13.28 and
15.58 are equivalent.

15.7.5. Weisner functions as a left module. We now show that the space of
Weisner functions is a left module over the Lie-incidence algebra. We again start
with the appropriate companion of Lemma 15.45.

Lemma 15.60. Let f and g be functions on lunes such that for any L′ ◦M′ = N′

with X < b(N′),

(15.56)

∑

L,M:
L�L′,M�M′

c(L)=b(M)
b(L)=X

f(L)g(M) = 0.

Then fg ∈ Mob[A].
Proof. We analyze the condition fg ∈ Mob[A] using (15.28). It says that for any
lune N′ and flat X with X < b(N′),

∑

N:N≤N′, b(N)=X

(fg)(N) = 0.
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Equivalently, ∑

L,M:
L◦M�N′, b(L)=X

f(L)g(M) = 0.

Thus, fg ∈ Mob[A] is equivalent to the lhs of (15.44) (summed over all Z) being
zero. Condition (15.56) says that the inner sum in the rhs of (15.44) (summed over
all Z) is zero. The result follows. �

Proposition 15.61. The space of Weisner functions is a left module over the
Lie-incidence algebra. The module structure is such that the diagram

ILie[A]⊗Mob[A] //

��

Mob[A]

��

Ilune[A]⊗ Ilune[A] // Ilune[A]
commutes. The vertical maps are inclusions.

Proof. The analysis is similar to the proof of Proposition 15.46. Let f ∈ ILie[A]
and g ∈ Mob[A]. We want to show that fg ∈ Mob[A]. For this, we employ
Lemma 15.60 and show that (15.56) holds. Accordingly, let L′ ◦ M′ = N′ with
X < b(N′). Depending on whether c(L) = b(M) is greater than b(N′) or not, we
split the sum in the lhs of (15.56) into two smaller sums.

c(L) = b(M) ≥ b(N′). The first smaller sum can be manipulated as follows.

∑

M:
M�M′

g(M)

Å ∑

L:
L�L′

c(L)=b(M)≥b(L′)
b(L)=X

f(L)

ã
=

∑

M:
M�M′

b(M)=c(L′)

g(M)

Å ∑

L:
L�L′

c(L)=c(L′)
b(L)=X

f(L)

ã
= 0

since f satisfies (15.41). (The conditions L � L′ and c(L) ≥ b(L′) imply that
c(L) = c(L′). Also, since L and L′ have the same case, L � L′ is the same as
L ≤ L′.) In this case, one may also deduce that M = M′.

c(L) = b(M) 6≥ b(N′). The second smaller sum can be manipulated as follows.

∑

L:
L�L′

b(L)=X

f(L)

Å ∑

M:
M�M′

c(L)=b(M) 6≥b(L′)

g(M)

ã
=

∑

L:
L�L′

c(L)6≥b(L′)
b(L)=X

f(L)

Å ∑

M:
M�M′

b(M)=c(L)

g(M)

ã
= 0

since g satisfies (15.28). (The conditions L � L′ and c(L) 6≥ b(L′) imply that
c(L) < c(L′). Thus, b(M) < b(M′).) �

Proposition 15.62. The space of Weisner functions is isomorphic to the Lie-
incidence algebra, viewed as a left module over itself. More precisely, for any non-
commutative Möbius function µ, the map

ILie[A]
∼=−→ Mob[A], f 7→ fµ

is an isomorphism of left ILie[A]-modules.

More generally, instead of µ, one may take any Weisner function which is
invertible in the lune-incidence algebra. These are Weisner functions which are
nonzero on each flat.
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Proof. By Theorem 15.27, we have µ−1 ∈ Zet[A]. So, in view of Proposi-
tion 15.55, there is a map

Mob[A]→ ILie[A], g 7→ gµ−1,

and it is clearly inverse to the map stated in the proposition. �

Recall from (15.46) that ILie[A] is isomorphic to the algebra
⊕

X≤Y Lie[AY
X].

Further, recall the left module (13.30) over the latter algebra obtained by summing
Zie elements in arrangements over flats. Observe that:

Lemma 15.63. The map (15.53) is an isomorphism of left modules in the sense
that the diagram

(15.57)

ILie[A]⊗Mob[A] //

∼=

��

Mob[A]
∼=

��(⊕
X≤Y Lie[AY

X]
)
⊗

(⊕
Y Zie[AY]

)
//
⊕

X Zie[AX]

commutes.

An upshot of this discussion is that Propositions 10.49 and 15.61 imply each
other. We further point out that the results obtained in Propositions 13.37 and
15.62 are equivalent. This can be deduced from the second formula in (15.37)
which gives the precise connection between a Q-basis and a noncommutative Möbius
function µ.

15.7.6. Connection with the Tits algebra. Recall from Theorem 15.51 that
the Lie-incidence algebra is isomorphic to the Tits algebra. In addition, the right
module of additive functions is isomorphic to the Tits algebra as a right module over
itself, while the left module of Weisner functions is isomorphic to the Tits algebra
as a left module over itself. This leads to the following commutative diagrams.

Zet[A]⊗ ILie[A] //

∼=

��

Zet[A]
∼=

��

Σ[A]⊗ Σ[A] // Σ[A]

ILie[A]⊗Mob[A] //

∼=

��

Mob[A]
∼=

��

Σ[A]⊗ Σ[A] // Σ[A]

Explicitly, the left diagram is obtained by combining (13.29) and (15.55), while the
right diagram is obtained by combining (13.31) and (15.57).

15.8. Subalgebras of the lune-incidence algebra

Define two subspaces Sl and Sr of the lune-incidence algebra. The former
consists of functions f on lunes such that for any flats X and Y with X ≤ Y,

(15.58) f(Y) =
∑

L: b(L)=X, c(L)≤Y

f(L).

The latter consists of functions f on lunes such that for any flats X and Y with
X < Y,

(15.59)
∑

L: b(L)=X, c(L)=Y

f(L) = 0.
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Consider also the subspace S := Sl ∩ Sr. Note that if f satisfies both (15.58) and
(15.59), it is constant on flats. Conversely, this propery together with either one of
(15.58) or (15.59) implies the other.

Lemma 15.64. The subspaces Sl and Sr (and hence S) are subalgebras of the
lune-incidence algebra.

Proof. We check that Sl is a subalgebra. The check for Sr is similar. The unit of
the lune-incidence algebra satisfies (15.58): There is exactly one flat which appears
in the rhs, namely, X, so both sides evaluate to 1. Now suppose f and g satisfy
(15.58). Take X ≤ Z. Then

(fg)(Z) = f(Z)g(Z)

and

∑

N: b(N)=X, c(N)≤Z

(fg)(N) =
∑

N:
b(N)=X, c(N)≤Z

∑

L◦M=N

f(L)g(M)

=
∑

L,M:
b(L)=X, c(L)=b(M), c(M)≤Z

f(L)g(M)

=
∑

Y:
X≤Y≤Z

Å ∑

L: b(L)=X, c(L)=Y

f(L)

ãÅ ∑

M: b(M)=Y, c(M)≤Z

g(M)

ã

=

Å ∑

L: b(L)=X, c(L)≤Z

f(L)

ã
g(Z) = f(Z)g(Z).

Thus fg also satisfies (15.58) as required. �

Exercise 15.65. For any subalgebra A of the lune-incidence algebra, the radical
of A consists of those functions in A which are zero on flats. (Clearly, this is the
largest nilpotent ideal of A.) Deduce that the radicals of Sl, Sr and S coincide.

Lemma 15.66. The subspaces Zet0[A] and Mob0[A] are contained in the radical
of S.

Proof. We make two important observations.

• Zet0[A] is contained in Sr. (Apply (15.26) and use ζ(Y) = 0.)
• Mob0[A] is contained in Sl. (Apply (15.30) and use µ(Y) = 0.)

Both Zet0[A] and Mob0[A] consist of functions that vanish on flats, and in par-
ticular, are constant on flats. Thus, both Zet0[A] and Mob0[A] are contained in
S. Vanishing on flats gives the stronger conclusion that they are contained in the
radical of S. See Exercise 15.65. �

15.9. Commutative, associative and Lie operads

We give a brief sketch (without complete definitions or proofs) on how many
ideas in this monograph relate to the notion of operads. Details will be provided
in a future work.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



15.9. COMMUTATIVE, ASSOCIATIVE AND LIE OPERADS 453

15.9.1. Operads. We have often encountered maps of the form

p[AX]⊗ p[AX]→ p[A].
This can be abstracted into the notion of an operad. More formally, an operad is
a monoid under the monoidal structure defined by

(15.60) (p ◦ q)[A] :=
⊕

X

p[AX]⊗ q[AX],

with X running over all flats in A. For morphisms, one may take either cisomor-
phisms or gisomorphisms.

The above definition of an operad generalizes the classical definition of an op-
erad. The context for the latter is the family of braid arrangements. However, we
mention that for morphisms, more intricate choices than cisomorphisms or giso-
morphisms are required to make full contact with the classical theory.

We mention that there is another monoidal structure closely related to (15.60)
in which we sum only over those flats X which are factors of A. This monoidal
structure is useful for studying the cartesian aspects of the theory. The compatibil-
ity of various objects such as flats, chambers, and so on with the cartersian product
has been witnessed in many places such as Sections 1.8, 3.7 and 10.1.7.

15.9.2. Commutative, associative and Lie operads. The substitution prod-
ucts (15.3), (10.27) and (10.28) correspond to the commutative operad, associative
operad and Lie operad, respectively. Let us denote them by Com, As and Lie.
Diagrams (10.29) and (15.13) say that there are morphisms of operads

Lie→ As→ Com.

Substitution products for the classical associative operad and the classical Lie op-
erad are given in Sections 6.5.10 and 14.8.5, respectively.

15.9.3. Poisson operad. By linking Com and Lie by a distributive law, one can
also extend the classical Poisson operad to all arrangements. The definition of the
distributive law involves summing over modular complements in the lattice of flats.
Exercise 10.47 plays a role in this analysis.

15.9.4. Operad incidence algebras. Given an operad p, one can define the
p-incidence algebra as

(15.61) Ip[A] :=
⊕

X≤Y

p[AY
X],

and the p-incidence module over it as

(15.62) Mp[A] :=
⊕

X

p[AX].

These constructions applied to Com yield the flat-incidence algebra (15.4) and the
flat-incidence module (15.6), applied to As yield the lune-incidence algebra (15.10)
and the lune-incidence module (15.19), and applied to Lie yield the Lie-incidence
algebra (15.46) and the Lie-incidence module (15.51).

The p-incidence algebra can be viewed as the incidence algebra of a linear
category associated to p whose objects are flats and the space of morphisms from
Y to X is p[AY

X]. For the associative operad, this category is the linearization of
the category of lunes. (See Proposition 15.6.) For the commutative operad, it is
the linearization of the opposite of the category of the poset of flats.
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15.9.5. Elementary algebras. An operad p is connected if p[A] = k when A is
any rank-zero arrangement. For a connected operad p, the p-incidence algebra is
elementary, and its split-semisimple quotient is the Birkhoff algebra. The operads
Com, As and Lie are connected. This explains Propositions 15.1, 15.9 and 9.20. For
the latter, we go through Theorem 15.51. We mention that Theorem 15.51 is a
manifestation of the classical Cartier-Milnor-Moore theorem.

15.9.6. Binary quadratic and Koszulness. The operads Com, As and Lie are
binary quadratic. The relevant results are Propositions 4.41 and 4.42 and Theo-
rem 14.35. Further, Com and Lie are quadratic duals of each other, while As is
self-dual. The operads Com, As and Lie are also Koszul. The Koszulness of Com
and Lie can be deduced from Proposition 14.25. The passage from p to Ip preserves
quadratic duality as well as Koszulness. As a consequence, the flat-incidence alge-
bra, the lune-incidence algebra and the Tits algebra are Koszul. The lune-incidence
algebra is self-dual, while the flat-incidence algebra and Tits algebra are duals of
each other. This also explains why the flat-incidence algebra and the Tits algebra
have the same quiver.

15.9.7. External product. The map (10.33) says that Σ is a left module over
the associative operad. In operadic language, one says that Σ is an associative
monoid. Specializing to the braid arrangement yields the external product of set
compositions discussed in Section 6.3.13. Similarly, the external product of linear
orders arises from the associative monoid Γ which is the associative operad viewed
as a left module over itself.

It also makes sense to consider right modules over an operad. The map (10.38)

says that ÛΛ is a right module over the associative operad.

15.9.8. Zie as a free Lie monoid. Let us also briefly look at Zie elements. The
map (10.34) says that Zie is a left module over the Lie operad. In operadic language,
one says that Zie is a Lie monoid. Further, Proposition 13.37 implies that it is free
as such.

Notes

For the classical theory of operads, see [291, 268, 275]. For basic information on
monoidal categories, see [9, Part I] and references therein.

The notion of operad proposed in (15.60) is similar to the one present in the work of
Rains [333, page 794].

The Koszulness of the flat-incidence algebra is a special case of the result which says
that a poset P is Cohen-Macaulay iff the incidence algebra of P is Koszul. This is present
in work of Cibils [110], Polo [329] and Woodcock [416]. The fact that the Tits algebra is
Koszul and dual to the flat-incidence algebra is a result of Saliola [350, Propositions 9.4
and 9.6].
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CHAPTER 16

Invariant Birkhoff algebra and invariant Tits

algebra

We studied the Birkhoff algebra and Tits algebra of an arrangement in detail.
Recall that a reflection arrangement is acted upon by its Coxeter group. Hence, in
this situation, it makes sense to consider the invariant part of these algebras. We
call these the invariant Birkhoff algebra and invariant Tits algebra. The former is
a split-semisimple commutative algebra whose primitive idempotents are indexed
by flat-types. The latter is elementary and has a basis indexed by face-types. Its
radical is the invariant part of the radical of the Tits algebra, and the quotient by
this is the invariant Birkhoff algebra. Thus, the simple modules over the invariant
Tits algebra are one-dimensional and indexed by flat-types. Complete systems of
primitive orthogonal idempotents for the invariant Tits algebra are the same as
invariant Eulerian families. They correspond to invariant sections and to invariant
special Zie families, and similarly to invariant noncommutative zeta and Möbius
functions. The latter belong to the invariant lune-incidence algebra. For a good
reflection arrangement, for the uniform section, there are cancelation-free formulas
for the Eulerian idempotents. The two-sided Peirce decomposition of the invariant
Tits algebra can be used to shed light on its quiver. This necessitates the study of
invariant Lie and Zie elements.

Recall that there is an injective map from the Tits algebra to the space indexed
by pairs of chambers. Taking invariants induces an injective map from the invariant
Tits algebra to the Coxeter group algebra. The image of this map is a subalgebra
of the Coxeter group algebra which is known as the Solomon descent algebra. This
induces an anti-isomorphism of algebras between the invariant Tits algebra and
the Solomon descent algebra. This result makes it possible to study the Solomon
descent algebra using the invariant Tits algebra.

The structure constants of the invariant Tits algebra are of great theoretical
significance. They intervene in the invariant formulation of lune-additivity and the
noncommutative Weisner formula. They are also intimately connected to enumer-
ation of face-types.

We illustrate some of the above ideas for the braid arrangement. This makes
contact with the Garsia-Reutenauer idempotents and the Bayer-Diaconis-Garsia-
Loday formula. We also briefly discuss the arrangement of type B.

Notation 16.1. For a reflection arrangement A, for any face-types T ≤ U , we let
AUT refer to any arrangement AGH , with t(H) = T and t(G) = U . Similarly, we
let cUT denote the number of chambers in AUT . In particular, cT is the number of
chambers in AT .

455
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Convention 16.2. Throughout this chapter, A is a reflection arrangement with
Coxeter groupW . We assume that the field characteristic does not divide the order
of W whenever A has rank at least one, that is, when W is not the trivial group.

16.1. Invariant Birkhoff algebra

Recall the Birkhoff algebra Π[A]. It has a H-basis and a Q-basis. It is a split-
semisimple commutative algebra whose primitive idempotents are the Q-basis ele-
ments. The Coxeter group W acts on this algebra via

w · HX := Hw(X).

Let Π[A]W denote the subalgebra of Π[A] consisting of the W -invariant elements.
We call this the invariant Birkhoff algebra.

For each flat-type λ, put

(16.1) Hλ := |λ|
∑

X: t(X)=λ

HX and Qλ :=
∑

X: t(X)=λ

QX,

with |λ| as defined in Section 5.5.1. As λ varies over all flat-types, these define the
H- and Q-bases of the invariant Birkhoff algebra.

Theorem 16.3. The invariant Birkhoff algebra is a split-semisimple commutative
algebra. Its dimension equals the number of flat-types in A. The unique complete
system of primitive orthogonal idempotents is given by the Q-basis.

Proof. This can be deduced from Theorem 9.2 using Lemma D.14. �

One may check using (9.1) and (16.1) that

(16.2) Hµ =
∑

λ:µ≤λ

RλµQλ,

where Rλµ is |µ| times the number of flats of type µ contained in a given flat of
type λ.

16.2. Invariant Tits algebra

The structure theory of the invariant Tits algebra proceeds in analogy with
that of the Tits algebra (and can mostly be deduced from it). The invariant Tits
algebra is elementary and its split-semisimple quotient is the invariant Birkhoff
algebra. This story is continued in Section 16.8.

16.2.1. Invariant Tits algebra. The Coxeter group W acts on the Tits algebra
Σ[A] via

w · HF := HwF .

Let Σ[A]W denote the subalgebra of Σ[A] consisting of the W -invariant elements.
We call this the invariant Tits algebra.

For each face-type T , put

(16.3) HT :=
∑

F : t(F )=T

HF .

As T varies over all face-types, this defines the H-basis of the invariant Tits algebra.
The K-basis is then defined by

(16.4) HT =
∑

U :U≤T

KU or equivalently KT =
∑

U :U≤T

(−1)|T\U | HU .
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Recall the space of top-nested faces from Section 9.4.7. It contains the Tits
algebra and hence the invariant Tits algebra as a subspace. On the H- and K-bases,

(16.5) HT =
∑

H≤D, t(H)=T

HH,D and KT =
∑

H≤D, t(H)=T

KH,D.

The sum is over all pairs H ≤ D such that the type of H is T . This follows from
(9.42) and (9.43).

16.2.2. Invariant support map. The support map from the Tits algebra to the
Birkhoff algebra restricts to a linear map

(16.6) s : Σ[A]W ։ Π[A]W .

We call this the invariant support map. On the H-basis,

(16.7) s(HT ) = Hs(T ).

16.2.3. Radical. We now turn to the radical of the invariant Tits algebra.

Proposition 16.4. The invariant Tits algebra is elementary. Its split-semisimple
quotient is the invariant Birkhoff algebra, with the invariant support map as the
quotient map. Its radical is the kernel of the invariant support map and equals
rad(Σ[A])W which is the invariant part of the radical of the Tits algebra.

Proof. This can be deduced from Proposition 9.20 using Lemma D.46. Also note
Convention 16.2. �

16.2.4. Multiplicative characters. Applying Theorem D.35 to the invariant
Tits algebra yields:

Theorem 16.5. The simple modules over Σ[A]W are one-dimensional and indexed
by flat-types. Let χλ denote the multiplicative character corresponding to the flat-
type λ. It is specified by

(16.8) s(z) =
∑

λ

χλ(z) Qλ,

where s is the invariant support map (16.6).

16.3. Solomon descent algebra

In any pointed arrangement, there is a descent map from the Coxeter group
W to the set of all face-types. Inside the group algebra W, there is a subalgebra
linearly spanned by sums of group elements that have the same descent. This is
the Solomon descent algebra. It is anti-isomorphic to the invariant Tits algebra.

16.3.1. Descents and shuffles. Fix a pointed arrangement (A, C). A chamber
obtained by projecting C on a face of type T is called a T -gate wrt C.

For σ ∈ W , let Des(σ) denote the type of the face Des(C, σC), with the lat-
ter defined by (7.1). This is the standard notion of descent in Coxeter theory.
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The descent maps on pairs of chambers and on group elements are related by the
commutative diagram

(16.9)

Γ[A]× Γ[A] Des //

d

��

Σ[A]

t

��

W
Des

// Σ[A]W ,

with d being the W -valued gallery distance function.
For any face-type T , define the set of T -shuffles by

ShT := {σ ∈W | Des(σ) ≤ T}.
Since σ = d(C, σC), it follows from (7.1) that all T -shuffles are of the form d(C,D),
as D varies over all T -gates. In other words,

(16.10) ShT = {σ ∈W | σ(C) = D for some T -gate D}.

Lemma 16.6. For any face-type T , every element w ∈W can be uniquely written
as w = vu such that u ∈WT and v ∈ ShT , and further l(w) = l(u) + l(v).

Here recall that WT is the parabolic subgroup of W which leaves F invariant,
with F being the face of C of type T . Also, l(w) denotes the length of w as in (5.6).

Proof. This can be deduced from the gate property. �

16.3.2. Solomon descent algebra. Let W denote the group algebra of W over
a field k. We use the letter K to denote its canonical basis.

Theorem 16.7. The subspace of W linearly spanned by the elements

(16.11) yT :=
∑

w: Des(w)≤T

Kw =
∑

w∈ShT

Kw,

as T varies over subsets of S, is a subalgebra of W.

This subalgebra is known as the Solomon descent algebra. The elements yT
define a basis for this algebra. It also has another basis consisting of the elements

(16.12) zT :=
∑

w: Des(w)=T

Kw.

We now relate the Solomon descent algebra to the invariant Tits algebra. In
particular, this will also yield a proof of Theorem 16.7.

Recall that the action of the Tits algebra Σ[A] on Γ[A] yields the injective
algebra homomorphism (9.41). The Coxeter group W acts on this map. The
space of W -invariants of Σ[A] is the invariant Tits algebra. The W -invariants of
Γ[A]∗ ⊗ Γ[A] can be identified with the opposite of the group algebra via

(16.13) Wop ∼=−→ (Γ[A]∗ ⊗ Γ[A])W , Kw 7→
∑

(D,C): d(D,C)=w

MD ⊗ HC .

The main assertion here is that this is an algebra homomorphism. This is a conse-
quence of (5.7) and (9.40). Thus, we obtain the following commutative diagram of
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algebras.

Σ[A] // Γ[A]∗ ⊗ Γ[A]

Σ[A]W

OO

// Wop

OO

It follows from (7.1) and (16.9) that the bottom-horizontal map sends HT to yT .
Equivalently, it sends KT to zT . Hence the image of the bottom-horizontal map is
precisely the Solomon descent algebra. As a consequence:

Theorem 16.8. The Solomon descent algebra is isomorphic to the opposite of the
invariant Tits algebra.

16.4. Enumeration of face-types

In a reflection arrangement, the problem of counting faces of a given type T
is related to T -shuffles and dually to chambers in a T -based top-lune. (A T -based
lune is a lune whose base supports a face of type T .) More generally, one can do a
q-enumeration of faces of type T by using gallery distances between chambers. The
Poincaré polynomial is obtained when we do a q-enumeration of chambers (which
are faces of type S).

16.4.1. Counting of face-types. For any pointed arrangement α = (A, C), let
dT denote the number of faces of type T in α. In particular, dS is the number of
chambers. More generally, for T ≤ U , let dU/T denote the number of faces of type
U/T in αT .

Lemma 16.9. For T ≤ U ≤ V ,

(16.14) dV/T = dV/U dU/T .

In particular, dV = dV/UdU (by letting T = ∅).
Proof. It suffices to show that dV = dV/UdU . Let ΣU and ΣV denote the set of
faces of types U and V , respectively. They have cardinalities dU and dV , respec-
tively. Every face of type V has a unique subface of type U . This defines a function
ΣV → ΣU which is clearly surjective. The fibers of this map are of the same cardi-
nality, namely, dV/U : This is the number of faces of type V which contain a given
face of type U . The result follows. �

Recall from Section 16.3.1 that a T -gate wrt C is a chamber obtained by pro-
jecting C on a face of type T . The number of T -gates is dT since each face of type
T contributes to a unique T -gate. It follows from (16.10) that:

Lemma 16.10. The number of T -shuffles is dT .

Equivalently, dT is the number of pairs (C,D), where the first coordinate is
fixed to be C, while the second coordinate varies over T -gates wrt C. There is also
a ‘dual’ way of obtaining dT by fixing the second coordinate and varying the first.
It works as follows.

Lemma 16.11. The number of chambers in any T -based top-lune is dT . This is
the same as c/cT . Here cT is the number of chambers in αT , and in particular, c
is the number of chambers in α.
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Proof. Fix a chamber E. Move each T -gate to E by a (unique) Coxeter symmetry.
Under such a symmetry, the reference chamber C moves into the T -based top-lune
formed at E, and all chambers in this top-lune get occupied exactly once as the
T -gate and resulting symmetry vary. This proves the first claim. The second claim
follows from Lemma 5.21. �

Lemma 16.12. If T and T ′ are face-types with the same support, then dT = dT ′ .

Proof. Since T and T ′ have the same support, there is no distinction between
T -based top-lunes and T ′-based top-lunes, so dT = dT ′ by Lemma 16.11. �

Exercise 16.13. Deduce (16.14) from Proposition 3.21 and Lemma 16.11.

16.4.2. q-numbers. Fix a scalar q. Define the i-th q-number to be

(i)q := 1 + q + · · ·+ qi−1.

The q-factorial is
(n)q! := (n)q(n− 1)q . . . (1)q,

and the q-binomial coefficient is
Ç
n

i

å

q

=
(n)q!

(i)q!(n− i)q!
.

For q = 1, this is the usual binomial coefficient.

16.4.3. q-counting of face-types. Fix a scalar q. Recall the distance function
on chambers υq defined in (8.15). For any face-type T in α = (A, C), define a
polynomial in q by

(16.15) dT (q) :=
∑

F : t(F )=T

(υq)C,FC =
∑

F : t(F )=T

qdist(C,FC).

The sum is over all faces of type T . Setting q = 1 recovers dT . More generally, for
T ≤ U , define dU/T (q) by applying (16.15) to the face-type U/T of αT .

Lemma 16.14. For T ≤ U ≤ V ,

(16.16) dV/T (q) = dV/U (q) dU/T (q).

Proof. We build on the proof of (16.14). For any F ≤ G, by (8.2e),

(υq)C,GC = (υq)C,FC(υq)FC,GC .

Now sum over all F of type U , and all G of type V with F ≤ G. This yields (16.16)
for T = ∅, from which the general case also follows. �

Lemmas 16.10 and 16.11 generalize as follows. We have

(16.17) dT (q) =
∑

σ∈ShT

ql(σ),

where l(σ) is the length of σ as in (5.6). The sum is over all T -shuffles. (The
chambers FC in (16.15) are precisely the T -gates.) Dually,

(16.18) dT (q) :=
∑

C′:HC′=D

qdist(C
′,D),

where D is any chamber and H is the face of D of type T . Thus, we sum over
chambers C ′ in a T -based top-lune, and each summand contributes a power of q.
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Lemma 16.15. We have

(16.19)
∑

T

(−1)|T |dT (q) = (−1)|S|qdist(C,C).

Proof. The lhs above can be manipulated as follows.
∑

T

(−1)|T |
∑

F : t(F )=T

qdist(C,FC) =
∑

F

(−1)rk(F )qdist(C,FC)

=
∑

D

qdist(C,D)
( ∑

F :FC=D

(−1)rk(F )
)

Now use (7.10). Alternatively, put xC := qdist(C,D) in (7.14) and use (16.18). �

Exercise 16.16. For q = 1, (16.19) reduces to the Witt identity (7.15). This
follows from Lemma 16.11. Now give an alternative proof of (7.15) by proving the
q = 1 case of (16.19) using (1.38).

16.4.4. Poincaré polynomial. We refer to dS(q) as the Poincaré polynomial of
W . Note that

dS(q) =
∑

w∈W

ql(w),

where l(w) is the length of w. This identity is a special case of (16.17) or can also
be directly seen from the definition (16.15):

dS(q) =
∑

F : t(F )=S

qdist(C,FC) =
∑

D

qdist(C,D) =
∑

w∈W

qdist(C,wC) =
∑

w∈W

ql(w),

with C as the reference chamber. Specializing (16.16): For any face-type T ,

(16.20) dS(q) = dS/T (q) dT (q).

Thus the Poincaré polynomial always factorizes. An important result in this direc-
tion is stated below.

Theorem 16.17. Let (W,S) be a Coxeter system, and n := |S|. Then there exist
positive integers e1, . . . , en such that

(16.21) dS(q) =
n∏

i=1

(ei + 1)q.

Proof. See [224, Theorem on page 73] or [73, Theorem 7.1.5]. �

By setting q = 1, respectively, looking at the exponent of the highest power of
q, we obtain

|W | =
n∏

i=1

(ei + 1) and dist(C,C) =
n∑

i=1

ei.

The integers e1, . . . , en appearing in (16.21) are called the exponents of (W,S).
For a rank-one arrangement, dS(q) = 1 + q and in particular, dS(−1) = 0.

Hence in any reflection arrangement dS/T (−1) = 0 whenever T is the type of a
panel. Substituting this in (16.20), one can deduce that

(16.22) dS(−1) =
∑

w∈W

(−1)l(w) =

®
1 if α has rank 0,

0 otherwise.

This result can also be deduced from (16.21) by noting that 1 is always an exponent,
and (2)q = 1 + q = 0 for q = −1.
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Exercise 16.18. Consider the augmentation map W→ k which sends each group
element w to 1. Under this map, the element

∑
w∈W ql(w)w maps to dS(q). Use

Lemma 8.28 to deduce that dS(q) is invertible when q is not a root of unity. This
fact can also be deduced from (16.21).

16.5. Structure constants of the invariant Tits algebra

Unlike the Tits algebra, the invariant Tits algebra is not the linearization of
a monoid. So its structure constants in the H-basis can take integer values other
than 0 and 1. We provide geometric interpretations for these constants, discuss a
number of identities involving them, and also relate them to face-type enumeration.

16.5.1. Structure constants. Fix a pointed arrangement α = (A, C). For face-
types T and T ′, write

(16.23) HT · HT ′ :=
∑

U :U≥T

aTUT
′

HU

for suitable scalars aTUT
′

. These are the structure constants of the invariant Tits
algebra in the H-basis.

Lemma 16.19. Let T , T ′ and U be face-types with T ≤ U . Then aTUT
′

is the
number of faces F of type T ′ such that HF = G, where (H,G) is a fixed nested
face of type (T,U).

Proof. Let G be any face of type U . Then by definition, aTUT
′

is the number of
ways in which G can be written in the form HF where H has type T and F has
type T ′. This forces H to be the unique face of G of type T . So we are left with
counting the number of faces F of type T ′ such that HF = G. �

Just like dT , the a
TUT ′

can also be counted in a ‘dual’ manner using a top-lune
based at T ′ as follows.

Lemma 16.20. Let T , T ′ and U be face-types with T ≤ U . Let L be a T ′-based
top-lune. Fix a face F ′ of type T ′ in the base of L. Then aTUT

′

is the number of
chambers C ′ in L such that H ′F ′ = G′, where H ′ and G′ are the faces of C ′ of type
T and U , respectively.

EC′

F ′
H′ G′

L

FCC

FH G

Proof. Let E be the unique chamber in L with F ′ as a face. Let H and G be the
faces of C of types T and U . Consider the T ′-gates of the form FC, as F varies over
faces of type T ′ such that HF = G. They are aTUT

′

in number. Move each such T ′-
gate to E by a (unique) Coxeter symmetry. Under such a symmetry C moves into
L to a chamber say C ′. As the T ′-gate and resulting symmetry vary, C ′ occupies
precisely those chambers in L with the property stated in the proposition. �
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Let us apply the above discussion to αZ , where Z is any face-type of α. For
each face-type T greater than Z, put

(16.24) HT/Z :=
∑

F : t(F )=T, F≥A

HF/A,

where A is the face of C of type Z. This defines the H-basis of the invariant Tits
algebra of αZ . Let a

TUT ′

Z denote its structure constants, that is,

(16.25) HT/Z · HT ′/Z :=
∑

U :U≥T

aTUT
′

Z HU/Z .

Lemma 16.21. For any face-types T , T ′, V and Y with T ≤ V ≤ Y ,

(16.26) aV Y T
′

=
∑

U :U≥T

aV Y UT aTUT
′

.

Proof. We explain this identity by means of a picture.

Y

T V

U

T ′

Fix faces F and G of types V and Y , respectively, with F ≤ G. In the picture,
F is the edge labeled V , while G is the triangle labeled Y . By Lemma 16.19, the
lhs of (16.26) counts the number of faces of type T ′ in the region strictly below
the horizontal dotted line. We are given that T is a face-type smaller than V . Let
H be the face of F of type T . The lhs can be expressed as a sum indexed by U ,
where U is the type of the face obtained by projecting faces of type T ′ on H. In
the picture, T is a vertex-type shown in black, T ′ is also a vertex-type shown in
white, U is a variable quantity depending on which face of type T ′ is used. For the
particular choice in the picture, U is an edge-type. For each U , we need to multiply
two independent counts. The first is the number of faces of type T ′ in the interior
of the half-line determined by T and U which is aTUT

′

. The second is the number
of faces of type U in the interior of the lune in the star of H determined by F and
G (consisting of the three triangles) which is aV Y UT . �

Lemma 16.22. For any face-types T and T ′, we have aTST
′

= aT
′ST .

Proof. Consider the set of pairs (F, F ′), where F has type T , F ′ has type T ′, and

FF ′ is a chamber. Then aTST
′

is the cardinality of this set divided by the number
of chambers. The identity follows by noting that FF ′ is a chamber iff F ′F is a
chamber. �

Lemma 16.23. For any T ≤ U , we have
∑
T ′ (−1)|T ′|aTUT

′

= (−1)|U |. The sum
is over all face-types T ′.

Proof. This follows from (7.12a) and Lemma 16.19. �
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Exercise 16.24. Recall from Section 5.2.4 the equivalence relation on nested face-
types. Show that: If (T,U) and (T ′, U ′) are equivalent, then aTUV = aT

′U ′V for
any face-type V .

16.5.2. q-analogue. The structure constants of the invariant Tits algebra can be
deformed as follows. Fix a scalar q. For any face-types T , T ′ and U with T ≤ U ,
define

(16.27) aTUT
′

(q) :=
∑

F

qdist(H,F ) =
∑

F

(υq)H,F .

Here υq is the distance function on faces given by (8.16). The sum is over all faces
F of type T ′ such that HF = G, where (H,G) is a fixed nested face of type (T,U).
Note from Lemma 16.19 that setting q = 1 recovers the structure constants.

Lemma 16.25. Let E be any chamber and F ′ be its face of type T ′. Then

(16.28) aTUT
′

(q) =
∑

H′

qdist(H
′,F ′).

The sum is over all faces H ′ of type T such that F ′H ′ ≤ E and H ′F ′ has type U .

This is the q-analogue of Lemma 16.20 but formulated somewhat differently.
See Lemma 3.39 in this regard.

Lemma 16.26. For any face-types T , T ′, V and Y with T ≤ V ≤ Y ,

(16.29) aV Y T
′

(q) =
∑

U :U≥T

aV Y UT (q) aTUT
′

(q).

Proof. This is a q-analogue of (16.26). The same argument can be repeated, the
additional ingredient is to use (8.9e) for υ = υq. �

Lemma 16.27. For any face-types T and T ′, we have aTST
′

(q) = aT
′ST (q).

Proof. The argument of Lemma 16.22 can be repeated, with the additional in-
gredient being (υq)F,F ′ = (υq)F ′,F . �

For any face-type T , define

(16.30) dist(T, T ) := dist(F, F ),

where F is any face of type T .

Lemma 16.28. For any face-types T ≤ U ,

(16.31)
∑

T ′

(−1)|T ′|aTUT
′

(q) = (−1)|U |qdist(T,T ).

Proof. This follows from (7.13a) and (16.27). �

Lemma 16.29. For any face-types U and V ,

(16.32)
∑

T :T≤V

(−1)|T |aTV U (q) =

®
(−1)|V |qdist(U,U) if V ≥ U,
0 otherwise.
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Proof. Let E be any chamber, and F be the face of E of type U . Then by using
Lemma 16.25, the lhs of (16.32) can be written as

∑

G:FG≤E,
t(G)=V

qdist(G,F )
∑

H:HF=G

(−1)rk(H).

By (7.11a), this equals
∑

G:FG≤E,F≤G,
t(G)=V

qdist(G,F )(−1)rk(G).

The conditions FG ≤ E and F ≤ G are equivalent to F ≤ G ≤ FE. Now if V 6≥ U ,
then no G works and the sum is 0, while if V ≥ U , then the face of FE of type V
is the unique G which works. The result follows. �

16.5.3. Structure constants and face-type enumeration. Recall that dT is
the number of faces of type T in α, and for T ≤ U , dU/T is the number of faces of
type U/T in αT .

Since any S-based lune is the maximum flat, Lemmas 16.19 and 16.20 yield

(16.33) dT ′ = aSST
′

= aT
′SS .

Lemma 16.30. For any face-types T and T ′,

(16.34) dT ′ =
∑

U :U≥T

dU/T a
TUT ′

.

Proof. This is a special case of (16.26): Put V = Y := S. The same argument
in more direct terms goes as follows. Let ΣT ′ denote the set of all faces of type
T ′. Define an equivalence relation on ΣT ′ : F ∼ F ′ iff HF = HF ′, where H is the
face of C of type T . If U = t(HF ), then we say that the equivalence class of F
is of type U . The size of an equivalence class only depends on its type. Further,
there are dU/T equivalence classes of type U , and each such equivalence class has

size aTUT
′

. The result follows. �

Note that setting T := S in (16.34) forces U = S, and the identity specializes

to dT ′ = aSST
′

.

Second proof. We give another argument based on the lune interpretation of dT .
Fix a T ′-based top-lune L and another type T . By Lemma 16.11, dT ′ is the number
of chambers in L. In what follows we employ the notations of Lemma 3.39. By
applying it to each face H of type T , we see that L can be written as a disjoint union
of smaller top-lunes (in T -stars). Now group these smaller top-lunes L′ according
to the type of HF . In any one particular group say of type U , the number of
chambers in each L′ is dU/T and the number of these is aTUT

′

by Lemma 16.20.
This concludes the argument.

T ′

T

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



466 16. INVARIANT BIRKHOFF ALGEBRA AND INVARIANT TITS ALGEBRA

The picture shows L, with T ′ being the magenta vertex-type, and T being the
black vertex-type. (This lune occurs in the rank-three braid arrangement.) The
top-lune L breaks into two parts of three triangles each. Note however that the two
parts fall into different groups, the U for one is the edge-type black and magenta,
while the U for the other is the edge-type black and blue. So the identity reads
6 = 3 · 1 + 3 · 1. The remaining face-types do not contribute. (One can consider
other scenarios in the same picture by taking T to be some other face-type.) �

We briefly discuss q-analogues of the above results. We have

dT ′(q) = aSST
′

(q) = aT
′SS(q).

Observe that setting T = U := S in (16.31) and then using the above identity
recovers (16.19).

Lemma 16.31. For any face-types T and T ′,

(16.35) dT ′(q) =
∑

U :U≥T

dU/T (q) a
TUT ′

(q).

Proof. This is a special case of (16.29): Put V = Y := S. Alternatively, it can
be deduced from the proof of (16.34), the additional ingredient being (8.2f):

(υq)C,FC = (υq)C,HFC(υq)HFC,FC . �

Note that setting T := S in (16.35) forces U = S, and the identity specializes

to dT ′(q) = aSST
′

(q).

16.6. Invariant Lie and Zie elements

Recall Lie and Zie elements from Chapter 10. We briefly consider the invariant
part of these spaces under the action of the Coxeter group W . Results on Peirce
decompositions from Sections 13.5 and 13.6 and the JKS theorem from Section 14.4
will be used in the discussion.

16.6.1. Invariant Lie elements. Recall the space of Lie elements Lie[A]. Let
Lie[A]W denote the subspace of Lie[A] consisting of the W -invariant Lie elements.

Proposition 16.32. We have

(16.36) Lie[A]W =

®
k if rk(A) = 0,

0 otherwise.

Proof. If A has rank zero, then Lie[A] = k by Lemma 10.1 and W is the trivial
group; so this case is clear. Now assume that A has rank at least 1. Fix a maximal
chain of flats z and an orientation σ of A. Let α be the Lie element of A obtained
by unbracketing z wrt σ. Let s ∈ W be the reflection in the hyperplane which
appears in the chain z. Then s(α) = −α. This is because the action of s preserves
z but reverses σ. Therefore∑

w∈W

w(α) =
∑

w∈W

w(s(α)) = −
( ∑

w∈W

w(α)
)
= 0.

By the JKS theorem, elements α as above obtained by unbracketing maximal
chains linearly span Lie[A]. Hence, elements of the form

∑
w∈W w(α) linearly span

Lie[A]W . (The assumption on the field characteristic made in Convention 16.2 is
used here.) But any such sum is zero. The result follows. �
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More generally:

Proposition 16.33. Fix a flat-type λ. Then

(16.37)

Å ⊕

X: t(X)=λ

Lie[AX]

ãW
=

®
k if λ is the maximum flat-type,

0 otherwise.

The sum is over all flats X of type λ.

Setting λ to be the minimum flat-type recovers (16.36).

Proof. The argument given for Proposition 16.32 generalizes. Alternatively, one
can make use of the left Peirce decomposition of chambers given in (13.12). This
isomorphism commutes with the action of W if the homogeneous section u is in-
variant under W . (The latter notion is elaborated in Section 16.8.1.) Hence, we
obtain

Å⊕

X

Lie[AX]

ãW
=

⊕

λ

Å ⊕

X: t(X)=λ

Lie[AX]

ãW
∼= Γ[A]W .

Here λ runs over all flat-types. The space Γ[A]W is one-dimensional spanned by the
sum of all chambers. It corresponds to the summand of the maximum flat-type. As
a consequence, the summands of the remaining flat-types are all 0 as required. �

16.6.2. Invariant Zie elements. Recall the space of Zie elements Zie[A]. Let
Zie[A]W denote the subspace of Zie[A] consisting of the W -invariant Zie elements.

Recall the right Peirce decomposition of Zie given in (13.17). This isomorphism
commutes with the action of W if the involved Q-basis is invariant under W . (The
latter notion is elaborated in Section 16.8.3.) Hence, we obtain

(16.38) Zie[A]W ∼=
Å⊕

X

Lie[AX]

ãW
=

⊕

µ

Å ⊕

X: t(X)=µ

Lie[AX]

ãW
.

Consider the special Zie element QO (which is assumed to be invariant). Its linear
span is a one-dimensional subspace of Zie[A]W . It corresponds to the summand of
the minimum flat-type.

16.7. Invariant lune-incidence algebra

Recall the lune-incidence algebra from Section 15.2. It is acted upon by the
Coxeter group W , and thus we obtain the invariant lune-incidence algebra. This
algebra can also be viewed as a reduced incidence algebra of the poset of face-types.
It has a basis indexed by lune-types.

Recall noncommutative zeta and Möbius functions from Section 15.3. They
are elements of the lune-incidence algebra characterized by lune-additivity and the
noncommutative Weisner formula. For those noncommutative zeta and Möbius
functions which belong to the invariant lune-incidence algebra, we reformulate lune-
additivity and the noncommutative Weisner formula using face-types.
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16.7.1. Invariant face-incidence algebra. Recall the incidence algebra of the
poset of faces. It is called the face-incidence algebra and denoted Iface[A]. It
consists of functions on nested faces with product given by (15.8). We denote its
W -invariant subalgebra by Iface[A]W . It consists of functions f on nested faces
which are invariant, that is, f(H,G) = f(wH,wG) for w ∈ W . An alternative
description is given below.

Let Ifacetype[A] denote the incidence algebra of the poset of face-types. It con-
sists of functions f on nested face-types, with the product of f and g given by

(16.39) (fg)(T, V ) =
∑

U :T≤U≤V

f(T,U)g(U, V ).

There is an isomorphism of algebras

Ifacetype[A] = Iface[A]W .
Compare (16.39) with (15.8). This fact can also seen as a formal consequence of
Exercise 5.1. See the discussion in Section C.4.6 for more details.

We refer to Ifacetype[A] as the invariant face-incidence algebra.

16.7.2. Invariant lune-incidence algebra. Recall the lune-incidence algebra
Ilune[A]. We denote its W -invariant subalgebra by Ilune[A]W . An alternative de-
scription is given below.

Recall from Section 5.2.4 the equivalence relation on nested face-types. Let
Ilunetype[A] denote the subspace of Ifacetype[A] consisting of those functions f on
nested face-types such that f(T,U) = f(T ′, U ′) whenever (T,U) ∼ (T ′, U ′).

Lemma 16.34. The equivalence relation on nested face-types is order-compatible,
or equivalently, Ilunetype[A] is a subalgebra of Ifacetype[A]. It has a basis indexed by
lune-types.

Proof. This can be seen as a special case of Proposition C.16, by following the
proof of Lemma 15.3. �

Thus, Ilunetype[A] is an example of a reduced incidence algebra of the poset of
face-types. The following is a commutative diagram of algebras.

(16.40)

Iface[A] Iface[A]W = Ifacetype[A]oo

Ilune[A]

OO

Ilune[A]W = Ilunetype[A]oo

OO

All maps are inclusions. Compare with (5.4).
We refer to Ilunetype[A] as the invariant lune-incidence algebra.

16.7.3. Invariant noncommutative zeta and Möbius functions. A noncom-
mutative zeta function ζ is invariant if ζ(H,G) = ζ(wH,wG) for w ∈ W , and
a noncommutative Möbius function µ is invariant if µ(H,G) = µ(wH,wG) for
w ∈W . In this situation, the expressions ζ(T,U) and µ(T,U) are meaningful.

Lemma 16.35. For an invariant noncommutative zeta function ζ, lune-additivity
(15.23) can be rewritten as

(16.41) ζ(T,U) =
∑

V :V≥Z,
s(V/Z)=s(U/Z)

aTUVZ ζ(Z, V )
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for all Z ≤ T ≤ U . Similarly, for an invariant noncommutative Möbius function
µ, the noncommutative Weisner formula (15.27) can be rewritten as

(16.42)
∑

V :V≥Z

aTUVZ µ(Z, V ) = 0

for all Z < T ≤ U .

Here aTUVZ are the structure constants of the invariant Tits algebra studied in
Section 16.5. The definition is given in (16.25).

Proof. This can deduced using Lemma 16.19. �

Remark 16.36. The condition s(U/Z) = s(V/Z) is local to αZ . It implies the
condition s(U) = s(V ), but is in general stronger. For instance, consider the rank-
three braid arrangement. Recall that face-types are compositions of 4. Take Z =
(2, 2), U = (1, 1, 2) and V = (2, 1, 1). Then s(U) = s(V ) but s(U/Z) 6= s(V/Z).
Despite this, it does not matter which of the two conditions we write in (16.41).
This is because aTUVZ = 0 in the case that s(U) = s(V ) but s(U/Z) 6= s(V/Z).

Theorem 16.37. In the invariant lune-incidence algebra, the inverse of an invari-
ant noncommutative zeta function is an invariant noncommutative Möbius func-
tion, and vice-versa.

Proof. This follows from Theorem 15.27. �

16.7.4. Invariant lune-incidence module. Recall the lune-incidence module
Mlune[A]. We denote its W -invariant part by Mlune[A]W . It is a left module over
Ilune[A]W with the action induced from (15.17). An alternative description of this
module is given below.

Define the vector space Mlunetype[A] as follows. It consists of functions f on
face-types such that f(T ) = f(U) whenever T and U have the same support. This
is a left module over the invariant lune-incidence algebra with action given by

(16.43) (fg)(T ) =
∑

U :T≤U

f(T,U)g(U).

There is an isomorphism of modules

Mlunetype[A] = Mlune[A]W .

We refer to Mlunetype[A] as the invariant lune-incidence module.

16.7.5. Noncommutative Möbius inversion. Let ζ be an invariant noncom-
mutative zeta function, and µ be its inverse. Then for f, g ∈ Mlunetype[A],

(16.44) g(T ) =
∑

U :T≤U

ζ(T,U)f(U) ⇐⇒ f(T ) =
∑

U :T≤U

µ(T,U)g(U).

This is equivalent to g = ζf ⇐⇒ f = µg. In this situation, we say that g is the
exponential of f , and f is the logarithm of g.
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16.7.6. Group-likes and primitives. Recall that dT denotes the number of faces
of type T . We say g ∈ Mlunetype[A] is group-like if g(T ) = αdT for some scalar
α which is independent of T . Similarly, we say f ∈ Mlunetype[A] is primitive if
f(T ) = 0 for T < S.

Group-likes and primitives relate to each other via the exponential and loga-
rithm. To show this, we need a couple of preliminary results.

Lemma 16.38. For any invariant noncommutative zeta function ζ, and face-types
T ≤ U ,

ζ(U, S) = dU/T ζ(T, S) or equivalently dT ζ(U, S) = dU ζ(T, S).

Proof. Applying (16.41) to T ≤ U ≤ S, we see that the sum in the rhs contains
only one term. Thus, we get

ζ(U, S) = aUSST ζ(T, S).

But aUSST = dU/T by (16.33) applied to αT . This proves the first identity. To get
the other identity, use (16.14). �

Lemma 16.39. For any invariant noncommutative Möbius function µ, and face-
type T < S, ∑

U :T≤U

µ(T,U)dU = 0.

Proof. Apply (16.42) to T < S ≤ S to obtain
∑

U :T≤U

aSSUT µ(T,U) = 0.

But aSSUT = dU/T by (16.33) applied to αT . Now multiply throughout by dT and
use (16.14). �

Theorem 16.40. Let ζ be an invariant noncommutative zeta function, and µ be its
inverse. Then under the correspondence (16.44), f is primitive iff g is group-like.

Proof. Suppose f is primitive. Then for any T ,

g(T ) =
∑

U :T≤U

ζ(T,U)f(U) = ζ(T, S)f(S).

By Lemma 16.38, we conclude that g is group-like.
Conversely, suppose g is group-like. Then for T < S,

f(T ) =
∑

U :T≤U

µ(T,U)g(U) = α
∑

U :T≤U

µ(T,U)dU = 0

by Lemma 16.39. Thus, f is primitive. �

16.8. Invariant Eulerian idempotents

Recall from Section 15.5 that complete systems of primitive orthogonal idem-
potents for the Tits algebra can be constructed and characterized in various ways.
They involve the notions of homogeneous section, Eulerian family, Q-basis and Zie
family from Chapter 11. A similar characterization can be given for the invari-
ant Tits algebra. The Takeuchi and Fulman elements belong to the invariant Tits
algebra, and we revisit their diagonalization.
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16.8.1. Invariant sections. Recall the notion of homogeneous section from Sec-
tion 11.1. A homogeneous section u is invariant if it is fixed by the action of the
Coxeter group W . That is, uF = uG whenever F and G are faces of the same type.
In this case, it makes sense to write uT where T is a face-type. Further, we write
uUT for uGH , with H ≤ G and t(H,G) = (T,U). In particular, uU∅ = uU . By (11.5),

(16.45) uUT =
∑

F :HF=G,
s(F )=s(G)

ut(F ),

where H ≤ G are fixed with t(H,G) = (T,U).
An alternative way to think about invariant sections is given below. Recall the

numbers |λ| from Section 5.5.1.

Lemma 16.41. An invariant section u is a family of scalars (uT ) such that for
each flat-type λ,

(16.46) |λ|
∑

T : s(T )=λ

uT = 1.

In particular, |W | uS = 1 (arising from the maximum flat-type).

In order to state the next result in complete generality, we temporarily set aside
Convention 16.2.

Lemma 16.42. Assume that A has rank at least one. Let k be any field. An
invariant section of A exists iff the characteristic of k does not divide |W |.
Proof. We employ Lemma 16.41. For the linear system (16.46) to have a solution,
the characteristic of k must not divide |W |. This is also a sufficient condition since
|λ| divides |W | by Exercise 5.16. �

Resuming Convention 16.2, we see that invariant sections exist. Moreover, the
dimension of the affine space of all invariant sections is equal to the number of
face-types minus the number of flat-types.

16.8.2. Invariant Eulerian families. Recall the notion of an Eulerian family
from Section 11.2. An Eulerian family E is invariant if w · EX = EwX for w ∈W .

Now suppose E is an invariant Eulerian family. For each flat-type λ, define

(16.47) Eλ :=
∑

X: t(X)=λ

EX.

Note that the summands EX can be recovered from Eλ. We deduce from (11.23)
and (16.1) that

(16.48) s(Eλ) = Qλ.

Similarly, the map (11.24) restricts to

(16.49) Π[A]W →֒ Σ[A]W , Qλ 7→ Eλ.

This is an algebra section of the invariant support map. Equivalently, by The-
orem D.32 (with A being the invariant Tits algebra and Ā being the invariant
Birkhoff algebra), we obtain:

Theorem 16.43. The elements Eλ, as λ varies over all flat-types of A, yield a
complete system of primitive orthogonal idempotents of Σ[A]W .
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By Theorem D.31, an arbitrary algebra section is obtained by conjugating
(16.49) by an element of HO + rad(Σ[A])W . Now:

Lemma 16.44. Conjugation of any invariant Eulerian family by an invertible
element of the invariant Tits algebra produces another invariant Eulerian family.

Proof. Let z be an invertible element and E be an invariant Eulerian family. By
Lemma 11.22, the conjugate z · E · z−1 is an Eulerian family. Further, for w ∈W ,

w(z · EX · z−1) = w(z) · w(EX) · w(z
−1) = z · EwX · z−1,

and z · E · z−1 is invariant. �

We conclude that every algebra section of the invariant support map arises
from a unique invariant Eulerian family.

16.8.3. Q-bases. Fix an invariant Eulerian family E. Let Q be the associated basis
of the Tits algebra (11.26). By invariance, w ·QF = QwF . For each face-type T , put

(16.50) QT :=
∑

F : t(F )=T

QF .

As T varies over all face-types, this defines the Q-basis of the invariant Tits algebra.
Observe from (11.28) and (16.47) that

(16.51) Eλ =
∑

T : s(T )=λ

uT QT .

We now build on the discussion in Section 11.4.5. Let (aUT ) denote the inverse of
(uUT ) in the poset of face-types. Equivalently, we invert (uGF ) in the poset of faces,
and put aUT = aGF , with t(F,G) = (T,U). This does not depend on the specific
choice of F and G.

Lemma 16.45. The H- and Q-bases of the invariant Tits algebra are related by

(16.52) HT =
∑

U :T≤U

uUT QU and QT =
∑

U :T≤U

aUT HU .

In particular,

(16.53) H∅ =
∑

T

uT QT .

Proof. This can be deduced from (11.33). �

As a companion to (16.7), on the Q-basis

(16.54) s(QT ) = |s(T )| Qs(T ).

This formula is consistent with (16.46), (16.48) and (16.51).

Exercise 16.46. Establish the following identities.

HT · Es(T ) = QT · Es(T ) = QT , Es(T ) · QT = |s(T )| Es(T ),

HT · QU = QT · QU = |λ| QT if s(T ) = s(U) = λ.

(Use methods similar to the ones in Exercise 11.34.)
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Exercise 16.47. Use (11.29) and Lemma 16.19 to show that: For face-types T
and T ′,

(16.55) HT · QT ′ =
∑

U :U≥T, s(U)=s(T ′)

aTUT
′

QU ,

with aTUT
′

as in (16.23). What happens when T = T ′? Compare and contrast
(16.55) with (16.23).

Recall from Section 11.5.5 that Q-bases of the Tits algebra can also be defined
directly without any reference to Eulerian families. One can take a similar approach
to Q-bases of the invariant Tits algebra. It works as follows. We say that a Q-basis
of the Tits algebra is invariant if w · QF = QwF . Further, we say that a basis of the
invariant Tits algebra is a Q-basis if it is obtained from an invariant Q-basis of the
Tits algebra via (16.50).

16.8.4. Invariant Zie families. Recall the notion of a Zie family from Sec-
tion 11.5. A Zie family P is invariant if w · PX = PwX for w ∈ W . In this
case, P⊥ is an invariant Zie element.

16.8.5. Characterizations of invariant Eulerian families.

Theorem 16.48. For a reflection arrangement A, the following pieces of data are
equivalent.

(1) An invariant noncommutative zeta function ζ of A.
(2) An invariant section u of A.
(3) An invariant Eulerian family E of A.
(4) A complete system of primitive orthogonal idempotents of Σ[A]W .
(5) An algebra section Π[A]W → Σ[A]W of the invariant support map.
(6) A Q-basis of the invariant Tits algebra of A.
(7) An invariant special Zie family P of A.
(8) An invariant noncommutative Möbius function µ of A.

This is the analogue of Theorem 15.40. It largely follows from the fact that in
Theorem 15.40, the steps involved in the passage from one piece of data to another
respect the action of W . The equivalence between invariant Eulerian families,
complete systems and algebra sections is explained in Section 16.8.2.

Formulas (16.52) relating the H- and Q-bases can be rewritten as

(16.56) HT =
∑

U :U≥T

ζ(T,U) QU and QT =
∑

U :U≥T

µ(T,U) HU .

Compare with (15.37).

16.8.6. Good reflection arrangements. Recall good reflection arrangements
from Section 5.7. The uniform section of a good reflection arrangement is invariant.
We revisit Section 11.6 from this perspective.

Lemma 16.49. For the uniform section of a good reflection arrangement A, the
H- and Q-bases of the invariant Tits algebra are related by

(16.57) HT =
∑

U :T≤U

1

cUT
QU and QT =

∑

U :T≤U

µ(AUT )
cUT

HU .

Proof. This can be deduced from (11.50). �
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Theorem 16.50. The invariant Eulerian idempotents for the uniform section of
a good reflection arrangement A are given by

Eλ =
∑

s(T )=λ

1

cT
QT =

1

cλ

∑

s(T )=λ

QT(16.58)

=
1

cλ

∑

s(T )=λ

∑

U :T≤U

µ(AUT )
cUT

HU ,

where cλ := cT for any face-type T of support λ.

Proof. This follows from (16.51) and the second formula in (16.57). �

Now, for k ≥ 0, observe that

(16.59) Ek =
∑

λ: rk(λ)=k

Eλ =
∑

T : |T |=k

1

cT
QT ,

with Ek as in (11.54).

16.8.7. Takeuchi and Fulman elements. The Takeuchi element defined in
(12.15) belongs to the invariant Tits algebra, and can be rewritten as

Tak =
∑

T

(−1)|T | HT .

From (12.23), we obtain

Tak =
∑

λ

(−1)rk(λ) Eλ,

for any Eulerian family E arising from an invariant section which is also projective.

The Fulman element of parameter t defined in (12.31) belongs to the invariant
Tits algebra, and can be rewritten as

Fult =
∑

T

χ(AT , t)
cT

HT .

Theorem 12.50 may be restated as follows.

Theorem 16.51. For a good reflection arrangement,

(16.60) Fult =
∑

λ

trk(λ) Eλ =
∑

k≥0

tk Ek,

with Eλ as in (16.58) and Ek as in (16.59).

16.9. Peirce decompositions

We briefly discuss the left, right and two-sided Peirce decompositions of the in-
variant Tits algebra, their connection with invariant Zie, chamber and Lie elements,
and some consequences for its quiver.

In this section, E is an arbitrary but fixed invariant Eulerian family of A. In
view of Theorem 16.48, this is the same as fixing an invariant section, a Q-basis,
and so on.
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16.9.1. Left Peirce decomposition of chambers. Recall that there is a left
action of the (invariant) Tits algebra on Γ[A]. By Theorem 16.43,

(16.61) Γ[A] =
⊕

λ

Eλ · Γ[A].

Further, by (16.47),

dim Eλ · Γ[A] =
∑

X: t(X)=λ

dim EX · Γ[A] =
∑

X: t(X)=λ

|µ(AX)|.

The second equality used (13.10) and (10.24). Equivalently, by Theorem 5.18:

Theorem 16.52. The dimension of Eλ ·Γ[A] is the number of elements of W whose
cycle-type is λ.

16.9.2. Right Peirce decomposition of Zie. Recall that there is a right action
of the (invariant) Tits algebra on Zie[A]. By Theorem 16.43,

(16.62) Zie[A] =
⊕

λ

Zie[A] · Eλ.

Further, by (16.47),

dimZie[A] · Eλ =
∑

X: t(X)=λ

dimZie[A] · EX =
∑

X: t(X)=λ

|µ(AX)|.

The second equality used (13.19) and (10.24).

16.9.3. Peirce decompositions of the invariant Tits algebra. We have

Σ[A]W =
⊕

λ

Eλ · Σ[A]W and Σ[A]W =
⊕

µ

Σ[A]W · Eµ.

These are the left and right Peirce decompositions, respectively. The connection of
these Peirce decompositions with those of the Tits algebra is as follows.

(16.63) Eλ · Σ[A]W =

Å ⊕

X: t(X)=λ

EX · Σ[A]
ãW

and

(16.64) Σ[A]W · Eµ =

Å ⊕

Y: t(Y)=µ

Σ[A] · EY
ãW

.

Similarly, we have the two-sided Peirce decomposition

(16.65) Σ[A]W =
⊕

λ≤µ

Eλ · Σ[A]W · Eµ.

The sum is over both λ and µ. It is the invariant analogue of (13.20). Again the
point to note is that

Eλ · Σ[A]W · Eµ = 0 for λ 6≤ µ.
Further,

(16.66) Eλ · Σ[A]W · Eµ =

Å ⊕

X≤Y
t(X)=λ, t(Y)=µ

EX · Σ[A] · EY
ãW

.
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In conjunction with (13.36) and Proposition 16.4, we deduce that

(16.67) rad(Σ[A]W ) =
⊕

λ<µ

Eλ · Σ[A]W · Eµ.

16.9.4. Invariant Lie elements. Since E is invariant, the isomorphism in Theo-
rem 13.53 respects the action of W . Hence, by taking invariants, we obtain

(16.68) Σ[A]W ∼=
Å⊕

X≤Y

Lie[AY
X]

ãW
.

The sum is over both X and Y.
The components of the two-sided Peirce decomposition of the invariant Tits

algebra given in (16.65) can also be understood in terms of Lie elements. We have

(16.69) Eλ · Σ[A]W · Eµ ∼=
Å ⊕

X≤Y
t(X)=λ, t(Y)=µ

Lie[AY
X]

ãW
.

This follows by combining (13.23) and (16.66).
In a similar manner, by using Proposition 13.31 and Lemma 13.40, we obtain

Σ[A]W ∼=
Å⊕

X

Zie[AX]

ãW
and Σ[A]W ∼=

Å⊕

Y

Γ[AY]

ãW
.

Further, the components of the left and right Peirce decompositions are

Eλ · Σ[A]W ∼=
Å ⊕

X: t(X)=λ

Zie[AX]

ãW
and Σ[A]W · Eµ ∼=

Å ⊕

Y: t(Y)=µ

Γ[AY]

ãW
.

We made use of (16.63) and (16.64). The second isomorphism yields the following.

Theorem 16.53. For any flat-type µ, the dimension of Σ[A]W · Eµ equals the
number of face-types whose support is µ.

More information is given in the exercise below. It is the invariant analogue of
Exercise 11.35.

Exercise 16.54. Fix a flat-type λ. Put hλ := ΣW · Eλ. Show that:

• hλ has a linear basis consisting of the elements QT , as T varies over face-
types with support λ.
• The radical of hλ is linearly spanned by elements of the form QT − QU ,

where T and U both have support λ.
• The quotient of hλ by its radical is one-dimensional with multiplicative
character χλ. (The latter is defined in (16.8).)

16.9.5. Quiver. Recall the quiver of the Tits algebra from Theorem 13.68. It
was computed using the connection of the Tits algebra with Lie elements. In a
similar manner, one can try to compute the quiver of the invariant Tits algebra
by employing (16.68). However, analyzing this is nontrivial and we only give the
following partial result.

Proposition 16.55. Let Q denote the quiver of the invariant Tits algebra. The
vertices of Q are flat-types. If there is an arrow from µ to λ, then λ < µ. In
particular, Q is acyclic. Further, the maximum flat-type is an isolated vertex, that
is, there is no arrow to or from the maximum flat-type.
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Proof. The split-semisimple quotient of the invariant Tits algebra is the invariant
Birkhoff algebra. Hence the vertices of its quiver are flat-types. The second claim
follows from (16.67). The last claim follows similarly from (16.37) and (16.69). �

The Cartan invariants of the invariant Tits algebra are the dimensions of the
spaces (16.69). It would be nice to have formulas for them. Theorem 16.53 is a
step in that direction.

16.10. Bilinear forms

We discuss some bilinear forms on face-types and related objects. The involved
constants are closely related to the structure constants of the invariant Tits algebra.
In this discussion, a pointed arrangement (A, C) is fixed.
16.10.1. Bilinear form on nested face-types. Let (T,U) and (T ′, U ′) be nested

face-types. Let aTUT
′U ′

denote the number of nested faces (F ′, G′) of type (T ′, U ′)
such that

FF ′ = G and F ′F = G′

for a fixed nested face (F,G) of type (T,U). There is an inbuilt symmetry, namely,

aTUT
′U ′

= aT
′U ′TU .

The latter is the number of nested faces (F,G) of type (T,U) such that the above
equations hold for a fixed nested face (F ′, G′) of type (T ′, U ′). Thus,

〈(T,U), (T ′, U ′)〉 := aTUT
′U ′

defines a symmetric bilinear form on the linear space with basis of nested face-types.
More generally, for any scalar q, with notation as above, define

(16.70) aTUT
′U ′

(q) :=
∑

qdist(G,G
′).

The sum is either over (F,G) or over (F ′, G′) depending on the point of view. This
can also be expressed as

(16.71) aTUT
′U ′

(q) =
∑

ql(w).

The sum is over those w ∈W such that

F ′
0(wF0) = G′

0, (wF0)F
′
0 = wG0 and (wG0)C = wC,

where F0, G0, F
′
0, G

′
0 are faces of C of types T , U , T ′, U ′.

This defines a q-analogue of the above bilinear form. It continues to be sym-
metric. The deformed structure constants (16.27) of the invariant Tits algebra are
contained in this bilinear form:

(16.72) aTUT
′T ′

(q) =

®
aTUT

′

(q) if s(T ′) = s(U),

0 otherwise,

and

(16.73)
∑

U ′

aTUT
′U ′

(q) = aTUT
′

(q) or equivalently
∑

U

aTUT
′U ′

(q) = aT
′U ′T (q).

Setting U = S in the first sum, and noting that aTST
′U ′

(q) is 0 if U ′ 6= S, we obtain

aTST
′S(q) = aTST

′

(q).

The symmetry of the bilinear form gives another proof of aTST
′

(q) = aT
′ST (q).
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16.10.2. Bilinear form on face-types. For any face-types T and T ′, define

aTT
′

(q) :=
∑

U,U ′

aTUT
′U ′

(q).

This can also be expressed as

aTT
′

(q) =
∑

ql(w).

The sum is over those w ∈ W such that (wF0)C = wC and F ′
0(wC) = C, where

F0 and F ′
0 are faces of C of types T and T ′.

We have
aTT

′

(q) = aT
′T (q).

Hence
〈T, T ′〉 := aTT

′

(q)

defines a symmetric bilinear form on the linear space with basis of face-types.
Also note that

aST (q) = aSST (q) = dT (q).

16.10.3. Bilinear form on double-nested face-types. A double-nested face is
a triple (F,G,H) of faces with F ≤ G ≤ H. Similarly, a double-nested face-type is
a triple (T,U, V ) of face-types with T ≤ U ≤ V .

Let (T,U, V ) and (T ′, U ′, V ′) be double-nested face-types. Let aTUV T
′U ′V ′

denote the number of triples (F ′, G′, H ′) of type (T ′, U ′, V ′) such that

FF ′ = G, F ′F = G′, FH ′ = H, F ′H = H ′,

where (F,G,H) is a fixed double-nested face of type (T,U, V ). This defines a
bilinear form on double-nested face-types. Note that dist(F, F ′) = dist(G,G′) =
dist(H,H ′).

More generally, for any scalar q, with notation as above, define

aTUV T
′U ′V ′

(q) :=
∑

(F ′,G′,H′)

qdist(G,G
′).

This defines a q-analogue of the above bilinear form.
For T ≤ U ≤ V and T ′ ≤ V ′, set

aTUV T
′V ′

(q) :=
∑

U ′

aTUV T
′U ′V ′

(q).

Lemma 16.56. For face-types T ≤ Y and T ′ ≤ V ′,

(16.74) aT
′V ′Y (q) =

∑

U≤V

aUV YT (q) aTUV T
′V ′

(q).

The sum is over both U and V .

Proof. Let us first consider the case q = 1. This is similar to the proof of (16.26).
The relevant picture is given below.

V ′V

T U T ′

Y
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The lhs counts the number of faces of type Y in the interior of the lune marked by
dotted lines. It can be expressed as a sum indexed by U and V , where (U, V ) is
the type of the nested face obtained by projecting the nested face of type (T ′, V ′)
defining the lune on subfaces of type T . For each such U and V , we need to multiply
two independent counts, which can be seen to be aUV YT and aTUV T

′V ′

(q).
For the case of general q, the additional ingredient is to use (8.9e) for υ = υq. �

16.11. Garsia-Reutenauer idempotents (Type A)

Let A be the braid arrangement on [p] (Sections 6.3–6.6). We discuss the
Garsia-Reutenauer idempotents and the more general Krob-Leclerc-Thibon idem-
potents. The former are the Eulerian idempotents of the invariant Tits algebra
associated to the uniform section. We discuss the Bayer-Diaconis-Garsia-Loday
formula for them. We also write down the Bergeron formula for the symmetrized
Dynkin element viewed as an element of the invariant Tits algebra.

16.11.1. Invariant Birkhoff algebra. Recall that flat-types correspond to inte-
ger partitions of p. Thus they index the basis elements of the invariant Birkhoff
algebra. Let λ = (l1, . . . , lh) and µ = (m1, . . . ,mk) be two partitions. Let Rλµ
denote the change of basis coefficient between the H- and Q-bases as in (16.2). Ex-
plicitly, Rλµ is the number of compositions (S1, . . . , Sk) of the set [h] such that

(16.75) mj =
∑

i∈Sj

li, 1 ≤ j ≤ k.

16.11.2. Invariant Tits algebra. Recall that face-types correspond to integer
compositions of p. Thus they index the basis elements of the invariant Tits algebra.
Specializing (16.57):

Lemma 16.57. For the uniform section, the H- and Q-bases are related by

(16.76) Hα =
∑

β:α≤β

1

deg!(β/α)
Qβ and Qα =

∑

β:α≤β

(−1)rk(β/α)
deg(β/α)

Hβ ,

with degrees and factorials as in Section 6.6.3.
In particular,

(16.77) Q(p) =
∑

β

(−1)rk(β)
deg(β)

Hβ .

The sum is over all compositions β of p.

Compare (16.76) with (12.35). For p = 2, the change of basis formulas are

H(1,1) = Q(1,1), H(2) = Q(2) +
1

2
Q(1,1), Q(2) = H(2) −

1

2
H(1,1).

Lemma 16.19 along with the explicit description of the Tits product (6.1) yields
the following description of the structure constants of the invariant Tits algebra.

Lemma 16.58. Suppose α and β are compositions of p with k parts and l parts,
respectively, and γ is a composition of p which refines α. Then aαγβ is the number
of ways to fill a k× l matrix with nonnegative integers such that the row-sums give
α and the column-sums give β, and reading the matrix left to right and then top to
bottom and deleting the zero entries yields γ.
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16.11.3. Garsia-Reutenauer idempotents. For each partition λ of p, define

(16.78) Eλ :=
1

k!

∑

α: s(α)=λ

Qα =
∑

X: t(X)=λ

EX,

where k is the number of parts of λ, and EX is as in (12.36). We call these the
Garsia-Reutenauer idempotents .

Theorem 16.59. The elements Eλ, as λ varies over all partitions of p, yield a
complete system of primitive orthogonal idempotents of the invariant Tits algebra.

Proof. This is a special case of Theorem 16.43. �

Recall the idempotents Ek from (12.38). For 1 ≤ k ≤ p,

(16.79) Ek =
∑

λ: deg(λ)=k

Eλ =
1

k!

∑

α: deg(α)=k

Qα,

In particular, E1 = Q(p). The Ek form a system of orthogonal idempotents of the
invariant Tits algebra, but it is not complete when p > 1.

16.11.4. Bayer-Diaconis-Garsia-Loday formula. For α a composition of p, let

Hα :=
∑

F : t(F )=α

HF .

The sum is over all set compositions whose underlying composition is α. Set

(16.80) Kβ :=
∑

α:α≤β

(−1)deg(β)−deg(α)Hα or equivalently Hα =
∑

β: β≤α

Kβ .

Put

Tk =
∑

α: deg(α)=k

Hα and Uk =
∑

β: deg(β)=k

Kβ .

(This agrees with the Tk defined in (12.39).) The Adams element defined in (12.42)
is then given by

(16.81) Adsn =

p∑

k=1

Ç
n

k

å
Tk =

p∑

r=1

Ç
n+ p− r

p

å
Ur.

This boils down to the combinatorial identity: For any composition β of p,

∑

α:α≥β

Ç
n

deg(α)

å
=

Ç
n+ p− deg(β)

p

å
.

Lemma 16.60. We have

(16.82) Ek =
1

p!

p∑

r=1

ep−k(1− r, 2− r, . . . , p− r) Ur,

where ek is the k-th elementary symmetric function.
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Proof. We know from (12.43) that Ek is the coefficient of nk in Adsn. Write the
binomials in the last expression for this element in (16.81) as polynomials in n:

Ç
n+ p− r

p

å
=

1

p!
(n+ (p− r)) . . . (n+ (1− r))

=
1

p!

p−1∑

i=0

np−iei(1− r, 2− r, . . . , p− r).

The sum goes only till p− 1 because (1− r) . . . (p− r) = 0. Now put k = p− i and
extract the coefficient of nk. �

We call (16.82) the Bayer-Diaconis-Garsia-Loday formula.

Exercise 16.61. Use (12.46) and (16.5) to express E⊥ in the K-basis of the invariant
Tits algebra. Check that it agrees with the case k = 1 of (16.82).

16.11.5. Bergeron formula. Recall the symmetrized Dynkin element dp given

in (14.47) and its opposite dp. As elements of the invariant Tits algebra, in the
H-basis, they are given by

(16.83) dp =
∑

α

(−1)rk(α)wαHα and dp =
∑

α

(−1)rk(α)wαHα,

where wα is the last part of α, while wα is the first part of α. In the K-basis, they
are given by

(16.84) dp =

p−1∑

k=0

(−1)kK(1,...,1,p−k) and dp =

p−1∑

k=0

(−1)kK(p−k,1,...,1).

We call this the Bergeron formula. In the first formula, the last part of the com-
position is p− k and the remaining k parts are all 1. Further, as an element of the
symmetric group algebra in the K-basis, dp is a sum over all peakless permutations
with signs in front. (A permutation is peakless if it is a sequence of descents fol-
lowed by a sequence of ascents.) These claims directly follow from (14.54), (16.5)
and (16.13). More generally, from (14.57),

(16.85) dp,q =

p−1∑

k=0

(−q)k K(1,...,1,p−k).

As an element of the group algebra of the symmetric group, dp,−1 is a sum over all
peakless permutations. (The signs go away.)

16.11.6. Krob-Leclerc-Thibon idempotents. We now discuss the invariant
analogue of the construction given in Section 12.5.5. The starting data is as follows.

• Suppose for each 1 ≤ j ≤ p, we are given an arbitrary invariant special
Zie element Q(j) of the braid arrangement on [j].

For each composition α = (a1, . . . , ak) of p, define

(16.86) Qα := µα(Q(a1), . . . , Q(ak)).

The rhs is the external product on integer compositions from Section 6.3.13 (defined
on the H-basis by ordered concatenation and extended by multilinearity). As α

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



482 16. INVARIANT BIRKHOFF ALGEBRA AND INVARIANT TITS ALGEBRA

varies over all compositions of p, the Qα yield a basis of the invariant Tits algebra.
So we can write

H(p) =
∑

α

uαQα,

for unique scalars uα. Now define

(16.87) Eλ :=
∑

α: s(α)=λ

uαQα.

These are the required idempotents. We call them the Krob-Leclerc-Thibon idem-
potents . Choosing each Q(j) to be as in (16.77) recovers the Garsia-Reutenauer
idempotents (16.78) (with the uα coinciding with the uniform section).

Exercise 16.62. Apply instead the construction in Section 12.5.5 to Q(S) obtained
from the Zie elements Q(j). Verify that the resulting section, Eulerian family and
Q-basis are invariant. Employ the discussion in Section 16.8 to match these objects
with the ones obtained through the above construction.

Exercise 16.63. Put Q(j) := dj/j, with dj being the symmetrized Dynkin element
given in (14.47). It is an invariant special Zie element of the braid arrangement on
[j]. Use (16.83) to express (16.86) in the H-basis. Use the discussion in Section 14.8.8
to deduce that the resulting invariant section u is given by (14.49). Write down
formulas for the idempotents (16.87) in the H-basis. Write down formulas for ζ(α, β)
and µ(α, β), where ζ and µ are the corresponding invariant noncommutative zeta
and Möbius function. (See Exercise 15.36.)

16.11.7. Two-sided Peirce decomposition. Specializing (16.65), we have

(16.88) Σ[A]Sp =
⊕

λ≤µ

Eλ · Σ[A]Sp · Eµ.

The sum is over both λ and µ. The partial order on partitions is as in Section 6.3.9.
Here the Eλ could either be the Garsia-Reutenauer idempotents or the more general
Krob-Leclerc-Thibon idempotents.

16.11.8. Invariant Lie elements. Specializing (16.36), we obtain:

(16.89) Lie[p]Sp =

®
k if p = 1,

0 otherwise.

Thus, there are no invariant Lie elements for p ≥ 2.

16.11.9. Poincaré polynomial. For the braid arrangement on [p], the exponents
of the Coxeter system are ei = i for 1 ≤ i ≤ p− 1. Hence, by (16.21), the Poincaré
polynomial is

(16.90) dS(q) = (p)q!,

which is the q-factorial. One can then deduce from (16.20) that for the composition
T = (i, p− i),

dT (q) =

Ç
p

i

å

q

,

which is the q-binomial coefficient. In general, we get a q-multinomial coefficient.
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16.12. Bergeron idempotents (Type B)

We let A be the arrangement of type B on [p] (Section 6.7). We discuss the
Bergeron idempotents. These are the Eulerian idempotents of the invariant Tits
algebra associated to the uniform section.

16.12.1. Invariant Tits algebra. Specializing (16.57):

Lemma 16.64. For the uniform section, the H- and Q-bases of the invariant Tits
algebra are related by

(16.91) Hα =
∑

β:α≤β

1

deg!(β/α)
Qβ and Qα =

∑

β:α≤β

(−1)rk(β/α)
deg(β/α)

Hβ ,

with degrees and factorials as in Section 6.7.13.

Compare with (12.50). For p = 1, the change of basis formulas are

H(0,1) = Q(0,1), H(1) = Q(1) +
1

2
Q(0,1), Q(1) = H(1) −

1

2
H(0,1).

16.12.2. Bergeron idempotents. For each type B partition λ of p, define

(16.92) Eλ :=
1

(2k)!!

∑

α: s(α)=λ

Qα =
∑

X: t(X)=λ

EX,

where k is the number of nonzero parts of λ, and EX is as in (12.51). We call these
the Bergeron idempotents . For p = 2, we have

E(2) = Q(2) = H(2) −
1

2
H(1,1) −

1

2
H(0,2) +

3

8
H(0,1,1).

Theorem 16.65. The elements Eλ, as λ varies over all type B partitions of p,
yield a complete system of primitive orthogonal idempotents of the invariant Tits
algebra.

Proof. This is a special case of Theorem 16.43. �

Recall the idempotents Ek from the first formula in (12.53). We have

(16.93) Ek =
∑

λ

Eλ =
1

(2k)!!

∑

α

Qα.

The sum is over all λ (or α) with k nonzero parts. Similarly, from the first formula
in (12.54),

(16.94) Tk =
∑

α

Hα,

where the sum is over all α with k nonzero parts. According to (12.54), (12.56)
and (12.57a), the type B Adams element of odd parameter is

(16.95) Ads±2n+1 =

p∑

k=0

Ç
n

k

å
Tk =

p∑

k=0

(2n+ 1)k Ek.

16.12.3. Invariant Lie elements. Specializing (16.36), we obtain:

(16.96) Lie[p]S
±
p =

®
k if p = 0,

0 otherwise.

Thus, there are no invariant type B Lie elements for p ≥ 1.
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Notes

Solomon descent algebra. The Solomon descent algebra was first defined by Solomon
[370, Theorem 1]. His paper has an interesting appendix by Tits [397]. Numerous proofs
of Theorem 16.7 have appeared since. An early reference is [29]. Theorem 16.8 which
connects the Solomon descent algebra to the invariant Tits algebra is due to Bidigare [57,
Theorem 3.81]. A geometric version of his proof was given by Brown [96, Section 9.7].
Further related ideas can be found in [9, Section 10.8]. The H- and K-bases considered in
(16.4) are two standard bases of the invariant Tits algebra. In Brown’s notation, H is σ
and K is τ [96, Section 9.5]. In Solomon’s original notation, yK = KK , and xK = HS\K ,
where K is a subset of the generating set S of the Coxeter group [370, Equation (1.3)].

Formulas (16.1), (16.5) and (16.7) are given in [8, Definitions 5.7.2, 5.7.4 and 5.7.12].
Theorem 16.3 is given in [8, Lemmas 2.6.5 and 5.7.1]. The assertion about the radical
of the invariant Tits algebra in Proposition 16.4 (phrased in a different language) was
obtained by Solomon [370, Theorem 3]. It is also given in [8, Lemma 2.6.6]. Both
Theorem 16.3 and Proposition 16.4 are also explained in [349, Proposition 4.1 and its
proof]. Information on the nilpotency index of the radical (which we have not discussed)
can be found in [87, Section 6] and [351, Theorem 6.5].

Complete systems. Primitive orthogonal idempotents for the Solomon descent algebra
were first constructed in a unified manner by Bergeron, Bergeron, Howlett and Taylor
[50]. They start with data similar to an invariant section u and then define the Q-basis by
formula (16.52). This is their formula (11); they denote the Q-basis by {eK}. They denote
u
T by µΠ

K , where Π is the set of simple roots and K = Π \T . More generally, they denote
u
U
T by µJ

K , where J = Π\T and K = Π\U . Their formula (10) (after language translation)
is our (16.45). Formulas (16.51) and (16.53) and Theorem 16.43 are stated in the second
paragraph on their page 25. Formula (16.55) which multiplies a H-basis element with a
Q-basis element is given in their Theorem 7.8. Formula (16.41) after translating invariant
noncommutative zeta functions to an invariant section is the same as their Lemma 7.5.
Theorem 16.52 is given in their Theorem 7.15. Theorem 16.43 is also given by Saliola
[347, Proposition 2.4], [349, Theorem 5.2] and our proof follows his argument.

The quiver of the Solomon descent algebra is a topic of active research. The partial
result given in Proposition 16.55 is due to Saliola [349, Propositions 7.1, 7.3 and 7.5] or
[351, Propositions 5.2 and 5.3]. For related work, see the paper by Pfeiffer [326].

Face-type enumeration and structure constants. We discussed many identities in-
volving structure constants of the invariant Tits algebra and enumeration of face-types.
These identities, developed from first principles here, are related to and can be derived
from the existence and other properties of certain Coxeter bialgebras or bosonic Fock
spaces. This connection will be explained in a future work.

The results of Lemmas 16.10 and 16.11 are contained in [8, Lemmas 5.3.1 and 5.3.2].
Theorem 16.17 was proved by Chevalley [109] for Weyl groups and by Solomon [367,
Corollary 2.3] for Coxeter groups. Formula (16.19) is due to Solomon [367, Formula (7)].
It is also given in [224, Proposition on page 21] and [73, Formula (7.3)]. More information
on the polynomial dS(q) can be found in [73, Section 7.1]. Lemma 16.19 is stated in [8,
Lemma 2.6.3]. Equation (16.26) is stated in [50, Proposition 2.6]. The proof given there
is by an algebraic manipulation, so it has a different flavor than ours.

Type A. The Solomon descent algebra of compositions arises out of Theorem 16.7 for the
symmetric group. Early references are [167, Theorem 7], [190, Corollary 12] and [302].
This algebra was studied in depth by Garsia and Reutenauer [185]. The construction
of the idempotents Eλ in (16.78) is given in their Theorems 3.1 and 3.2. The change of
basis formulas (16.76) are given in their formulas (3.28) and (3.24). In this reference, the
letters B and I are used instead of H and Q. The identities in Exercise 16.46 generalize
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those given in their Theorem 4.2. The formula for the product of a H-basis and a Q-basis
element is given in their Theorem 4.1. The Q-basis is also given in Malvenuto’s thesis
[283, Section 4.3, pages 43-44]. (The notation P ∗ is used for the Q-basis.) The first
formula in (16.76) is [283, Formula (4.24)]. It also appears in her paper with Reutenauer
[284, Formula (2.11)]. The idempotents Eλ are also discussed in Reutenauer’s book [342,
Section 9.2, Theorem 9.27]. References for the idempotents Ek in (16.79) have already
been given in the notes to Chapter 12. The Bayer-Diaconis-Garsia-Loday formula (16.82)
for these idempotents is given in [46, Corollary 3] and (up to a sign convention) in [273,
third formula in Proposition 4.5.6]. An equivalent formula is given in [183, Theorem 7.4].
Also see [272, Proposition 2.8, part d] and [185, Remark 4.2]. The matrix description of
the structure constants given in Lemma 16.58 is explicitly given in [185, Proposition 1.1]
and [30] with related ideas in [184]. See also [81, Section 4].

The Solomon descent algebras, as the symmetric groups vary, form the graded com-
ponents of the Hopf algebra of noncommuting symmetric functions introduced in [186].
The Q-basis in this context is up to normalization the same as the power-sum basis of the
second kind of noncommutative symmetric functions in [186, Definition 3.4], where it is
denoted by the letter Φ. The normalization is Φα = a1 . . . ak Qα, for α = (a1, . . . , ak).
The H-basis corresponds to complete noncommutative symmetric functions. The change
of basis formulas (16.76) are given in [186, Proposition 4.9]. The idempotents Eλ of Gar-
sia and Reutenauer are discussed in [251, Section 3.3]. The more general construction
(16.87) of the Krob-Leclerc-Thibon idempotents is given in [251, Section 3.4]. In this
reference, the letter F is instead of Q. For related ideas, see [318, Section 5]. The Q-basis
in Exercise 16.63 was considered by Blessenohl and Laue [83, (27)], and later by Schocker
[356, Section 5.2] or [358, Section 9]. The formula for the product of a H-basis and a
Q-basis element is given in [83, Formula (16)].

Consider the right Peirce decomposition in Exercise 16.54. For the braid arrangement,
the first such decomposition was obtained in [185, Theorem 4.3]. The decomposition using
the Q-basis in Exercise 16.63 is given in [83, Lemma 1.3] and [358, Theorem 9.3]. For
a unified treatment using the Krob-Leclerc-Thibon construction, see [356, Theorem 5.2]
and [357, Proposition 10.1].

The first formula in (16.84) can be found in [183, Lemma 1.1], where it is attributed
to Nantel Bergeron. The q-Dynkin element was introduced via formula (16.85) by Krob,
Leclerc and Thibon [251, Equation (66)]. The authors use the letter R instead of K

and call it the ribbon Schur basis, and denote the q-Dynkin element by Θn(q). (For
q = 1 this becomes the Dynkin element, which they denote by Ψn and call the “power
sums of the first kind”.) They show that the corresponding left q-bracketing operator
(14.58) is diagonalizable and describe its spectral decomposition [251, Sections 5.3 and
5.4]. In particular, they show in their Proposition 5.6 that the space of Lie elements is
an eigenspace. Apart from Section 5, see also Example 3.6 in the same paper. These
results are also described in the survey paper [395, Sections 2.4 and 4.3], see in particular
[395, Equations (55), (56), (63) and (64)]. The image of the left q-bracketing operator
as a Sn-module is studied in [101]. There is a lot of interest in the case q = −1, see for
instance [53] and references therein.

The factorization of the polynomial dS(q) in the case of the symmetric group (16.90)
is in Dickson’s book [142, page 114] and credited to an old paper of Rodrigues [345]. This
polynomial is studied in [150, Section 4] and [210]. The description of the coefficients
Rλµ in Section 16.11.1 is given in [380, Proposition 7.7.1]; also see [8, Fact 5.7.2].

Let k be a field of arbitrary characteristic. The space
⊕

n Lie[n]Sn carries a structure
of a restricted Lie algebra. It is in fact the free restricted Lie algebra on one generator.
This is a special case of a result of Fresse [173, Theorem 1.2.5]. In characteristic 0, this
algebra is one dimensional by (16.89). In positive characteristic, it is infinite dimensional.
See [9, Example 15.38] for additional comments.
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The quiver of the Solomon descent algebra of compositions was first computed by
Schocker [356, Theorem 5.1] using results of Blessenohl and Laue [83, 84]. As a directed
graph, this quiver had appeared earlier in the work of Garsia and Reutenauer [185, Sec-
tion 5]. In their Theorem 5.6, they specify precisely which of the components in (16.88)
are nonzero. This directed graph also appears in later work of Bauer [44]. The quiver
has also since been computed by Saliola [349, Theorem 8.1] and by Bishop and Pfeiffer
[66, Proposition 22]. The Cartan invariants are described in [185, Theorem 5.4], [251,
Theorem 3.24], [84, Corollary 2.1] and [356, Theorem 5.3]. (One may check that they
are consistent with the result obtained in Theorem 16.53.) The dimension of the space
of invariant Zie elements is given by the Witt formula [276, Corollary 5.3.5] and [342,
Corollary 4.14]. The nilpotency index of the radical is discussed in [30, Corollary 3.5] and
[185, Theorem 5.7]. For information on the radical series, see [83, Theorem 2.5], [358,
Theorem 9.10] and [349, Theorem 8.2]. We have not discussed these results in the text.

Type B. Bergeron gave an explicit construction of primitive orthogonal idempotents for
the Solomon descent algebra of type B [52, Theorem 2.11]. The dictionary with his paper
is as follows. He indexes the Solomon descent algebra of type Bn by compositions p of
m ≤ n. We have preferred to do it by type B compositions of n, where the first part may
be 0, since these are the type B face-types. (To transform from his indexing, add a first
part equal to n−m ≥ 0 to his composition of m ≤ n.) Bergeron uses the letters B and I
instead of H and Q. He defines the Q-basis using the second formula in (16.91). This is his
equation (2.1). His I∅ is Q(n) and his formula on page 106 is the second formula in (16.91)
specialized to α = (n). He also singles out I(n) which is Q(0,n). Formula (16.92) is given
on page 113. His Proposition 2.5 confirms that the dimension of Lie is the absolute value
of the Möbius number.

The idempotents Ek in the form (16.93) were introduced by Bergeron and Bergeron
[49, Formula (2.4)]. Formula (12.55), with Tk as in (16.94), and formula (16.95) are
immediate from [49, Formula (2.9)]. These authors view the rhs of (16.95) as a generating
function of Ek in the variable 2n+ 1, and the lhs of (16.95) as a simplification. In effect,
they diagonalize the odd type B Adams elements. The following quotation is taken from
[49, Remark 2.2].

Computer algebra manipulations have shown that an analogous formula
(16.95) holds for the exceptional Coxeter group H3, but does not hold
for the groups Dn, n > 3, and F4.

We now have a conceptual explanation of why this is happening. The good cases are
precisely those of good reflection arrangements.

A matrix description similar to Lemma 16.58 can be given for the structure constants
of the Solomon descent algebras of type B [48, Section 2] and type D [55]. The quiver of
the Solomon descent algebra of type B was first computed by Saliola [349, Theorem 9.1].
For further work on this subject, see [65]. We have not discussed these results in the text.

Other work. We conclude by mentioning some references (by no means exhaustive)
on topics which we have not touched upon. For connections of the descent algebra to
character theory of the symmetric group, see [82, 85, 165, 232, 400], for variants and
generalizations, see [45, 88, 215, 219, 286, 289, 292, 303, 328]. For the related topic
of peak algebras, see [5, 11, 53, 54, 252, 306, 322, 357]. For cyclic descents, see
[12, 105, 106, 144, 321]. For enumeration of descents, see [323] and references therein.
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APPENDIX A

Regular cell complexes

We review regular cell complexes, with emphasis on minimal galleries, gated
sets and the gate property. All cell complexes are assumed to be finite, by which
we mean that they have finitely many cells.

A.1. Cell complexes

A.1.1. Regular cell complexes. A cell complex X can be defined inductively:
We start with the 0-skeleton consisting of a finite set of points. Then we add one-
cells by identifying the two boundary points of each one-cell with points in the
0-skeleton, and so on. A cell complex is also called a CW complex.

A cell complex is regular if the identification of the boundary of each n-cell to
the (n − 1)-skeleton is done in a nice manner: the attachment must be injective,
and its image must be a union of closed (n− 1)-cells. The set of cells is ordered by
inclusion. This poset is graded: an n-cell has rank n+1. (We assume that there is
a unique cell of rank 0.) By convention, we also allow the empty cell complex . It
has no cells in any rank, including 0.

A fundamental property of a regular cell complex is that its topology is de-
termined by the cell poset: The geometric realization of the order complex of the
cell poset (the barycentric subdivision of the cell complex) is homeomorphic to the
underlying space of the complex.

A regular cell complex is pure if all maximal cells have the same rank. In this
case, the maximal rank is the rank of the regular cell complex. We employ the
following terminology for a pure regular cell complex. Any cell of X is called a
face, a face of rank one is called a vertex , a face of rank two is called an edge, a
maximal face is called a chamber , and a face of corank one is called a panel . We
refer to the face of rank 0 as the central face.

A subcomplex of a regular cell complex is a subset of its cells which is closed
under inclusion. Subcomplexes are cell complexes in their own right.

A.1.2. Examples. Some examples of cell complexes to keep in mind are as follows.

• The faces of a convex polytope are the cells of a regular cell complex.
• The geometric realization of a simplicial complex is a regular cell complex.
• The faces of a hyperplane arrangement are the cells of a regular cell com-
plex.

A.1.3. Euler characteristic. Define the reduced Euler characteristic of a cell
complex X to be

(A.1) χ(X) := −c−1 + c0 − c1 + c2 − . . . ,
where ci is the number of i-cells of X.

489
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If X is the empty cell complex, then χ(X) = 0 with each ci = 0. In all
remaining cases, c−1 = 1 (since X has a unique central face).

The reduced Euler characteristic of a cell complex, regular or not, only depends
on its underlying topology, since it is also the alternating sum of the ranks of its
homology groups. Some well-known examples are recalled below. The reduced
Euler characteristic

• of a ball is 0,
• of the sphere of dimension n is (−1)n, and, more generally,
• of the wedge of k spheres each of dimension n is (−1)nk.

A.2. Minimal galleries and gate property

We now focus on pure regular cell complexes. This setting allows us to define
gallery distance between chambers and notions such as convexity and gated sets.

A.2.1. Minimal galleries. Let X be a pure regular cell complex. We say two
chambers are adjacent if they are distinct and share a panel. A gallery is a sequence
of chambers such that consecutive chambers are adjacent. We say that X is gallery
connected if for any two chambers C and D, there is a gallery from C to D. The
length of a gallery is the number of chambers in the gallery minus 1. Thus, a
chamber is a gallery of length 0, an ordered pair of adjacent chambers is a gallery
of length 1, and so on.

Assume from now on that X is gallery connected. For any chambers C and
D, define the gallery distance dist(C,D) to be the minimum length of a gallery
connecting C and D. Any gallery which achieves this minimum is a minimal gallery
from C to D.

For chambers C, D and E, let C --E --D mean that there is a minimal gallery
from C to D passing through E. Note that

(A.2) C --E --D ⇐⇒ dist(C,D) = dist(C,E) + dist(E,D).

Also note that

C --E --D ⇐⇒ D --E --C.

More generally, the notation C --E1 -- . . . --En --D means that there is a minimal
gallery from C to D passing through the intermediate chambers Ei in the specified
order. This is equivalent to additivity of the distance.

There are two useful operations on these gallery notations, namely, deletion
and refinement. We illustrate them by examples.

C --E --E′ --D =⇒ C --E --D

(a minimal gallery going through E and E′ goes in particular through E), and

C --E --D and E --E′ --D =⇒ C --E --E′ --D

(by additivity of the distance).

A.2.2. Convexity. A nonempty set of chambers is convex if for any C and D in
this set, every minimal gallery from C to D is contained in this set.

For a nonempty set of chambers A, its convex closure is the smallest convex set
which contains A. We now describe an inductive procedure to construct this set.
Put A1 = A. Given An, let An+1 consist of those chambers E such that C --E --D
for some chambers C and D in An. Thus A1 ⊆ A2 ⊆ A3 ⊆ . . . . Since the set of

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



A.2. MINIMAL GALLERIES AND GATE PROPERTY 491

chambers is finite, there is an index i, such that An = Ai for all n greater than or
equal to i. Then Ai is the convex closure of A.

Note that the intersection of two convex sets is convex provided it is nonempty.

A.2.3. Gallery intervals. For chambers C and D, define

[C :D] := {E | C --E --D}.
We refer to such a set as a gallery interval . In general, a gallery interval can
be expressed in the form [C :D] in many different ways aside from the triviality
[C :D] = [D :C].

Note that a nonempty set of chambers A is convex iff for any C and D in A,
the gallery interval [C :D] is contained in A.

A.2.4. Gated sets. Let A be a set of chambers, and let C be any chamber. Then
A is gated wrt C if the following holds: There exists a chamber D ∈ A such that

dist(C,E) = dist(C,D) + dist(D,E)

for all chambers E ∈ A. In this situation, we say that D is the gate of A wrt C
(since D is the closest entry point into A from C). It follows that the gate D is
unique. We say A is a gated set if it is gated wrt every chamber.

C

E

DF

The figure shows a portion of a rank-three simplicial complex. Let A be the set
of all chambers which contain a face F . Then the shaded chamber D is the gate of
A wrt the chamber C.

Proposition A.1. A gated set is necessarily convex.

E

E′

C
D

A

Proof. Let A be a gated set. To show convexity, take any minimal gallery
C --E --D with C and D in A. We want to show that E also belongs to A. Let E′

denote the gate of A wrt E. Then

dist(C,E) = dist(C,E′) + dist(E′, E) and dist(D,E) = dist(D,E′) + dist(E′, E).

Adding and using (A.2), we obtain

dist(C,D) = (dist(C,E′) + dist(E′, D)) + 2 dist(E′, E).
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But the sum in parenthesis is greater than dist(C,D). Hence, dist(E′, E) = 0 which
is the same as E = E′. �

Two sets of chambers A and B are gated wrt each other if there exist chambers
C in A and D in B such that C is the gate of A wrt D, and D is the gate of B wrt
C. In this situation, C uniquely determines D and vice-versa, but the choice of C
and D may not be unique. We call (C,D) a gate pair .

Proposition A.2. If A and B are gated sets, then they are gated wrt each other.

Proof. Define a map p : A→ B which sends C to the gate of B wrt C. The map
q : B→ A is similarly defined. Then pqp = p and qpq = q, and there is an induced
bijection between q(A) and p(B). Any pair of chambers corresponding under this
bijection serve as a gate pair. �

The converse is false.

Exercise A.3. Suppose A and B are two sets of chambers with A ∩ B 6= ∅. Then
A and B are gated wrt each other. For any C ∈ A ∩ B, (C,C) is a gate pair. In
fact, these are all the gate pairs.

A.2.5. Top-stars and gate property. We let Σ denote the set of faces, and Γ
denote the set of chambers. Also let ΣF denote the set of faces which contain a
given face F . This is the star of F . Similarly, let ΓF denote the set of chambers
which contain F . This is the top-star of F .

Definition A.4. A pure regular cell complex has the gate property if top-stars of
all its faces are gated sets.

A cell complex may or may not have the gate property. For instance, a polygon
with an odd number of sides is a rank-two simplicial complex without the gate
property.

Proposition A.5. Suppose the gate property holds. Then all top-stars are convex.
In other words, if D and E are any two chambers which contain a given face F ,
then any minimal gallery from D to E lies entirely in the top-star of F .

This is a special case of Proposition A.1.

Notes

The notion of CW complex is due to Whitehead [412]. Regular cell complexes are
discussed in detail by Cooke and Finney [118], or Lundell and Weingram [277]. Short
introductions can be found in [70], [75, Appendix 4.7] or [2, Appendix A.2]. The gate
property originated in the work of Tits [396, Section 3.19.6]. The abstract notion of gated
sets was introduced by Dress and Scharlau [353, 148]. Results related to Proposition A.2
and its converse are given in [213, Theorem 1.9], [226, Theorem 1.8] and [148, Theorem,
page 116].
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APPENDIX B

Posets

We review generalities on partial orders and important classes of lattices such
as semimodular and geometric. We also review adjunctions between posets, closure
operators and convex geometries.

B.1. Poset terminology

For any poset P , we denote its partial order by ≤. When x ≤ y, we say x is
smaller than y, and when x < y, we say x is strictly smaller than y. The symbol
x ⋖ y means that y covers x, that is, y is strictly greater than x, and there is no
element strictly between x and y. We let [x, y] denote the interval consisting of all
elements which lie between x and y, that is,

[x, y] = {z | x ≤ z ≤ y}.
We write ⊥ for the bottom (minimum) element, ⊤ for the top (maximum) element,
∧ for meet and ∨ for join, whenever they exist.

A subset I of P is an upper set if x ∈ I and x ≤ y, then y ∈ I. Similarly, a
subset I of P is a lower set if y ∈ I and x ≤ y, then x ∈ I.

Let P be a subposet of Q (a subset of Q with the induced partial order). We
say P is convex in Q if

(B.1) x ≤ y ≤ z in Q and x, z ∈ P imply that y ∈ P .
When both ⊥ and ⊤ exist, we say P is bounded . We say P is a meet-semilattice

if the meet of any two elements exists, a join-semilattice if the join of any two
elements exists, and a lattice if it is both a meet-semilattice and a join-semilattice.
A lattice P is complete if arbitrary meets and joins exist. Any nonempty finite
lattice is complete, and in particular, bounded.

A poset P is of finite height if it has no infinite strict chains, that is, P does
not have any infinite totally ordered subposet. A poset P is locally finite if each
interval of P has finite height. A locally finite poset is connected if for any two
elements, there is a finite sequence of relations linking them. A poset with bottom
or top element is automatically connected.

Every poset has a dual or opposite poset obtained by reversing the partial order.
Similarly, for any property of a poset, there is a dual property. For instance, the
dual property of minimum is maximum, and of meet is join. If P has a particular
property, then its dual poset has the dual property. For instance, if P is a meet-
semilattice, then its dual is a join-semilattice.

Let P and Q be posets. A map f : P → Q is order-preserving if x ≤ y implies
f(x) ≤ f(y) for all x, y ∈ P . In addition: It is strictly order-preserving if x < y
implies f(x) < f(y) for all x, y ∈ P . It preserves cover relations if x ⋖ y implies
f(x)⋖ f(y) for all x, y ∈ P .

493
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B.2. Graded posets

Let N denote the set of nonnegative integers. It is a poset under the standard
ordering. It is locally finite and connected but not of finite height.

A locally finite poset P is graded if there exists a function rk : P → N such
that

x⋖ y =⇒ rk(x) + 1 = rk(y)

for all x, y ∈ P . We say that rk is a rank function of P . Once this is fixed, we refer
to rk(x) as the rank of x. In this situation, it follows that

x < y =⇒ rk(x) < rk(y).

The poset N is graded and the identity is a rank function.
A useful way to show that a poset P is graded is to find another graded poset

Q and an order-preserving map f : P → Q which preserves cover relations. Com-
posing f with any rank function of Q then yields a rank function of P .

Lemma B.1. Let P be a graded poset and x ≤ y. Then all maximal chains from
x to y have the same length. Conversely, if P is finite, bounded, and all maximal
chains from ⊥ to ⊤ have the same length, then P is graded.

Proof. If P is graded, then for x ≤ y, rk(y)− rk(x) is the length of any maximal
chain from x to y. In particular, all such chains have the same length. For the
converse, first note that for x ≤ y, all maximal chains from x to y have the same
length. Then let rk(z) be the length of any maximal chain in [⊥, z]. �

It follows from (the proof of) Lemma B.1 that if P is graded and connected,
then any two rank functions on P differ by translation by a fixed number.

Let P be a finite, connected, graded poset. The rank of P , denoted rk(P ), is
the difference between the maximum and minimum values of any rank function of
P . If P is empty, its rank is defined to be −1.

For a graded poset with bottom element ⊥, it is customary to work with the
rank function for which rk(⊥) = 0. Then rk(z) is the length of any maximal chain
in [⊥, z]. If in addition P is finite, rk(P ) is the maximum of ranks of all elements of
P . For a finite graded poset with top element ⊤, it is customary to work with the
rank function for which rk(⊤) = rk(P ). When P is bounded, the choices rk(⊥) = 0
and rk(⊤) = rk(P ) are consistent.

A locally finite poset is locally graded if every interval [x, y] is graded. By
Lemma B.1, this happens precisely when all maximal chains from x to y have the
same length, for all x ≤ y. A graded poset is clearly locally graded. Conversely, a
locally graded and bounded poset is graded.

◦
◗◗◗

◗◗◗
◗

◦
✞✞
✞ ✼✼
✼ ◦

✞✞
✞

◦ ◦
The poset shown above is locally graded but not graded. It has neither a top
element nor a bottom element, so it is not bounded.

B.3. Semimodularity and join-distributivity

We briefly review semimodular and geometric lattices and join-distributive join-
semilattices.
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B.3.1. Semimodularity. A finite lattice is lower semimodular if the following
property holds.

If x 6= y and x ∨ y covers x and y, then x and y cover x ∧ y.
The dual property is upper semimodular .

Proposition B.2. A finite (lower or upper) semimodular lattice is graded.

Proof. This result is given for instance in [192, Section IV.2, Theorem 1]. It can
also be seen as a consequence of Lemma B.8. �

In fact, a finite lattice is lower semimodular iff it is graded and the rank function
satisfies

rk(x) + rk(y) ≤ rk(x ∧ y) + rk(x ∨ y).
For upper semimodularity, the inequality goes the other way, see [382, Proposition
3.3.2].

B.3.2. Geometric lattices. Let P be a finite lattice. An element y in P is a
complement of an element x if x ∨ y = ⊤ and x ∧ y = ⊥. If every element admits
a complement, P is called complemented . If every interval is complemented, P is
called relatively complemented .

Proposition B.3. A finite lattice is relatively complemented iff it contains no 3-
element intervals.

Proof. See [68, Theorem 2]. �

An element that covers ⊥ is said to be a point or an atom of P . If every element
is the join of some points, P is called atomic (and sometimes atomistic). If P is
graded, the points are the elements of rank 1.

Proposition B.4. Let P be a finite lattice. If P is relatively complemented, then
it is atomic. The converse holds if P is upper semimodular.

Proof. See [64, Theorem 15, Section I.9, and Theorem 6, Section IV.5]. �

A lattice is called geometric if it is finite, upper semimodular, and relatively
complemented (or equivalently, atomic). An interval in a geometric lattice is again
geometric.

B.3.3. Join-distributivity. Let P be a finite join-semilattice. We say P is join-
distributive if given an element x and distinct elements x1, . . . , xk all covering x,
the interval [x, y] with y = x1 ∨ . . . ∨ xk is a Boolean poset. In this case [x, y] is of
rank k and the xi are the join-irreducibles therein.

Given x, let z(x) be the join of all elements which cover x. Since intervals [x, y]
as above are subintervals of [x, z(x)], we have that P is join-distributive iff each
[x, z(x)] is Boolean.

Dually, one defines the meet-distributive property for a finite meet-semilattice.

Proposition B.5. Every interval in a join-distributive join-semilattice is upper
semimodular. Dually, every interval in a meet-distributive meet-semilattice is lower
semimodular.

Proof. See [158, Theorem 1.1] or [382, Exercise 3.47(a)]. �
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B.4. Strongly connected posets

We discuss strongly connected posets. Such a poset is locally graded and the
category associated to it has a nice presentation, the generators are cover relations,
and the relations are squares.

B.4.1. Strongly connected posets. A finite poset P is strongly connected if
given x < y in P , one can transform any maximal chain from x to y to any other
by successively changing one element of the chain to a different element. Clearly a
strongly connected poset is locally graded.

A finite poset P is coatom connected if in any interval [z, y] of P , whenever y
covers two elements x and x′, there is a sequence of elements x = x0, x1, . . . , xk = x′

all covered by y and such that for every 1 ≤ i ≤ k, there exists an element which
both xi−1 and xi cover.

This is illustrated below for k = 2.

y
❧❧❧

❧❧❧ ❘❘❘
❘❘❘

x0 ❊❊
✱

❂
P

x1
②② ❊❊

x2
②②
✒

✁
♥

z1

✽
✽ z2

✝
✝

z

Similarly, a poset is atom connected if its opposite poset is coatom connected.

Lemma B.6. For a finite poset P , we have

P is coatom connected ⇐⇒ P is strongly connected ⇐⇒ P is atom connected.

Proof. The second equivalence follows from the first by applying it to the opposite
of P . We now establish the first equivalence. Suppose P is coatom connected. We
apply induction on the number of elements in P . The base case is clear. For the
induction step, consider the interval [z, y]. Take two maximal chains from z to y.
In the preceding figure, these are the chains shown on the outside. We need to pass
from one to the other. Use coatom connectedness to fill in the diagram as shown.
Let zi denote the element covered by xi−1 and xi. For each zi, pick a maximal chain
from z to zi. By the induction hypothesis, within each interval [z, xi], one can pass
from any maximal chain to any other. Further, one can use the diamonds at the top
to pass from a maximal chain containing xi to a maximal chain containing xi+1.
It follows that P is strongly connected. These steps can be reversed, so the reverse
implication holds as well. �

Lemma B.7. The face lattice of a convex polytope is strongly connected.

Proof. Any interval in the face lattice of a convex polytope is again the face lattice
of a convex polytope [427, Theorem 2.7, item (ii)]. Hence, atom connectedness
reduces to the fact that the graph of a convex polytope is connected: Given vertices
P and P ′, there exists a sequence of vertices P = P0, P1, . . . , Pk = P ′ such that
there is an edge joining Pi−1 and Pi for every 1 ≤ i ≤ k. This is a special case of
Balinski’s theorem; see [202, Section 11.3] or [427, Theorem 3.14]. �

Lemma B.8. A finite lower or upper semimodular lattice is strongly connected.

Proof. A lower (upper) semimodular lattice satisfies the coatom (atom) connect-
edness property in one step. �
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B.4.2. Category associated to a poset. To a finite poset P , one can associate
the category whose objects are elements of P , with a unique morphism x → y
whenever x ≤ y in P .

Proposition B.9. The category associated to P has a presentation given by gen-

erators x
∆−→ y, with x ≤ y, and relations

x
∆

��
❄❄

❄❄

z
∆

//

∆ ??⑧⑧⑧⑧
y

(x
∆−→ x) = id,

whenever z ≤ x ≤ y.
When P is strongly connected, there is a nice alternative presentation for this

category. The number of generators is minimized, and the resulting relations are
commutative squares instead of commutative triangles as follows.

Proposition B.10. For a strongly connected poset P , the associated category has
a presentation given by generators ∆ : x→ y, where y covers x, and relations

x′
∆ // y

z
∆

//

∆

OO

x

∆

OO

whenever y covers both x and x′, and they in turn cover z.

Proof. Let D denote the category with the above presentation. For any x ≤ y,
there is a morphism in D from x to y arising from a maximal chain from x to y.
To finish the argument, we need to show that this morphism is unique. For this,
observe that two maximal chains which differ in one position are equal by the above
relation. Hence uniqueness follows by strong connectedness. �

Note that for an arbitrary finite poset P , the cover relations will generate a
category whose morphisms from x to y are maximal chains from x to y. In order
to obtain the category associated to P , we need to impose the relations that any
two maximal chains from x to y define the same morphism. The role of strong
connectedness is that it makes it possible to work with a nice small set of relations.

B.5. Adjunctions between posets

We briefly review adjunctions betweeen posets, closure operators and convex
geometries. We also formulate a notion of (super)tightness for join-preserving maps
between lattices.

B.5.1. Galois connections. Let P and Q be two finite posets. Suppose

λ : P → Q and ρ : Q→ P

are order-preserving maps. We say (λ, ρ) is a Galois connection or an adjunction if

(B.2) λ(x) ≤ y ⇐⇒ x ≤ ρ(y)
for all x ∈ P and y ∈ Q. We also say that ρ is the right adjoint of λ, and λ is the
left adjoint of ρ.

Adjoints (left or right) may not exist, but they are unique whenever they exist.
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Remark B.11. Recall from Section B.4.2 that each poset has an associated cat-
egory. Further, an order-preserving map of posets yields a functor between the
associated categories. Moreover, a Galois connection between posets yields an ad-
junction between the associated categories.

Suppose (λ, ρ) is an adjunction. Then

(B.3) λ(ρ(y)) ≤ y and x ≤ ρ(λ(x)).
The first one follows by putting x = ρ(y) in (B.2). For the second, put y = λ(x).
It is of interest to know when equalities hold. There are inverse bijections

(B.4) {x ∈ P | x = ρ(λ(x))}⇄ {y ∈ Q | λ(ρ(y)) = y}
obtained by restricting λ and ρ. These are inverse isomorphisms of posets, viewing
the two sides as subposets of P and Q, respectively.

Adjunctions can be composed: If (λ, ρ) is an adjunction between P and Q, and
(µ, δ) is an adjunction between Q and R, then (µλ, ρδ) is an adjunction between P
and R.

B.5.2. Closure operators. A closure operator on a finite poset P is a map c :
P → P such that for every x, y ∈ P , we have:

• x ≤ c(x);
• if x ≤ c(y), then c(x) ≤ c(y).

We refer to c(x) as the closure of x. An element z ∈ P is closed if c(z) = z, that
is, the closure of z is itself. Let Pc denote the subposet of all closed elements. If P
is a lattice, then so is Pc. The meet in Pc coincides with the meet in P , while the
join in Pc is the closure of the join in P .

A coclosure operator on a poset is a closure operator on the opposite poset.
In any adjunction (λ, ρ) between P and Q, the composite ρλ is a closure op-

erator on P while λρ is a coclosure operator on Q, and λ and ρ restrict to inverse
poset isomorphisms between their closed sets, see (B.4).

B.5.3. Meets and joins. Assume from now that P and Q are finite lattices.
Given λ, the right adjoint ρ exists iff λ preserves finite joins. Dually, given ρ, the
left adjoint λ exists iff ρ preserves finite meets. We elaborate on the first statement
in one direction. Suppose λ preserves finite joins. In particular, it preserves the
minimum element which is the join over the empty set. Then define ρ by

ρ(y) := max{x ∈ P | λ(x) ≤ y}.
The minimum element of P is always in the above set. Further, since λ preserves
joins, the join of all elements in the set is also in the set, so the set has a maximum.
One can check that ρ defined in this manner is the right adjoint of λ.

B.5.4. Tight join-preserving maps. We say an order-preserving map is join-
preserving if it preserves finite joins.

Suppose λ : P → Q is a join-preserving map. Let ρ denote its right adjoint.
Fix x ≤ y in Q. Consider the interval [x, y] in Q and the interval [ρ(x), ρ(y)] in P .
Let

ρx,y : [x, y]→ [ρ(x), ρ(y)]

denote the restriction of ρ. Let

λx,y : [ρ(x), ρ(y)]→ [x, y], z 7→ λ(z) ∨ x.
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Taking join with x ensures that the image of λx,y lands in the interval [x, y].

Lemma B.12. Given an adjunction (λ, ρ) between P and Q, for any x ≤ y in Q,
(λx,y, ρx,y) is an adjunction between [ρ(x), ρ(y)] and [x, y].

Given an adjunction (λ, ρ) between P and Q, and an adjunction (µ, δ) between
Q and R, for any x ≤ y in R, the diagram

[δ(x), δ(y)]
µx,y

&&▼▼
▼▼▼

▼▼

[ρδ(x), ρδ(y)]

λδ(x),δ(y)
66♠♠♠♠♠♠♠♠

(µλ)x,y

// [x, y]

commutes.

Proof. The first part is a straightforward check. The second part follows from
the first by composing adjunctions, and using uniqueness of adjoints. �

Definition B.13. A join-preserving map λ : P → Q is tight if

λ(x) = ⊤ implies x = ⊤.
We say λ is supertight if λx,y is tight for all x ≤ y in Q. That is, for any ρ(x) ≤
z ≤ ρ(y),

λ(z) ∨ x = y implies z = ρ(y).

Lemma B.14. The composite of tight (join-preserving) maps is tight, and the
composite of supertight maps is supertight.

Proof. Suppose λ : P → Q and µ : Q→ R are tight maps. Then

(µλ)(x) = ⊤ =⇒ µ(λ(x)) = ⊤ =⇒ λ(x) = ⊤ =⇒ x = ⊤.
We first used tightness of µ and then of λ. This shows that µλ is tight.

Suppose λ and µ are supertight. Let ρ be the right adjoint of λ, and δ be the
right adjoint of µ. Then ρδ is the right adjoint of µλ. Let x ≤ y in R. Then by
Lemma B.12,

(µλ)x,y = µx,yλδ(x),δ(y).

The maps in the rhs are tight by hypothesis. Since composition preserves tight
maps, we deduce that the map in the lhs is tight, and hence µλ is supertight. �

Exercise B.15. Give an example of a join-preserving map which is not tight.

Lemma B.16. Suppose λ : P → Q is a supertight join-preserving map of lattices.
Then for any x, y ∈ Q, and z ∈ P ,
(B.5) λ(z) ∨ x = y ⇐⇒ z ∨ ρ(x) = ρ(y) and λρ(y) ∨ x = y,

where ρ is the right adjoint of λ.

As the proof below shows, we only require λx,y to be tight for (B.5) to hold.
Also, tightness plays a role only in the forward implication.

Proof. We may assume x ≤ y, else neither side of (B.5) holds. Forward implica-
tion. The hypothesis implies λ(z) ≤ y. Hence, by the adjunction property (B.2),
z ≤ ρ(y). Since λρ(x) ≤ x,

λ(z ∨ ρ(x)) ∨ x = λ(z) ∨ λρ(x) ∨ x = λ(z) ∨ x = y.
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Since ρ(x) ≤ z ∨ ρ(x) ≤ ρ(y), by supertightness, z ∨ ρ(x) = ρ(y). Also λ(z) ∨ x ≤
λρ(y) ∨ x ≤ y which implies that λ(ρ(y)) ∨ x = y.

Backward implication. Apply λ to z ∨ ρ(x) = ρ(y) to obtain λ(z) ∨ λρ(x) =
λρ(y). Now take join with x on both sides, and use λρ(x) ≤ x and λ(ρ(y)) ∨ x = y
to deduce λ(z) ∨ x = y. �

B.5.5. Convex geometries. Fix a finite set X. A convex geometry with ground
set X is a closure operator c on the Boolean poset on X which satisfies the antiex-
change axiom:

• if x ∈ c(A ∪ {y}), x 6= y and x, y /∈ A, then y /∈ c(A ∪ {x}),
for all closed sets A and x, y ∈ X.

In this context, closed sets are also called convex sets. Since the Boolean poset
is a lattice, so is the subposet of convex sets. The meet is given by intersection,
while the join is given by taking closure of the union.

Given a convex set A, an element x ∈ A is called an extreme point of A if
x /∈ c(A \ {x}).
Proposition B.17. Let c be a closure operator on a Boolean poset. Then c is a
convex geometry iff the lattice of closed sets of c is meet-distributive.

Proof. See [159, Theorem 4.1]. �

Proposition B.18. Let c be a convex geometry. Then an interval [A,B] in the
lattice of convex sets of c is a Boolean poset iff all elements in B which are not in
A are extreme points of B.

Proof. See [159, Theorem 4.2]. �

Notes

Posets and lattices originated in work of Boole [89], Peirce [320] and Schröder [359].
The first book on the subject is that of Birkhoff [63]. The notion of modularity goes back
to Dedekind [129, 130]. Semimodular lattices were considered by Birkhoff [60, Sections
8 and 9]. Geometric lattices go back to Birkhoff [61], Whitney [413] and MacLane [279].
Meet-distributive lattices were first considered by Dilworth [145]. Another early reference
is [32]. The concept of a closure operator goes back to Moore [301]. The concept of a
Galois connection between posets originated in works of Birkhoff [63] and Ore [307]. This
predated the appearance of adjunctions in category theory. Some other early references
on these topics are [406, 168]. Convex geometries were discovered independently by
Edelman [156] and Jamison [231]. Additional references are [159] and [79]. A convex
geometry is equivalent to the notion of an antimatroid [230]. Extensive treatments of
lattice theory are given in [64] and [192]. The book [389] concentrates on semimodular
lattices. Posets and lattices are the subject of [382, Chapter 3]. For closure operators
and Galois connections, see [125, Chapter 7] or [86]. Strongly connected posets appear
prominently in the theory of abstract polytopes [295, Sections 1 and 2]. See also [171]
and [220, Section 6].
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APPENDIX C

Incidence algebras of posets

We review incidence algebras of posets, Möbius functions, reduced incidence
algebras and deformations arising from poset cocycles.

C.1. Incidence algebras and Möbius functions

We review the incidence algebra of a locally finite poset, zeta and Möbius
functions, the Weisner formula, and Möbius inversion on the incidence module. We
also discuss the Rota formula relating the Möbius functions of posets linked by a
Galois connection.

C.1.1. Incidence algebra of a poset. Let P be a locally finite poset. A 1-chain
in P is a pair (x, y) ∈ P 2 with x ≤ y.

Fix a field k. An incidence function on P is a k-valued function on the set of
1-chains in P

f : {(x, y) ∈ P 2 | x ≤ y} → k.

Let I(P ) denote the vector space of all incidence functions, with pointwise addition
and scalar multiplication. For f, g ∈ I(P ), define a new function fg ∈ I(P ) by

(C.1) (fg)(x, z) =
∑

y: x≤y≤z

f(x, y)g(y, z).

This turns I(P ) into an algebra. It is called the incidence algebra of P . The unit
element δ is given by

(C.2) δ(x, y) =

®
1 if x = y,

0 otherwise.

In other words, δf = fδ = f for any f ∈ I(P ).

If P is a convex subposet of Q, there is a morphism of algebras

(C.3) I(Q)→ I(P )

given by restriction. Since every interval in P is an interval in Q, this map is
surjective.

Proposition C.1. Let f ∈ I(P ) be such that f(x, x) = 1 for all x ∈ P . Then f is
invertible in I(P ) and

(C.4) f−1(x, y) =
∑

k≥0

(−1)k
∑

x=x0<x1<···<xk=y

f(x0, x1) . . . f(xk−1, xk).

The summand corresponding to k = 0 is 0 unless x = y, in which case it is 1.

501
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Proof. If r is the maximum length of a strict chain from x to y, then (δ −
f)k(x, y) = 0 for all k > r. The result follows by expanding

f−1 = (δ − (δ − f))−1 =
∑

k≥0

(δ − f)k. �

More generally:

Proposition C.2. An incidence function f is invertible in I(P ) iff f(x, x) 6= 0 for
all x ∈ P .

Proof. As a special case of (C.3), for fixed x ∈ P , the map f 7→ f(x, x) is an
algebra morphism I(P ) → k. Thus the condition for invertibility is necessary.
Conversely, we may decompose f = f0f+ by defining

f0(x, y) =

®
f(x, x) if x = y,

0 if not
and f+(x, y) = f(x, x)−1f(x, y).

Then f0 is invertible with inverse given by

f−1
0 (x, y) =

®
f(x, x)−1 if x = y,

0 if not,

and f+ is invertible by Proposition C.1. �

C.1.2. Zeta and Möbius functions of a poset. The zeta function ζ ∈ I(P ) is
defined by

ζ(x, y) = 1

for all x ≤ y. It is invertible. Its inverse is the Möbius function µ ∈ I(P ). This
may also be defined recursively as follows.

For any element x,

(C.5a) µ(x, x) := 1

and for x < y,

µ(x, y) := −
∑

z: x≤z<y

µ(x, z) = −
∑

z: x<z≤y

µ(z, y),

or equivalently,

(C.5b)
∑

z: x≤z≤y

µ(x, z) =
∑

z: x≤z≤y

µ(z, y) = 0.

For more clarity, we may sometimes write µP instead of µ.

Proposition C.3 (Philip Hall formula). For any x ≤ y in P ,

(C.6) µ(x, y) =
∑

k≥0

(−1)kck(x, y),

where ck(x, y) is the number of strict chains of length k from x to y.

Proof. This is a special case of (C.4). �
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C.1.3. Weisner formula.

Proposition C.4. Let P be a finite lattice with ⊥ and ⊤ as the minimum and
maximum elements. Suppose y > ⊥. Then for any element z,

(C.7a)
∑

x: y∨x=z

µ(⊥, x) = 0.

Suppose y < ⊤. Then for any element z,

(C.7b)
∑

x: y∧x=z

µ(x,⊤) = 0.

Proof. We prove (C.7a) by induction on the size of the interval [⊥, z]. The base
case is clear. We may assume y ≤ z, otherwise the lhs is clearly 0.

∑

x: y∨x=z

µ(⊥, x) =
∑

x: x≤z

µ(⊥, x)−
∑

x: y∨x<z

µ(⊥, x).

The first term is zero by definition (C.5b), while the second term is zero by the
induction hypothesis applied to the intervals [⊥, z′] with z′ < z. This completes
the induction step.

The second identity (C.7b) follows by duality. �

We refer to either of (C.7a) or (C.7b) as the Weisner formula.

Proposition C.5. For any finite lattice P , consider the linear system
∑

x: y∨x=z

cx = 0, ⊥ < y ≤ z.

The solution space is one-dimensional and spanned by (cx = µ(⊥, x)).
Proof. It is clear from (C.7a) that any scalar multiple of (cx = µ(⊥, x)) solves
the above linear system. To see that these are the only solutions, restrict to the
subsystem of equations satisfying y = z:

∑

x: x≤z

cx = 0, ⊥ < z.

Starting with an arbitrary value for c⊥, we now see that cx = c⊥µ(⊥, x) is forced.
�

C.1.4. Möbius function of a semimodular lattice.

Proposition C.6. Let P be a finite upper semimodular lattice of rank r. Then

(C.8) (−1)rµ(⊥,⊤) = |µ(⊥,⊤)|.
In other words, the sign of the Möbius function is the same as the parity of the

rank. Moreover, if P is geometric, the Möbius function is nonzero.

Proof. We induct on the rank, the base case r = 0 being clear. For the induction
step, fix a point y. Then x ∨ y = ⊤ implies that either x = ⊤ or rk(x) = r− 1. By
the Weisner formula (1.43a) applied to z = ⊤, the sum of µ(⊥, x) over all such x is
0. So

µ(⊥,⊤) = −
∑

x

µ(⊥, x),

where the sum is over certain elements x of rank r − 1. Applying the induction
hypothesis to each of the intervals [⊥, x] we obtain that the sign of each summand
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is the parity of r − 1. Thus the sign of µ(⊥,⊤) is the parity of r. When P is
geometric, y possesses a complement. Thus the above sum is over a nonempty set.
A similar inductive argument implies that µ(⊥,⊤) is in this case nonzero. �

The 3-element chain is a modular lattice with µ(⊥,⊤) = 0.

C.1.5. Möbius function of a join-distributive join-semilattice.

Lemma C.7. Let P be a finite join-semilattice which is join-distributive. Then for
x ≤ y,

µ(x, y) =

®
(−1)rk(y)−rk(x) if [x, y] is a Boolean poset,

0 otherwise.

The first alternative is equivalent to saying that y is the join of the elements covering
x in the interval [x, y].

Proof. This is equivalent to [158, Theorem 1.3]. �

C.1.6. Eulerian posets. A finite graded poset P is called Eulerian if for any
x ≤ y in P ,

(C.9) µ(x, y) = (−1)rk(y)−rk(x).

The Boolean poset is Eulerian. More generally, the poset of faces a convex polytope
is Eulerian.

C.1.7. Incidence module. Let M(P ) denote the vector space of k-valued func-
tions on P . The incidence algebra I(P ) acts on M(P ) on the left: For f ∈ I(P ) and
g ∈ M(P ), define fg ∈ M(P ) by

(C.10) (fg)(x) =
∑

y: x≤y

f(x, y)g(y).

Thus, M(P ) is a left module over I(P ). We call it the incidence module of P .
For functions f and g on P ,

(C.11) g(x) =
∑

y: x≤y

f(y) ⇐⇒ f(x) =
∑

y: x≤y

µ(x, y)g(y).

This is equivalent to g = ζf ⇐⇒ f = µg. The passage from the first equation
to the second is called Möbius inversion. In this situation, we say that g is the
exponential of f , and f is the logarithm of g.

Similar to (C.10), there is also a right action of I(P ) on M(P ). Using it, we
deduce

(C.12) g(y) =
∑

x: x≤y

f(x) ⇐⇒ f(y) =
∑

x: x≤y

g(x)µ(x, y).

C.1.8. Example: algebra of upper triangular matrices. Consider the poset
P = [n] under the usual order 1 < 2 < · · · < n. Then I(P ) can be identified with the
algebra of upper triangular matrices of size n: An incidence function f corresponds
to the upper triangular matrix whose ij-th entry is f(i, j). Proposition C.2 says
that an upper triangular matrix is invertible iff its diagonal entries are nonzero.
The proof of Proposition C.1 proceeds by writing a unipotent matrix as a sum of
the identity matrix and a nilpotent matrix.
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The zeta function is the upper triangular matrix whose nonzero entries are all
1. Its inverse, which is the Möbius function, is the matrix whose diagonal entries
are 1, entries just above the diagonal are −1, and remaining entries are 0. That is,

µ(i, j) =





1 if i = j,

−1 if i+ 1 = j,

0 otherwise.

The incidence module M(P ) can be identified with kn: A function g corresponds
to the vector whose i-th coordinate is g(i). The left and right action of I(P ) on
M(P ) corresponds to the left and right action of matrices on column and row
vectors, respectively.

C.1.9. Incidence bimodule. Let P , Q and R be posets and let ϕ : P → R and
ψ : Q → R be order-preserving maps. Let I(ϕ,ψ) denote the space of functions
defined on the set

(C.13) {(x,w) ∈ P ×Q | ϕ(x) ≤ ψ(w)}
and with values in k. Then I(ϕ,ψ) carries a structure of I(P )-I(Q)-bimodule, with
actions defined by

(fm)(x,w) =
∑

y∈P : x≤y
ϕ(y)≤ψ(w)

f(x, y)m(y, w)

and

(mg)(x,w) =
∑

v∈Q: v≤w
ϕ(x)≤ψ(v)

m(x, v)g(v, w)

for f ∈ I(P ), g ∈ I(Q), and m ∈ I(ϕ,ψ). We call this an incidence bimodule.
A special case arises when Q and R are the one-element poset. We obtain a

left I(P )-module, and this is precisely the incidence module M(P ) of P .

C.1.10. Rota formula. Let (λ, ρ) be a Galois connection between posets P and
Q as in Section B.5.1. Consider the incidence bimodules I(λ, idQ) and I(idP , ρ).
They both consist of scalar-valued functions defined on the set

Xλ,ρ = {(x,w) ∈ P ×Q | λ(x) ≤ w} = {(x,w) ∈ P ×Q | x ≤ ρ(w)},
and thus coincide. Let Iλ,ρ denote this common bimodule.

Consider now the functions δλ, δρ and ζλ,ρ ∈ Iλ,ρ defined by

δλ(x,w) =

®
1 if λ(x) = w,

0 if not,
δρ(x,w) =

®
1 if x = ρ(w),

0 if not,

and

ζλ,ρ(x,w) = 1 for all (x,w) ∈ Xλ,ρ.

One readily finds that

δλζQ = ζλ,ρ = ζP δρ.

We acted on δλ from the right with the zeta function of Q, and on δρ from the left
with the zeta function of P . Acting on both sides of ζλ,ρ with the Möbius functions,
it follows that

µP δλ = δρµQ.
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Evaluating on (x,w) ∈ Xλ,ρ we obtain

(C.14)
∑

y∈P :λ(y)=w

µP (x, y) =
∑

v∈Q: ρ(v)=x

µQ(v, w).

This is the Rota formula.

C.1.11. Example: mapping cylinder. Let ϕ : P → Q be an order-preserving
map. The mapping cylinder Mϕ is the disjoint union of the posets P and Q together
with the relations

x ≤ w if ϕ(x) ≤ w,
for x ∈ P and w ∈ Q.

Let us determine the Möbius function of the mapping cylinder. Both P and Q
are convex subposets of Mϕ. Therefore,

µMϕ
(x, y) = µP (x, y) and µMϕ

(v, w) = µQ(v, w)

when x, y ∈ P and v, w ∈ Q. In addition, the inclusion ρ : Q → Mϕ and the map
λ :Mϕ → Q given by

λ(x) = ϕ(x) and λ(w) = w,

(x ∈ P , w ∈ Q) define a Galois connection. Applying (C.14) to x ∈ P and w ∈ Q
with ϕ(x) ≤ w, we obtain that

µMϕ
(x,w) = −

∑

x′∈P : x≤x′

ϕ(x′)=w

µP (x, x
′).

The incidence algebra of Mϕ consists of matrices of the following form:
ï
f m
0 g

ò

where f ∈ I(P ), g ∈ I(Q), and m ∈ I(ϕ, idQ). Elements multiply using the alge-
bra structure of each of the incidence algebras and the bimodule structure of the
incidence bimodule:

ï
f m
0 g

ò ï
f ′ m′

0 g′

ò
=

ï
ff ′ fm′ +mg′

0 gg′

ò
.

The zeta function of the mapping cylinder is

ζMϕ
=

ï
ζP ζϕ
0 ζQ

ò
,

where ζϕ(x,w) = 1 whenever ϕ(x) ≤ w.
Exercise C.8. Rederive the expression for the Möbius function of Mϕ employing
the previous description of the incidence algebra in terms of matrices.

C.1.12. Example: homotopy colimit. Let I be a poset, {Pi}i∈I a family of
posets, and

ϕi,j : Pi → Pj

a family of order-preserving maps, one for each pair (i, j) with i ≤ j in I, and such
that

ϕi,i = idPi
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and

Pi
ϕi,k

//

ϕi,j !!❈
❈❈

❈ Pk

Pi,j
ϕj,k

==③③③③

commutes whenever i ≤ j ≤ k in I.
The homotopy colimit associated to this data is the disjoint union of the posets

Pi, i ∈ I, together with the relations

x ≤ y if x ∈ Pi, y ∈ Pj , i ≤ j in I, and ϕi,j(x) ≤ y in Pj .

The conditions above guarantee that this is indeed a partial order.

Exercise C.9. Use Hall formula (C.6) to determine the Möbius function of the
homotopy colimit: given x and y as above,

µ(x, y) = µI(i, j)
∑

x′∈Pi: x≤x
′

ϕi,j(x
′)=y

µPi
(x, x′).

The incidence algebra of the homotopy colimit consists of matrices (fi,j)i,j∈I
where fi,i ∈ I(Pi), fi,j ∈ I(ϕi,j , idPj

) when i ≤ j in I, and fi,j = 0 otherwise.
Elements multiply using the algebra structure of each of the incidence algebras and
the bimodule structure of the incidence bimodules.

The mapping cylinder is the special case of the homotopy colimit construction
in which I = {1 < 2}.
C.1.13. Incidence algebra of a locally finite category. A locally finite cat-
egory is a category in which each arrow can be written as a composition of non-
identity arrows in only finitely many ways.

Let C be a locally finite category. The incidence algebra of C, denoted I(C),
consists of functions f on morphisms in C, with the product of f and g given by

(fg)(γ) =
∑

α◦β=γ

f(α)g(β).

By local finiteness, the sum in the rhs is finite. The unit element is the function
which is 1 on identity morphisms, and 0 otherwise.

For a locally finite poset P , observe that the incidence algebra of P is the
opposite of the incidence algebra of the category associated to P .

Note that

I(C× C′) = I(C)⊗ I(C′)

for locally finite categories C and C′. This generalizes the fact that

I(P × P ′) = I(P )⊗ I(P ′)

for locally finite posets P and P ′.

C.2. Radical of an incidence algebra

We now give some structure results on incidence algebras. They involve the
notion of an elementary algebra reviewed in Section D.8.

Let P be a graded finite lattice with minimum element ⊥ and maximum element
⊤. Its linearization kP is a split-semisimple commutative algebra with primitive
idempotents Qx. This is discussed in Section D.9.
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Proposition C.10. The incidence algebra I(P ) of a finite lattice P is elementary.
Its split-semisimple quotient is kP , with the quotient map

(C.15) I(P ) ։ kP, f 7→
∑

x∈P

f(x, x) Qx.

In particular, the radical of I(P ) consists of incidence functions which are zero on
1-chains of the form (x, x).

Proof. Let J denote the set of incidence functions which are zero on 1-chains
of the form (x, x). Observe that J is a nilpotent ideal and all nilpotent elements
belong to J . Hence J is the radical of I(P ). All claims follow. �

Proposition C.11. For each x ∈ P , let ex denote the incidence function which is
1 on (x, x) and 0 otherwise. The ex, as x varies, is a complete system of primitive
orthogonal idempotents of I(P ).

Proof. We only have to note that the map Qx 7→ ex is an algebra section of
(C.15). �

Proposition C.12. The i-th power of the radical of I(P ) consists of incidence
functions f such that f(x, y) = 0 whenever rk(y)− rk(x) < i.

Proof. This is straightforward. �

As a consequence:

Proposition C.13. The nilpotency index of the radical of I(P ) is r+1, where r is
the rank of P . The r-th power of the radical consists of incidence functions which
are zero on all 1-chains except (⊥,⊤).
Theorem C.14. The quiver of the incidence algebra I(P ) is as follows. The ver-
tices are elements of P , and there is exactly one arrow from y to x when x⋖y, and
no arrows otherwise. In other words, the quiver is the Hasse diagram of P .

Proof. Since the split-semisimple quotient of I(P ) is kP , the vertices of its quiver
are elements of P . The arrows can be computed from Proposition C.12. Note
that J/J2 ∼= ⊕

x⋖y exI(P ) ey, where J is the radical of I(P ), and the ex are as

in Proposition C.11. Thus, ex(J/J
2)ey is zero unless x ⋖ y, and in this case, its

dimension is 1. �

Exercise C.15. Describe the quiver of the algebra of upper triangular matrices.
(Use the discussion in Section C.1.8.)

C.3. Reduced incidence algebras

We review reduced incidence algebras. These are subalgebras that arise from
order-compatible equivalence relations on the 1-chains of a poset.

C.3.1. Reduced incidence algebras. Let P be a poset and ∼ be an equivalence
relation on the set of 1-chains in P . Let I∼(P ) consist of those incidence functions
f such that f(x, y) = f(x′, y′) whenever (x, y) ∼ (x′, y′). Then I∼(P ) is a subspace
of I(P ), but in general not a subalgebra. If it is, then we say that the equivalence
relation ∼ is order-compatible, and refer to the subalgebra as the reduced incidence
algebra associated to ∼. When ∼ is simply equality, we have I∼(P ) = I(P ).

The zeta function of P belongs to any reduced incidence algebra I∼(P ), being
constant on 1-chains. The Möbius function does too, by Lemma D.25.
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Proposition C.16. Let P be a poset and ∼ be an equivalence relation on the
1-chains in P . Suppose that whenever (x, z) ∼ (x′, z′), there exists a bijection
ψ : [x, z]→ [x′, z′] such that

(C.16) (x, y) ∼ (x′, ψ(y)) and (y, z) ∼ (ψ(y), z′)

for all y ∈ [x, z]. Then ∼ is order-compatible.

The proof is straightforward.

Exercise C.17. Let ∼ be an equivalence relation on the 1-chains of a poset P .
Employ the zeta function to show that if ∼ is order-compatible, then for any two
equivalent 1-chains (x, z) ∼ (x′, z′), the intervals [x, z] and [x′, z′] are equinumerous.
Show more generally that [x, z] and [x′, z′] contain the same number of chains of
length k, for all k ≥ 0.

C.3.2. Classical Möbius function. Let P be the poset of divisors. Elements of
P are positive integers with a ≤ b if a divides b. Let (a, b) ∼ (c, d) if b/a = d/c.
This is an equivalence relation on the 1-chains in P . It is order-compatible. Indeed,
multiplication by c/a specifies a bijection between [a, b] and [c, d] whenever (a, b) ∼
(c, d), and (C.16) holds.

Observe that I∼(P ) can be described as functions f on P with the product of
f and g given by

(fg)(n) =
∑

a: a divides n

f(a)g(n/a).

The sum is over all divisors a of n. One may thus identify I∼(P ) with the algebra
of Dirichlet series

f̂(s) =
∑

n≥1

f(n)

ns
.

The zeta function of P corresponds to the Riemann zeta function

ζ(s) =
∑

n≥1

1

ns
.

Each interval in P is a lattice: least common multiples and greatest common
divisors are joins and meets, respectively. Let p be a prime divisor of n. Employing
(C.7a) with ⊥ = 1, x = p and z = n, we deduce that

µ(n) =

®
−µ(n/p) if p does not divide n/p,

0 otherwise.

It follows that

(C.17) µ(n) =

®
(−1)r if n has r distinct prime factors, all of multiplicity 1,

0 if n has repeated prime factors.

This is the classical Möbius function.

C.3.3. Functoriality. Let P and Q be posets, each with an order-compatible
relation ∼. Let ϕ : P → Q be an order-preserving map. We say that ϕ creates
relations if it satisfies the following condition. Given equivalent 1-chains (u, v) ∼
(u′, v′) in Q, and x, x′ in P with ϕ(x) = u and ϕ(x′) = u′, there exists a bijection

(C.18) ψ : {y ∈ P | x ≤ y, ϕy = v} → {y′ ∈ P | x′ ≤ y′, ϕy′ = v′}
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such that for every y in its domain

(C.19) (x, y) ∼ (x′, ψy).

The bijection ψ depends on x, x′, v and v′ and need not be order-preserving.
Assume now that ϕ : P → Q is surjective and creates relations. Consider the

map
ϕ∗ : I∼(P )→ I∼(Q)

defined as follows. Given an incidence function f and a 1-chain (u, v) on Q, pick x
in P such that ϕ(x) = u. Then set

(C.20) ϕ∗(f)(u, v) =
∑

y: x≤y,
ϕy=v

f(x, y).

Proposition C.18. In this situation, ϕ∗ is a well-defined morphism of algebras.

Proof. Suppose ϕx′ = u = ϕx. Consider the special case of (C.18) in which
u = u′ and v = v′. There is a bijection ψ such that for any y contributing a
summand to the rhs of (C.20) we have (x, y) ∼ (x′, ψy). Changing variables by
means of ψ and noting that f is constant on classes, we see that ϕ∗(f)(u, v) does
not depend on the choice of x.

Pick ϕ(x) = u. We calculate

(ϕ∗(f)ϕ∗(g))(u,w) =
∑

v:u≤v≤w

ϕ∗(f)(u, v)ϕ∗(g)(v, w)

=
∑

v:u≤v≤w

∑

y: x≤y,
ϕy=v

f(x, y)
∑

z: y≤z,
ϕz=w

g(y, z) =
∑

y,z: x≤y≤z
ϕ(z)=w

f(x, y)g(y, z)

=
∑

z: x≤z
ϕ(z)=w

(fg)(x, z) = ϕ∗(fg)(u,w).

Thus, ϕ∗ preserves multiplications. A similar calculation shows that ϕ∗ preserves
units.

Finally, we check that ϕ∗(f) is constant on equivalence classes. Given equiva-
lent 1-chains (u, v) ∼ (u′, v′) in Q, pick ϕ(x) = u, ϕ(x′) = u′, and ψ as in (C.18).
Then for each y contributing a summand to ϕ∗(f)(u, v) in (C.20), y′ = ψy con-
tributes to ϕ∗(f)(u

′, v′), and (x, y) ∼ (x′, y′) in P . Since f is constant on classes,
we have ϕ∗(f)(u, v) = ϕ∗(f)(u

′, v′) as needed. �

Consider now the special case in which the relation on the 1-chains of Q is equal-
ity. In this situation, the following condition guarantees that ϕ creates relations.
Given x and x′ in P with ϕx = ϕx′, there exists a bijection

(C.21) ψ : {y ∈ P | x ≤ y} → {y′ ∈ P | x′ ≤ y′}
such that (C.19) holds, and in addition the diagram

(C.22)

{y ∈ P | x ≤ y}

ϕ
%%❏

❏❏❏
❏❏❏

❏❏

ψ
// {y′ ∈ P | x′ ≤ y′}

ϕ
yyrr
rr
rr
rr
r

Q

commutes. Indeed, the commutativity guarantees that ψ restricts to a bijection as
in (C.18).
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C.4. Poset cocycles and deformations of incidence algebras

Functoriality of the incidence algebra construction naturally leads to the con-
sideration of poset 2-cocycles and the associated deformations. We study these
notions and illustrate the discussion with examples for posets of triangular type.
We also consider group actions on posets and their effect on incidence algebras.

C.4.1. Poset cocycles. Let P be a poset and A a commutative monoid, written
multiplicatively. We do not require that A be a group.

A 1-cochain is a map

α : {(x, y) ∈ P 2 | x ≤ y} → A.

A 1-cocycle is a 1-cochain α such that

(C.23) α(x, z) = α(x, y)α(y, z)

for all x ≤ y ≤ z in P .
A 2-cochain is a map

γ : {(x, y, z) ∈ P 3 | x ≤ y ≤ z} → A.

A 2-cocycle is a 2-cochain γ such that

(C.24) γ(w, x, z)γ(x, y, z) = γ(w, y, z)γ(w, x, y)

for all w ≤ x ≤ y ≤ z in P .
The constant cochain (either 1 or 2-cochain) whose only value is the identity

of A is a cocycle, the trivial one.
Two 2-cochains γ and γ′ are cohomologous along a 1-cochain α if

(C.25) γ(x, y, z)α(x, z) = γ′(x, y, z)α(y, z)α(x, y)

for all x ≤ y ≤ z in P . If γ′ is trivial, so that

(C.26) γ(x, y, z)α(x, z) = α(y, z)α(x, y),

we say that γ cobounds α. The trivial 2-cocycle cobounds any 1-cocycle.
A 1-cochain α is normalized if

(C.27) α(x, x) = 1

for all x in P . A 2-cochain γ is normalized if

(C.28) γ(x, x, y) = 1 = γ(x, y, y)

for all x ≤ y in P .
Cochains (either 1 or 2-cochains) form a commutative monoid under pointwise

multiplication. The unit element is the trivial cochain. Cocycles and normalized
cocycles constitute submonoids.

Suppose A is a commutative group. Then all of the above are groups. Given a
1-cochain α, its coboundary is the 2-cochain ∂(α) defined by

(C.29) ∂(α)(x, y, z) = α(y, z)α(x, z)−1α(x, y).

It is always a 2-cocycle. Two 2-cochains are cohomologous along α iff γ = ∂(α)γ′.
A 2-cochain γ cobounds α iff γ = ∂(α). A 1-cochain α is a 1-cocycle iff ∂(α) is the
trivial 2-cocycle. The coboundary map ∂ is a morphism of groups that preserves
normalized cochains.

Exercise C.19. Let P = 2[n] be the collection of subsets of [n] ordered by inclusion
(a Boolean poset). Let A = N be the additive monoid of nonnegative integers.
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(i) Given R ⊆ S ⊆ T in P , define

γ(R,S, T ) = |{(s, t) ∈ (S \R)× (T \ S) | s > t}|.
Verify that γ is a 2-cocycle on P with values in A.

(ii) Given S ⊆ T in P , define

α(S, T ) = |{(s, t) ∈ S × (T \ S) | s > t}|.
Verify that γ cobounds α.

If view these cochains as having values in the additive group Z of integers, then
∂(α) = γ is in fact a coboundary.

Remark C.20. Suppose A is an abelian group. With such coefficients, poset
cohomology can be calculated from the classifying space of P . When P has a
bottom or a top element, this space is contractible. In particular, in this case, any
cocycle is a coboundary.

C.4.2. Cocycle deformations of the incidence algebra. Fix a field k. Let
P be a finite poset. Let γ be a normalized 2-cocycle on P with values in the
multiplicative monoid k. On the space of k-valued incidence functions on P , define
a new multiplication as follows:

(C.30) (fg)(x, z) =
∑

y: x≤y≤z

γ(x, y, z) f(x, y)g(y, z).

This operation is associative and unital, with the unit being the function δ from
(C.2). These properties follow from (C.24) and (C.28). We use I(P ; γ) to denote
the resulting algebra.

If γ is the trivial 2-cocycle, then I(P ; γ) recovers the incidence algebra I(P )
from Section C.1.1.

Suppose now that γ and γ′ are cohomologous along α, where γ and γ′ are
2-cocycles and α is a 1-cochain, all normalized. Given an incidence function f , let
fα denote the incidence function defined by

fα(x, y) = α(x, y)f(x, y)

for all x ≤ y in P .

Lemma C.21. The map

I(P ; γ)→ I(P ; γ′), f 7→ fα,

is a morphism of algebras. If α takes values in the multiplicative group k×, this is
an isomorphism.

Proof. It follows readily from (C.25) that the map preserves multiplications. It
preserves units because α is normalized. When α takes invertible values, the inverse
isomorphism sends g to gα−1 . �

Let P and γ be as above. Let ∼ be an equivalence relation on the set of 1-
chains in P . As in Section C.3, we consider the space of incidence functions that
are constant on equivalence classes. If this subspace is a subalgebra of I(P ; γ), we
say that the relation ∼ is γ-compatible, and refer to the subalgebra as the reduced
incidence algebra associated to ∼ and γ.
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Lemma C.22. Suppose that whenever (x, z) ∼ (x′, z′), there exists a bijection
ψ : [x, z]→ [x′, z′] such that (C.16) holds, and in addition

(C.31) γ(x, y, z) = γ(x′, ψ(y), z′)

for all y ∈ [x, z]. Then ∼ is γ-compatible.

C.4.3. Transfer of cocycles. Let ϕ : P → Q be an order-preserving map be-
tween posets. Let γ be a 2-cochain on P with values on the multiplicative monoid
k. We discuss certain conditions under which γ can be transferred to Q.

Given x ≤ z in P and v ∈ Q such that ϕ(x) ≤ v ≤ ϕ(z), consider the set

Γx,z(v) = {y ∈ [x, z] | ϕ(y) = v}.
The conditions are as follows. For any x ≤ z in P ,

(C.32a) Γx,z(ϕx) = {x} and Γx,z(ϕz) = {z}.
For any x ≤ z in P and v ∈ Q as above, the scalar

(C.32b)
∑

y∈Γx,z(v)

γ(x, y, z)

depends only on v, u = ϕ(x) and w = ϕ(z) (but is otherwise independent of x and
z). This scalar may be zero and the set Γx,z(v) may be empty.

When conditions (C.32a) and (C.32b) hold, we say that γ can be transferred
along ϕ. We construct the transfer γ∗ next.

Take u ≤ v ≤ w in Q. First of all, if there are no x ≤ z in P with ϕ(x) = u
and ϕ(z) = w, we set

(C.33) γ∗(u, v, w) =

®
1 if u = v or v = w,

0 otherwise.

These values of γ∗ will play no essential role. On the other hand, if there is at least
one such pair x ≤ y, we set

(C.34) γ∗(u, v, w) =
∑

y∈Γx,z(v)

γ(x, y, z).

Condition (C.32b) states that this is well-defined. We obtain a 2-cochain γ∗ on Q.
It follows from (C.33) and (C.34) that if u < v < w and there is no x < y < z

such that ϕ(x) = u, ϕ(y) = v and ϕ(z) = w, then γ∗(u, v, w) = 0.

Lemma C.23. Let γ be a normalized 2-cocycle on P that can be transferred along
ϕ. Then the transfer γ∗ is a normalized 2-cocycle on Q.

Proof. When γ∗ is defined by (C.34), the fact that it is normalized follows from
condition (C.32a) (and the fact that so is γ). Otherwise, the property follows from
(C.33).

Take t ≤ u ≤ v ≤ w in Q. In order to derive the cocycle condition

γ∗(t, u, w)γ∗(u, v, w) = γ∗(t, v, w)γ∗(t, u, v),

we may assume that t < u < v < w, since γ∗ is normalized. We claim that either
there exist a < b < c < d in P such that

ϕ(a) = t, ϕ(b) = u, ϕ(c) = v and ϕ(d) = w,

or else both sides are 0. Indeed, suppose the lhs is different from 0. From
γ∗(t, u, w) 6= 0 we deduce the existence of a < b < d in P such that ϕ(a) = t,
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ϕ(b) = u, and ϕ(d) = w, as noted above. Then, from γ∗(u, v, w) 6= 0 and (C.32b),
we deduce the existence of c such that b < c < d and ϕ(c) = v. A similar analysis
leads to the same conclusion when the rhs is nonzero.

It remains to show that when such elements exist, the two sides are equal. Fix
a < d with ϕ(a) = t and ϕ(d) = w. Consider the set

Γa,d(u, v) = {(b′, c′) ∈ P 2 | a ≤ b′ ≤ c′ ≤ d, ϕ(b′) = u, ϕ(c′) = v}.
There are obvious bijections

⊔

b′∈Γa,d(u)

Γb′,d(v) ∼= Γa,d(u, v) ∼=
⊔

c′∈Γa,d(v)

Γa,c′(u).

In view of (C.34),

γ∗(t, u, w)γ∗(u, v, w) =
∑

b′∈Γa,d(u)

γ(a, b′, d)
∑

c′∈Γb′,d(v)

γ(b′, c′, d)

=
∑

(b′,c′)∈Γa,d(u,v)

γ(a, b′, d)γ(b′, c′, d) =
∑

(b′,c′)∈Γa,d(u,v)

γ(a, c′, d)γ(a, b′, c′)

=
∑

c′∈Γa,d(v)

γ(a, c′, d)
∑

b′∈Γa,c′ (u)

γ(a, b′, c′) = γ∗(t, v, w)γ∗(t, u, v). �

In the exercises below, we carry out two consecutive cocycle transfers. They
show in particular that γ∗ need not be trivial, even when γ is.

Exercise C.24 (Schubert symbol). Let q be a prime power, k a field with q
elements, and V an n-dimensional vector space over k. Fix a complete flag of
subspaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V.

(The symbol ⊂ denotes proper inclusions.) Given a subspace W of V , let

ϕ(W ) = {i ∈ [n] |W ∩ Vi−1 ⊂W ∩ Vi}.
Equivalently, i /∈ ϕ(W ) ⇐⇒ W ∩ Vi−1 =W ∩ Vi. Let P be the poset of subspaces
of V , ordered by inclusion, and Q the Boolean poset 2[n].

(i) Show that ϕ : P → Q is order-preserving.
(ii) Show that the trivial cocycle on P (with values on the multiplicative

monoid k) can be transferred along ϕ and that

(C.35) γ∗(R,S, T ) = q|{(s,t)∈(S\R)×(T\S)|s>t}|.

Note that γ∗ also arises from the cocycle in Exercise C.19 by composing with the
morphism of monoids N→ k, n 7→ qn. This shows that γ∗ is defined for all scalars
q, not just prime powers.

The following exercise employs the q-binomials and factorials defined in Sec-
tion 16.4.2.

Exercise C.25. Let P be the Boolean poset 2[n] and Q the chain {0 < 1 < · · · <
n}. Consider the order-preserving map ϕ : P → Q given by

ϕ(S) = |S|.
Fix a scalar q ∈ k and consider the 2-cocycle γ on P given by (C.35).
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(i) Show that γ can be transferred along ϕ and that

(C.36) γ∗(i, j, k) =

Ç
k − i
j − i

å

q

,

a q-binomial coefficient.
(ii) Show that if q is not a root of unity, or if q = 1 and k is of characteristic

0, this cocycle is a coboundary: γ∗ = ∂(α) with

α(i, j) =
1

(j − i)q!
.

If q = 1, γ is trivial, while γ∗(i, j, k) =
(
k−i
j−i

)
is the classical binomial coefficient.

Cocycle transfer is functorial. We employ the preceding examples to illustrate
this assertion.

Let P be the poset of subspaces of a finite vector space V , as in Exercise C.24,
and Q the chain of length dimV , as in Exercise C.25. Composing the maps in those
exercises we obtain an order-preserving map P → Q. It sends a subspace to its
dimension. The trivial cocycle on P can be transferred and the result is the cocycle
(C.36) on Q.

We return to the general discussion: ϕ : P → Q is order-preserving, γ is a
normalized 2-cocycle on P that can be transferred along ϕ, and γ∗ is the resulting
2-cocycle on Q. Consider now the map

ϕ∗ : I(Q; γ∗)→ I(P ; γ)

defined by

(C.37) ϕ∗(f)(x, z) = f(ϕx, ϕz),

and the equivalence relation on 1-chains in P defined by

(C.38) (x, z) ∼ (x′, z′) if ϕ(x) = ϕ(x′) and ϕ(z) = ϕ(z′).

Proposition C.26. In this situation, ϕ∗ is a morphism of algebras. Moreover, the
relation (C.38) is γ-compatible and the image of ϕ∗ is the corresponding reduced
incidence algebra of P .

Proof. First note that if x < z, then ϕ(x) < ϕ(z). This is equivalent to (C.32a).
This shows that ϕ∗ preserves the incidence unit δ. We now compare multiplications.
Choose x ≤ z in P and let ϕ(x) = u, ϕ(z) = w. We have

(ϕ∗(f)ϕ∗(g))(x, z) =
∑

y: x≤y≤z

γ(x, y, z)f(ϕx, ϕy)g(ϕy, ϕz)

=
∑

v:u≤v≤w

∑

y∈Γx,z(v)

γ(x, y, z)f(u, v)g(v, w) =
∑

v:u≤v≤w

γ∗(u, v, w) f(u, v)g(v, w)

= (fg)(u,w) = ϕ∗(fg)(x, z).

Any function in the image of ϕ∗ is constant on equivalence classes. Conversely,
let g be such a function. If (u,w) is a 1-chain in Q and there is a 1-chain (x, z) in
P such that ϕ(x) = u and ϕ(z) = w, we set

f(u,w) = g(x, z).

By the assumption on g, f(u,w) is well-defined. If there is no 1-chain (x, z) as
above, we choose an arbitrary value for f(u,w). The incidence function f on Q then
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satisfies ϕ∗(f) = g. It follows that the image of ϕ∗ is the reduced incidence algebra
of P associated to the relation (C.38) (and that this relation is γ-compatible). �

We conclude the section with a couple of remarks on the transfer conditions
(C.32a) and (C.32b). Assume ϕ : P → Q is an order-preserving map and γ is a
normalized 2-cocycle on P .

Condition (C.32a) is equivalent to any of the following:

The map ϕ is strictly increasing: if x < z, then ϕ(x) < ϕ(z).(C.39)

The fibers of ϕ are antichains of P .(C.40)

The following is a stronger condition than (C.32b): for any u ≤ w in Q, x ≤ z
and x′ ≤ z′ in P with ϕ(x) = ϕ(x′) = u and ϕ(z) = ϕ(z′) = w, there exists a
bijection ψ : [x, z]→ [x′, z′] such that (C.31) holds and in addition

(C.41)
[x, z]

ϕ ��
❄❄

❄❄

ψ
// [x′, z′]

ϕ~~⑤⑤
⑤⑤

[u,w]

commutes. The bijection ψ need not be order-preserving.
Consider the relation (C.38). Note that (C.41) is equivalent to (C.16) for this

relation. Lemma C.22 says that under the preceding conditions, this relation is
γ-compatible. This also follows from Proposition C.26.

C.4.4. Posets of triangular type. Let P be a graded poset with bottom element
⊥. Let rk be the rank function such that rk(⊥) = 0. Consider the equivalence
relation on 1-chains in P defined by

(C.42) (x, z) ∼ (x′, z′) if rk(x) = rk(x′) and rk(z) = rk(z′).

This is the special case of (C.38) arising from the order-preserving map rk : P → N.
We say P is of of triangular type if (x, z) ∼ (x′, z′) implies that the number of
maximal chains in [x, z] equals the number of maximal chains in [x′, z′].

Let γ be the trivial cocycle on P with values on the multiplicative group Q.

Proposition C.27. If P is of triangular type, γ can be transferred along rk : P →
N. Moreover, γ∗ = ∂(α), with the 1-cochain α on N given by

α(i, j) =
1

m(i, j)
,

where m(i, j) is the number of maximal chains in [x, y], x and y being any elements
of P such that x ≤ y, rk(x) = i and rk(y) = j.

Proof. Note thatm and α are well-defined since P is of triangular type. Condition
(C.32a) holds since rk is strictly increasing, which is (C.39). We next note that,
given i ≤ j ≤ k in N and x ≤ z in P with rk(x) = i and rk(z) = k,

|{y ∈ [x, z] : rk(y) = j}|m(j, k)m(i, j) = m(i, k).

Indeed, the rhs counts maximal chains from x to z, while the lhs counts these chains
according to the element of rank j along the chain. This shows that (C.32b) holds,
so γ can be transferred, and also that γ∗ = ∂(α), according to (C.26). �
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Example C.28. The Boolean poset 2[n] is of triangular type: the rank of a subset
is its cardinality, and given S ⊆ T , the number of maximal chains from S to T is
(j − i)!, where i = |S|, and j = |T |. The cocycle afforded by Proposition C.27 is
the case q = 1 of the cocycle (C.36).

The poset of subspaces of a finite vector space, as in Exercise C.24, is of tri-
angular type. The rank of a subspace is its dimension. The number of maximal
chains from X to Y is (j − i)q!, where i = dimX and j = dimY . The cocycle
afforded by Proposition C.27 is (C.36).

C.4.5. Covering maps. Let P and Q be posets. An order-preserving map ϕ :
P → Q is a covering if the following condition is satisfied. For any y ∈ P and
u, v ∈ Q with

ϕ(y) = v and u ≤ v,
there exists a unique x ∈ P such that

ϕ(x) = u and x ≤ y.
In this situation, we say that x is the lift of u to y.

Lemma C.29. A covering map ϕ restricts to an (order-preserving) bijection

(C.43) [x, y]→ [ϕx, ϕy]

between intervals.

Proof. Given w in [ϕx, ϕy], let z be its lift to y and let x′ be the lift of ϕ(x) to z.
Then x′ ≤ z ≤ y and ϕ(x′) = ϕ(x). Then both x and x′ are lifts of ϕ(x) to y, and
hence must coincide. Then x ≤ z ≤ y and ϕ(z) = w, proving that the map (C.43)
is surjective. Injectivity follows from the uniqueness of lifts. �

Proposition C.30. The trivial cocycle can be transferred along a covering map.
Moreover, the transferred cocycle is trivial.

Proof. The injectivity of the map (C.43) gives us condition (C.32a), in the equiv-
alent form (C.39). The lemma also implies that ϕ satisfies condition (C.41). Since
(C.31) holds trivially, we also have (C.32b). In addition, the sets Γx,z(v) are sin-
gletons, so the transferred cocycle is trivial. �

From Propositions C.26 and C.30 we deduce that the canonical map ϕ∗ :
I(Q) → I(P ) is a morphism of algebras. Moreover, its image is the reduced in-
cidence algebra of P arising from (C.38).

If in addition ϕ is surjective, then any interval [u, v] in Q is the image of an
interval [x, y] in P (choose y such that ϕ(y) = v and let x be the lift of u to y). It
follows that ϕ∗ is an injective morphism of algebras.

Exercise C.31. Show that the equivalence relation (C.38) satisfies condition (C.16)
and deduce (again) that it is order-compatible.

C.4.6. Group actions on posets. LetG be a group acting on a poset P by order-
preserving maps. Then G acts on the set of 1-chains in P and on the incidence
algebra of P by

g · (x, y) = (g · x, g · y) and (g · f)(x, y) = f(g−1 · x, g−1 · y).
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The equivalence relation on 1-chains in resulting from the G-action satisfies
condition (C.16). We may then consider the corresponding reduced incidence al-
gebra. It consists of functions which are constant on G-orbits of intervals and is
therefore the invariant subalgebra I(P )G of the incidence algebra I(P ).

Assume now that the G-action on P satisfies in addition that

(C.44) if x ≤ g · x for some g ∈ G, then g · x = x.

Equivalently, each G-orbit is an antichain of P . We say in this case that the action
is regular .

Let x denote the orbit of an element x. When the action is regular, there is a
partial order on G-orbits defined by

x ≤ y if there exists g ∈ G such that g · x ≤ y.
This is well-defined since the action of each element is order-preserving. Condition
(C.44) guarantees antisymmetry of this order. We let PG denote the resulting poset
of G-orbits. The canonical map

π : P → PG, x 7→ x

is order-preserving.

Proposition C.32. Let G act on P by order-preserving maps. The action is
regular in either of the following cases.

(i) The poset P is graded and the G-action is rank-preserving.
(ii) G is finite, or more generally if each element of G has finite order.
(iii) P is of finite height.

Proof. In case (i), elements of the same rank constitute an antichain. In case (ii),
note that x ≤ g · x implies g · x ≤ g2 · x, and then if n is the order of g,

x ≤ g · x ≤ · · · ≤ gn · x = x.

A similar argument applies in case (iii). �

Consider now the following conditions.

(C.45) If x ≤ y and g · x ≤ y for some x, y ∈ P and g ∈ G,
then there is h ∈ G such that h · x = g · x and h · y = y.

(C.46) If x ≤ y and g · x ≤ y for some x, y ∈ P and g ∈ G, then g · x = x.

Proposition C.33. Let G act on P by order-preserving maps. Then:

(a) (C.46) ⇒ (C.45) ⇒ (C.44).
(b) (C.45) ⇒ the trivial cocycle on P can be transferred along π.
(c) (C.46) ⇐⇒ π is a covering.

Proof. When (C.46) holds, we may choose h = 1 in (C.45). When (C.45) holds,
choosing y = g · x yields h ∈ G such that h · x = g · x and hg · x = g · x. Canceling
h yields x = g · x, which shows (C.44) holds. This proves (a).

As already mentioned, (C.44) states that the fibers of π are antichains. This is
condition (C.40) for π, which is equivalent to (C.32a). Now suppose (C.45) holds.
We show below that (C.41) follows. This implies (C.32b) and completes the proof
of (b).
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Take intervals [x, z] and [x′, z′] as stipulated by (C.41). Then x′ = f · x and
z′ = k · z for some f, k ∈ G. Let g = k−1f . Then

g · x = k−1 · x′ ≤ k−1 · z′ = z.

Condition (C.45) affords h ∈ G such that h · x = g · x and h · z = z. Then

kh · x = kg · x = f · x = x′ and kh · z = k · z = z′.

The action of kh then defines a bijection [x, z] → [x′, z′] commuting with π. Con-
dition (C.31) holds trivially. Thus, (C.41) holds.

Finally, if x ≤ y, there is an element in the orbit of x that is below y. Condition
(C.46) guarantees this element is unique, so π is a covering. This proves (c). �

Suppose (C.45) holds. Let γG be the cocycle on PG transferred from the trivial
one along π. From Propositions C.26 and C.33 we deduce that

π∗ : I(PG, γG)→ I(P )

is an injective morphism of algebras which identifies I(PG, γG) with the reduced
incidence algebra of P arising from the following equivalence relation on 1-chains
in:

(C.47) (x, y) ∼ (x′, y′) if there are g, h ∈ G such that g · x = x′ and h · y = y′.

We claim that this algebra coincides with the invariant subalgebra I(P )G. As
explained above, the latter is the reduced incidence algebra arising from the G-
action on intervals. Clearly, two intervals in the same G-orbit are equivalent under
(C.47). The proof of (b) in Proposition C.33 shows the converse. Thus, the two
relations on intervals, and the corresponding reduced incidence algebras, coincide.

In summary, condition (C.45) affords a canonical isomorphism of algebras

I(PG, γG) ∼= I(P )G.

Under the stronger assumption that (C.46) holds, the cocycle γG is trivial
(Proposition C.30) and we obtain an isomorphism of algebras

I(PG) ∼= I(P )G.

Condition (C.46) is rare: if P has a top element, or if P is a join-semilattice
(joins exist), then only the trivial action satisfies it.

Exercise C.34. Find an action of a finite group on a finite poset by order-
preserving maps for which (C.45) does not hold. (By Proposition C.32, (C.44)
does hold.)

Exercise C.35. Let I be a finite set, P be the Boolean poset 2I and G the
symmetric group SI . G acts on P canonically. Let n = |I|. Show that:

(i) The canonical G-action on P satisfies (C.45) but not (C.46).
(ii) We have

PG = {0 < 1 < · · · < n}
and the canonical map π : P → PG sends an element of P to its rank.

(iii) The map I(PG)→ I(P ) sending f to f̃ defined by

f̃(S, T ) = (t− s)! f(s, t),
where s = |S| and t = |T |, is a morphism of algebras. Its image is I(P )G.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



520 C. INCIDENCE ALGEBRAS OF POSETS

Notes

Incidence algebras and Möbius functions. Möbius functions go back to work of
Möbius [298]. His context is the reduced incidence algebra of the poset of divisors given
in Section C.3.2. He explains formula (C.4) on pages 106-107. On page 108, he considers
the zeta function. He then turns to its inverse, states the recursive formula (C.5b), and
then determines it by a case analysis on pages 109-111. This is the classical Möbius
function (C.17). A more detailed historical account is given in [312, Section 2.2]. The
generalization to arbitrary posets appeared much later in the combined work of Weisner
[408], Ward [405] and Hall [206]. Proposition C.4 (and its proof) is due to Weisner [408,
Theorems 9 and 10]. Proposition C.3 is due to Hall [206, Section 2.2].

A main source for incidence algebras and Möbius functions is the classical paper by
Rota [346]. (Proposition C.6 is his Theorem 4.) Other important references are those
of Aigner [13, Chapter IV], Greene [196] and Stanley [382, Chapter 3]. For a survey on
Eulerian posets, see [377]. Reduced incidence algebras are studied in [146, Section 4]. A
characterization of order-compatible equivalence relations is given in [250].

Möbius inversion is closely related to the exp-log correspondence in Lie theory. An
illustration is provided in Section 6.6.5. More details will be provided in a future work.

Ring-theoretical properties of incidence algebras are studied in [372]. Representations
of incidence algebras and their cocycle deformations are studied in [225].

Galois connections. The set (C.13) is the object set of the comma-category ϕ ↓ ψ. An
adjunction gives rise to an isomorphism of comma-categories; this specializes to the ob-
servation in Section C.1.10 that I(λ, idQ) = I(idP , ρ). The Rota formula (C.14) goes back
to [346, Theorem 1]; see also [196, 5.4]. The approach in the text follows [6, Section 2].

Incidence algebras of categories. Incidence algebras of categories appeared in work
of Mitchell [297, Section 7] and Gabriel [181, Section II.1] (though not under that name).
In connection with Möbius inversion, they are considered by Content, Lemay, and Leroux
[117], Haigh [204], Schwab [361, 362] and more recently by Leinster [269, 270]. These
papers focus on the invertibility of the standard zeta function (which maps every mor-
phism to 1), in contrast to the noncommutative zeta functions introduced in this work.
Functoriality with respect to functors which are the identity on objects is given in [117,
Proposition 5.6], see also [270, Proposition 2.1]. Functoriality with respect to coverings
is a special case of [270, Theorem 5.1]. Both are special cases of a more general type of
functoriality considered in [4, Sections 5.3 and 9.1].

Covering maps and cocycle deformations. Covering maps between categories go
back to [179, Appendix I.1]. They are also called discrete fibrations. The notion of
covering map between posets is a special case. Lemma C.29 is a special case of a more
general assertion for categories: a discrete fibration is always a Grothendieck fibration.

The connection between poset 2-cocycles and reduced incidence algebras presented
in Section C.4.3 is somewhat implicit in [146]. Closely related ideas are developed in
[151, Chapter I, Section 4], where cocycles are prominent; in particular, Lemma C.23
generalizes [151, Proposition 1.48]. Posets of triangular type are the subject of [146,
Section 9]. Interesting examples and results on lattices of triangular type are given there
and in [417]. Binomial posets in the sense of [382, Definition 3.18.2] are particular posets
of triangular type. Their theory is developed in [146, Sections 7–9] and [382, Section
3.18], but without an explicit connection to poset cocycles. Proposition C.27 corresponds
to (3.89) in [382]. The posets in Example C.28 are binomial. Additional examples of
binomial posets are given in [382, Example 3.18.3].

Group actions on posets. Regular group actions on simplicial complexes and posets
appear in [94, Chapter III, Definition 1.2] and [123, Section 1]. Algebraic and enumerative
aspects of group actions on posets are studied in [376].
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APPENDIX D

Algebras and modules

We review some general aspects of associative algebras and their modules. We
are interested mainly in split-semisimple commutative algebras and elementary al-
gebras. We analyze in detail the split-semisimple commutative algebras which are
obtained by linearizing lattices.

Convention D.1. In this appendix, k is an arbitrary field, A is a k-algebra (not
necessarily commutative), and M is a (left or right) module over A. We assume
that A and M are finite-dimensional (though not everything we do requires this
assumption.) Dimension refers to dimension as a vector space over k.

D.1. Modules

We review some basic concepts related to modules over an algebra and set up
the required notation.

D.1.1. Modules and representations. Let M be a left module over A. That
is, M is a vector space over k equipped with a bilinear map

A×M →M, (a,m) 7→ am,

such that a(bm) = (ab)m and 1m = m for all a, b ∈ A and m ∈M .
Any w ∈ A gives rise to a linear operator

ΨM (w) :M →M, m 7→ wm

defined by left multiplication by w. This gives rise to an algebra homomorphism

ΨM : A→ Endk(M).

The latter is the algebra of endomorphisms ofM , where the product is composition:

(fg)(m) = f(g(m)).

We say that ΨM is the representation of A associated to the module M .
Similarly, a right A-module M is defined by a bilinear map

M ×A→M, (m, a) 7→ ma,

In this case, we let ΨM (w) denote right multiplication by w. The resulting map
ΨM is an algebra antimorphism.

Standard terms of linear algebra apply to the operator ΨM (w). For instance,
we can consider the eigenvalues of ΨM (w) and their multiplicities. (By multiplicity,
we always mean algebraic multiplicity.) Similarly, we say ΨM (w) is diagonalizable
if M can be expressed as a direct sum of subspaces such that ΨM (w) acts on each
subspace by multiplication by a scalar. The scalars are the eigenvalues of ΨM (w)
and the subspaces the eigenspaces.
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For a left module M , let wM denote the image of the linear operator ΨM (w).
In other words, wM consists of all elements of the form wm, as m varies over
elements of M . For a right module M , we denote the image by Mw.

D.1.2. Faithful and simple modules. A left A-module M is faithful if the
representation ΨM is injective. The annihilator ann(M) of a left A-module M is
the kernel of ΨM :

ann(M) := {a ∈ A | am = 0 for all m ∈M}.
Thus, M is faithful iff ann(M) = 0. Similar considerations apply to right A-
modules.

A (left or right) module over A is simple if it is nonzero and has no proper
submodules. Any one-dimensional A-module M is simple.

D.1.3. Characters. Let A be a k-algebra. The character of a (left or right)
A-module M is the linear functional

(D.1) χM : A→ k, χM (w) = tr(ΨM (w)),

where tr(ΨM (w)) denotes trace of the linear operator ΨM (w). A linear functional
on A is called a character of A if it is the character of some A-module M .

A multiplicative character of A is an algebra homomorphism χ : A→ k.

Lemma D.2. If M is a one-dimensional A-module M , then χM is multiplica-
tive. Conversely, given a multiplicative character χ, there exists a one-dimensional
module M , unique up to isomorphism, such that χM = χ.

Proof. If M is one-dimensional, then tr : Endk(M) → k is an isomorphism of
algebras, so χM is an algebra morphism. For the converse, M ∼= k with am =
χ(a)m. �

For any A-module M , we have χM (1) = (dimkM) · 1, where on the right 1
denotes the unit element of the ground field k. It follows that if k is of characteristic
0, then

χM (1) = 1 ⇐⇒ dimkM = 1 ⇐⇒ χM is a multiplicative character.

D.1.4. Dual module. Let M be a left A-module. Write M∗ for the linear dual
of M . Then M∗ is a right A-module with the dual action: For a ∈ A and f ∈M∗,

(D.2) (fa)(m) := f(am).

Similarly, the dual of a right A-module is a left A-module.

Lemma D.3. For a left A-module M and w ∈ A, we have dimwM = dimM∗w.

Proof. The space wM is the image of the operator ΨM (w), while M∗w is the
image of ΨM∗(w). By (D.2), these operators are dual. Therefore, the image of one is
orthogonal to the kernel of the other, and their images have the same dimension. �

For a commutative algebra A, there is no distinction between left and right
modules. In this case, we say a moduleM is self-dual if there exists an isomorphism
M ∼=M∗ of A-modules.
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D.1.5. Frobenius algebras. Fix an algebra A. A bilinear form 〈 , 〉 : A×A→ k
is associative if

(D.3) 〈a, bc〉 = 〈ab, c〉

holds for all a, b, c ∈ A. Any linear functional f : A→ k gives rise to an associative
bilinear form via 〈a, b〉 := f(ab), and moreover one can recover the functional from
the form by f(a) := 〈a, 1〉 = 〈1, a〉. Thus, there is a correspondence between linear
functionals and associative bilinear forms on A.

A Frobenius algebra is an algebra A equipped with a nondegenerate associative
bilinear form. The corresponding linear functional is called the Frobenius func-
tional . A Frobenius algebra yields an isomorphism A→ A∗ of left A-modules, and
another isomorphism A→ A∗ of right A-modules. Thus, Frobenius structures on A
correspond to self-duality isomorphisms of A (either as left or as right A-modules).

D.2. Idempotents and nilpotents

We review idempotent and nilpotent elements in an algebra, and discuss com-
plete systems of primitive orthogonal idempotents.

D.2.1. Idempotents. Let A be an algebra. An element e ∈ A is an idempotent
if e2 = e. Idempotents e and f are orthogonal if ef = fe = 0. In this case, e+ f is
also an idempotent. Note that for any idempotent e, 1−e is also an idempotent and
it is orthogonal to e. A nonzero idempotent e is primitive if it cannot be written
as a sum of two orthogonal nonzero idempotents.

Lemma D.4. Every nonzero idempotent of A can be expressed as a sum of mutually
orthogonal primitive idempotents.

Proof. Let e be the given idempotent. If e is primitive, then we are done. If
not, then write e = f + g, with both f and g nonzero orthogonal idempotents.
If f (or g) is not primitive, then write it as a sum of two orthogonal nonzero
idempotents. Continue this procedure. If at some stage we have e = e1 + · · ·+ ek,
then eA = e1A ⊕ · · · ⊕ ekA, with each eiA 6= 0. So by finite-dimensionality of A,
this procedure must terminate. �

Applying Lemma D.4 to the unit element 1, we deduce that there exists a family
of mutually orthogonal primitive idempotents which sum up to 1. Any such family
is called a complete system of primitive orthogonal idempotents of A. Complete
refers to the fact that the idempotents sum up to 1. Thus:

Proposition D.5. Every algebra has a complete system of primitive orthogonal
idempotents.

Let e ∈ A be an idempotent. Let M be a left A-module. The linear operator
ΨM (e) is diagonalizable. Its eigenvalues are 1 and 0 with eigenspaces eM and
(1− e)M , respectively. Its trace is the dimension of eM . Thus,

(D.4) χM (e) = tr(ΨM (e)) = dim eM.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



524 D. ALGEBRAS AND MODULES

D.2.2. Nilpotents. An element a ∈ A is nilpotent if there exists an integer k ≥ 1
such that ak = 0.

For any nilpotent element a ∈ A and left A-module M ,

(D.5) χM (a) = tr(ΨM (a)) = 0.

This is because the trace of any nilpotent matrix is 0.
Note that there is only one element in A which is both idempotent and nilpo-

tent, namely, 0.

D.3. Split-semisimple commutative algebras

We discuss split-semisimple commutative algebras. They have a unique com-
plete system of primitive idempotents. The simple modules over such an algebra
are one-dimensional, and any module breaks as a direct sum of simple submodules.
Further, all modules are self-dual.

D.3.1. Split-semisimple commutative algebras. Let A be a commutative k-
algebra. It is split-semisimple if it is isomorphic as an algebra to a product of copies
of k, that is, A ∼= kn for some n. For 1 ≤ i ≤ n, let ei denote the element of A
which corresponds to (0, . . . , 1, . . . , 0) ∈ kn which is 1 in the i-th coordinate and
zero elsewhere. Observe that f ∈ A is an idempotent iff f is a sum of some of the
ei. In particular, the ei are the only primitive idempotents of A. These elements
constitute a complete system of primitive orthogonal idempotents of A, and this
system is unique. The only algebra automorphisms of A are those obtained by
permuting the ei.

A split-semisimple commutative algebra does not contain any nonzero nilpotent
elements. So an algebra such as k[x]/(xn) for n > 1 cannot be split-semisimple.

D.3.2. Modules. Suppose A is a split-semisimple commutative algebra, and M
is an A-module. Then each eiM is a submodule of M , and further

(D.6) M =
n⊕

i=1

eiM.

An element z ∈ A acts on eiM by scalar multiplication by the coefficient of ei in
z. Note that each eiA is one-dimensional.

For each 1 ≤ i ≤ n, put
(D.7) ηi(M) := χM (ei) = dim eiM.

The second equality can be seen directly, or as an instance of (D.4).
Some important consequences of the above discussion are summarized below.

Theorem D.6. A split-semisimple commutative algebra A of dimension n has n
distinct simple modules (up to isomorphism). They are one-dimensional. For 1 ≤
i ≤ n, the i-th simple module is given by eiA, or equivalently, by the multiplicative
character

χi : A→ k, z 7→ 〈z, ei〉,
where 〈z, ei〉 denotes the coefficient of ei in z.

By definition of χi, for any w ∈ A, we have w =
∑
i χi(w) ei. Thus,

(D.8) χM (w) =
n∑

i=1

χi(w) ηi(M).
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Theorem D.7. Let A be a split-semisimple commutative algebra. Each A-module
M is a direct sum of simple modules with the multiplicity of the i-th simple module
being ηi(M). In particular, M is faithful iff ηi(M) > 0 for each i.

Theorem D.8. Let A be a split-semisimple commutative algebra. For any element
w ∈ A, the linear operator ΨM (w) is diagonalizable. Writing w =

∑
i λiei, the

operator ΨM (w) has eigenvalues λi and the eigenspace of λi is eiM . In particular,
the multiplicity of λi is ηi(M).

It is possible that eiM is 0 for some i in which case the eigenvalue λi does not
occur. It may also happen that the λi are not distinct. In that case, the eigenspaces
are obtained by lumping together the corresponding eiM . For instance, if w = ei,
then the eigenvalues are 1 and 0. The eigenspace for 1 is eiM and the eigenspace
for 0 is the sum of the remaining ejM .

Proposition D.9. The characters of a split-semisimple commutative algebra A
of dimension n correspond to families (ηi)1≤i≤n of nonnegative integers, with the
multiplicative ones corresponding to those families in which exactly one ηi is 1 and
the rest are 0.

The character χ and the family (ηi) relate by χ(ei) = ηi. Note that the
character determines the moduleM (up to isomorphism), with ηi being the number
of times the i-th simple module occurs in M .

D.3.3. Self-duality of modules. Suppose A is a split-semisimple commutative
algebra, and M is an A-module. Consider the dual module M∗. It has two decom-
positions, one obtained by virtue of it being an A-module, and the other obtained
by dualizing (D.6). However, there is a canonical identification

(eiM)∗
∼=−→ eiM

∗,

and so the two decompositions coincide. It follows that for disjoint subsets S and
T whose union is [n], the subspaces

⊕

i∈S

eiM and
⊕

j∈T

ejM
∗

are orthogonal complements of each other under the canonical pairing between M
and M∗.

Lemma D.10. Any module over a split-semisimple commutative algebra is self-
dual.

Proof. For each i, choose any linear isomorphism between eiM and (eiM)∗. �

The isomorphism for self-duality is not canonical. We concentrate on the case
when M is A itself.

Lemma D.11. Let A be a split-semisimple commutative algebra. Then an A-
module isomorphism A ∼= A∗ corresponds to a family (βi) of nonzero scalars indexed
by the primitive idempotents ei of A.

Proof. An isomorphism A ∼= A∗ of A-modules is obtained by choosing linear
isomorphisms eiA ∼= (eiA)

∗ for each i. But each eiA is one-dimensional, so the
corresponding linear isomorphism is given by multiplication by a nonzero scalar
βi. �
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Equivalently:

Lemma D.12. Let A be a split-semisimple commutative algebra. A linear func-
tional f : A→ k corresponds to a sequence of scalars βi via f(ei) = βi. Further, f
is a Frobenius functional iff the βi are nonzero.

D.3.4. Subalgebras of split-semisimple commutative algebras. We now
state two results related to subalgebras of split-semisimple commutative algebras.
The proofs are straightforward.

Lemma D.13. Any subalgebra of a split-semisimple commutative algebra is again
split-semisimple commutative.

Lemma D.14. Let G be a finite group which acts on a split-semisimple commu-
tative algebra A. Then: G acts on the set of primitive idempotents {e1, . . . , en}
of A. The invariant subalgebra AG is split-semisimple commutative with primitive
idempotents

∑
i∈I ei, as I varies over all orbits of the G-action on {e1, . . . , en}.

D.4. Diagonalizability and Jordan-Chevalley decomposition

An element of an algebra is diagonalizable if it can be expressed as a lin-
ear combination of mutually orthogonal idempotents. A diagonalizable element
can be characterized using the factors of its minimum polynomial or the split-
semisimplicity of the subalgebra it generates. We also discuss the Jordan-Chevalley
decomposition of an element into its diagonalizable and nilpotent parts.

D.4.1. Minimum polynomial. Let A be an algebra over k. For w ∈ A, let k[w]
denote the subalgebra of A generated by w. Explicitly, it consists of all elements
of A of the form

α0 + α1w + · · ·+ αkw
k

for scalars αi ∈ k. There is a surjective algebra homomorphism

k[x] ։ k[w], x 7→ w,

where k[x] denotes the algebra of polynomials in the variable x. Since k[w] is finite-
dimensional, the kernel is nonzero. Further, since all ideals in k[x] are principal,
the kernel is generated by a unique monic polynomial. It is called the minimum
polynomial of w. By construction, the quotient of k[x] by the ideal generated by
the minimum polynomial of w is isomorphic to k[w].

The minimum polynomial of an idempotent e ∈ A is x if e = 0, x− 1 if e = 1,
and x(x−1) otherwise. The minimum polynomial of any nilpotent element has the
form xk.

D.4.2. Diagonalizable elements. We say that w ∈ A is diagonalizable if it can
be expressed as a linear combination of mutually orthogonal idempotents. Note:

• For the endomorphism algebra A = Endk V , this specializes to the usual
notion of diagonalizability.
• Every element of a split-semisimple commutative algebra is diagonalizable.

A diagonalizable element can be put in the form

(D.9) w = λ1e1 + · · ·+ λnen,

where e1, . . . , en are mutually orthogonal nonzero idempotents of A which add up
to 1, and the λi are distinct scalars: If the ei do not add up to 1, then 1−∑

i ei is
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an idempotent which is orthogonal to all the ei, so we can write w = λ1e1 + · · ·+
λnen+0(1−∑

i ei). We can further ensure that the scalars are distinct by lumping
together the idempotents with the same coefficient.

Also note that diagonalizable elements are precisely those which are in the
linear span of some complete system of primitive orthogonal idempotents. This
follows from Lemma D.4.

Any idempotent e ∈ A is diagonalizable. In the form (D.9), e = 0 · 1 if e = 0,
e = 1 · 1 if e = 1 and e = e+ 0(1− e) otherwise.
Theorem D.15. For w ∈ A, the following are equivalent.

(1) w is diagonalizable.
(2) k[w] is a split-semisimple commutative algebra.
(3) The minimum polynomial of w factorizes into distinct linear factors.

Proof. Suppose (1) holds, that is, w is of the form (D.9). Then k[w] is contained
in the subalgebra of A generated by the ei, for i = 1, . . . , n. The latter is isomorphic
to kn. This yields an injective algebra homomorphism

(a) k[w]→ kn, w 7→ (λ1, . . . , λn).

Further, the formula for the determinant of the Vandermonde matrix implies that
the images of 1, w, . . . , wn−1 are linearly independent, so the map (a) is surjective
as well, and hence an isomorphism. This proves (2).

Suppose (2) holds. That is, we are given an isomorphism of the form (a). We
deduce that the λi are distinct. It follows that the kernel of the surjective algebra
homomorphism

k[x] ։ kn, x 7→ (λ1, . . . , λn)

is the ideal generated by the polynomial (x−λ1) . . . (x−λn). So this is the minimum
polynomial of w proving (3).

The above steps can be reversed, so the three statements are equivalent. �

Note that a nonzero nilpotent element in A is not diagonalizable. This is
because a diagonalizable element generates a split-semisimple commutative algebra
and the latter has no nonzero nilpotent elements. Alternatively, the minimum
polynomial of a nonzero nilpotent element has 0 as a repeated root.

Theorem D.16. Suppose w ∈ A is diagonalizable. Then the λi and ei in (D.9)
are uniquely determined. The minimum polynomial of w is (x − λ1) . . . (x − λn).
The algebra k[w] equals the subalgebra of A generated by the ei and is isomorphic
to kn. In particular, the ei belong to k[w]. In fact,

(D.10) ei =
∏

j 6=i

w − λj
λi − λj

.

Proof. The claims related to the minimum polynomial of w and the algebra k[w]
follow from the proof of Theorem D.15. For uniqueness of λi and ei: Suppose
w = λ′1e

′
1 + · · · + λ′me

′
m is another expression of the form (D.9). Then k[w] ∼= km.

Now use that kn ∼= km implies m = n, and the only algebra isomorphisms are those
obtained by permuting the coordinates. The uniqueness of the λi can also be seen
from the minimum polynomial of w. Formula (D.10) can be checked directly. �

A discussion related to formula (D.10) (in a more general setting) is given later
in the proof of Theorem D.20.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



528 D. ALGEBRAS AND MODULES

Proposition D.17. Let ϕ : A → B be an algebra homomorphism. If w ∈ A is
diagonalizable, then so is ϕ(w). Converse holds if ϕ is injective.

Proof. Any algebra homomorphism preserves idempotents and orthogonality, so
the first claim follows. Now suppose ϕ is injective. Let p(x) be any polynomial.
Then p(w) = 0 iff p(ϕ(w)) = 0. Thus, the minimum polynomials of w and ϕ(w)
coincide, and the second claim follows by Theorem D.15, item (3). �

Applying this result to the representation ΨM : A→ Endk(M), we obtain:

Corollary D.18. Let M be a left A-module, and w ∈ A. If w is diagonalizable,
then so is ΨM (w). Explicitly, writing w in the form (D.9), the eigenvalues of
ΨM (w) are λ1, . . . , λn, and the eigenspace corresponding to λi is eiM . Converse
holds if M is faithful.

Faithful modules always exist. For instance, A is a faithful module over itself.
It follows that an element of A is diagonalizable iff its action on all left A-modules
is diagonalizable.

D.4.3. Jordan-Chevalley decomposition. If the minimum polynomial of an
element of A factorizes into linear factors, then it can be uniquely written as a sum
of commuting diagonalizable and nilpotent elements. To show this, we begin with
a preliminary lemma.

Lemma D.19. Let u and v be two diagonalizable (nilpotent) elements in A such
that uv = vu. Then u+ v is also diagonalizable (nilpotent).

Proof. We explain the diagonalizable part. Let the ei (respectively fj) be the
unique idempotents of u (respectively v). Since ei and fj are polynomials in u
and v, and u and v commute, we obtain eifj = fjei. From here, we deduce that
the eifj as i and j vary form a family of mutually orthogonal idempotents which
sum to 1, and they simultaneously diagonalize u and v. In particular, u + v is
diagonalizable. �

Theorem D.20. Let w ∈ A be such that its minimum polynomial factorizes into
(not necessarily distinct) linear factors. Then there exist unique wd, wn ∈ A such
that

(D.11) w = wd + wn,

and wd is diagonalizable, wn is nilpotent, and wd and wn commute. Further, wd
and wn can be expressed as polynomials in w.

We refer to (D.11) as the Jordan-Chevalley decomposition of w.

Proof. Let the minimum polynomial of w be m(x) := (x − λ1)m1 . . . (x − λk)mk

with λ1, . . . , λk distinct and mi ≥ 1. Put

pi(x) :=
∏

j 6=i

(x− λj)mj .

Since the gcd of the pi(x) in the polynomial algebra k[x] is 1, there exist polynomials

qi(x) such that
∑k
i=1 qi(x)pi(x) = 1. Put

ei := qi(w)pi(w).

Note that for i 6= j, m(x) divides pi(x)pj(x). Thus, the ei are pairwise orthogonal

elements and
∑k
i=1 ei = 1. It is then automatic that each ei is an idempotent.
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Further, m(x) does not divide qj(x)pj(x) for any j. (If it did, then x − λj would

divide
∑k
i=1 qi(x)pi(x) giving a contradiction.) Thus, each ej is nonzero. Put

wd :=
k∑

i=1

λiei and wn := w − wd.

It is clear that wd is diagonalizable, wd and wn are polynomials in w, and hence
commute. It remains to show that wn is nilpotent. For this, write wn =

∑k
i=1(w−

λi)ei. Then

wNn =
k∑

i=1

(w − λi)Nei = 0

when N is greater than each exponent mi. This is because ei contains pi(w) as a
factor, and the minimum polynomial vanishes at w.

For uniqueness: Suppose w = w′
d+w

′
n is another decomposition. Since w′

d and
w′
n commute with each other, they commute with w, and hence with wd and wn

(since these are polynomials in w). Lemma D.19 implies that wd − w′
d = w′

n − wn
is both diagonalizable and nilpotent. Hence it must be zero as required. �

It follows from the above proof that the minimum polynomials of w and wd
have the same roots. More precisely, if the minimum polynomial of w is (x −
λ1)

m1 . . . (x− λk)mk , then the minimum polynomial of wd is (x− λ1) . . . (x− λk).

D.5. Radical, socle and semisimplicity

Nilpotent ideals play an important role in the structure theory of algebras. The
radical of an algebra is its largest nilpotent ideal. An algebra is semisimple if its
radical is zero. The notions of radical and semisimplicity also make sense for any
module. There is also a related notion of the socle of a module. More generally, one
can consider the radical series and socle series of a module. Closely related notions
are those of Loewy series, composition series, rigid modules and uniserial modules.
We briefly review these notions (mostly without proofs).

D.5.1. Radical of an algebra. Let A be an algebra. An ideal N of A is nilpotent
if there exists an integer k ≥ 1 such that Nk = 0. The smallest k for which this
happens is the nilpotency index of N . In other words: N has nilpotency index k iff
the product of any k elements in N is zero, and there exist k − 1 elements whose
product is nonzero.

The sum of all nilpotent ideals of A is again a nilpotent ideal. This ideal is
defined to be the radical of A. In other words, the radical of A is the largest
nilpotent ideal of A. We denote it by rad(A). It is contained in the set of all
nilpotent elements of A.

Notation D.21. For any ideal I of A, we have the quotient map A ։ A/I. In
such a situation, for z ∈ A, we will write z̄ for its image in A/I.

D.5.2. Semisimple algebras. We say A is semisimple if rad(A) = 0. The Wed-
derburn structure theorem says that an algebra is semisimple iff it is isomorphic
to a product of matrix algebras over division k-algebras. If the division k-algebras
involved are all k, then we say that the semisimple algebra is split. In other words,
A is split-semisimple iff it is isomorphic to a product of matrix algebras over k.
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A semisimple algebra is commutative iff it is isomorphic to a product of fields
which are finite extensions of k. Similarly, a split-semisimple algebra is commutative
iff it is isomorphic to a product of copies of k. The latter notion was elaborated in
Section D.3.

Note very carefully that a semisimple algebra does not have any nonzero nilpo-
tent ideals but it can have nonzero nilpotent elements. However, if the semisimple
algebra is commutative, then it cannot have nonzero nilpotent elements.

Proposition D.22. Suppose N is a nilpotent ideal of A such that the quotient A/N
is a semisimple commutative algebra. Then N = rad(A) and it consists precisely of
the nilpotent elements of A.

Proof. Since N is nilpotent, it is contained in rad(A), which in turn is contained
in the set of all nilpotent elements. Suppose z ∈ A is nilpotent. Then, so is its
image z̄ ∈ A/N . However, since A/N is a semisimple commutative algebra, it has
no nonzero nilpotent elements. Hence, z̄ = 0, and z ∈ N . Thus N consists precisely
of the nilpotent elements of A, and equals rad(A). �

D.5.3. Semisimple modules. Let M be an A-module. We say M is semisimple
if any of the following equivalent conditions hold.

• Every submodule of M is a direct summand of M (that is, has a comple-
mentary submodule).
• M is the direct sum of a family of simple modules.
• M is the sum of a family of simple modules.

D.5.4. Radical of a module. For a left A-module M , the radical of M is the
intersection of all maximal submodules of M . We denote it by rad(M). It is also
given by

(D.12) rad(M) = rad(A)M.

Also,

(D.13) rad(M) = 0 ⇐⇒ M is semisimple.

More generally: The radical series of a left A-module M is defined to be the
filtration

(D.14) 0 = JkM ⊆ · · · ⊆ J2M ⊆ JM ⊆M,

where J = rad(A) with nilpotency index k. Note that the second term in the
radical series of M (from the top) is indeed the radical of M .

Similar considerations apply to right modules.

D.5.5. Socle of a module. For a left A-module M , the socle of M is the sum of
all simple submodules of M . We denote it by soc(M). The socle is homogeneous
if all the simple submodules of M are isomorphic. The socle consists precisely of
those elements of M which are annihilated by the radical of A. That is,

(D.15) m ∈ soc(M) ⇐⇒ zm = 0 for all z ∈ rad(A).

Also,

(D.16) soc(M) =M ⇐⇒ M is semisimple.
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More generally: For any i ≥ 1, let soci(M) consist of those elements of M
which are annihilated by the ideal rad(A)i. Observe that

(D.17) 0 ⊆ soc1(M) ⊆ soc2(M) ⊆ · · · ⊆ sock(M) =M,

where k is the nilpotency index of rad(A). This is the socle series of M . Note that
the second term in the socle series of M (from the bottom) is indeed the socle of
M , that is, soc(M) = soc1(M).

Similar considerations apply to right modules.

The radical series and socle series are dual in the following sense. For a left
A-module M , the subspaces rad(A)iM and soci(M

∗) are orthogonal under the
canonical pairing between M and M∗.

D.5.6. Rigid modules. For any module, the radical series is contained termwise
in the socle series: Suppose J is the radical of M with nilpotency index k. Then
Jk−iM is annihilated by J i, which says that Jk−iM is contained in soci(M).

A module is rigid when its radical and socle series coincide.

D.5.7. Loewy series. A Loewy series of a module M is a filtration 0 = M0 ⊆
M1 ⊆ · · · ⊆ Mk = M in which each quotient Mj/Mj−1 is semisimple. A filtration
is a Loewy series precisely when multiplying one term by the radical puts it in the
next (smaller) term.

The radical and socle series are two extreme examples of Loewy series. They
are also called the descending and ascending Loewy series, respectively.

D.5.8. Composition series. A composition series of a module M is a filtration
0 =M0 ⋖M1 ⋖ · · ·⋖Mk =M in which each Mj−1 is a maximal proper submodule
of Mj (as indicated by the notation ⋖). Each quotient Mj/Mj−1 is called a com-
position factor of M . It is a simple module. In particular, any composition series
is a Loewy series.

D.5.9. Uniserial modules. A module is uniserial if any of the following equiv-
alent conditions hold.

• The lattice of submodules is totally ordered by inclusion (and so consti-
tutes a finite chain).
• The module possesses a unique composition series.
• The radical series is a composition series.
• The socle series is a composition series.

Note that uniserial modules are rigid.

D.6. Invertible elements and zero divisors

Let A be an algebra. An element u ∈ A is invertible if there exists an element
v ∈ A such that uv = vu = 1. The element v, if it exists, is unique and is called
the inverse of u. It is denoted by u−1. The set A× of invertible elements of A is a
group under multiplication.

If a ∈ A is a nilpotent element, then 1+a is invertible with the inverse given by
1− a+ a2 − . . . . Thus, for any nilpotent ideal N of A, the set 1 +N is a subgroup
of A×.

Two elements a and b in A are conjugate if there exists u ∈ A× such that
a = ubu−1.
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Proposition D.23. Let N be a nilpotent ideal of A. Then for u ∈ A,
u ∈ A× ⇐⇒ ū ∈ (A/N)×,

where ū is the image of u under the canonical quotient map.

Proof. Since any algebra homomorphism preserves invertibility, u ∈ A× implies
ū ∈ (A/N)×. Conversely, suppose ū ∈ (A/N)×. Pick v ∈ A such that v̄ is the
inverse of ū. Then uv = ūv̄ = 1, so uv belongs to 1 + N and hence is invertible.
This shows that u has a right inverse. Similarly, it has a left inverse. By general
principles, the left and right inverses coincide and u ∈ A×. �

An element a ∈ A is called a zero divisor if there exists a nonzero element b ∈ A
such that either ab = 0 or ba = 0. Clearly, a zero divisor cannot be invertible.

Lemma D.24. Any element of an algebra A is either invertible or a zero divisor
(but not both).

Proof. Let w ∈ A. Consider the minimum polynomial of w. If its constant term
is 0, then w is a zero divisor, else it is invertible. �

Lemma D.25. Let A be an algebra. Then:

(1) If w ∈ A is invertible, then w−1 can be expressed as a polynomial in w.
(2) If an element w of a subalgebra B of A is invertible in A, then w−1 belongs

to B.
(3) If w ∈ A acts invertibly on a faithful module, then w is invertible.

Proof. For (1): If w ∈ A is invertible, then its minimum polynomial has a nonzero
constant term, so it can be used to express w−1 as a polynomial in w. (2) follows
from (1). For (3), view A as a subalgebra of the endomorphism algebra of the
module and apply (2). �

D.7. Lifting idempotents

We discuss the idempotent lifting problem for the canonical map from an alge-
bra to its quotient by a nilpotent ideal. In particular, this nilpotent ideal could be
the radical of the algebra.

D.7.1. Isomorphic idempotents. Let A be an algebra. Let e, f ∈ A be two
idempotents. We say e and f are isomorphic if there exist a ∈ eAf and b ∈ fAe
such that e = ab and f = ba. In this case, we write e ∼= f .

For idempotents e and f :

• If e = ab and f = ba for some a and b, then e ∼= f . (To ensure that
a ∈ eAf and b ∈ fAe, replace a by aba and b by bab.)
• If e and f are conjugate, then e ∼= f .
• If A is commutative, then e ∼= f iff e = f .
• e ∼= f iff Ae ∼= Af as left A-modules iff eA ∼= fA as right A-modules.

Lemma D.26. Let 1 = e1 + · · ·+ en = f1 + · · ·+ fn be two decompositions of the
unit element into orthogonal idempotents such that ei ∼= fi for each i. Then there
exist elements ai ∈ eiAfi such that u = a1 + · · · + an ∈ A× satisfies ufiu

−1 = ei
for each i.
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Proof. Since ei ∼= fi, we can pick ai, bi such that ai ∈ eiAfi, bi ∈ fiAei, ei = aibi
and fi = biai. Put u = a1 + · · · + an and v = b1 + · · · + bn. We have aibj = 0
for i 6= j (since ai ∈ eiAfi, bj ∈ fjAej , and fifj = 0). It follows that uv =
a1b1 + · · ·+ anbn = e1 + · · ·+ en = 1. Similarly, vu = 1. Thus, u ∈ A×. A similar
calculation yields ufiv = ei. �

Lemma D.27. Let N be a nilpotent ideal of A. Let e and f be idempotents in A,
and ē and f̄ be their images in A/N . Then e ∼= f iff ē ∼= f̄ .

Proof. The forward implication is clear. For the backward implication: Pick
a ∈ eAf and b ∈ fAe such that ē = āb̄ and f̄ = b̄ā. The point is that e = ab and
f = ba may not hold. To fix this, put z = e− ab. Then z ∈ eAe and z ∈ N , so z is
nilpotent. Thus, e = ab(e+ z + z2 + . . . ). Put a′ = a and b′ = b(e+ z + z2 + . . . ).
One may indeed check that e = a′b′ and f = b′a′. �

D.7.2. Lifting idempotents. Let I be an ideal of A. We say an idempotent
e ∈ A/I can be lifted to A if there exists an idempotent ê ∈ A which maps to e
under the canonical projection A։ A/I.

Lemma D.28. Let N be a nilpotent ideal of A. Then any idempotent of A/N can
be lifted to A. Further, any lift of a primitive idempotent is primitive.

Proof. Suppose e is an idempotent of A. Since N is nilpotent, Nk = 0 for some
k ≥ 1. Choose any a ∈ A which maps to e. One may check that ê := (1− (1−a)k)k
is an idempotent of A which lifts e.

Now suppose e is a primitive idempotent of A. We claim that any lift ê is
primitive: Let ê = f + g be a decomposition into orthogonal idempotents. Then
e = f̄ + ḡ. Since e is primitive, either f̄ = 0 or ḡ = 0. For definiteness, say f̄ = 0.
But then f ∈ N , making f both idempotent and nilpotent, and hence f = 0. Thus,
ê is primitive. �

Lemma D.29. Let N be a nilpotent ideal of A. Then any family e1, . . . , en of
mutually orthogonal idempotents of A/N can be lifted to a family ê1, . . . , ên of
mutually orthogonal idempotents of A. Further, if the ei sum to 1, then so do the
êi.

Proof. There is an inductive procedure to lift idempotents one at a time such that
the idempotent constructed at a given step is orthogonal to the ones previously
constructed. At step one, we use Lemma D.28 to obtain ê1. Now assume that we
have constructed the lifts ê1, . . . , êi. Put e := ê1 + · · ·+ êi. Now use Lemma D.28
to first construct an idempotent f lifting ei+1, and then set

êi+1 := (1− e)(1− fe)−1f(1− fe).
This new element also lifts ei+1 and further, it is orthogonal to e, and hence to all
the previous êj . This completes the inductive step.

Now suppose the ei sum to 1. Then 1−∑i êi is both idempotent and nilpotent,
the latter because it belongs to N . So this element must be zero, as required. �

Lemma D.30. Let N be a nilpotent ideal of A. Let e ∈ A be an idempotent such
that ē = f + g, where f and g are mutually orthogonal idempotents of A/N . Then

there exist mutually orthogonal lifts f̂ and ĝ of f and g such that e = f̂ + ĝ. In
particular: If e ∈ A is primitive, then so is its image ē ∈ A/N .
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Proof. Use Lemma D.29 to lift the family 1− ē, f, g to 1−e, f̂ , ĝ. Since the family

downstairs sums to 1, so does the lifted family. Hence, e = f̂ + ĝ as required. �

D.8. Elementary algebras

We discuss elementary algebras. An algebra is elementary if the quotient by
its radical is a split-semisimple commutative algebra. In an elementary algebra, a
complete system of primitive idempotents exists but it is not necessarily unique.
(This is related to the idempotent lifting problem.) Every element has a Jordan-
Chevalley decomposition into a diagonalizable part and a nilpotent part. The simple
modules over an elementary algebra are one-dimensional, but an arbitrary module
may not break as a direct sum of simple submodules. Invertible elements and zero
divisors of the algebra can be characterized using its multiplicative characters. We
also briefly mention quivers.

D.8.1. Elementary algebras. Let A be an algebra. Recall that rad(A) is the
largest nilpotent ideal of A. We say A is elementary if the quotient A/ rad(A) is a
split-semisimple commutative algebra.

It is convenient to denote the quotient A/ rad(A) by Ā. We assume that Ā
has dimension n and denote its primitive idempotents by e1, . . . , en. Also following
Notation D.21, for z ∈ A, we write z̄ for its image in Ā.

D.8.2. Complete systems and algebra sections. For an elementary algebra
A, an algebra section is an algebra homomorphism Ā →֒ A which is a section of the
canonical projection A։ Ā.

Theorem D.31. Let A be elementary. Then there exists an algebra section Ā →֒ A.
Further, any two algebra sections are conjugates of each other by an element of
1 + rad(A).

Proof. Applying Lemma D.29 to e1, . . . , en yields a family ê1, . . . , ên of mutually
orthogonal idempotents of A which sum to 1. The map ei 7→ êi defines an algebra
section Ā →֒ A. This proves the first part. For the second part: Suppose ϕ and ψ
are two algebra sections. Then by Lemma D.27, ϕ(ei) ∼= ψ(ei) for each i. Now apply
Lemma D.26 to get u ∈ A× and ai ∈ ϕ(ei)Aψ(ei) such that ϕ and ψ conjugates of
each other by u. In fact, since eiĀei is one-dimensional, by multiplying each ai by
a suitable nonzero scalar, one may assume that āi = ei. It then follows that ū = 1
and u ∈ 1 + rad(A). �

Theorem D.32. Let A be elementary. Then there is a correspondence between
complete systems of primitive orthogonal idempotents of A and algebra sections
Ā →֒ A.

Proof. An algebra section ϕ : Ā →֒ A yields the family ϕ(e1), . . . , ϕ(en). These
are mutually orthogonal idempotents and they sum to 1 (since ϕ is an algebra ho-
momorphism). Further, they are primitive by Lemma D.28. Conversely, given such
a family in A, its image in Ā must be e1, . . . , en (since the canonical projection is an
algebra homomorphism and preserves primitives by the last part of Lemma D.30).
So we can write the original family as f1, . . . , fn with f̄i = ei. The corresponding
algebra section is ei 7→ fi. �
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Theorem D.33. Let A be elementary. Then for idempotents e, f ∈ A,

e ∼= f ⇐⇒ 1− e ∼= 1− f ⇐⇒ e− f ∈ rad(A)

⇐⇒ ē = f̄ ⇐⇒ f = u−1eu for some u ∈ 1 + rad(A).

In particular, if e and f lift the same idempotent of Ā, then they are conjugate by
an element of 1 + rad(A).

Proof. By Lemma D.27 and the fact that Ā is commutative, e ∼= f iff ē = f̄ . The
intermediate equivalences also follow. It only remains to understand the forward
implication of the last equivalence. Suppose ē = f̄ . Refine 1 = e + (1 − e) (resp.
1 = f + (1 − f)) into a complete system. By Theorems D.31 and D.32, these two
complete systems are conjugate by say u ∈ 1 + rad(A). Since ē = f̄ , we deduce
that e and f are also conjugate by u. �

Theorem D.34. Let A be elementary. Then w ∈ A is diagonalizable iff w is in
the image of some algebra section Ā →֒ A. In particular, every idempotent of A is
in the image of some algebra section.

Proof. This follows from Theorem D.32 since diagonalizable elements are precisely
those which are in the linear span of some complete system of primitive orthogonal
idempotents. �

D.8.3. Simple modules.

Theorem D.35. Let A be elementary. Then A has n distinct simple modules (up
to isomorphism). They are one-dimensional. For 1 ≤ i ≤ n, the i-th simple module
is defined by the multiplicative character

χi : A→ k, z 7→ 〈z̄, ei〉.
In fact, there is a correspondence between simple modules over A and over Ā.

Proof. Let M be a simple A-module. Then JM is a submodule of M , where
J = rad(A). By simplicity of M , this submodule is either M or 0. The nilpotency
of J forces JM = 0. So the action of A factors through the quotient map A ։ Ā,
and M is a simple Ā-module. Conversely, any simple Ā-module is a simple A-
module. This establishes the correspondence between simple modules over A and
over Ā. Now apply Theorem D.6. �

By definition of χi,

(D.18) z̄ =
∑

i

χi(z) ei.

It follows that z ∈ rad(A) iff χi(z) = 0 for all i.

D.8.4. Modules. Let M be a (left or right) A-module. As a consequence of
(D.5), the character of M factors through the quotient map A → Ā yielding the
commutative diagram

A
χM

��
❄❄

❄❄
❄❄

❄❄

����

Ā
χM

// k.
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We continue to denote the induced functional on Ā by χM . For 1 ≤ i ≤ n, put
(D.19) ηi(M) := χM (ei).

Observe that for any w ∈ A,

(D.20) χM (w) =
n∑

i=1

χi(w) ηi(M).

Let 0 = M0 ⋖ M1 ⋖ · · · ⋖ Mk = M be any composition series of M . Each
composition factor Mj/Mj−1 is a simple module and hence one-dimensional by
Theorem D.35. The associated graded module of the filtration, namely,

M̄ :=
k⊕

j=1

Mj/Mj−1

is both an A-module and an Ā-module. Thus, for w ∈ A, the operators ΨM̄ (w)
and ΨM̄ (w̄) coincide. Further, we claim that the eigenvalues (and hence trace) of
the operator ΨM (w) coincide with those of the operator ΨM̄ (w̄). To see this, pick
a basis of M by first picking a nonzero element from M1, followed by an element of
M2 which is not in M1, and so on. This basis does not depend on w. It induces a
basis of M̄ . In these bases, ΨM̄ (w̄) is a diagonal matrix, while ΨM (w) is an upper
triangular matrix whose diagonal part agrees with ΨM̄ (w̄). This proves the claim.
In particular, the induced functional χM on Ā equals the character χM̄ of M̄ .

Example D.36. Let A be the algebra of upper triangular matrices of size n.
It is elementary. The radical is the ideal of strictly upper triangular matrices.
Elements of the quotient Ā can be identified with diagonal matrices. Since A is an
example of an incidence algebra (Section C.1.8), these facts can also be deduced
from Proposition C.10.

Let M be the left A-module of column vectors. For 0 ≤ i ≤ n, let Mi denote
the submodule consisting of vectors whose last n− i entries are zero. This defines a
composition series of M . Let M̄ denote its associated graded module. The action
of any upper triangular matrix on M̄ is via its diagonal part.

Some consequences of the above discussion are stated below.

Theorem D.37. Let A be elementary andM be an A-module. Then in any compo-
sition series of M , the number of times the simple module associated to χi appears
as a composition factor is ηi(M).

Proof. We have ηi(M) = χM (ei) = χM̄ (ei). Now use Theorem D.7. �

The fact that the multiplicity of a simple module does not depend on the choice
of the composition series is the Jordan–Hölder theorem.

Theorem D.38. Let A be elementary and M be an A-module. Then all elements
of A are simultaneously triangularizable on M . For w ∈ A, the eigenvalues of the
linear operator ΨM (w) are χi(w), and the multiplicity of χi(w) is ηi(M).

Proof. For the second part, we can use Theorem D.8 since ΨM (w) and ΨM̄ (w̄)
have the same eigenvalues. �

It is interesting that all eigenvalues of ΨM (w) belong to the ground field k.
The number ηi(M) which is the multiplicity of χi(w) only depends on i and not on
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w. We call it the generic multiplicity associated to the index i. It is possible that
ηi(M) is 0 for some i in which case the eigenvalue χi(w) does not occur. It may
also happen that i 6= j but χi(w) = χj(w) = λ (say). In this case, the multiplicity
of λ will be the sum of ηi(M) over those i for which χi(w) = λ.

Note very carefully that Theorem D.38 makes no claim about the diagonaliz-
ability of ΨM (w).

Proposition D.39. For an elementary algebra A, there is a correspondence be-
tween (multiplicative) characters of A and (multiplicative) characters of Ā. Thus,
a character of A corresponds to a family (ηi)1≤i≤n of nonnegative integers. It is
multiplicative if exactly one ηi is 1 and the rest are 0.

Proof. For the second part, we can use Proposition D.9. �

D.8.5. Peirce decomposition. Decompositions arising from a system of orthog-
onal idempotents are called Peirce decompositions (left, right, two-sided).

Proposition D.40. Let A be elementary and M be a left A-module. Let ê1, . . . , ên
be a complete system of primitive orthogonal idempotents of A such that êi lifts ei.
Then

M =
⊕

i

êiM and dim êiM = ηi(M).

Similar statement holds for a right A-module.

Proof. The decomposition of M is clear. For the formula:

dim êiM = χM (êi) = χM (ei) = ηi(M).

We used (D.4) and (D.19). Alternatively: Since êi is an idempotent, the operator
ΨM (êi) has eigenvalues 0 and 1, and dim êiM is the multiplicity of the eigenvalue
1. Now apply Theorem D.38 with w := êi. Then, by (D.18), χi(w) = 1 while all
the remaining χj(w) are zero. So the multiplicity is ηi(M) as required. �

Note very carefully that Proposition D.40 does not claim that the êiM are
submodules of M . However, the êiM do serve as eigenspaces for the operator
ΨM (w) for any w ∈ A of the form λ1ê1 + · · ·+ λnên.

D.8.6. Faithful modules.

Proposition D.41. Let A be elementary and M be an A-module. Then the fol-
lowing are equivalent.

(1) ann(M) ⊆ rad(A).
(2) No nonzero diagonalizable element of A annihilates M .
(3) ηi(M) > 0 for all i.

Proof. (1) implies (2). This is because a nonzero diagonalizable element cannot
be nilpotent.

(2) implies (3). Suppose ηj(M) = 0 for some j. Then by Proposition D.40, any
idempotent êj lifting ej will annihilate M , which is a contradiction.

(3) implies (1). Let z ∈ ann(M), that is, ΨM (z) = 0. Then by Theorem D.38,
all eigenvalues χi(z) are forced to be zero since they appear with nonzero multi-
plicity. This implies that z ∈ rad(A). �

Corollary D.42. A moduleM over an elementary algebra A is faithful iff ηi(M) >
0 for all i, and no nonzero nilpotent element annihilates M .
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A split-semisimple commutative algebra has no nonzero nilpotent elements. So,
in this case, the above criterion specializes to the one given in Theorem D.7.

D.8.7. Invertible elements and zero divisors. Invertible elements and zero
divisors of an elementary algebra can be characterized as follows.

Proposition D.43. Let A be elementary. Then, for u ∈ A,
u ∈ A× ⇐⇒ ū ∈ Ā× ⇐⇒ χi(u) 6= 0 for all i.

Similarly, for u ∈ A,
u is a zero divisor ⇐⇒ χi(u) = 0 for some i.

Proof. We first prove the claim about invertible elements. Since rad(A) is a
nilpotent ideal, the first equivalence follows from Proposition D.23. Recall from
(D.18) that ū =

∑
i χi(u)ei. This element is invertible in Ā precisely when the

coefficients of the ei are all nonzero.
The claim about zero divisors now follows from Lemma D.24. �

D.8.8. Jordan-Chevalley decomposition. For A elementary and w ∈ A, put
d(x) := (x− λ1) . . . (x− λk),

where λ1, . . . , λk are the distinct scalars occuring in the list χ1(w), . . . , χn(w).

Proposition D.44. Let A be elementary. Then the minimum polynomial of any
w ∈ A factorizes into linear factors of the form (x−λj). In particular, every w ∈ A
has a Jordan-Chevalley decomposition. Further, w is diagonalizable iff d(w) = 0.

Proof. Let w̄ denote the image of w in Ā. Then

w̄ =
n∑

i=1

χi(w)ei =
k∑

i=1

λifi,

where fi are pairwise orthogonal idempotents of Ā which sum to 1. It follows
that the image of d(w) in Ā is zero. Hence d(w) is nilpotent. Say d(w)N = 0.
Then, the minimum polynomial of w divides d(x)N and hence factorizes into linear
factors of the form (x− λj). This proves the first statement. The rest follow from
Theorem D.20 and Theorem D.15, item (3). �

D.8.9. Quivers. Quivers are an important tool in the study of elementary alge-
bras. A quiver is a finite directed graph (V,E), where V is the set of vertices, and E
is the set of arrows between vertices. To every quiver Q is associated an algebra kQ
called the path algebra. It has a basis consisting of directed paths. When the end of
one path equals the beginning of another path, the two paths can be concatenated.
This is how the product in the path algebra is defined. When paths cannot be
concatenated, the product is zero. The path algebra is finite-dimensional iff Q is
acyclic. Further, the path algebra of an acyclic quiver is elementary.

Now let A be an elementary algebra with radical J = rad(A). Let Ā be its split-
semisimple quotient with primitive idempotents e1, . . . , en. Observe that J/J2 is a
Ā-bimodule. The quiver Q of A is defined as follows. It has vertices 1, . . . , n, with
the number of arrows from i to j equal to the dimension of ej(J/J

2)ei. A point of
this construction is that there exists a surjective algebra morphism kQ ։ A from
the path algebra of Q to A. For details, see [31, Section III.1].
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D.8.10. Subalgebras of elementary algebras.

Lemma D.45. Let A be an elementary algebra and B be any subalgebra. Then

• B is an elementary algebra,
• rad(B) = B ∩ rad(A), and
• B/ rad(B) is a subalgebra of A/ rad(A).

In addition, if B and rad(A) linearly span A, then B/ rad(B) = A/ rad(A).

Proof. Let J = B ∩ rad(A). Then J is a nilpotent ideal of B. Since rad(A)
consists of the nilpotent elements of A, J consists of the nilpotent elements of B.
Therefore, J is the largest nilpotent ideal of B, that is, J = rad(B). It follows that
rad(B) is the kernel of the algebra map B → A/ rad(A). This yields an injective
algebra map B/ rad(B) → A/ rad(A). Using Lemma D.13, we deduce that B is
elementary. If B and rad(A) linearly span A, then the map B → A/ rad(A) is also
surjective, so B/ rad(B) = A/ rad(A). �

Lemma D.46. Let G be a finite group which acts on an elementary algebra A.
Then the invariant subalgebra AG is elementary and rad(AG) = rad(A)G. In addi-
tion, if the field characteristic does not divide the order of G, then AG/ rad(AG) =
(A/ rad(A))G.

Proof. Since rad(A) is the largest nilpotent ideal of A, the action of G preserves
rad(A). Also, clearly rad(A)G = AG ∩ rad(A). The first claim now follows from
Lemma D.45. If the field characteristic does not divide the order of G, then taking
G-invariants is exact. In this situation, in the diagram

0 // rad(A) // A // A/ rad(A) // 0

0 // rad(A)G //

OO

AG //

OO

(A/ rad(A))G

OO

// 0,

the top-row is exact, and hence so is the bottom row. The second claim follows. �

D.9. Algebra of a finite lattice

The linearization of a finite lattice is an algebra with product given by the join
operation. This algebra is a split-semisimple commutative algebra; the primitive
idempotents can be explicitly written down in terms of the canonical basis using
the Möbius function of the lattice. As a consequence, this algebra is self-dual (as
a module over itself), and the isomorphism inducing self-duality is controlled by a
family of nonzero scalars indexed by elements of the lattice. These scalars can be
chosen in a consistent manner for lattices related to one another by join-preserving
maps satisfying a mild hypothesis related to tightness.

D.9.1. Algebra of a lattice. Let P be a finite lattice with minimum element ⊥
and maximum element ⊤. Let kP denote the linearization of P over the field k.
This is a commutative k-algebra with product induced from the join operation in
P . Letting H denote the canonical basis,

(D.21) Hx · Hy := Hx∨y.

We use the symbol · to denote the product. We will make use of this symbol in
other similar situations as well. We will use the letters x, y, z, . . . to denote elements
of the lattice. The algebra kP is often called the Möbius algebra of the lattice P .
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D.9.2. Q-basis and split-semisimplicity. Define the Q-basis of kP by

(D.22) Hx =
∑

y: y≥x

Qy or equivalently Qx =
∑

y: y≥x

µ(x, y) Hy.

Here µ refers to the Möbius function of the lattice P . In particular,

(D.23) H⊥ =
∑

y

Qy.

Theorem D.47. The algebra of a finite lattice is a split-semisimple commutative
algebra. The unique complete system of primitive orthogonal idempotents is given
by the Q-basis. In other words,

(D.24) Qx · Qy =

®
Qx if x = y,

0 otherwise.

Proof. An easy way to establish (D.24) is to assume it and deduce (D.21) from
it. The required calculation is shown below.

Hx · Hy =

Å ∑

z: z≥x

Qz

ã
·

Å ∑

w:w≥y

Qw

ã
=

∑

u:u≥x∨y

Qu = Hx∨y. �

Also from (D.22) and (D.24), we obtain

(D.25) Hy · Qx =

®
Qx if x ≥ y,
0 otherwise.

In particular,

Hy · Q⊥ = 0 for y > ⊥.
Let us make this explicit.

Hy · Q⊥ = Hy ·
(∑

w

µ(⊥, w) Hw
)

=
∑

w

µ(⊥, w) Hy∨w

=
∑

w′

( ∑

w: y∨w=w′

µ(⊥, w)
)
Hw′ .

So each term in the parenthesis must be 0. This is exactly the Weisner formula
(C.7a) (and we have proved it again).

Exercise D.48. Starting with (D.21), use the Weisner formula (C.7a) to first prove
(D.25) and then deduce (D.24) from it.

D.9.3. Linear functionals, exponential and logarithm. Suppose f : kP → k
is a linear map. Then define (set-theoretic) maps ξ, η : P → k as follows. For each
x ∈ P , let
(D.26) ξx = f(Hx) and ηx = f(Qx).

We deduce from (D.22) that ξ and η are the exponential and logarithm of each
other in the lattice P , that is,

(D.27) ξx =
∑

y: y≥x

ηy and ηx =
∑

y: y≥x

µ(x, y) ξy.
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Further, linearizing ξ in the H-basis or η in the Q-basis recovers f . Thus among f ,
ξ and η, knowing any one determines the remaining two.

Some interesting choices for ξ and η are given below.

Example D.49. For x ∈ P , put

(D.28) ξx =

®
1 if x = ⊤,
0 otherwise

and ηx = µP (x,⊤).

In general, η will take both positive and negative values.

Example D.50. Let M be a module over kP . For each element x ∈ P , define
(D.29) ξx(M) := dim(HxM) and ηx(M) := dim(QxM).

These scalars are always nonnegative integers, since they are dimensions of spaces.
Recall from (D.4) that for any idempotent operator, the dimension of its image

is its trace. Since Hx and Qx are idempotents, the linear functional f associated
to ξx(M) (or to ηx(M)) is the character χM of M . (The character of a module is
defined in (D.1).)

D.9.4. Simple modules and diagonalizability.

Theorem D.51. The algebra kP has |P | distinct simple modules (up to isomor-
phism). They are one-dimensional. The simple module corresponding to x ∈ P is
defined by the multiplicative character

χx : kP → k,
∑

y

by Qy 7→ bx.

On the H-basis, the multiplicative character is given by

χx : kP → k,
∑

y

ay Hy 7→
∑

y: y≤x

ay.

Proof. The claim about simple modules and the character formula on the Q-basis
follows from Theorems D.6 and D.47. The formula on the H-basis can then be
deduced as follows.∑

y

ay Hy 7→
∑

y

ay
∑

z: z≥y

Qz 7→
∑

z

( ∑

y: y≤z

ay
)
Qz 7→

∑

y: y≤x

ay. �

For a module M over kP , let ηx(M) be as in (D.29). Then: For any α ∈ kP ,

(D.30) χM (α) =
∑

x∈P

χx(α) ηx(M).

This is a special case of (D.8).

Theorem D.52. Any module M over the algebra kP is a direct sum of simple
modules with ηx(M) being the multiplicity of the simple module corresponding to
x ∈ P . In particular, M is faithful iff ηx(M) > 0 for each x ∈ P .
Proof. This follows from Theorems D.7 and D.47. �

Theorem D.53. Let M be a module over kP . For α =
∑
x a

x Hx, the linear
operator ΨM (α) is diagonalizable. It has an eigenvalue

(D.31) λx(α) = χx(α) =
∑

y: y≤x

ay

for each x ∈ P , with multiplicity ηx(M).
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Proof. This follows from Theorems D.8 and D.47 and the H-basis formula in
Theorem D.51. �

D.9.5. Primitive part of a module. LetM be a module over kP . The primitive
part of M is the submodule defined by

P(M) := {m ∈M | Hx ·m = 0 for all x > ⊥}.
More generally, for x ∈ P , let

Px(M) := {m ∈M | Hy ·m = 0 for all y 6≤ x}.
Equivalently,

Px(M) =
⋂

y: y 6≤x

ker(ΨM (Hy) :M →M).

Observe that for x ≤ y,
Px(M) ⊆ Py(M)

with

P⊥(M) = P(M) and P⊤(M) =M.

Thus the Px(M) define a filtration of M indexed by elements of P .

Lemma D.54. We have P(M) = Q⊥ ·M . More generally,

Px(M) =
⊕

y: y≤x

Qy ·M and dimPx(M) =
∑

y: y≤x

ηy(M).

Proof. We directly prove the decomposition. By (D.25), the rhs is contained in
the lhs. Conversely, suppose m belongs to the lhs. Then by (D.23),

m =
∑

y

Qy ·m =
∑

y: y≤x

Qy ·m

which belongs to the rhs. In the second step, we used (D.22): Qy expressed in the
H-basis only contains terms indexed by elements greater than y, so if y 6≤ x, then
Qy ·m = 0. �

In particular: The primitive part P(kP ) (with kP viewed as a module over
itself) is one-dimensional and spanned by Q⊥. This statement is equivalent to
Proposition C.5: A simple calculation shows that

∑
x cxHx ∈ P(kP ) iff (cx) solves

the linear system given in Proposition C.5.

D.9.6. Decomposable part of a module. Let M be a module over kP . The
decomposable part of M is the submodule defined by

D(M) :=
∑

x: x>⊥

Hx ·M.

More generally, for x ∈ P , let
Dx(M) :=

∑

y: y 6≤x

Hy ·M.

Observe that for x ≤ y,
Dy(M) ⊆ Dx(M)

with

D⊤(M) = 0 and D⊥(M) = D(M).
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Lemma D.55. We have

Dx(M) =
⊕

y: y 6≤x

Qy ·M and dimDx(M) =
∑

y: y 6≤x

ηy(M).

This can be proved along the same lines as Lemma D.54. Using these two
results, we deduce:

Proposition D.56. Let M be a module over kP . Then the subspaces Pk(M) and
Dk(M∗) (Dk(M) and Pk(M∗)) are orthogonal complements of each other under
the canonical pairing between M and M∗.

D.9.7. Associative bilinear forms and self-duality. Recall from Lemma D.12
that Frobenius structures on a split-semisimple algebra of dimension n are classified
by a sequence of n nonzero scalars. We elaborate on this for the algebra kP first
in the language of bilinear forms and then in the language of self-duality.

Let f , ξ and η be related by (D.26) and (D.27). This gives rise to an associative
bilinear form on kP by

(D.32) kP × kP → k, 〈α, β〉 = f(α · β),

or equivalently,

(D.33) 〈Hx, Hy〉 = ξx∨y or 〈Qx, Qy〉 =
®
ηx if x = y,

0 otherwise.

This yields:

Lemma D.57. The determinant of the bilinear form (D.33) is
∏
x∈P ηx. In par-

ticular, the bilinear form is nondegenerate iff ηx 6= 0 for all x.

Example D.58. We first specialize the above discussion to ξ and η given by (D.28).
The bilinear form on kP is given by

〈Hx, Hy〉 :=
®
1 if x ∨ y = ⊤,
0 otherwise,

or 〈Qx, Qy〉 =
®
µ(x,⊤) if x = y,

0 otherwise,

and its determinant is
∏
x∈P µ(x,⊤). It is nondegenerate iff µ(x,⊤) 6= 0 for all

x ∈ P .
In view of Theorem D.51, the bilinear form in the special case (D.29) is non-

degenerate iff the module M is faithful.

Since kP is an algebra, it is a (left) module over itself. We view (kP )∗ as a
kP -module with the dual action (D.2). Let M be the basis of (kP )∗ dual to H, and
P be the basis dual to Q. The action on these bases is given by

(D.34) Hy · Mw =
∑

x: x∨y=w

Mx and Hy · Px =

®
Px if x ≥ y,
0 otherwise.

This is straightforward to check. Observe that the actions on the Q- and P-bases are
identical. This also follows from the fact that Q is a basis of primitive idempotents.

Theorem D.59. For any ξ and η related by (D.27), the linear map kP → (kP )∗

given by

Hx 7→
∑

y

ξx∨y My or equivalently Qx 7→ ηx Px

is a morphism of kP -modules. In particular, if ηx 6= 0 for all x, then this map is
an isomorphism.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



544 D. ALGEBRAS AND MODULES

Proof. By Lemma D.11 or directly from (D.25) and (D.34), it follows that Qx 7→
ηx Px is a morphism of kP -modules. The form of the map from the H-basis to the
M-basis is a simple calculation:

Hx =
∑

y: y≥x

Qy 7→
∑

y: y≥x

ηyPy =
∑

w

( ∑

y≥x∨w

ηy
)
Mw =

∑

w

ξx∨w Mw.

Alternatively: The map is induced by the bilinear form (D.33). The fact that
it is morphism of kP -modules is equivalent to associativity of the bilinear form. �

D.9.8. Join-preserving maps. Suppose λ : P → Q is a join-preserving map
between finite lattices, that is, it preserves finite joins. Then its linearization

(D.35) kP → kQ, Hx 7→ Hλ(x)

is an algebra homomorphism.

Lemma D.60. On the Q-basis of primitive idempotents, the map (D.35) is given
by

(D.36) Qz 7→
∑

w: ρ(w)=z

Qw,

where ρ : Q→ P is the right adjoint of λ.

This particular form of the map is expected since a primitive idempotent must
map to a sum of primitive idempotents under an algebra homomorphism.

Proof. We use the formula in the Q-basis to deduce the formula in the H-basis:

Hx =
∑

z:x≤z

Qz 7→
∑

w: x≤ρ(w)

Qw =
∑

w:λ(x)≤w

Qw = Hλ(x).

The second step used (B.2). �

The map λ : P → Q turns Q into a P -set. The action is given by

(D.37) x · y := λ(x) ∨ y
for x ∈ P and y ∈ Q. Note that

(D.38) ρ(y) = max{x ∈ P | x · y = y}.
In words, ρ(y) is the maximum element of P which stabilizes y. By linearizing
(D.37), kQ is a module over the algebra kP .

Lemma D.61. The set {Qy | ρ(y) = ⊥} is a basis for the primitive part P(kQ).
More generally, {Qy | ρ(y) ≤ x} is a basis for Px(kQ).

Proof. Formula (D.36) shows that for z ∈ P ,
Qz · kQ =

( ∑

w: ρ(w)=z

Qw
)
· kQ =

⊕

w: ρ(w)=z

Qw · kQ.

The second step used that kQ is a split-semisimple commutative algebra. Clearly,
the set {Qw | ρ(w) = z} is a basis for the rhs. Now apply Lemma D.54 to deduce
the result. �

Lemma D.62. For x ∈ P , ξx(kQ) is the number of elements y ∈ Q such that
y ≥ λ(x) or equivalently ρ(y) ≥ x, and ηx(kQ) is the number of elements y ∈ Q
such that ρ(y) = x.
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Proof. The claim about ξx(kQ) is clear from (D.29) and (B.2). The second claim
then follows from (D.27). Alternatively, use (D.36) as in the proof above. �

We record some special cases.

• P = Q and λ = id. In this case, ξx(kP ) is the number of elements in P
which are greater than x, and ηx(kP ) ≡ 1.

• Q is a singleton, λ is the unique map from P to Q, and ρ sends the unique
element of Q to the top element of P . Then ξx(kQ) ≡ 1 and ηx(kQ) is 1
if x is the top element of P and zero otherwise.

• P is a singleton, ρ is the unique map from Q to P , and λ sends the unique
element of P to the bottom element of Q. Then both ξ⊥(kQ) and η⊥(kQ)
equal the number of elements in Q.

D.9.9. Naturality of linear functionals. It is of interest to consider commuta-
tive diagrams of the form

(D.39)

kP //

fP   ❆
❆❆

❆❆
kQ

fQ~~⑥⑥
⑥⑥

k,

with the horizontal map obtained by linearizing a join-preserving map λ : P → Q.
We will discuss below some interesting instances of the above diagram.

Recall from (D.32) that any linear functional fP induces a bilinear form on kP .
The above diagram says that the bilinear form on kQ induced by fQ pulls back
under λ to the bilinear form on kP induced by fP .

Lemma D.63. Suppose λ : P → Q is a join-preserving map between finite lattices
satisfying λ(x) = ⊤ iff x = ⊤. Then

(D.40) µP (z,⊤) =
∑

w: ρ(w)=z

µQ(w,⊤),

where ρ : Q→ P is the right adjoint of λ.

Proof. This is a special case of the Rota formula (C.14). �

Note that the hypothesis on λ is stronger than the tightness hypothesis (Defi-
nition B.13).

Lemma D.64. For a join-preserving map λ : P → Q satisfying λ(x) = ⊤ iff
x = ⊤, diagram (D.39) commutes, where the map fP (respectively fQ) sends Qx to
µP (x,⊤) (respectively µQ(x,⊤)).
Proof. This follows from (D.36) and Lemma D.63. �

Lemma D.65. Let λ : P → Q be a join-preserving map, and M be a kQ-module
(and hence a kP -module). Then diagram (D.39) commutes, where

fP (Qx) = ηx(M) for x ∈ P and M viewed as a kP -module,

fQ(Qx) = ηx(M) for x ∈ Q and M viewed as a kQ-module.

Proof. Let ϕ : A → B be an algebra homomorphism, and let M be a B-module
with character χM . Then the character of M viewed as an A-module is χMϕ. Now
specialize this to ϕ equal to the linearization of λ, and recall from Example D.50
that fP and fQ as given above are the characters of M as a kP -module and as a
kQ-module, respectively. �
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Notes

Finite-dimensional algebras. The study of idempotent and nilpotent elements and
Peirce decompositions in algebras goes back to Peirce [319]. The Wedderburn structure
theorem was proved by Wedderburn [407, Theorems 17 and 22]. Special cases were
obtained earlier by Molien [299] and Cartan [102]. It was later generalized by Artin to a
more general class of rings [21]. This result is treated in many books usually under the
name Artin-Wedderburn theorem, see for instance, [47, Chapter 3], [149, Section 2.4],
[211, Section 2.2], [228, Chapter 4], [245, Section II.2], [254, Chapters 1 and 2] or [327,
Chapter 3].

The idempotent lifting problem is discussed in many places, see for instance, [149,
Section 3.2], [211, Section 10.3], [227, Section III.8, Propositions 3 and 4], [237, Chapter
II.4], [245, Section II.5], [254, Section 21], [255, Sections 3.6 and 3.7] or [265, Proposition
4.4]. An early reference on this problem is [138, Section II.6, Satz 1]. Theorem D.31 is part
of the Wedderburn-Malcev theorem which appeared in the combined work of Wedderburn
[407, Theorems 24 and 28] and Malcev [282, Theorem 2, page 42]. It is also called
the Wedderburn principal theorem. It is treated for instance in [149, Section 6.2] or
[327, Section 11.6]. An early reference is the book by Albert [14, Chapter III, Theorem
23]. Elementary algebras and quivers are discussed in [31] and [25]. In the literature,
elementary algebras are also called basic algebras or split-basic algebras. Quivers go back
to work of Gabriel [180]. Characters of algebras over modules are briefly treated in [254,
pages 111 and 112]. References for the radical and socle of a module are [17, Sections
9 and 32], [25, Sections V.1 and V.2], [149, Sections 3.1 and 9.1] or [255, Section 3.3].
The notion of socle of a ring appeared in work of Dieudonné [143]. An early reference for
Loewy series is the book by Artin, Nesbitt, and Thrall [22, Section IX.4]. For information
on Frobenius algebras, see [124, Chapter 61], [212, Chapter 4] or [247, Chapter 2].
References for the Jordan-Hölder theorem are [17, Section 11], [149, Section 1.5], [211,
Section 3.2] or [327, Section 2.6]. Theorem D.20 is equivalent to [223, Proposition in
Section 4.2].

Lattices. Theorem D.47 is a special case of a result of Solomon [368, Theorem 1]; see
also [194, Section 1] and [382, Theorem 3.9.2]. A specialization of Lemma D.57 is given
in the second part of [8, Lemma 2.5.4]. The proof is the same. Dowling and Wilson [147,
Lemma 1, page 506] show that the first bilinear form in Example D.58 is nondegenerate
if µ(x,⊤) 6= 0 for all x ∈ P . Our argument coincides with the one given in the proof of
[399, Theorem 25.5].
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APPENDIX E

Bands

E.1. Bands

We briefly review bands and left regular bands.

E.1.1. Bands. A band or idempotent monoid is a monoid in which every element
is idempotent: x2 = x.

Let Σ be a band. For x, y ∈ Σ, set

(E.1) x ≤ y if xy = yx = y.

This defines a partial order on Σ. The necessary checks are done below.

• x ≤ x because x2 = x.
• If x ≤ y and y ≤ z, then x ≤ z. This is because xz = x(yz) = (xy)z =
yz = z, and similarly, zx = z.

• If x ≤ y and y ≤ x, then x = y. This is because xy = yx = x = y.

The unit element of Σ is the unique minimum element of this partial order. We
call an element of Σ a face and a maximal element a chamber .

Exercise E.1. Check that for any x, y ∈ Σ, x ≤ y ⇐⇒ xyx = y.

E.1.2. Left regular bands. A left regular band or LRB is a monoid in which

xyx = xy

for all elements x and y. By letting y be the unit element, we obtain x2 = x. Thus,
a left regular band is, in particular, a band.

It follows from Exercise E.1 that for a left regular band, the partial order (E.1)
can be expressed more simply as

(E.2) x ≤ y if xy = y.

Example E.2. Any join-semilattice P is a (commutative) semigroup via

xy := x ∨ y.
If P has a minimum element ⊥ (in particular, if P is a lattice), we obtain a monoid.
Note that

xyx = x ∨ y ∨ x = x ∨ y = xy.

Thus P is a LRB. The partial order (E.2) coincides with that of P since

x ≤ y ⇐⇒ x ∨ y = y.

For example, for the Boolean poset, the product is given by union, with the
empty set as the unit element, and the partial order is inclusion.

547
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E.1.3. Support map. Let Σ be a band. Define a relation ⇀ on Σ by

x ⇀ y if y = yxy.

This is reflexive and transitive, but not necessarily antisymmetric. We therefore
obtain a poset Π by identifying x and y if x ⇀ y and y ⇀ x. We denote the
quotient map by

s : Σ→ Π

and call it the support map. It is order-preserving. For any x, y ∈ Σ,

s(x) ≤ s(y) ⇐⇒ y = yxy,(E.3)

s(x) = s(y) ⇐⇒ y = yxy and x = xyx,(E.4)

s(xy) = s(yx) = s(xyx) = s(yxy).(E.5)

Further, the poset Π is a join-semilattice, s(1) is the minimum element, and

(E.6) s(xy) = s(x) ∨ s(y).

We refer to Π as the support semilattice of Σ. If Π is finite, it is a lattice.
If x and x′ have the same support, and x ≤ y, then y and x′yx′ have the same

support. If y and y′ have the same support, and x ≤ y, then xy′x has the same
support as y and y′.

For any band, the support map is a morphism of monoids, with the support
semilattice viewed as a monoid as in Example E.2. This is the content of (E.6).

If P is a join-semilattice viewed as a semigroup as in Example E.2, then the
support semilattice of P is P itself, with the support map being the identity.

E.1.4. Unital augmentation. To any semigroup, one can associate a monoid
by adjoining a unit element. The resulting monoid is the unital augmentation of
that semigroup. An idempotent monoid Σ is always the unital augmentation of an
idempotent semigroup. This is because if x and y are idempotent and xy = 1, then
x = y = 1. So Σ \ {1} is a subsemigroup and Σ is its unital augmentation.

E.1.5. Bands and partial orders. Let Σ be a band, endowed with the partial
order (E.1). Let P be a poset and let s, t : P → Σ be maps such that

t is order-preserving,(E.7a)

t(a) ≤ s(a) for all a ∈ P .(E.7b)

Define a new relation on P as follows:

(E.8) a � a′ if a ≤ a′ and t(a′)s(a) = s(a′) = s(a)t(a′).

Lemma E.3. The relation � is a partial order on P . Moreover, both s and t are
order-preserving for the partial order �.
Proof. Reflexivity for � follows from (E.7b) and reflexivity for ≤. Antisymmetry
for � follows from that for ≤. To check transitivity, suppose a � a′ � a′′. By
(E.7a), we have t(a′)t(a′′) = t(a′′)t(a′) = t(a′′). Hence, by (E.8),

s(a′′) = t(a′′)s(a′) = t(a′′)t(a′)s(a) = t(a′′)s(a)

and

s(a′′) = s(a′)t(a′′) = s(a)t(a′)t(a′′) = s(a)t(a′′).

Together with transitivity for ≤, this yields a � a′′. This proves the first assertion.
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Suppose a � a′. Then a ≤ a′ and hence t(a) ≤ t(a′), by (E.7a). In addition,
by (E.7b), t(a′)s(a′) = s(a′). Hence, by (E.8),

s(a)s(a′) = s(a)t(a′)s(a′) = s(a′)s(a′) = s(a′)

and

s(a′)s(a) = t(a′)s(a)s(a) = t(a′)s(a) = s(a′).

This shows that s(a) ≤ s(a′), proving the second assertion. �

E.2. Distance functions

We introduce the notion of an abstract distance function on a band. This can
be approached in two equivalent ways, either as a distance function on chambers,
or as a distance function on faces. We also consider two weaker notions, namely,
that of a left distance function and a right distance function.

For the free LRB, we give an explicit example of a distance function and relate
it to the problem of sorting lists. We also classify all left distance functions on the
free LRB.

E.2.1. Distance function on chambers. Let Σ be a finite band. A distance
function on chambers is a function υ on pairs of chambers of Σ which satisfies the
following conditions. For any chamber c,

(E.9a) υc,c = 1.

For x and x′ with the same support, and x ≤ c, d,

(E.9b) υc,x′cx′ = υd,x′dx′ .

For any c and x′ ≤ c′,

(E.9c) υc,c′ = υc,x′cx′ υx′cx′,c′ .

For any c′ and x ≤ c,

(E.9d) υc,c′ = υc,xc′x υxc′x,c′ .

For a LRB, repetitions can be deleted, for example, x′cx′ can be replaced by x′c;
so in this case, the above conditions assume a slightly simpler form.

In certain situations, one may also want to consider the following addtional
axiom. For x and x′ with the same support, and x ≤ c, d,

(E.10) υc,d = υx′cx′,x′dx′ .

A left distance function on chambers is a function υ on pairs of chambers of
Σ which satisfies (E.9a), (E.9b) and (E.9c). Similarly, a right distance function on
chambers is a function which satisfies (E.9a), (E.9b) and (E.9d).

Any function υ on pairs of chambers has a transpose υt defined by (υt)c,d :=
υd,c. Observe that the transpose of a left distance function is a right distance
function and vice-versa.
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E.2.2. Distance function on faces. A distance function on faces is a function
υ on pairs of faces with the same support which satisfies the following conditions.
For any face x,

(E.11a) υx,x = 1.

For x and x′ with the same support, and x ≤ y,
(E.11b) υx,x′ = υy,x′yx′ .

For y and y′ with the same support, and x′ ≤ y′,
(E.11c) υy,y′ = υy,x′yx′ υx′yx′,y′ .

For y and y′ with the same support, and x ≤ y,
(E.11d) υy,y′ = υy,xy′x υxy′x,y′ .

A left distance function on faces is a function υ on pairs of faces with the same
support which satisfies (E.11a), (E.11b) and (E.11c). Similarly, a right distance
function on faces is a function which satisfies (E.11a), (E.11b) and (E.11d).

A distance function on faces clearly restricts to a distance function on cham-
bers. Conversely, a distance function on chambers extends canonically to a distance
function on faces via

(E.12) υx,y := υc,ycy,

where c is any chamber greater than x. So the two notions are equivalent.

E.2.3. Free LRB. Let Σ be the free LRB on a finite generating set S. We refer
to elements of S as letters. Elements of Σ are words with no repetition of letters.
Product xy of x and y is obtained by concatenating x and y, and removing those
letters from y which have appeared in x. We have x ≤ y if x is an initial segment of
y. Chambers are words in which all letters appear exactly once, which is the same
as linear orders on S. The poset Σ is a meet-semilattice. The meet x ∧ y of two
words x and y is the largest initial segment common to x and y. Two words x and
y have the same support iff the same set of letters appear in x and in y.

Example E.4. To any pair of letters (a, b) assign a scalar w(a, b). Now for any
pair of chambers (c, d), define

(E.13) υc,d :=
∏

w(a, b),

where the product is over all pairs (a, b) such that the letter a appears before b in
the word c but it appears after b in the word d.

We think of υc,d as the cost of sorting the list c according to the order specified
by the list d. The sorting can be done by adjacent transpositions with the cost of
changing ab to ba being w(a, b).

Formula (E.13) defines a distance function on the free LRB. The axioms are
verified below.

• (E.9a) is clear.
• Suppose x and y have the same support. So the same set of letters ap-

pear in x and in y. Let z be any word written using all the remaining
letters. (E.9b) is equivalent to showing that υxz,yz does not depend on
the particular choice of z. This is clear since to sort xz, we only need to
sort x.
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• Consider (E.9c). Suppose y ≤ d. Then υc,d = υc,ycυyc,d says that the
sorting can be done by first sorting the letters in y and bringing them
to the beginning of the list and then sorting the rest. This is known as
selection sorting [246, Section 5.2.3].
• Consider (E.9d). Suppose x ≤ c. Then υc,d = υc,xdυxd,d says that the

sorting can be done by first sorting z where c = xz without touching x
and then sorting the rest. This is known as insertion sorting [246, Section
5.2.1].

The additional axiom (E.10) also holds in this case.

We now proceed to describe all left distance functions on the free LRB. Consider
pairs of the form (xya, xay), where x and y are words with y nonempty, and a is a
letter, and there are no letter repetitions. We call (xya, xay) a basic pair.

Proposition E.5. Any function on the set of basic pairs extends uniquely to a left
distance function on Σ.

Proof. Let υ denote the given function. We extend it to pairs of chambers (c, d)
by a backward induction on the length of x := c ∧ d. Let c and d be any two
chambers. If x = d, then c = d, and we define υc,d = 1; so suppose not. Let a be
the letter after x in d. Write c = xyaz and d = xaz′ for unique choices of y, z and
z′, and define

(A) υc,d := υxya,xayυxayz,xaz′ .

In the rhs, the first term is defined since (xya, xay) is a basic pair, and the second
term is defined by the induction hypothesis. We now check that υ is a left distance
function.

• (E.9a) is clear.
• Suppose x and y have the same support. So the same set of letters appear

in x and in y. Let z be any word written using all the remaining letters.
(E.9b) is equivalent to showing that υxz,yz does not depend on the par-
ticular choice of z. This can be established by a backward induction on
the length of x ∧ y.
• The above along with (A) implies that whenever x = c ∧ d and the letter
a follows x in d,

(B) υc,d = υc,xacυxac,d.

(E.9c) says that υc,d = υc,ycυyc,d whenever y ≤ d. This is clear if y ≤ c.
So suppose not. Write y = xay′ where x := c ∧ d. Then

υc,d = υc,xacυxac,d = υc,xacυxac,ycυyc,d = υc,ycυyc,d.

The first and third equality follows from (B), while the second equality
follows from the induction hypothesis, see illustration below.

x xa

y

c

xac

yc

d

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



552 E. BANDS

This shows that υ is a left distance function. Since the construction only made use
of its properties, uniqueness follows. �

E.2.4. Karnofsky-Rhodes expansions. Fix a lattice Π and a set of generators
S (with product being join). The Karnofsky-Rhodes expansion Σ is the freest LRB
generated by S whose support lattice is Π. Explicitly: Call a word reduced if all
its initial segments represent distinct elements of Π. Elements of Σ consist of all
reduced words. The product is concatenation followed by reducing the word (in
the obvious sense) from left to right.

We obtain the free LRB by taking Π to be the Boolean lattice, with S being its
set of atoms. More generally, we can take Π to be the lattice of flats of a matroid,
with S being its ground set. We then obtain the first matroid semigroup of Brown
[96, Section 6].

The result of Proposition E.5 (with the same proof) generalizes to Karnofsky-
Rhodes expansions: A pair is basic if it has the form (xz, xaz) where xz and xa
are reduced words, xz and xaz have the same support, and z does not start with a.
Further, z is optimal in the sense that no initial segment of z has these properties.

Notes

The partial order on a band (E.1) can be traced to Rees [337]; see also Clifford
[111]. The origin of the axiom xyx = xy can be traced to Schützenberger [360] and
Klein-Barmen [242]. The construction of the support map associated to a band is due
to McLean [294, Theorem 1]. It is discussed further by Clifford [112, Theorem 3] and
Kimura [241, Theorem 1]. Example E.2 is discussed in detail by Birkhoff [64, Section
I.5]. A unital LRB is called a graphic monoid by Lawvere in his work on topos theory
[263, 264]. The work of Brown on Markov chains [96] brought in new examples and ideas
to the study of LRBs. See for instance [8, Chapter 2].

General references for LRBs and other topics in semigroup theory are [198, 324, 325].
A modern reference is the recent book of Steinberg [385].
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Notation Index

Abbreviations

iff if and only if
lhs left hand side
rhs right hand side
wrt with respect to

Number systems

N set of nonnegative integers {0, 1, 2, . . . }
Z set of integer numbers
Q set of rational numbers
R set of real numbers
k field or commutative ring
A abelian group

Posets

P , Q posets
x ≤ y x is smaller than y

x < y x is strictly smaller than y

x⋖ y x is covered by y, or, y covers x
[x, y] interval consisting of all elements which lie between x and y

rk(x) rank of the element x in a graded poset
rk(P ) rank of the poset P

⊥, ⊤, ∧, ∨ minimum element, maximum element, meet, join
(λ, ρ) Galois connection or adjunction between posets

Σ band
Π support lattice of a band

Homology.

∆(P ) order complex of the poset P

Hk(P ), Hk(P ) order homology, cohomology groups of the poset P

WHk(P ), WHk(P ) Whitney homology, cohomology groups of the poset P

Incidence algebras.

I(P ) incidence algebra of the poset P
M(P ) incidence module of the poset P
I(ϕ,ψ) incidence bimodule
ζ zeta function
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µ Möbius function
I∼(P ) reduced incidence algebra of the poset P for the order-compatible relation ∼
I(C) incidence algebra of the category C

∂(α) coboundary of a cochain α

I(P ; γ) deformation of incidence algebra of P by cocycle γ
Γx,z(v) fiber of order-preserving map
γ∗ transfer of cocycle γ

Algebras and modules

A algebra over a field k
M (left or right) A-module

Endk(M) algebra of endomorphisms of the module M
ΨM representation of A associated to the module M

ΨM (w) linear operator of the action of w ∈ A on the module M
wM , Mw image of the linear operator ΨM (w)
ann(M) annihilator of M
χM character of the module M
M∗ linear dual of the module M
kn n-dimensional k-algebra with coordinatewise addition and multiplication
k[w] subalgebra of A generated by w ∈ A

k[x] algebra of polynomials in the variable x
wd, wn diagonalizable, nilpotent part of w in its Jordan-Chevalley decomposition
I ideal of A
N nilpotent ideal of A

rad(A) radical of A
e, f idempotents in A

e ∼= f isomorphic idempotents in A

e1, . . . , en family of mutually orthogonal idempotents in A

A× group of invertible elements of A
Ā split-semisimple quotient of an elementary algebra A
χi multiplicative characters of an elementary algebra

ηi(M) generic multiplicity of χi in M

AG subalgebra of A invariant under action of a finite group G

Q quiver
kQ path algebra of the quiver Q

rad(M) radical of the module M
soc(M) socle of the module M
kP linearization of a lattice P over the field k
Hx element of the H-basis of kP
Qx element of the Q-basis of kP

P(M) primitive part of the module M over kP
D(M) decomposable part of the module M over kP

Cell complexes

X cell complex
χ(X) reduced Euler characteristic of X
(X,A) relative pair of cell complexes

F , G, H, K faces
C, D, E chambers
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dist(C,D) minimum length of a gallery connecting C and D

C --E --D minimal gallery from C to D passing through E

[C :D] gallery interval
Σ set of faces
Γ set of chambers

ΣF star of the face F
ΓF top-star of the face F

Arrangements

dim dimension
A hyperplane arrangement

A×A′ cartesian product of arrangements A and A′

AX arrangement under the flat X of A
AX arrangement over the flat X of A
AF arrangement under the support of F
AF arrangement over the support of F

AX
Y, AX

F , AG
F arrangements between flats

Â adjoint of the arrangement A

Faces, flats, cones and lunes.

O central face
P , Q vertices

F , G, H, K faces
C, D, E chambers

F face opposite to F
FG Tits product of F and G, or Tits projection of G on F

[F :G] gallery interval with F and G of the same support
X, Y, Z flats

⊥ minimum flat
⊤ maximum flat

Cl(X) closure of the flat X
V, W cones

V cone opposite to V
Cl(V) closure of the cone V

Vo interior of the cone V

Vb boundary of the cone V
WF restriction of the top-cone W to the face F

F V extension of the top-cone V from the face F
(H,G) nested face
(H,D) top-nested face

L, M, N lunes
L ◦ M composite of the lunes L and M
rk(F ) rank of the face F
rk(X) rank of the flat X
sk(L) slack of the lune L

Projective objects.

{F, F} projective face

{C,C} projective chamber

{V,V} projective cone

{L,L} projective lune
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Hyperplanes and half-spaces.

H hyperplane
h half-space

H+, H− the two half-spaces bounded by the hyperplane H

h half-space opposite to h
g(C,D) set of hyperplanes which separate chambers C and D

r(C,D) set of half-spaces which contain C but do not contain D

wt(h) weight assigned to the half-space h
h(D) largest face of D which is contained in the half-space h

Charts and dicharts.

g, h charts
ρ(g) center of g
cG set of connected charts

(H1, . . . ,Hr) ordered coordinate chart
G set of charts
−→
G set of dicharts

Sets.

Σ set of faces, Tits monoid
Γ set of chambers, two-sided ideal of Σ
Π set of flats, Birkhoff monoid
J set of bi-faces, Janus monoid
Ω set of cones
ÛΩ set of top-cones
ÛΩF set of top-cones contained in the top-star of F

F
ÛΩ set of top-cones whose closure contains F

Q set of nested faces
ÛQ set of top-nested faces
P set of nested flats
Λ set of lunes
ÛΛ set of top-lunes

Γ × Γ set of pairs of chambers
Σ × Σ set of pairs of faces
Π × Π set of pairs of flats

The above sets are all associated to an arrangement A. If we wish to show this dependence
explicitly, we write Σ[A], Γ[A], Π[A] and so on.

Action of monoids.
hΣ set of h-faces
hΠ set of h-flats

F · x, x · F left, right action of the face F on the element x
X · x action of the flat X on the element x
Σx,y set of all faces F such that F · x = y

ℓ(F, y) set of all elements x such that F · x = y

x,yΣ set of all faces F such that x · F = y

Πx,y set of all flats X such that X · x = y

hx star of x in the right Σ-set h
hF star of the face F in the left Σ-set h

Maps.

s support map
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s(F ) support of the face F
s(H,D) support of the top-nested face (H,D)
s(H,G) support of the nested face (H,G)

c(V) support or case of the cone V
c(L) case of the lune L

b base map
b(V) base of the cone V
b(L) base of the lune L
bc base-case map

Des descent map
Des(C,D) descent of D wrt C

υ distance function
υC,D distance from C to D for a distance function υ

(υC,D) Varchenko matrix indexed by chambers
(qC,D) q-Varchenko matrix
(υℓ1,ℓ2) Varchenko matrix indexed by linear extensions of a poset

Enumeration.

µ(A) Möbius number of A
c(A) number of chambers in A
d(A) number of faces in A
χ(A, t) characteristic polynomial of A

wy(A, k) Whitney numbers of the first kind of A
βX Crapo invariant for the lattice of flats of AX

Reflection arrangements

α = (A, C) reflection arrangement A with reference chamber C
W Coxeter group
S generating set of the Coxeter group W

(W,S) Coxeter system
WF , WT parabolic subgroup of W

ŴX subgroup of W which leaves X invariant

WX subgroup of ŴX which fixes X pointwise
WL subgroup of W which leaves the top-lune L invariant

Group elements, face-types and flat-types.

u, v, w, σ elements of W
T , U , V face-types
λ, µ flat-types

d(C,D) W -valued gallery distance between chambers C and D

l(w) length of the element w ∈W

Des(σ) descent of the element σ ∈W

Sets and maps.

WΣ Coxeter-Tits monoid
WΠ Coxeter-Birkhoff monoid
WJ Coxeter-Janus monoid
ΣW set of face-types
ΠW set of flat-types
ShT set of T -shuffles for a face-type T

t type map
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Enumeration.

dT number of faces of type T

aTUT ′

structure constants of the invariant Tits algebra

dT (q), aTUT ′

(q) q-analogues of dT and aTUT ′

dS(q) Poincaré polynomial of a Coxeter group W

Braid arrangement and related examples

RI vector space of functions from I to R
Sn symmetric group on n letters

F = (I1, . . . , Ik) set composition
α = (a1, . . . , ak) integer composition
λ = (l1, . . . , lk) integer partition

F � I F is a composition of the set I
X ⊢ I X is a partition of the set I
α � n α is a composition of n
λ ⊢ n λ is a partition of n
Parn set of integer partitions of n

Inv(C,D) inversion set of (C,D)
Inv(F,G) inversion set of (F,G)
deg(G) number of blocks of a set composition G

deg!(G) factorial of the number of blocks of a set composition G

s(m, k) Stirling numbers of the first kind
(n)q! q-factorial(

n

i

)
q

q-binomial coefficient

Arrangement of type B.

S±
n signed symmetric group on n letters

z(F ) zero block of the type B set composition F

z(X) zero block of the type B set partition X
α = (a0, a1, . . . , ak) type B composition
λ = (l0, l1, . . . , lk) type B partition

s±(m, k) type B Stirling numbers
(2k)!!, (2k + 1)!! double factorials

Graphic arrangements.

g, h graphs
A(g) graphic arrangement of g
c(g) number of connected components of g
kI complete graph on a set I
dI discrete graph on a set I
gX restriction of a graph g to a flat X
gX contraction of a flat X from a graph g

O orientation of a graph
χ(g, t) chromatic polynomial of g

Birkhoff algebra and Tits algebra

Π Birkhoff algebra
Σ Tits algebra
J Janus algebra
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Jq q-Janus algebra for the scalar q
Jυ υ-Janus algebra for the distance function υ

Σ0 diagonal 0-Janus algebra
rad(Σ) radical of the Tits algebra
Π

W invariant Birkhoff algebra
Σ

W invariant Tits algebra
rad(ΣW ) radical of the invariant Tits algebra
ÛQ linear space indexed by top-nested faces
W group algebra of the Coxeter group W

WΣ Coxeter-Tits algebra
WΠ Coxeter-Birkhoff algebra
WJ Coxeter-Janus algebra
G algebra of charts
−→
G algebra of dicharts

The above vector spaces are all associated to an arrangement A. If we wish to show this
dependence explicitly, we write Π[A], Σ[A], J[A] and so on.

Modules.

Γ left module of chambers
h, k (left or right) modules over the Tits algebra
P(h) primitive part of the left module h over the Tits algebra
D(h) decomposable part of the right module h over the Tits algebra
Pk(h) k-th term of the primitive series of the left module h

Dk(h) k-th term of the decomposable series of the right module h

Elements and maps.

HX element of the H-basis of the Birkhoff algebra
QX element of the Q-basis of the Birkhoff algebra
HF element of the H-basis of the Tits algebra
QF element of the Q-basis of the Tits algebra

H{F,F} element of the H-basis of the projective Tits algebra

Q{F,F} element of the Q-basis of the projective Tits algebra

u homogeneous section
E Eulerian family
EX Eulerian idempotents
E⊥ first Eulerian idempotent
Ek idempotent obtained by summing certain EX

P special Zie family
uH , EH , PH induced u, E and P on AH

∆X, µX maps relating the Birkhoff algebras of AX and A
βG,F isomorphism between the Tits algebras of AF and AG

∆F , µF maps relating the Tits algebras of AF and A
Tak Takeuchi element of the Tits algebra
Tak two-sided Takeuchi element of the Janus algebra
Fult Fulman element of parameter t
Adsn Adams element of parameter n
Ads

±
n Type B Adams element of parameter n

Lie and Zie elements

Lie[A] space of Lie elements of A
Zie[A] space of Zie elements of A
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Lie[A]W space of invariant Lie elements of A
Zie[A]W space of invariant Zie elements of A

Lie[I], Lie[n] Classical (type A) Lie elements
Lie[I], Lie[n] Type B Lie elements

θh Dynkin element associated to the generic half-space h
dh symmetrized Dynkin element associated to h
BWC an element of the Björner-Wachs basis
Bg an element of the Björner basis
Lg an element of the Lyndon basis
dI,q q-Dynkin element
E
o[A] orientation space of A

E
−[A] signature space of A

Incidence algebras

Iface face-incidence algebra
Iflat flat-incidence algebra
Ilune lune-incidence algebra

Mlune lune-incidence module
Ilunetype invariant lune-incidence algebra

Mlunetype invariant lune-incidence module
ILie Lie-incidence algebra

MLie Lie-incidence module
ζ noncommutative zeta function
µ noncommutative Möbius function
bc base-case map
Zet space of all additive functions on lunes
Zet1 space of all noncommutative zeta functions
Mob space of all Weisner functions on lunes
Mob1 space of all noncommutative Möbius functions
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Symbols

1-chain, 501

W -valued gallery distance, 123
Π-set, 199

h-face, 184

h-flat, 185

Q-bases, 299, 306

υ-Janus algebra, 262

q-Dynkin element, 411

q-Janus algebra, 258

q-Varchenko matrix, 221

q-binomial coefficient, 460, 515

q-commutator, 412

q-factorial, 460

A

acyclic orientation, 167

Adams element, 342, 480

additive function on lunes, 446

adjacent chambers, 490

adjacent linear orders, 137

adjoint of an arrangement, 28

adjunction, 497

between charts and dicharts, 60

between cones and dicharts, 61

between cones and flats, 51

between faces and top-cones, 48

between flats and charts, 60
algebra

of a lattice, 539

of charts, 238

of cones, 238

of dicharts, 238

of endomorphisms, 521
of polynomials, 526

of upper triangular matrices, 504, 536

algebra section, 534
all-subset arrangement, 144

almost-linear extension, 224

ambient space, 4

antiexchange axiom, 500

antimatroid, 500
antisymmetry relation, 270

arrangement

of type An−1, 137

of type Bn, 157

of type Dn, 164
arrangement over a flat, 20

of the arrangement of type B, 162

of the braid arrangement, 143

arrangement under a flat, 20

of the arrangement of type B, 162

of the braid arrangement, 143

Artin-Wedderburn theorem, 546

associated graded module, 536

associative operad, 453

atom connected poset, 496

atomic lattice, 495

B

balanced bipartite graph, 32

Balinski’s theorem, 496

band, 547

base

of a cone, 51

of a lune, 73

of a preorder, 147

base map, 51, 99

base-case map, 102, 428

Bayer-Diaconis-Garsia-Loday formula, 481

Bergeron formula, 481

Bergeron idempotents, 483
bi-face, 16

Bidigare-Hanlon-Rockmore theorem, 250

Billera-Brown-Diaconis formula, 325
bimonoid axiom, 237, 256

binary tree, 405

bipartite graph, 32
Birkhoff algebra, 234

Birkhoff monoid, 13

Björner basis, 398

Björner-Wachs basis, 390

bond of a graph, 166
Boolean arrangement, 168

boundary

of a cone, 53

of a lune, 78

bounded poset, 493

579
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braid arrangement, 137

Brown formulas, 330

Brown-Diaconis formula, 324

C

canonical homogeneous section, 318

Cartan invariants, 368, 370, 378, 477, 486

cartesian product, 23, 94

Cartier-Milnor-Moore theorem, 454

case

of a cone, 50

of a lune, 73

of a preorder, 147

case map, 50

Catalan paths, 227

category of lunes, 106

cell complex, 489

center

of a chart, 59

of an arrangement, 4

central arrangement, 4

central face, 5, 489

chamber, 5, 489, 547

chamber element, 247

chamber graph, 32

character, 522

characteristic element, 336

characteristic polynomial, 42

chart, 59

chromatic polynomial, 168

cisomorphism, 6

classical associative operad, 151

classical Lie elements, 404

classical Lie operad, 407

classical Möbius function, 509

classical Poisson operad, 453

closed subgraph, 167

closure

of a combinatorial cone, 47

of a combinatorial flat, 10

of a combinatorial lune, 78

closure operator, 498

coatom connected poset, 496

coboundary, 511

coclosure operator, 498

cocycle deformation, 512

cocycle transfer, 513

cographic arrangement, 169

coloring of a graph, 168

combinatorial cone, 46

combinatorial flat, 10

combinatorial lune, 73

combinatorial top-cone, 46

commutative operad, 453

commutative Takeuchi element, 333

complement of a lattice element, 495

complementary factors, 24

complemented lattice, 495

complete graph, 165

complete lattice, 493

complete system, 523

composite of lunes, 106

composition

integer, 143

set, 137

composition factor, 531

composition series, 248, 531, 536

cone, 45

conjugate posets, 151

conjugate top-cones, 91

conjugate-meet property, 93

connected chart, 59

connected poset, 493

contraction of a graph, 166

convex closure, 490

convex geometry, 65, 500

convex polytope, 489, 496

convex set, 46, 47, 490

convex subposet, 493

convexity dimension, 58

coordinate arrangement, 133

coordinate chart, 59

covering map of posets, 517

Coxeter complex, 117

Coxeter diagram, 130

Coxeter group, 117

Coxeter symmetry, 117

Coxeter system, 119

Coxeter-Birkhoff algebra, 263

Coxeter-Birkhoff monoid, 128

Coxeter-Janus algebra, 263

Coxeter-Janus monoid, 128

Coxeter-Tits algebra, 263

Coxeter-Tits monoid, 127

Crapo invariant, 230

creation of relations, 509

CW complex, 489

cycle, 167

cycle-type function, 126, 157

cycle-type of a permutation, 157

cyclic descents, 486

D

decomposable part of a module, 542

decomposable part of a right module, 255

decomposable series of a right module, 352

descent, 172

descent equation

for chambers, 171

for faces, 171

for left Σ-sets, 187

for partial-flats, 182

descent identity, 189

descent-lune equation

for Π-sets, 199

for flats, 182
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descent-lune identity, 199

diagonal 0-Janus algebra, 262

diagonalizable element, 526

diagonalizable operator, 521

dichart, 59

dihedral arrangement, 8

dimonoid, 184

Dirichlet series, 509

discrete graph, 165

disjoint union of posets, 148

disjoint-star property, 355

distance function

on chambers, 549

on faces, 550

double factorials, 162

dual poset, 493

Dynkin basis, 385

Dynkin element, 379

Dynkin-Specht-Wever theorem, 410

E

edge, 5, 489

eigensection, 327

eigenvalue-multiplicity theorem, 250, 353

elementary algebra, 534

elementary symmetric function, 480

empty cell complex, 489

essential arrangement, 4

essentialization of an arrangement, 6

Eulerian family, 292

Eulerian idempotents, 292

Eulerian poset, 504

exponential, 235, 437, 469, 504, 540

exponents of a Coxeter group, 126

extension of a top-cone, 86

extension problem, 310

external product, 144

extreme point, 500

F

face, 5, 489, 547

face-incidence algebra, 427

face-meet property, 189

face-type, 119

factor of an arrangement, 24

faithful module, 522

falling factorial, 154

fiber product, 16, 72, 128

first Eulerian idempotent, 292

flag f and flag h vectors, 202

flat, 9

flat-incidence algebra, 426

flat-incidence module, 426

flat-type, 120

formal power series, 155

Friedrichs criterion, 267, 273

Frobenius algebra, 523

Frobenius functional, 523

Fulman algebra, 339

Fulman element, 338

G

gallery, 490

gallery connected cell complex, 490

gallery distance, 490

gallery interval, 56, 491

Galois connection, 497

Garsia criterion, 269, 276

Garsia-Reutenauer idempotents, 480

gate pair, 492

gate property, 32, 492

gated set, 491

generic distance function, 262

generic half-space, 27

generic hyperplane, 27

geometric lattice, 18, 389, 495

geometric partial-support relation, 68

Gilbert-Shannon-Reeds model, 349

gisomorphism, 6

good reflection arrangement, 130

graded poset, 494

graphic arrangement, 165

graphic monoid, 552

group-like, 437, 470

H

half-flat, 52

half-space, 4

homogeneous section, 288

homotopy colimit of posets, 507

hyperplane, 4

hyperplane arrangement, 4

I

idempotent element, 523

idempotent monoid, 547

incidence algebra

of a locally finite category, 507

of a poset, 501

incidence bimodule, 505

incidence function, 501

incidence module, 504

induced graph, 166

insertion sorting, 551

interior

of a cone, 53

of a lune, 78

internal category, 107

intersection lattice, 44

invariant

distance function, 211

Eulerian family, 471

Lie element, 466

noncommutative Möbius function, 468

noncommutative zeta function, 468

section, 471
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Zie element, 467

Zie family, 473

invariant Birkhoff algebra, 456

invariant face-incidence algebra, 468

invariant lune-incidence algebra, 468

invariant lune-incidence module, 469

invariant support map, 457

invariant Tits algebra, 456

inversion set, 152

inversions of a permutation, 226

invertible element in an algebra, 531

irreducible arrangement, 27

irreducible reflection arrangement, 130

isomorphic idempotents, 532

iterated substitution product of Lie, 283

J

Jacobi identity, 270, 271

Janus algebra, 257

Janus monoid, 16

join-distributive, 495

join-preserving map, 498

join-semilattice, 493

joinable faces, 15

Jordan-Chevalley decomposition, 331, 528,

538

Jordan–Hölder theorem, 536

Joyal-Klyachko-Stanley theorem, 393

K

Krob-Leclerc-Thibon idempotents, 482

L

labeled simplicial complex, 118, 202

lattice, 493

left Σ-set, 184

left q-bracketing operator, 412

left bracketing operator, 410

left distance function

on chambers, 549

on faces, 550

left module of chambers, 244

left module of projective chambers, 247

left Peirce decomposition, 358

left regular band, 547

length of a gallery, 490

length of a group element, 122

Lie element, 265

Lie operad, 453

Lie-incidence algebra, 443

Lie-incidence module, 444

linear composition, 148

linear order, 137

linear partition, 148

linear preorder, 145

locally finite category, 507

locally finite poset, 493

locally graded poset, 494

Loewy series, 531

log-antisymmetric distance function, 204

logarithm, 235, 437, 469, 504, 540

lower semimodular lattice, 18, 495

lower set, 145, 493

LRB, 547

lune, 73

lune decomposition of a cone over a flat, 83

lune equation, 177

for left Σ-sets, 192

for partial-flats, 182

for right Σ-sets, 194

lune identity, 198

lune-additivity, 433, 468

lune-incidence algebra, 427, 467

lune-incidence module, 429

lune-type, 121

Lyndon basis, 399

M

Möbius algebra of a lattice, 539

Möbius function, 502

Möbius inversion, 504

Möbius number, 40

mapping cylinder, 506

matroid, 43

meet-semilattice, 493

minimal gallery, 490

minimal gallery of linear orders, 137

minimum polynomial, 526

modular complements, 18

module over an algebra, 521

Morita equivalent algebras, 259

multiplicative character, 522

N

negative one color theorem, 168, 169

nested face, 78, 427

nested face-type, 121

nested flat, 106, 426

nilpotency index, 529

nilpotent element, 524

nilpotent ideal, 529

non-stuttering path, 216

noncommutative Hall formula, 436

noncommutative lattice, 15

noncommutative Möbius function, 433

noncommutative Möbius inversion, 437

noncommutative Weisner formula, 434, 469

noncommutative zeta function, 432

O

odd-even invariant, 209

operad, 453

opposite

chamber, 6

cone, 49

face, 6
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half-space, 6

nested face, 431

poset, 493

opposite set composition, 139

opposite type B set composition, 159

opposition map

on cones, 49

on faces, 6

on lunes, 79

on set compositions, 139

on type B set compositions, 159

optimal decomposition of a cone, 85

order (co)homology, 388

order complex, 388, 396

order dimension, 147

order-preserving group action, 517

ordered category, 116

ordered coordinate chart, 397

orientation, 386

orientation of a graph, 167

orientation space, 386

orthodox semigroup, 129

orthogonal idempotents, 523

P

panel, 5, 489

parabolic subgroup, 123

parallel alternative, 90

parallel composition of partial orders, 148

partial order, 145

partial-bi-flat, 72

partial-flat, 68

partial-support, 68

partial-support relation on chambers, 66

partial-support relation on faces, 68

partition

integer, 143

set, 137

path algebra of a quiver, 538

peak algebras, 486

peakless linear order, 409

peakless permutation, 481

Peirce decompositions, 537

permutation, 137

Philip Hall formula, 502

Poincaré polynomial, 461

pointed arrangement, 119

poset, 145

of cones, 45

of divisors, 509

of face-types, 119

of faces, 5

of finite height, 493

of flat-types, 121

of flats, 9

of partial orders, 146

of preorders, 147

of top-cones, 46, 62

of top-lunes, 99

of triangular type, 516

poset cocyle, 511

poset cohain, 511

prelinear extension, 224, 229

preorder, 145

preposet, 145

prime arrangement, 26

prime decomposition of an arrangement, 27

prime factor of an arrangement, 26

primitive, 437, 470

primitive idempotent, 523

primitive part of a left module, 254

primitive part of a module, 542

primitive series of a left module, 352

projective

chamber element, 247

Eulerian family, 295

Lie element, 268

noncommutative Möbius function, 434

noncommutative zeta function, 432

section, 289

Zie element, 275

Zie family, 306

projective chamber, 6

projective cone, 50

projective face, 6

projective Lie-incidence algebra, 445

projective lune, 80

projective lune-incidence algebra, 431

projective lune-incidence module, 431

projective Tits algebra, 243

proper coloring of a graph, 168

pure cell complex, 489

Q

quasi-shuffle, 150

quiver

of an elementary algebra, 538

of an incidence algebra, 508

of the algebra of upper triangular

matrices, 508

of the flat-incidence algebra, 427

of the free left regular band, 378

of the invariant Tits algebra, 476

of the lune-incidence algebra, 430

of the projective Tits algebra, 374

of the Solomon descent algebra, 484

of the Tits algebra, 374

R

radical

of a module, 530

of an algebra, 529

of an incidence algebra, 508

of the flat-incidence algebra, 427

of the left module of chambers, 245

of the lune-incidence algebra, 430
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of the Tits algebra, 241

radical series

of a module, 530

of the left module of chambers, 250,

372

rank

of a cell complex, 489

of a poset, 494

of an arrangement, 4

rank function, 494

rank-one arrangement, 8

rank-three arrangement, 8

rank-two arrangement, 8

rank-zero arrangement, 8

reduced Euler characteristic, 489

reduced incidence algebra, 508, 512

Ree criterion, 267, 274

reference chamber, 119

reflection arrangement, 117

regular cell complex, 489

regular group action on a poset, 518

regular semigroup, 129

relative pair of cell complexes, 188, 197

relatively complemented lattice, 495

representation of an algebra, 521

restricted Lie algebra, 485

restriction of a graph, 166

restriction of a top-cone, 86

Riemann zeta function, 509

riffle shuffle, 349

right Σ-set, 194

right distance function

on chambers, 549

on faces, 550

right Peirce decomposition, 358

rigid module, 371, 531

Rota formula, 506, 545

S

salient cone, 72, 147

Saliola construction, 294

Saliola lemma, 293

Salvetti complex, 97

Schubert symbol, 514

selection sorting, 551

self-dual module, 522

semisimple algebra, 529

semisimple module, 530

separating element, 329

series alternative, 90

series composition of partial orders, 148

series-parallel partial order, 150

set-theoretic

noncommutative zeta function, 432

section, 289

shuffle, 149

sign representation, 406, 417

sign sequence, 11

signature space, 388

signed poset, 162

signed symmetric group, 157

simple directed graph, 147

simple graph, 147, 165

simple module, 522

simplicial arrangement, 7

simply signed graph, 161

sink, 168

slack of a lune, 75

smallest nonsimplicial arrangement, 9

socle

of a module, 530

of the left module of chambers, 356

socle series

of a module, 531

of the left module of chambers, 356

Solomon descent algebra, 458

special Zie element, 272, 305

special Zie family, 303

split-semisimple algebra, 529

star, 21, 184, 196, 492

stationary distribution, 322

Stirling numbers of the first kind, 154

strongly connected poset, 19, 496

subarrangement, 52

subcomplex, 489

subgraph, 167

subposet, 493

substitution product, 114, 280, 284, 285,

426

supertight join-preserving map, 499

support

of a h-face, 185

of a chain of faces, 389

of a composition, 143

of a cone, 50

of a face, 9

of a face-type, 120

of a nested face, 78

of a set composition, 139

of a top-nested face, 75

of a type B composition, 160

of a type B set composition, 159

of an element of a right Σ-set, 197

support map, 10, 129, 139, 159, 185, 197,

241, 548

support semilattice, 548

support-type, 120

symmetric distance function, 204

symmetric group, 137

symmetric Varchenko matrix, 220

symmetrized Dynkin element, 381

T

Takeuchi element, 332

tight join-preserving map, 499

Tits algebra, 241
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Tits monoid, 12

Tits product, 11, 142, 159

Tits projection, 11

top-cone, 46

top-eigenvector, 322

top-lune, 73

top-nested face, 75

top-separating element, 323

top-star, 21, 492

top-star-lune, 90

trivial factors, 24

two-sided Peirce decomposition, 366

two-sided Takeuchi element, 335

type

of a composition, 143

of a face, 119

of a flat, 120

of a nested face, 121

of a partition, 143

of a type B composition, 161

of a type B partition, 161

type B Adams element, 346, 483

type B binary tree, 416

type B composition, 160

type B Lie elements, 414

type B linear order, 158

type B partial order, 161

type B partition, 160

type B riffle shuffles, 350

type B set composition, 158

type B set partition, 158

type B simple graph, 161

type B Stirling numbers, 164

type D riffle shuffle, 350

type map, 119

U

unbracketing, 392

uniform

noncommutative zeta function, 432

section, 289

uniserial module, 531

unital augmentation, 548

upper semimodular lattice, 495

upper set, 145, 493

V

Vandermonde matrix, 340, 347, 527

Varchenko matrix, 212

vertex, 5, 489

vertex-based lune, 74

W

wall, 49

weak composition, 143

weak order on a Coxeter group, 123

weak order on chambers, 44

Wedderburn principal theorem, 546

Wedderburn structure theorem, 529, 546

Wedderburn-Malcev theorem, 546

weight function, 203

Weisner formula, 40, 503

Weisner function on lunes, 446

Whitney (co)homology, 389

Whitney numbers of the first kind, 42

Winder formula, 41

Witt identity, 179

Z

Zaslavsky formula, 40, 314, 360, 382

zero divisor, 532

zeta function, 502

Zie element, 271

Zie family, 303
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