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Let 8 be a monoidal category with equalizers that are preserved by the tensor
product. The notion of categories internal to § is defined, generalizing the notions
of monoid and comonoid in §, and extending the usual notion of internal categories,
which is obtained when § is a category with products and equalizers.

The basic theory of internal categories is developed and several applications to
quantum groups are found. Deltacategories are defined; these are algebraic objects
that generalize groups or bialgebras, in the sense that attached to them there is
a monoidal category of representations. Quantum groups are constructed from
deltacategories. In particular a contruction of quantum groups generalizing that of
Drinfeld and Jimbo is presented. An invariant of finite dimensional quasitriangular

Hopf algebras is constructed.
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Part 1

Internal Category Theory



In this part we develop the basic theory of internal categories and their mor-
phisms. The main goals are to introduce the notions of admissible sections of an
internal category and that of deltacategories.

In chapter 1 we summarize the basic results needed. Although this makes
the presentation considerably self-contained, familiarity with the basic notions of
category theory, in particular monoidal categories, is probably a prerequisite.

Throughout, a fixed monoidal category 8§ will underlie all constructions. Cat-
egories internal to 8 are defined in section 2.3. The usual notion of internal cate-
gories [Joh 2.1] is obtained when 8 is a category with products and equalizers; from
the point of view of this work, though, the interesting cases arise when considering
more general monoidal categories.

Monoids and comonoids in 8 are particular examples of categories internal to S,
but these are in a way the trivial examples. Other basic examples will be discussed
in section 2.4 and as the theory of internal categories is developed in the subsequent
sections. The most interesting examples and applications are postponed for later
parts.

Different choices of § yield different types of internal categories, some of which
have been considered in the literature under various names, e.g. linear categories
[Mit], algebroids (called graphs in [Mal]), coalgebroids [Del], bialgebroids [Rav,
Mal] and others; see table 2.1 in section 2.4.

Most constructions on internal categories that we introduce (admissible sec-
tions, representations) are functorial with respect to functors that are the identity
on objects, but not with respect to arbitrary functors. Notably, there is an al-
ternative notion of morphism, called cofunctors, with respect to which these con-
structions are functorial. Functors and cofunctors, and the corresponding “natural

morphisms” among them are discussed in sections 4.1 and 4.2.



The monoid of admissible sections is an ordinary monoid in Sets that is at-
tached to every internal category (chapter 5). This assignment generalizes many
constructions already in the literature for the case of ordinary categories.

Each internal category has a category of representations (chapter 6). This is
an ordinary category consisting of objects of § where the internal category acts in
some sense.

A deltacategory (section 7.4) is an internal category for which its category of
representations is monoidal in a natural way. These are interesting from the point
of view of quantum group theory, since the monoid of admissible sections of a
deltacategory in Vec;, carries a structure of k-bialgebra. This particular application
of the general theory to quantum groups will be developed in chapter 9.

Deltacategories in Sets appear to be very interesting objects as well; several
examples of these are worked out in chapter 8. Categories in Sets are just usual
small categories; one may think of them as “monoids with several objects”. Delta-
categories match this intuition even better, since, as monoids, they yield bialgebras

(after linearization) and monoidal categories of representations, as outlined in table

8.1.



Chapter 1

Preliminaries on category theory
In this section we collect various basic results in category theory that will get used

throughout this work.

1.1 Forks and equalizers
A fork in a category 8 is a diagram of the form
i ! . .
E—>X_g>Y where fi = gi .

The arrow i is an equalizer of the pair f, g if fi = gi and for any j : £/ — X with

fj = g7j, there is a unique e : £’ — FE such that j = ei.

E—>X—=Y
A

9
el .
J

B
In this case i is unique up to isomorphism; we sometimes write £ = Eqg(f, g) and
refer to i as the canonical map E = X. This map is always a monomorphism.
A split fork is a fork as above with two more arrows h: Y — X andp: X — FE
such that

hf =idx, hg =1ip and pi = idg .
Lemma 1.1.1. In every split fork, v is the equalizer of f and g.

Proof. This is lemma VI.6 from [ML], in dual from. (Mac Lane uses “fork” for

what we would call “coforks”). O



1.2 Coreflexive pairs

!
A coreflexive pair in a category 8 is a pair X :g;Y for which there exists an arrow
h:Y — X such that hf = hg = idy.

The following useful result will be referred to as Johnstone’s lemma.

Lemma 1.2.1. Let

f1
X(] i>)(1 :>>X2

f2
OcoJ/ ﬁol l’yo
g1

Vy—2L-v,—=V,

offr ol em

Zy——= 21— 2
0 ha

be a diagram in a category & such that
e the squares commute in the “obvious” way, that is
Joao = Do fo
hooii = Bigo, 1 =1,2
gibo =0 fi, i=1,2

e the rows and columns are equalizer diagrams

o the pairs (y1,72) and (hy, hy) are coreflexive.

Then the diagonal

a hif8
XO M) Yi é ZQ
haf32
18 an equalizer.
Proof. This is lemma 0.17 in [Joh], in dual form. O

The hypothesis of Johnstone’s lemma can be slightly weakened, in view of the

following.



Lemma 1.2.2. Let
f
X(] i>)(1 :>>1X2
f2
| Tk
g
Yo 2=y, —=V,

ol o]l

ZO T> Zl - Z2
0 ho
be a diagram in a category & where all squares commute as before and all three

rows and columns 1 and 2 are equalizers. Then column 0 is also an equalizer.

Proof. First,
hoasay = Bagoan = B250fo = B1Bofo = Bigocn = hoonav;

hence, asag = ajayp, since hg is monic.
Now let E 5 Y, be such that asa = aje. We have to show that « factors

through g to complete the proof (uniqueness of the factorization follows from the

fact that ag is monic, which holds since so is goag = (o fo). To this end, consider

the following diagram.

ho ho

First we show that gga factors through [y, using that column 1 is an equalizer.

Indeed,
Bagoce = hoooar = hoaiov = [ goa,

so an arrow «a; : FF — X; such that
(*)

Boar = goox



exists. Now,

_ _ (x (*) _ _
Yo f200 = G280t = Gagor = g1gox = g1 = Yo f1001;

hence, foa; = fia, since 7 is monic. Thus, since row X is an equalizer, there is

an arrow & : £ — Xg such that
Joa = ay (**)

Hence

x) o (wx ~ ~
goaw = Boay ="y foax = govpa,

from where, since g, is monic,

o = ot
as needed. O

Remark 1.2.1. The above result is also a direct consequence of the result on page
227 of [ML] on iterated limits. Take € = 1 —=x2 and F': €¢x€ — §, F/(1,1) = Y7,
F(1,2) =Y, F(2,1) = Z; and F(2,2) = Z. Then, by assumption,

lim F(1,—) =Yy, im F(2,—) = Zy, lim F(—,1) = X; and lim F'(—,2) = X,
from where
lim( Yy —=Z ) = limlim F(i, j) = limlim F(4,5) = lim( X; ==X, ) = X, ,
i J J i

which is the desired conclusion. The same type of argument can be used for proving

lemma 1.2.1.

1.3 2-categories

For the basic material on (strict) 2-categories the reader is referred to [KS].



A strict 2-category X has objects or O-cells A, B, ..., arrows or 1-cells f,q,...
and 2-cells «, 3, ..., linked by means of source and target maps as suggested by

the following picture:

.
A}fB.

~ 7
g
These data should satisfy the following conditions:

e The objects and the arrows form an ordinary category, with identities idy

and composition depicted as
f g L 9f
A->B=>C=A=C

e For each pair of objects A, B, the arrows A — B and the 2-cells between

them form a category, with identities id; and composition depicted as

These compositions and identities are called the vertical structure of XK.

e The objects and the 2-cells form a category, with identities idq, and compo-

sition depicted as

f u uf
Ay B C = AmecC
\5_]/1\*5/1 \U‘;/f

These composition and identities are called the horizontal structure of XK.

e The vertical and horizontal category structures are compatible in the sense

that, in the situation

f u
SN TN
A ® B C
\}/\uj



we have
Idu * Idf = Iduf y

and in the situation

~

<o=le

RS
NP

A

K<}

>
g

we have

(0on)*(Boa)=(0xF)o(y*xa).

The prototypical example of a 2-category is K = LCat, where the objects are
(large) categories, the arrows are functors and the 2-cells are natural transforma-
tions.

Another example is X = ALG)., where the objects are k-algebras (k being a fixed
field), an arrow A Y, B is a B-A-bimodule M , and the 2-cells are the morphisms
of bimodules. Here vertical composition is the usual composition of maps, while

horizontal composition is the tensor product of bimodules:

M P Pep M
TN TN TR
A4 B § c=Aspac.
N NG WV
N Q QBN

Other examples will be dealt with in later sections.

1.4 Monoidal categories

The main references for this section are [K, chapter XI] and [P1].

A strict monoidal category 8 is a (strict) 2-category with just one object. It is
easy to see that this structure can be described more directly as follows. § is an
ordinary category with objects A, B, ..., arrows f,g, ..., and in addition there is

given a functor  : § X § — § and an object [ such that



o fo(goh) = (feg)eh for all arrows f, g, h, in particular As(BsC') = (AeB)sC'
for all objects A, B, C', and

o idef = f = feid; for all arrows f, in particular IsA = A = Asl for all

objects A.

In practice we will meet non-strict monoidal categories, which we will treat as
if they were strict. This is legitimate in view of theorem XI.5.3 in [K].

The category 8 = Sets of all sets is monoidal, taking ® to be just the cartesian
product and I a one-element set. More generally, any category with finite products
and a final object can be seen as a monoidal category in this way [ML, proposition
II1.5]. Such categories are called lex categories.

The category 8§ = Vecy of all vector spaces over a field £ is monoidal, taking
® = &, to be the usual tensor product over k, and I = k a one-dimensional space.
Several other monoidal categories will be considered in this work.

Notice that if K is a 2-category, then for any object A of X, there is a monoidal
category 8§ = K (A, A) whose objects are the arrows A — A of X and whose
morphisms are the 2-cells of X among these arrows. The tensor product in 8§
comes from the horizontal composition in K. In section 2.2 we will define a certain
2-category G, then internal categories will be defined as monoids in the monoidal
category §(C, C).

A monoid in a (strict) monoidal category § is a triple (A, yu, ) where A is an
object of § and p : AsA — A and v : I — A are morphisms such that both

diagrams below commute:

u®idg u®idy ida®u

AsAs A — A A IsA AsA Asl

i |+ \ /

|
|
AsA—— A A

A module over a monoid A (or an A-module) is a pair (M, y) where M is an

10



object of 8 and x : AsM — M is a morphism such that both diagrams below

commute:

u®idys u®ids

AsAs M —— AsM  IeM — AsM

i |x \ |x

As M M M

X
Let A and B be two monoids in 8. A morphism of monoids from A to B is a

morphism f : A — B in § such that both diagrams below commute:

AAL BB A

o e \/B

A 7 B I

The category of all monoids in 8 is denoted by Mong.
Let M and N be two A-modules. A morphism of A-modules from M to N is
a morphism f : M — N in 8 such that the diagram below commutes:

As M e As N

M f) N
The category of all A-modules is denoted by ModsA.
Comonoids and comodules in 8§ can be defined similarly, by reversing all arrows
in the above diagrams. We use the notation (C, A, ¢) for comonoids and (M, t)

for C-comodules. The resulting categories are denoted Comong and ComodsC,

respectively. Equivalently, one may define
Comong = (Momnger)”? and ComodsC = (Modser C') |

where K denotes the category obtained from a category X by reversing all the
arrows (if K is monoidal then so is K°, under the same tensor product).

Since comonoids and comodules are the building blocks of the notion of internal
categories, and we will deal with them throughout this work, it is worth displaying

the conditions in their definitions explicitly.

11



For a comonoid (C, A, €), the following commutative diagrams are known as

coassociativity and counitality respectively:

C 2 CsaC I=C &b CsC e Col

| e N3

CsaC mC(@C@C C

Similarly, for a C-comodule (M, t), the following commutative diagrams are known
as coassociativity and counitality respectively:

t €®idM

M CeM I[eM <=——CasM

[ e TR0

C@MWC@C@M M

The above are the definitions for left A-modules and C-comodules. The right and
mixed versions are defined in the obvious way. For instance, a C-D-bicomodule is
a triple (M, s,t) where (M, t) is a left C-comodule, (M, s) is a right D-comodule,
and the following diagram commutes:

t

M CeM .
sl lidc®s
MeD g CeMeD

The category of C-D-bicomodules in 8 is denoted by Bicomods(C, D).

Suppose now that § is a symmetric monoidal category. This means that for
every pair of objects A and B of 8 there is a natural isomorphism 74 5 : AeB —
BeA satisfying some conditions [K, XIII.1.5]. In this case, both Mong and Comong
are monoidal categories under the tensor product of 8. More precisely, if A and B
are monoids in & then so is A« B, via

id4a®7p A®idp
—

(AsB)e(A=B) AsAeBeB 2%, AeB and [ = o] 22, AsB ;

and dually for comonoids. Moreover, Mong and Comong inherit the symmetric

structure from 8 as well.

12



Under this assumption on 8, a bimonoid in & may be defined equivalently as
a comonoid in Mong or as a monoid in Comong. Explicitly, a bimonoid in § is a
5-tuple (H, p,u, A, €) such that (H, u, u) is a monoid in 8, (H, A, €) is a comonoid

in § and the following diagrams commute:

H H
HeH HeH [——1

A®Al T,u@,u

HeoHeHoH ———— HeHeoHeoH

id®»7®id

e®e u

HeH ——Io] [ —H

‘| |a

Hﬁ[ [®[m>H®H

The category of bimonoids is 8 is Bimons = Comony,p. = Moncomon,-

Ezxamples 1.4.1.

1. When § = Vecy, monoids, comonoids and bimonoids are respectively k-algebras,

k-coalgebras and k-bialgebras.

2. When 8 = Sets, we get the usual definition of monoids. Every set X carries a
unique structure of comonoid, given by the diagonal map Ay : X — X x X,
Ax(z) = (x,z), and & : X — I, &(x) = *, where [ = {x}. This is
an obvious consequence of coassociativity and counitality. Hence bimonoids
coincide with monoids in this case. Moreover, X-comodules admit a simple
description as well. Namely, any (left) comodule structure map t : M —
X x M is necessarly of the form t(m) = (£(m), m) where t : M — X is some
(arbitrary) map. Thus we sometimes refer to X-comodules as X-graded sets,

and to t as the degree map.

13



3. The same situation arises more generally when § is any lex category. Any
object X of 8§ admits a unique comonoid structure, given by Ay = (idy, idy)
and the unique map ¢, from X to the final object /. Similarly, X-comodules
are just X-graded objects of 8. These observations are rather trivial, but
they provide the key for finding the right generalization of the notion of
internal categories from lex categories to more general monoidal categories,

as we shall see (section 2.3).

14



Chapter 2

Definition and basic examples

In this chapter internal categories are defined. This is the main concept of this
work. Some basic examples will be discussed as the basic theory of internal cate-
gories is developed in later chapters of this part. The main examples and applica-

tions are postponed until chapters 9 and 10.

2.1 Regular monoidal categories

Let & be a monoidal category in which every pair of parallel arrows has an equal-

!
izer. Let A:g;A’ be a parallel pair of arrows, and B and C objects of §. Let

f
can : Eqg(A :g;A’ ) =A be the canonical map. There is always a canonical map as

follows
f idgcan®i idp® f®idy
BeEqg(A —= A')sC Upcandid, qu(B®A®CB:§ BeA'sC) (*)
g idp®gRido

since (idge feidy) o (idgscansidy) = (idgegeids) o (idgecansid:).
Definition 2.1.1. A monoidal category 8 is called regular if it possesses equalizers

for every pair of parallel arrows and, furthermore, the canonical map (*) is always

an isomorphism.
We say that equalizers are preserved by the tensor product in this case.

Ezxamples 2.1.1.

1. The monoidal category Sets is regular: if (b, a,c) belongs to Eqg(idge feids,
idgegsido), then f(a) = g(a), and hence (b, a, c) belongs to BeEqg(f, g)eC.

More generally, any lex category is regular. In fact, in view of Yoneda’s
lemma [ML,III.2], one can argue by using the same proof as for Sets, where

now b, a and c are to be interpreted as “generalized elements”.

15



2. The monoidal category Vecy is regular. This follows from the fact that
for any pair of linear maps f : V. — V' and g : W — W' Ker(feg) =
Ker feWW 4 VeKerg.

More generally, if R is a commutative ring and § = Modz viewed as a
monoidal category under g, then § is regular if and only if all R-modules are
flat. (This condition is equivalent to R being a regular ring in the sense of
von Neumann by [Row, proposition 2.11.20]; this is the reason for the chosen
terminology). In fact, if 8 is regular, then equalizers and in particular kernels
and monomorphisms are preserved by sz, hence R is regular. Conversely, if

left exact sequences are preserved, consideration of the exact sequence

f _
0—Eqs(A—= A) — A% u

f
shows that Eqg(A ?A’ ) is preserved under eg.

3. It follows from the above examples plus proposition 2.1.1 below that Monoids,
the category of ordinary set-monoids, and Alg,, the category of k-algebras,

are regular monoidal categories. So is Groups.

4. Let 8 be a monoidal category. Then 8 (a monoidal category under the
same tensor product as that of §) is regular if and only if the tensor product
preserves coequalizers in 8. Vec;”, and more generally Mod? for any ring R,
is regular, since e is always right exact. Sets is also regular, by [ML,

exercise V.4.4].

f
5. Alg” is regular. In fact, the coequalizer in Alg, of A?A/ is A/I(f,q),
where I(f, g) is the ideal generated by {f(a) — g(a) / a € A}. Now, if B is

any other k-algebra, clearly

I(idgef,idgeg) = ({bof(a) —beg(a) / b€ B,a € A}) = BoI(f,g) ;

16



hence, Coeqy,,, (idsef,idgeg) =
= BeA'/I(idgof,idgeg) = BoA'/BaI(f,g) = BeCoeqyyy, (f,9) -
Recall that when 8 is a symmetric monoidal category, then so is Mong (section
1.4).

Proposition 2.1.1. Let 8 be a symmetric monoidal category. If 8 has equalizers

then so does Mong, and if S is reqular then so is Momns.

f can .
Proof. Let A :g;A’ be a parallel pair in Mong. Let Ey — A be the equalizer of

f and g in 8. Then there is a map myq : FgoEy — Ey as below

can®can fer
EyoEy—= Ac A —Z Als A’

| g®g
mo | ’i‘ l/m’
v f

Eq A A

can
g

because fm(canscan) = m/(fef)(canecan) = m/(geg)(canecan) = gm(canscan).

Similarly there is a map ug : I — FEy as below

EO <=0 A L Al
> A /94
N
ug N\ N T u’
1

because fu = u' = gu. Then (Ey, myg, up) becomes a monoid in §; the associativity
and unitality conditions follow from those for (A, m,w), plus the fact that can is
a monomorphism (being an equalizer). For instance, let us check left unitality.
In the following 3-d diagram, the front triangular face commutes by left unitality
for A, the top rectangular face by definition of wug, the lateral rectangular face

by definition of mg, and the hidden rectangular face by unitality in the monoidal

category 8. Since can is monic, it follows that the bottom triangular face commutes,

17



and this is left unitality for Ej.

up®id

[®E0 E—— E0®E0

id®can
can®can mo
u®id

[®A<A®A
A

Notice that by construction of mg and ug, can : £y — A is a morphism of monoids.
Let « : M — A be a morphism of monoids such that fa = ga. Then there
is a unique morphism oy : M — Fj such that canay = «a. To conclude that
can : £y — A is the equalizer in Mong of f and g, it only remains to show that «y
is a morphism of monoids. Again this follows from the corresponding fact for «,
plus the fact that can is monic.

Finally, if 8 is regular, then so is Mong, because if a morphism of monoids is
invertible in 8, then it is clear that its inverse is also a morphism of monoids, hence

the given map is an isomorphism in Mong. O
Remarks 2.1.1.

1. We have just shown that the forgetful functor Mong — 8 creates isomorphims
and equalizers. One can similarly show that it creates limits. This is [P,
proposition 2.5].

!

f f
2. Let A _>—g>B and A’ —=B’ be two parallel pairs in a monoidal category
g/
8. There is a canonical map

Eqs(f. 9)eEqs(f, g) = Eqg(fef', gog') .

This map need not be an isomorphism, even when 8 is regular: consider
the case 8§ = Vecy, [/ = ¢ = g = 0, f = idy. However, canecan is a
monomorphism when § is regular, since it is the composite of canzid and

id ecan, which are monic by regularity.
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2.2 The 2-category of bicomodules

From now on 8 is assumed to be a regular monoidal category (section 2.1).
Recall (section 1.3) that k-algebras can be seen as the objects of a 2-category,
whose arrows and 2-cells are bimodules and morphisms of bimodules respectively.
Horizontal composition is tensor product of bimodules, which is defined as a certain
coequalizer. This construction can be carried out more generally replacing Vecy
by any monoidal category where the tensor product preserves coequalizers. We
are interested in the dual version of this: given a regular monoidal category §, we

will construct in this section a 2-category G as follows:

e the objects of G are the comonoids in §
e the arrows C — D of G are the D-C-bicomodules in 8
e the 2-cells of G are the morphisms of bicomodules

e horizontal composition is the tensor coproduct of bicomodules.

The regularity assumption is needed in order to get an associative and unital tensor
coproduct, as we shall see.

The tensor coproduct of bicomodules is a well-known notion in the context
of k-coalgebra theory (that is when 8§ = Vecy), see for instance [Mon, definition
8.4.2], where it is called “cotensor product” and denoted by the symbol Og. We

will use the symbol & instead.

Definition 2.2.1. The tensor coproduct of a D-C-bicomodule (Ay, s1,t;) with a

C-E-bicomodule (Aj, s9,t5) is the following object of §:

51®idh
Aye€Ay = Eqg(AreAy —= A1sCady) .

id ®to
First, we show that A;s“A, carries a natural structure of D-FE-bicomodule. No-

tice that (AjeAs, idiess, tieid) is a D-E-bicomodule; coassociativity and counitality
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follow from those for (Ay,¢;) and (As, s2), and cocommutativity

A1®A2 hoid: D®A1®A2
id1®52l lidD®id1®32
Ai0Asel] —— DeA0AseE

t11Qih®idg

is obvious.

Proposition 2.2.1. There are unique maps s : Aje°Ay — (A1e€As)eFE and t :

A1e°Ay — De(A1e°Ay) fitting in commutative diagrams:

A1®CA2 n A1®A2 A1®CA2 < A1®A2
I I
s | lid1®82 tl lh@icb

A A
(A1®CA2)®EmA1®A2®E D®(A1®CA2)I,M”D®A1®A2

In other words, A1eAy is a D-E-subbicomodule of Ao As via can.
Proof. By regularity, (Aje°As)eFE = Eq(sieideids, idetaeidg). Therefore, to prove

the existence and uniqueness of s, we need to show that

(s10idheidr) (idiess)can = (idietasidg ) (id@sy)can .

Now, since A, is a bicomodule, s, and t, cocommute. This, and the definition of

Aje€Ay as an equalizer, allows us to argue that

(id1®t2®idE)(id1®52)can = (id1®idc®32)(id1®t2)can
= (idividoess)(s1eidy)can = (sqeidhoidg ) (idosg)can.

Similarly one shows the corresponding assertion for ¢. The bicomodule axioms for

Aqe€Ay follow from those for AjsA,, plus the fact that can is monic. O

Now we define the tensor coproduct of morphisms. Let f; : Ay — A} and
fo i Ay — A} be morphisms of D-C' and C-E-bicomodules respectively. The two

composites below

Aqe” can f9f2 pr g _>5l1®ic£ / !
1694 —— A0 Ay —= Al A v AleCeAj
id, ®t),
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are respectively equal to, by assumption on f; and fs,

Sl®id2 ®i ®
Ay 0 Ao Ay s AeCe AT 2P .00 A |
1 2

which are actually one same map by definition of A;°A5. It follows that there is

a unique map f1e°fs fitting into the commutative diagram

A1®CA2 == A1®A2
I
f1®c 2 I lf1®f2
\

FeCAL —— Al oAl
® ®
187Ay > A 184y

Functoriality of ¢ follows from this uniqueness property plus the functoriality of
®. It is also clear that f1e°f5 is a morphism of D-FE-bicomodules. We have thus

constructed a functor
«“: Bicomods(D, C') x Bicomods(C, E) — Bicomods(D, E) .

We next prove that the tensor coproduct is associative. To this end it is con-
venient to introduce the triple tensor coproduct of bicomodules as follows. Let C}
be a comonoid in 8 for i = 0,1,2,3 and (A;, s;,t;) be a C;_1-Cj-bicomodule for
1 =1,2,3. Then we define

51059@id3
A1®01A2®02A3 = Eq8(A1®A2®A31%141@01@142@02@143) .

id| ®to®ts
Proposition 2.2.2. There are canonical isomorphisms of Cy-Cs-bicomodules
(A1®01A2)®02A3 = A1®01A2®02A3 = A1®01(A2®02A3) .
Proof. We will show that the following composite
can®idy

(A1®01A2)®02A3 = (A1®01A2)®A3 _— A1®A2®A3

is the equalizer of sjssoeidy and idietasts. This will prove the first isomorphism

claimed; the proof for the other is analogous.
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To this end, consider the following diagram in §

512®id3

(A1®01A2)®02A3 < (A1®01A2)®A3 (A1®01A2)®02®A3
id2®t3

can®c?|d; can®idy can®idc, ®ids
id1®s2®ids

(A1®A2)®02A3 can A1®A2®A3 — A1®A2®02®A3
id ®ihb®ts

id1®t2®cﬁd3 51®id2®02id3 id ®taRids | | 51Qih®ids idi ®t2®idc, ®ids | | $1Qid®idc, Qidy

id Dide, ®s20ich
(A1®01®A2)®02A3 R

A1®Cl®A2®A3 A1®01®A2®02®A3

can id) ®ide, BidySts

Let us check the hypothesis in Johnstone’s lemma 1.2.1. The diagrams com-
mute as required, either by naturality of can, definition of s;5 or functoriality
of . By regularity, the rows and columns of this diagram are equalizers, ex-
cept perhaps for the first column. But this is automatic in view of lemma 1.2.2.
Also, (idieids, @s90ids, idieidy, sidets) and (idetosids, s1eideids,sid) are both coreflex-
ive pairs, being split respectively by idisidy sidhee, eidy and idiee, sideids,eids. Thus

Johnstone’s lemma applies, and it yields precisely the desired conclusion. O

Remark 2.2.1. One can use lemma 1.2.2 in the same way as in the proof above to

deduce that the tensor coproduct over C preserves equalizers.

Notice that for any comonoid (C, A, €), (C, A, A) becomes a C-C-bicomodule.
Moreover, for any D-C-bicomodule (A, s,t), s : A — AeC and t : A — DeA are
morphisms of D-C-bicomodules, precisely by definition of bicomodule. Now it is

time for the unitality of the tensor coproduct.

Proposition 2.2.3. Let (A, s,t) be a D-C-bicomodule. There are canonical iso-

morphisms of D-C-bicomodules as follows:

A—">AsC  A—>DsA
g\\A Tcan - \{ Tcan
AecC DsPA
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Proof. Let us check the assertion for s, that for ¢ is analogous. By definition of
«C it is enough to show that s : A — AsC' is the equalizer of ssid> and idsel.
Consider the diagram
s s®ide
A—> AsC —= A=Ce(C
ida®Ac
Coassociativity for (A, s) says precisely that this diagram is a fork. Counital-

ity says, moreover, that this fork is split by idjee. : AsC' — A and idgeidoee, :

AsCe(C' — AsC. Hence this is an equalizer diagram by lemma 1.1.1. O
We can summarize the above results as follows.

Theorem 2.2.1. Let § be a regqular monoidal category. There is a 2-category G

such that

the objects of G are the comonoids in S,

the arrows C — D of G are the D-C-bicomodules in S, the identity of C

being the C-C-bicomodule (C, A, &),

the 2-cells of G are the morphisms of bicomodules, with obvious vertical com-

position and identities, and

horizontal composition is the tensor coproduct of bicomodules and their mor-

phisms.

Proof. The relevant work has already been done in the above propositions and
constructions. For instance, the compatibility between the vertical and horizontal

structures is precisely the functoriality of «€. O

2.3 Internal graphs and categories

Recall (section 1.4) that for any object C' of a 2-category G, there is a monoidal

category G(C, C') whose objects and morphisms are respectively the arrows C' — C'
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of G and the 2-cells among them, and whose tensor product comes from horizontal

composition in §. From theorem 2.2.1 we thus deduce that:

Corollary 2.3.1. Let C' be a comonoid in a reqular monoidal category 8. There is
a monoidal category So consisting of C-C-bicomodules and their morphisms, with

tensor product «° and unit object (C, Ao, o).
Proof. Take G = G(C,C) in theorem 2.2.1. O
We thus arrive at the main definition of this work.

Definition 2.3.1. An object of the monoidal category G¢ is called an internal
graph or a graph object in 8. We refer to C' as the base of the graph, or we say that
the graph is over C. A monoid in G¢ is called an internal category or a category

object in 8.

We first discuss a few particular instances of these definitions.

Ezxamples 2.3.1.

1. Let I be the unit object of 8. Then every object of 8§ has a unique /-I-bicomodule
structure, given by the identity of I. It follows that §; = §, and thus a cat-

egory over [ is just a monoid in 8.

2. Let 8 be a lex category, that is a category with finite products and equalizers.
As mentioned in section 1.4, any object X of 8§ carries in this case a unique
comonoid structure and, moreover, a graph over X is just an X-X-graded
object. This is the usual definition of internal graph to a lex category, as
for instance in [CPP]. In addition, it is immediate from the definition that
the tensor coproduct of bicomodules (A;, s;,t;) coincides with the pull-back

of bigraded objects:
Ay x X Ay = {(al,ag) € A x Ay / S~1(a1) = t~2(a2)},
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where s;(a) = (a, §;(a)) and t;(a) = (t;(a), a), and §; and t; denote the degree
maps (as explained in section 1.4). Therefore, our definition of internal cate-
gory also reduces to the usual one [Joh 2.1, CPP] in this case. In particular,
internal graphs and categories to Sets are respectively just small graphs and

categories, in the usual sense of [ML, chapter 1.2].

Before moving on to other basic examples, let us make explicit the conditions in
definition 2.3.1. Recalling that the unit object of the category G¢ of graphs over C
is (C, Ac, &), we see that a category object € in § is a 6-tuple € = (A, C, s,t,1,m)
where

e (' is a comonoid in 3,

e (A, s,t) is a C-C-bicomodule, s being the right and ¢ the left structures,

e ;:(C — Ais a morphism of C-C-bicomodules,

e m : AsA — A is a morphism of C-C-bicomodules,

and these are such that the following diagrams commute:

i€%da ida &% ida®“m

CsCA AeCA AecC (AeCA)eCA = As(ACA) — AsCA .

ST T
A AsCA A

We sometimes refer to (A, C, s, t,i,m) respectively as the “arrows, objects, source
and target maps, identities and composition” of the internal category €. The
requirements that ¢ and m be morphisms of bicomodules can be described by
saying that they preserve sources and targets. This is their precise meaning when
S = Sets (or any lex category). The commutative diagrams above will be referred
to as the unitality and associativity conditions for €. When explicit mention of

part of the structure is not needed, we will abbreviate € = (A,C,...).
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Table 2.1: Instances of internal categories

S ‘ Comonoid C' ‘ Graph over C ‘ Category over C
Sets set usual small graph usual small category
Monotds monoid small strict
monoidal category
Groups group catigroup
Vecy k-coalgebra C' C-C-bicomodule see chapter 9
when C' = kX linear graph linear category
over X over X
Vec)” k-algebra C-C-bimodule k-coalgebroid
Alg, k-bialgebra | C-C-bicomodule-algebra see chapter 10
Arg? commutative k-algebroid k-bialgebroid
k-algebra

2.4 Basic examples

Internal categories to monoidal categories encompass various different concepts
such as linear categories [Mit], algebroids (called graphs in [Mall]), coalgebroids
[Del] and bialgebroids [Rav, Mal], as displayed in table 2.1. From the point of
view of this work, however, the most relevant applications to quantum group theory
arise instead from internal categories to Vecy (including linear categories), as we
will see in chapter 9, or from internal categories to 4Alg,, as we will see in chapter

10.

Let us explain the terminology and assertions in the table. We have already
mentioned that a category in Sets is just an ordinary small category. If € =
(A, X,...) is a category in Monoids, the multiplication of A and X can be seen
as a tensor product ¢ on the arrows and objects of €; functoriality of © being
equivalent to m being a morphism of monoids. This turns € into a strict monoidal

category, and one can proceed conversely.
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Categories in Groups have been considered at various places in the literature;
they can be described more succintly as crossed modules or as cattgroups [Lodl].
A generalization of this equivalence to other monoidal categories (replacing Sets
by Vecy, for instance) is possible; this is the object of chapter 10.

Categories in Vec; are studied in chapter 9, with an eye on applications to
quantum groups. A k-linear category yields the simplest example of a category
in Vecy: the base coalgebra is the group-like coalgebra kX, where X is the set of
objects of the given category. See section 9.1 for more details.

Deligne has introduced the notion of a k-coalgebroid ([Del], also [Mal]). Com-
paring the definitions one sees immediately that this coincides with the notion of
a category in Vec;’.

Categories in A1g, are studied in chapter 10, where the closely related notion
of cattalgebra is defined, and the results on catigroups described above extended.

Let us look at the case 8§ = Alg,” in detail. First, a comonoid in 41g;" is just a
monoid in Alg,, and this is precisely a commutative k-algebra, by the well-known
Hilton-Eckmann argument [ML, exercise I11.5.5]. Now, let (A, K, s,t) be a graph
in 41g;”. Thus, K is a commutative k-algebra, A is a k-algebra, and s : Ae K — A
and t : KeA — A are morphisms of k-algebras that turn A into a K-K-bimodule.
Define § : K — A by 3(z) = s(lex) and t : K — A by t(x) = t(zel). Then

§ = s o (ueidy) is a morphism of algebras, and by unitality s(as1) = a, hence
s(x)a = s(lex)s(asl) = s(asx) = s(asl)s(lex) = ad(x),

ie. Im§ C Z(A). Similarly, f : K — A is a morphism of algebras and Im¢ C
Z(A). Therefore, (A, K, 3,t) is precisely what Ravenel calls a K-algebroid [Rav]
(and Maltsiniotis a “graph” [Mal]). Conversely, any K-algebroid comes from a

unique graph in Alg” as above, so the concepts are equivalent. Finally, since

a K-bialgebroid [Rav, Mal] can be defined as a comonoid in the category of
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K-algebroids, it follows that K-bialgebroids and categories in 41g” are equiva-
lent concepts too.

We next describe the simplest examples of internal categories.

Examples 2.4.1.

1. For any comonoid C' in 8, there is a category in &

C=(C,C, A, Aoy ide, AY)

called the discrete category on C. (Recall from proposition 2.2.3 that A¢ :
C — CC is an isomorphism). When 8 = Sets, the only arrows of this

category are the identities.

2. For any monoid A in 8 there is a one-object category in &

A = (A7 Ia idAa idAa ug, IUA) .

Together with the previous one, this example shows that category objects

generalize at the same time the notions of monoids and comonoids.
3. The one-arrow category in 8 is J = [= I where I is the unit object of I.

4. For any comonoid C' in 8, the pair or coarse category on C in 8 is

C = (C=C, C,id=lc, Aceide, A, idoeoeside) -

5. The definition of internal categories is as flexible as to admit as an example
the following category with “no arrows at all”. Suppose & has a zero object
0 such that 0sV = 0 = V0 for every object V of 8. This is the case for
instance when 8§ = Vec,. Then for every comonoid C' in § there is defined

the empty category over C' as
bc = (0,C,s,t,i,m)
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where all s, ¢, ¢ and m are zero. The axioms hold trivially. Notice that in
this case 4 is not a monomorphism, unlike the case of lex categories (where ¢

is split by both § and t).
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Chapter 3
Corestriction and coinduction of

comodules

The familiar adjunction between restriction and induction for modules over k-algebras
holds in fact for arbitrary monoidal categories. We prove below the dual version
of this result, since it is mostly in this form that we will use it later.

Let f: C — D be a morphism of comonoids in a monoidal category 8.

If (M, t) is a left C-comodule, we let (M denote the same object M but viewed

as left D-comodule via the map
ML oM 9% Dol

We say that (M is obtained from M by corestriction via f.

Corestriction is a functor
coresy : ComodsC' — ComodsD, M +— (M .

Right corestriction is defined similarly; if M is a right C-comodule, we let My
denote the corresponding right D-comodule. More generally, if f' : C' — D’ is

another morphism of comonoids, there is the two-sided corestriction functor
coresy ¢ : Bicomods(C, C') — Bicomods(D, D'), M +— My .

Assume now that 8 is a regular monoidal category, so that the tensor coproduct

of bicomodules is well-defined and associative (section 2.2).

Lemma 3.0.1. Let X be a right C'-comodule and Y a left one. Then there is a

natural monomorphism X<Y — XpePlY making XeY — — — — =X P commu-
c;m An
XoY
tative.
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Proof. The dotted arrow can be filled in because the squares below commute by

definition of corestriction.

s®idy
XY —" > XoY _ﬁ XoOsY
| 1ax
idy ® f®idy
st®|dy ‘/

I
Xf@DfY—>Xf®fY XeDeY

Idx®tfy

O

The C-D-bicomodule Cf is used to define the coinduction functor as follows:
coind; : ComodsD — ComodC, N +— CePN .
Proposition 3.0.1. coind; is right adjoint to coresy.

Proof. We have to show that
Hom¢ (M, CpePN) =2 Homp (M, N)

naturally in M € ComodC and N € ComodsD.
The correspondences are as follows: given u € Home (M, CysPN), one defines

@ € Homp (M, N) as the composite
i MY CpePN <2, N

and given v € Homp (M, N) one defines 0 € Homg (M, CpePN) as

|cb®Dv

M —> CefM — Cf@erM Cf@DN,

where we have made use of the canonical maps of lemmas 2.2.3 and 3.0.1.
Let us check that ~and " are in fact inverse correspondences, but omit the proof

that @ and v are morphisms of comodules as claimed, which is similar.
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First, 0 = v simply by counitality for (M,t). On the other hand, the commu-

tativity of the following diagram shows that @ = u:

M _t C®CM —_— Cf@DfM IdC@Dqu®Dfo®DN deBectidy C o N

|do®c
NAC®DdN

Remarks 3.0.1.

1. Suppose that M and N are C-E-and D-FE-bicomodules respectively. Then

the proof above also shows that there is a natural bijection

Home g(M, CysPN) = Homp g(/M, N) .

2. The right version of this result holds as well:
HomE_C(M, N®DfC) = HomE_D(Mf, N) s

naturally in M € Bicomods(E,C) and N € Bicomods(E, D). A particular

instance of this that will get used many times later is:
Homq(C, NeC') = Homg(C, N) under u +— (idye¢.) o

where N is any object of § and Hom¢ denotes morphisms of right C'-comodules.

(To deduce it from the previous one, take D = I, f = ¢.).
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Chapter 4

Functors and cofunctors
4.1 Functors and natural transformations

In this section we introduce the most natural (but, from the point of view of this
work, not the most useful) notion of morphism between internal categories; namely,

functors, along with their natural transformations.

Definition 4.1.1. Let € = (A,C,...) and ® = (B, D,...) be categories in 8. A

functor f: € — ® is a pair f = (f1, fo) where

e fo: C — D is a morphism of comonoids in §,

e fi: A — B is a morphism in §,

and the following diagrams commute

f1 f1 f1

A B A B A—DB
LT A R
AsC Ter BeD (CsA rys DsB C rae D

gn
ACA—— ArA L poop

A P B

Above, A is viewed as D-bicomodule by corestriction via fy. Hence the canon-
ical map A«“A — Ao A maps to AsPA. The first two diagrams say that f; : A — B
is a morphism of D-bicomodules, hence f«”f; : AsPA — BePB is defined.

The composition of two functors f : € — ® and g : ® — € is the functor
h=gof:€— ¢&defined by hg = go o fo and hy = g; o fi. The identity functor
of € is idg = (id4,id>). We use ﬁ’g to denote the category whose objects are the

internal categories to & with functors as morphisms.
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A category € is said to be augmented if it admits a functor € : € — J. In this
case necessarly ¢ = €., since this is the unique morphism of comonoids C' — I. If
S is lex then every category is uniquely augmented. In general a category need not

be augmented, see below.

Ezxamples 4.1.1.

1. Let C' and D be two comonoids in &. If f : C' — D is a morphism of
comonoids then (f, f) : C — D is a functor; conversely, any functor C — D
is of that form for some f. This yields a fully-faithful functor Comong — C’cTtg.
In particular there is a unique functor € : C— J, given by € = (&, ¢ ). Thus

C is augmented.

2. Let A and B be two monoids in 8. If f : A — B is a morphism of monoids

then (f,id) : A — B is a functor; conversely, any functor A — B is of

that form for some f. This yields a fully-faithful functor Mong — ﬁg.

In particular there is a unique functor u : 3 — A, given by u = (w,id).

Not every monoid A admits a morphism to /. Hence not every category is

augmented.

3. @ is augmented via (o€, €).

4. For any category € over C in $ there is a functor C — € given by (1,id0). If €

is augmented, with augmentation €, then there is also a functor € — @ given

by ids : € — C and A 5 AeC 2%, CoAeC X299, 0o Conversely, if

there is a functor f: € — @ then € is augmented via < © f

Definition 4.1.2. Let f,g : € — ® be two functors. A natural transformation
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a: f = gisamorphism a : C'— B in § such that the following diagrams commute

67

C B  C—>—B

S I

C@CWB@D CeC — DsB

go®«

&Pa
AscC—— AP "% BB
A B
CeCA— Cf®DfA ? BePB
a®”f1

To explain the notation in the last diagram, notice that the first two diagrams
say that o : Oy — B is a morphism of D-D-bicomodules, where the subindices
denote corestriction via (go, fo) as in chapter 3. Recall also that, by definition of
functor, f; : jA; :— B is a morphism of D-D-bicomodules, and similarly for g;
hence, the maps g;#°a and aePf; in the third diagram are well-defined. We have
also made use of the canonical map of lemma 3.0.1.

The identity natural transformation id; : f = f is defined by the map C Jo,
D -5 B. In this case the commutativity of diagrams 4.1.2 follows from the defini-
tion of functor for f and the unitality property for €.

Now consider three functors f,g,h : € — ® and natural transformations « :
f=gand §:g= h. The composition Jo« : f = h is defined by the composite
map

C 2, CurC s 0 P70 BB ™ B

where we have made use of the canonical map of lemma 3.0.1. Let us check the
axioms for a natural transformation in detail. As explained above, the commuta-
tivity of the first two diagrams in 4.1.2 is equivalent to the fact that Soa : ;}Cy — B

be a morphism of D-D-bicomodules. To see that this is the case we make explicit
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the bicomodule structures involved in the definition of 5 o @ as a composition:

th i hC®CCf — th®DgC'f & BePB H B .

Since m, «, # and A are all morphisms of D-D-bicomodules as indicated, so is

[ oa. The remaining condition is the commutativity of the diagram below, which

holds by
(1) coassociativity of s and ¢
(2) s and t cocommute
(3) a and [ are natural transformations

(4) associativity of m.

|dA®DAc |dB

APC' —— AePC! ®DC' B PBePB ——> BsPB
5®D|ct~ mePdg
s 1 APC' (3) BgPB (4) m

/ tePdo mePids \

AP BB ) S B
X idoePs  idpePm /
t 1 CePA () BePB  (4) m
ido®Pt ids®Pm

CePA —> C@DC®DA BePBePB —— BsPB
®Da®D f1 m®-idg

One can similarly deﬁne the horizontal composition of a natural transformation

with a functor. One obtains in this way a 2-category of internal categories, functors
and natural transformations, that we still denote by C’(Ttg.

We next describe the monoid of endomorphisms in Wg of the identity func-
tor idge for some simple choices of €. It is easy to see that End(idy) is always a
commutative monoid; this is a general fact for 2-categories. Later we will prove
the stronger assertion that End(idg) is in the center of the monoid of admissible

sections of € (corollary 5.3.1).
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Ezxamples 4.1.2.

For the functor € : C — J we have End(e) = Homg(C, I); the naturality of any
such map C' — [ boils down to the counitality of C'. In this case the composition
of natural transformations coincides with the convolution product in Homg(C, I).

By generalities on 2-categories, € induces a morphism of monoids

End(id-~

C) — End(eo IdC) = Homg(C\,I), a— ¢ oa .

It is easy to see that this is an isomorphism onto {¢ € Homg(C, I) / (¢eid) o Ax =
(idcew) o Ac}, which is a submonoid of the center of Homg(C', I).
For the functor v : 3 — A we have End(u) = Homg(I, A); the naturality of any

such map I — A boils down to the unitality of A. In this case the composition
of natural transformations coincides with the convolution product in Homg(7, A).

By generalities on 2-categories, u induces a morphism of monoids

End(idy ) — End(idp o u) = Homg(I, A), a+— aoid

which turns out to be the inclusion. It is easy to see that in fact End(idy ) = {a €

Homg(1, A) / ua o (asids) = pa o (idaea)}, which is a submonoid of the center of
Homg(1, A).

4.2 Cofunctors and natural cotransformations

In this section we introduce an alternative notion of morphism for internal cate-
gories, with respect to which most later constructions will be functorial. This is

one of the most important technical notions in this work.

Definition 4.2.1. Let € = (A,C,...) and ® = (B, D,...) be categories in 8. A

cofunctor ¢ : € — ® is a pair ¢ = (¢1, o) where
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e ©g: D — (C is a morphism of comonoids in §,

e 1 : A«°D — B is a morphism of C-D-bicomodules in § (where B and D are

viewed as left C-comodules by corestriction via ¢y),

and the following diagrams commute

. oD
ALD -2 B ACAD YR e & AweDrB 2L pn

i®cidD T TZ m®CidD l lm

CsD <~—D AsCD B

®1

Cofunctors can be composed. Given two cofunctors ¢ : € - D and ¢ : © — €,
where € = (P,C,...), ® = (Q,D,...) and € = (R, E,...), the composite p =

Yop: € — €is defined as p = (p1, po) where
pO:EmDﬂCand

| PeCE = PeeDerE 29N, 0op YL R
p

Composition of cofunctors is associative and has identities: the identity cofunctor
of Cis (id, idp). We use ﬁg to denote the category whose objects are the internal

categories to & with cofunctors as morphisms.

Remark 4.2.1. Let € and © be categories over the same comonoid C' = D. A
cofunctor ¢ = (p1, o) : € — D with ¢y = id: is the same as a functor f = (f1, fo) :

¢ — ® with fy = ids, via AC 2~ B ; the cofunctor and functor axioms

tji /

correspond to each other in this case. Similarly, a cofunctor ¢ = (¢1,¢g) : € — D
with ¢ invertible is the same as a functor f = (fi, fo) : € — ® with fy = p;*. In

particular, isomorphisms in Catg coincide with isomorphisms in Catsg.

Ezxamples 4.2.1.
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1. Let C' and D be two comonoids in §. Let ¢y : D — C' be a morphism of
comonoids. Then there is a cofunctor (¢1, @) : C — D where ¢ is the
canonical isomorphism C«“D — D. Conversely, any cofunctor C — Dis of
this form for some q. This yields a fully-faithful functor (Comong)? — Cats.

In particular there is a unique cofunctor J — C.

2. There is a fully-faithful functor Mong — ms. This follows from the corre-
sponding fact for WS (examples 4.1.1), plus remark 4.2.1 that functors over
the identity are the same as cofunctors over the identity. In particular there

is a unique cofunctor J — A.

3. For any category €, there is a unique cofunctor G.7o¢ given by the pair

C % Jand I4C =2 C 5 A.

Definition 4.2.2. Let ¢,1 : € — © be two cofunctors. A natural cotransforma-

tion a : o = v is a morphism « : D — B in 8 such that the following diagrams

commute
D—*—=pB D—*—=B
s b
DsD P BeD DsD DsB
a®idp
<p0®ile lw()@idB
CeD — CsB

ido®a

A€y B —Zo A€, DB poop

id@7 X

AsC,D B

S <

B——=D"B Bs"B

a® idp
To explain the subindices in the last diagram, notice that the first diagram

says that a : D — B is a morphism of right D-comodules, while the second one
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that o : ;D — 4B is a morphism of left C-comodules; these subindices denote
left corestriction via ¢y and 1y respectively, as in chapter 3. Recall also that, by
definition of cofunctor, vy : A<D — B is a morphism of right D-comodules, and
similarly for ¢; hence, the maps in the third diagram are well-defined.

The identity natural cotransformation id, : ¢ = ¢ is defined by the map
1: C'— A. The commutativity of diagrams 4.2.2 is easy to check in this case.

Now consider three cofunctors ¢, 1, p : € — ® and natural cotransformations
a: @ =1 and §: 1Y = p. The composition o« : ¢ = p is defined by the
composite map

D% B4 DB P, pop ™ B

Let us check the axioms for a natural cotransformation in detail. As explained
above, the commutativity of the first two diagrams in 4.2.2 is equivalent to the
fact that foa : ,D — ,B be a morphism of C-D-bicomodules. To see that this is
the case we make explicit the bicomodule structures involved in the definition of

[ o« as a composition:

BPidg

D% B L DB 2 BerB I B
Since m, «, # and t are all morphisms of C-D-bicomodules as indicated, so is foa.
The remaining condition is the commutativity of the diagram below, which holds
by
(1) associativity of m
(2) conaturality of 3

(3) conaturality of «
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AsB A@CD@PB

AefBePB — A@CD®DB®DB B@DB
idA@/ m®D|dB
AsCDsPB (2) BePB
¥188dp mePdp \

1%

As“B BB DerBerB % BooBSB
46’ IdB®Dm
idA‘% a (3)
AsCD = > DePB % BPB /i
B DsPB —- == DePB#B — - BePBB = BB
a®"idp = m

Moreover, composition of natural Cotransformatlons is assomatlve, and uni-
tal with respect to the identity defined above. In fact, what we just did is to
show that the set of all natural cotransformations {a : ¢ — ¥ / @, ¢ : € —
® are cofunctors } is a submonoid of the monoid of admissible sections I'(D), to
be introduced in section 5.1.

One can similarly define the horizontal composition of a natural cotransforma-
tion with a cofunctor. One obtains in this way a 2-category of internal categories,
cofunctors and natural cotransformations, that we still denote by %g.

Finally, let us mention that if the cofunctors ¢ and i are both the identity
on objects, so that they can equivalently be seen as functors, then any natural

cotransformation ¢ = 1 can equivalently be seen as a natural transformation

o= 1.

4.3 Functors versus cofunctors

In this section we compare the definitions of functors and cofunctors in various
ways. These results should be useful in gaining familiarity with the a priori not so

natural notion of cofunctor.
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First, in the case § = Sets, we may describe functors f : € — ® and cofunctors

¢ : € — D through pictures as follows.

a ®1 (avy)
¢ e B D y— Y
1 fll I I 1
f l fo () fo % %o L 1%00
D fo(x) fo(@') ¢ eoy) T woly)

These are meant to indicate the behavior of the various maps with respect to source
and targets. Similar pictures can be used to describe compositions, unitality and
associativity both for functors and cofunctors. We see that, just as a functor can
be thought ot as “push-forward” of arrows from the category € to the category ©,
a cofunctor may be thought of as a “lifting” of arrows from € to ©. Moreover,
these push-forward and lifting should preserve identities and compositions in the
obvious ways.

This model becomes even more meaningful in the following particular example.
Let X and Y be topological spaces, f : X — Y a continuous map and p: Y — X
a covering space map. Let m(X) and 7(Y") denote the fundamental groupoids of X
and Y. Then there is a functor f, : 7(X) — 7(Y’), obtained by pushing paths on X
forward to Y through composition with f, but also a cofunctor p* : 7(X) — m(Y),
obtained by lifting paths from X to Y along p (the unique lifting property of p
guarantees that compositions and identities are preserved).

Next, we discuss an alternative description of the notion of functor, which
highlights its “duality” with the notion of cofunctor. This is valid for any 8, and

is based on the adjunction
Homep (M, CyePN) = Homp p(;M, N) .

for C-D-bicomodules M and D-D-bicomodules N, where there is given a morphism

of comonoids f: C'— D (remark 3.0.1).
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Let € = (A,C,...) and © = (B, D,...) be categories in § and f : € — D a
functor, f = (f1, fo) as in definition 4.1.1. Recall that f; : jA; — B is a morphism
of D-D-bicomodules, where the subindices denote corestriction along f,. Hence

1 corresponds, under the adjunction above (M = A;, N = B), to a morphism
f p ) ] f ) p

fi: Ay — CyePB of C-D-bicomodules. Let us rename
o= fo:C — D and golzflef—>Cf®DB.

One checks easily that the conditions in definition 4.1.1 for (fi, fy) translate into

the following conditions for (¢1, ¢o):

e ¢y : C — D is a morphism of comonoids in §,

e v : A — (Ce¢PB is a morphism of C-D-bicomodules in 8§ (where A and C' are

viewed as right D-comodules by corestriction via (),

and the following diagrams commute

ida @1 p16Mdp

A—2> CPB ACA L ACCPB =~ APB 2S5 CePBePB

{ e e

C — C«PD A C«"B

1
These conditions are to be compared with those in definition 4.2.1 of cofunctor.
The “duality” is remarkable.

There is a parallel alternative description of natural transformations, which
bears the same dual relationship to that of natural cotransformations. Let f, g :
¢ — ® be functors and « : f = ¢ a natural transformation as in definition 4.1.2.
View f and g as pairs (g1, po) and (¢1,1) as above. Recall that o : ), — B is
a morphism of D-D-bicomodules, where the subindices denote corestriction along
o = fo and 1y = go. Hence a corresponds, under the adjunction above (M = C,,
N = B), to a morphism & : C, — Cys”B of C-D-bicomodules. Again, one checks

easily that the conditions in definition 4.1.2 for o translate into the following
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conditions for a: & : U, — CyePB is a morphism of C-D-bicomodules and the

following diagram commutes

AsCyPB —= 0 AyePBY 0 o0BerR

s &

AC,, Cye”B

1%

A

Cp"B — CyPBs"B

e a®Pids
These conditions are to be compaired with those in definition 4.2.2 of natural
cotransformation.

Let us close this section by mentioning that both functors and cofunctors
¢ — ® naturally give rise to particular €-®-birepresentations. When 8§ = Sets,

birepresentations are also called profunctors in the literature. For reasons of space,

birepresentations will not be discussed in this work.

4.4 Cofunctors in Sets

Higgins and Mackenzie [HM] have introduced the notion of comorphims for Lie
groupoids, and hence for ordinary small categories, by forgetting the additional
structure (a Lie groupoid is after all a special type of small category). It is the
purpose of this section to check that in the case 8§ = Sets, a cofunctor as in
definition 4.2.1 is just a comorphism in the sense of [HM]. This section is otherwise
independent of the rest of this work.

We start by recalling a construction for ordinary categories, sometimes known
as the Bousfield-Kan construction or homotopy colimit [Lod2, appendix B.13|. Let
¢ =(A,C,...) be a category in Sets and p: D — C a map, where D is another
set. Suppose that in addition there is given an action of € on p, that is, for

every arrow a : © — ' in €, there is given a map a : p~*(z) — p~*(2'), and this
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assignment preserves identities and compositions. In this setting, the Bousfield-
Kan construction is the category € x D = (A x¢ D, D,...) where A x¢ D =
{(a,y) € Ax D /s(a) = p(y)}, a pair (a,y) € A x% D is an arrow from y to
a(y), and identities and composition are defined in the obvious way, so that the
assignments p: D — C and A x° D — A, (a,y) — a define a functor € x D — €.

This can be illustrated as follows:

(a,y)
Cx D y—  aly) .
L I
¢ x>y

Now we are in position to state Higgins and Mackenzie’s definition of comor-
phism. Let € = (A,C,...) and ©® = (B, D,...) be categories in Sets. These
authors define a comorphism € — ® to consist of a map p: D — C, an action of €
on p as above, and a functor € x D — © which is the identity on D (the objects).

This notion is equivalent to that of cofunctor, as we now explain. Given a
cofunctor (1, ) as in definition 4.2.1, let p = g, and define an action on € on
p as

a(y) = t(pr(a,y)) € D for (a,y) € A< D,

where ? is the target map of the category ®. These data, together with the functor
(p1,idp) : € x D — D, define a comorphism in the sense of [HM]. It is clear how
to proceed conversely.

This description of cofunctors in terms of actions holds true for arbitrary lex
categories 8, not only for § = Sets, but it does not seem possible to extend it to

the case of general monoidal categories.
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Chapter 5

The monoid of admissible sections
5.1 Definition

Definition 5.1.1. Let € = (A, C, s,t,i,m) a category in 8. An admissible section

for € is a map u : C'— A in 8 such that

C———A
o )
C@CWA@C

commutes. The set of admissible sections for € is denoted by I'(€).

In other words, an admissible section is a morphism of right C-comodules
u : C — A. An admissible section of an ordinary small category (in Sets)
¢ =(A,X,35,1t,...)is just amap u: X — A such that 5u(c) = c Vo € X:

u(z)
T

T o .

Admissible sections of ordinary categories were introduced by Chase in the context
of affine groupoid schemes [Chal]. They have also been considered in the Lie
groupoid literature [Mac, definition I1.5.1]; in this context the notion apparently
goes back to Ehresmann.

In the proof of the following result we will make use of every single axiom in

the definition of internal categories 2.3.1.

Proposition 5.1.1. Let € be as before. Then I'(€) is an ordinary monoid as

follows:

e the unit element isi:C — A, and
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e given u and v in ['(€), their product is

v t u®CidA m
uxv:C = A5 CsfA — AsFA — A .

Proof. First notice that indeed u v € I'(€) and i € I'(€), because all v, t, idy, m
and ¢ are morphisms of right C'-comodules; the latter two by definition of internal
categories.

Also, i is a morphism of left C-comodules, so t o i = (idzei) o A, hence

uxi=mo (usids) ot oi =m o (usidy) o (idsei) 0 A

=m o (idsei) o (usidy) 0 Ao = m o (idsei) 0 s 0 u = u,

by right unitality for m and ¢, and since u is a morphism of right C'-comodules.

On the other hand, left unitality for ¢ and m yields directly that i x v = v.
Finally, associativity for * is the commutativity of the following diagram (the

top boundary is (uxv)*w, the bottom wux (v*w)), which holds because m preserves

targets (is a morphism of left C-comodules) and is associative:

|dA

At oot 09 o 9 0o TN g o 7 g on

t® IdA Idc®c IdA®C \

When § = Sets, multiplication of admissible sections can be described through

the following simple picture:



5.2 Examples

We first compute the monoid of admissible sections for the discrete, one-object
and pair categories (section 2.4).

For the discrete category C we have, by remark 3.0.1,
F((A]) = Hom¢(C, C) = Homg(C, I) under u +— ¢ o u .

Let us check that this is actually an isomorphism of monoids I'(C) 2 Homg(C', 1)°P.
Here, Homg(C,I) is a monoid under convolution, which we also denote by the
symbol x: fx g = (feg) o Ac. First, the unit element i = ids € F(@) maps
to the unit element ¢ € Homg(C,I). Second, the fact that multiplication of
admissible sections corresponds to the opposite of convolution is the commutativity

of the following diagram, where the top boundary is ¢ o (u x v) and the bottom

(€ 0v) * (¢ ou):

ugS -
O—Y e 02 a0 " oo 2o
T
CeC —= (Cs(C Col ——Is] ——==1

v®ide (ecou)®idr
N 4
N .
(ecov)®idy IoC' idr®(egou)

(The first square commutes by definition of admissible section: v is a morphism of
right C-comodules).

For the one-object category A we have, since Comods(/) = 8,
I'(A) = Hom;(I, A) = Homg(I, A).

It is immediate from the definition that multiplication of admissible sections cor-
responds to the convolution product in Homg(7, A).

For the pair category @ , we can use remark 3.0.1 again to conclude that

I'(C) = Hom¢(C, CsC) = Endg(C) under u — (idoee,) o u .
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Let us check that this is actually an isomorphism of monoids, where we view

Ends(C) as a monoid under composition. In fact, the unit element i = A € F(@)

maps by counitality to (idoee.) o Ao = ids, the unit element of Endg(C'). The fact
that multiplication of admissible sections corresponds to composition of maps is the
commutativity of the following diagram, where the top boundary is (idsee. ) o (u*v)

and the bottom ((idzee.) o u) o ((idoee) o v):

u®idog o ido®e®@ec®ide

C—= C@C%C@C@C —(Ce(Ce(Ce(C ————— (=

W:CJ/ \u®idx @AC@{C lidccbec
(ide®ec)ov C M C

(ide®ec)ou

(The triangle commutes by definition of admissible section: u is a morphism of
right C-comodules).

For the empty category ®¢ (assuming 8 has a zero object), obviously I'(®¢) =
{0}, the trivial monoid.

We close the section by announcing two important results that will be proved
in later chapters.

We have mentioned that a category in Groups can be equivalently described as
a crossed module of groups. The monoid of admissible sections of such a category
turns out to be Whitehead’s monoid of derivations of the crossed module [W, NJ.
This will be proved in section 10.1.

The monoid of admissible sections of a linear category (which, as already said, is
a particular example of a category in Vecy) coincides (essentially) with Mitchell’s
matrix ring of the linear category [Mit]. This will be proved in section 9.1. In
particular Rota’s incidence algebra of a locally finite poset [Rot] is an instance of

this.
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5.3 Cofunctors and admissible sections

As announced in the introduction, the construction of admissible sections is func-
torial with respect to cofunctors, this being the main reason for our interest in this
type of morphisms for internal categories.

Let € = (A,C,...) and © = (B, D,...) be categories in § and ¢ : € — D a

cofunctor. Given u: C'— A in I'(€), define I'(p)(u) : D — B as the composite
T(g)(u) : D 22 DD s Dyec,D 259, cue,p 0, g0 p 24

where the subindices denote corestriction via g : D — C' as in section 3, and the
canonical map of lemma 3.0.1 has been used. Notice that since ¢, is a morphism
of right D-comodules, so is T'(p)(u), i.e. T'(p)(u) € T(D).

When 8 = Sets, this definition can be illustrated as follows. Given u € I'(€)

and y an object of ©, I'(p)(u)(y) is the lift of u(vo(y)) to y provided by ¢:

Proposition 5.3.1. I'(p) : ['(€) — (D) is a morphism of monoids.

Proof. First, T'(¢)(i) = i precisely by unitality for the cofunctor ¢. Second, the
fact that I'(¢)(u*x v) = I'(p)(u) * I'(p)(v) is the commutativity of the following
diagram (where I'(p)(u*v) is the top boundary and I'(¢)(u) xI'(¢)(v) the bottom
one), which holds by

(1) ¢4 is a morphism of left C-comodules

(2) associativity for the cofunctor ¢

() the unlabeled diagrams commute by naturality or functoriality
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u®G|dA®O|dD

meS
CeCALD —— AcCALD e AsCD

C
o~ vCidp ueCidg
D——CsD ——As°D (1) (C«°B As°B (2) B
A

- > - > C - C D [ D
B ———> Ds"B —= (¢ D®D§®cidD®D|d§® ® B<p1®D|dBB® B

(In this diagram, D-comodules are viewed, when convenient, as C-comodules by

corestriction via ). O

The functoriality of T" is easier. First, I'(ids)(u) is by definition the following
composite
C 22, core 20, g0 2, A
which is just u : C' — A. Second, given cofunctors ¢ : € - ® and ¢ : © — € as
in section 4.2, I'(¢) o ) (u) is, by definition, the following composite

0®OIdE

G o |
B 28, porp Yoo, oop 2w pep 2, pepep 290%, 0wp L R

which clearly coincides with T'(¢) () (u).

The above shows that admissible sections is a functor
(—
I': Catg — Monoids .

Actually, more than this holds: the 2-categorical structure of %g is also preserved,

in the following sense.

Proposition 5.3.2. Let o : ¢ = 1 be a natural cotransformation between two

cofunctors as above. Then o € I'(D), and for any u € I'(€),

axT(p)(u) = L) (u) *a .

Proof. By definition of natural cotransformation (first diagram in 4.2.2), « is a
morphism of right D-comodules, i.e. a € I'(D). The equality above is the com-
mutativity of the diagram below (where the top boundary is « * I'(¢)(u) and the
bottom I'(¢))(u) * ), where
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() the unlabeled diagrams commute by naturality or functoriality
(1) second diagram in def. 4.2.2 for a
(2) third diagram in def. 4.2.2 for «

(3) commutes because it does after composing with the isomorphism

iCb@C(ED(@idB)
- = 5

C«°Ds"B C«°B, by counitality of ¢ and Ap.
D22 popp 28R Cep M pep o gt g™ pap
idc®cal lidA®Ca lm
u®GIdB
o ) C®C¢B A yB (2) B
% —_— E— C < ®DB —> A C ®DB
'lPB D®DB D®DI BD®DD®D§0®ICID®DIdB® ’LPD u®o|dD®D|dB® "PD 1{11®DidB B®DB

O

Proposition 5.3.2 allows us to view natural contransformations as admissible
sections. Notice that the composition of natural cotransformations defined in sec-
tion 4.2 is then just a special case of multiplication of admissible sections. This
had been announced in section 4.2.

We can now derive a result that was already mentioned in section 4.1, when

computing the monoid of endomorphisms of the identity functor (examples 4.1.2).

Corollary 5.3.1. For any category €, End(ids) C Z(I'(€)), where End(ids) denotes

the monoid of natural transformations ids = id.

Proof. Immediate from proposition 5.3.2, plus the observation that natural trans-

formations coincide with natural cotransformations in this case (section 4.2). O

5.4 Functors and admissible sections

In general, a functor f : € — 2 between internal categories does not induce a

morphism I'(€) — I'(D) (unless, for instance, if it is the identity on objects, i.e. it
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can be seen as a cofunctor). For instance, consider the functor e : C — I between
discrete categories, and assume for simplicity that 8 = Vec,. We know from section
5.2 that in this case I'(C) = (C*) and T'(I) = k, so we certainly do not expect
any morphism I'(C) — T'(I). On the other hand, in general a functor f : ¢ — D
does not induce a morphism I'(®) — I'(€) either: consider the case of one-object
categories.

However, it is possible to pull-back subsets of I'(D) to I'(€) along a functor
f € — D, in a way that is compatible with the multiplication of admissible
sections. For each x € I'(®) define

ffx)={uel(¢)/ C%A commutes }.
Py A
D—=B

Proposition 5.4.1. Let f : € — D be a functor as above.

1. For any x,y € T(D), f~Hz)* [~ (y) C [ zx*y).

2. f71(4) is a submonoid of T'(C).

Proof. 1. For any u € f~1(x) and v € f~*(y), the following diagram commutes

v t U®CidA m
C——A——(CsA AsCA A,
| |
fo l fi l fo @fﬁ fi %Dfl J{h
D

—> B> DB —> BePB—m> B
®"idp
by definition of functor 4.1.1 and of f~!. Hence u*v € f~1(x * y).

2. It only remains to show that i € f~!(i). This is the unitality condition for f

in definition 4.1.1.

More generally, for any subset X C I'(®) one can define

FUX) = fM2) CT(@) and £71(0) =0 .

zeX
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It follows from the proposition above that for any X, Y C I'(®D), f~4{(X)*f~}Y) C
7YX xY), and that if M is a submonoid of I'(®) then f~'(M) is a submonoid
of I'(€). Thus:

Corollary 5.4.1. A functor f : € — ® induces an order-preserving mapping from

the lattice of submonoids of I'(D) to that of I'(E).

Proof. Done above. O
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Chapter 6

Representations of an internal category
6.1 Definition and examples

Definition 6.1.1. Let € = (A, C, s,t,i,m) be a category in 8. A (left) represen-

tation of € in & is an object X of § together with:

e a left C-comodule structure p: X — CeX and

e a morphism of left C-comodules a : Ae°X — X,

such that the following diagrams commute

idaca

ALX ——= X AeCALX — AsCX .
ieCidy T /Ep/ maCidy l la
CeCX AsCX — X

Sometimes we refer to a : As=°X — X as the A-action on X, and to the diagrams
above as the unitality and associativity of the action.
A morphism between representations X and Y of Cisamap f: X - Y in 8

such that both diagrams below commute:

f ida&7f

X Y AsfX — ACY
pxl lpy axl lw
CeX W CeY X 7 Y

in particular f is a morphism of left C'-comodules. The resulting category Reps€

comes thus equipped with a forgetful functor Reps@ — ComodsC'.

Ezramples 6.1.1.
For any category € = (A, C,...), A itself is a representation, via t : A — CeA

and m : As°A — A. This is called the (left) regular representation of €.

25



Obviously, a representation of a one-object category is just a module over the

underlying monoid: Reps(A) = ModA. Also, a representation of a discrete cat-

egory is just a comodule over the underlying comonoid: Repg(@) = Comod(

(unitality forces a = p™1).

When 8§ is a lex category, the definition above coincides with the definition of
internal diagram or internal functor for usual internal categories [Joh, definition
2.14]. The reason for this terminology is that, specializing even further to the
case when € is a category in § = Sets, a representation of € is just a functor
¢ — Sets. In fact, given a functor F' : € — Sets, one obtains a representation

Xr of € as follows:
Xp=]]F(),

ceC

with the C-comodule structure corresponding to the given C-grading (examples
1.4.1), and with A-action A x¢ Xp — Xp, (a,2) — F(a)(z). Conversely, any
representation arises from a unique functor in this way. Also, morphisms of repre-
sentations correspond to natural transformations of functors.

Let us remark the obvious fact that, in the general case (arbitrary §8), it does

not make sense to talk about functors € — Sets or € — 8.

6.2 Restriction along functors and cofunctors

Let € = (A,C,...) and ©® = (B, D,...) be categories in 8 and ¢ = (¢1,¢0) :
¢ — ® a cofunctor. We will define a functor (between ordinary large categories)
Reps® — Rem€. Let (X,p,a) be a representation of ®. First, view X as a

C-comodule by corestriction along ¢q (section 3), that is via

5 X B DeX 29 cux
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Then, consider the map

G ALY = AcDerX 209 poox @ x

Proposition 6.2.1. The resulting (X, p,a) is a representation of €.

Proof. a is a morphism of left C'-comodules, since so are ¢, and a. We only need to
check unitality and associativity for the A-action a. Unitality is the commutativity

of the following diagram, which holds by

(1) unitality for ¢

(2) unitality for a

=~ 1®DI a
ALX —Z 4D Y poox s x|

A
i®cide ’i®GIdD|®DIdX (1) ’i@A'IdX /(2%
p

CefX —= CefDePX ~z— DePX
(To see that the map D«?X — Ce“X is induced by @geidy, compose with the

ide8(ep®idy )
ey

isomorphism Ce“DePX CeX and use counitality of p and Ap).

Associativity is the commutativity of the following diagram, which holds by

(1) associativity for ¢

(2) associativity for a

ACALX — A®CA®CD®DXdIMXA®CBT X M AsCX
T o
AcCDePBePX AsCDeP X
meCidy meSidpePidy 1) go1®D|d1|g®D|dX 18P dy
BerBerx “22 . pony
m@%dx (2 a
ACX ——= A«CDePX BePX m X

©18Pdy
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We sometimes write res,,(X) for the resulting representation of €, and say that
res,(X) has been obtained from X by restriction along ¢. Clearly, a morphism
f X — Y of representations of ® is also a morphism between the corresponding

representations of €. This defines a functor
res, : Reps® — RepsC,
which by construction fits into a commutative diagram

Reps€ —— Comodk(C'

resy T TCOFGS¢O

Reps® —— Comodg D
where the unlabelled arrows are forgetful functors. Notice that res, preserves the

forgetful functors to §, i.e.

Reps@

N
7

Reps®

res

S

commutes. Incidentally, the forgetful functor Reps€ — 8 is res— where Giao¢

is the cofunctor of examples 4.2.1.
Now, let ¢, : € — D be two cofunctors and « : ¢ = 1 a natural cotransfor-
mation (definition 4.2.2). For each ®-representation X, define

a®D|dX

ax 1 X = DsPX —5 BPX 5 X,
where the subindices denote corestriction as in section 3.
Proposition 6.2.2. ax defines a natural transformation res, = res,,.

Proof. By construction, ax is a morphism of left C-comodules (a is a morphism of
D-comodules by definition of representation, hence in particular of C-comodules).
The fact that the A-actions are preserved by ax is the commutativity of the fol-

lowing diagram, which holds by
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(1) conaturality of «

(2) associativity of a

i Ca®D| i Ca
A€X ALDPX D o? idx ALBePX — U7 A
N L N
o~ - o
AsCDePX AeCDePBePX AsCDePX
|
(1) ¢1®Dldf®DldX P1&Pdy
idB®D a
o1Pidy BePBePX ———— BsPX
m®£|dX
@ idpelid mePidy v
BsPX DePBer X~ B ppenx BLX (2 a
|
a idBfD a (2) \a\
X — DePX — BPX - X
= a® idy

Finally, naturality for ay is the commutativity of the following diagram, where (1)

commutes since, by assumption, f : X — Y is a morphism of ®D-representations:

X 2o Dorx S porx o x
| |
f l idpizpf idBﬁDf ey lf
Y —= DePY —— BelY ——Y
= a®D|dy

O

In addition, one can similarly show that the construction of res preserves com-
positions: res, o res; = resy.,, for any pair of composable cofunctors ¢ and .
Also, composition of natural cotransformations corresponds to composition of the
associated natural transformations. All these results can thus be summarized as

follows.

Corollary 6.2.1. Restriction is a 2-functor (contravariant on arrows and covari-

ant on 2-cells)
Ez‘@ — LCat, €+ RepC, ot res,, ar .

Proof. Done above. O
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Ezxample 6.2.1. Recall from examples 6.1.1 that a representation of a category

D =(B,D,...)in Sets can be equivalently described as a D-graded set

X = H X, equipped with maps X, : Xy — Xy for each arrow b:d — d of ©
deD

such that associativity and unitality are preserved in the obvious way. If p : € — D

is a cofunctor, then the €-representation res, (X ) is the same set X, with C-grading

defined by

Xe= [T X

depy ()

and where the action of an arrow a : ¢ — ¢ of € on X, is given by the action of
¢1(a,d) on X, C X, for each d € ;' (c). In pictures:

Spl(avd)
X
) A= g X —2 X

]

Q: — T g J_C Xa

[ >XC/

We close the section by briefly describing an analogous construction that can
be carried out for functors instead of cofunctors. Namely, given a functor f =

(f1, fo) : € — D, one can again define a restriction functor
resy : Re® — RepsC,
which now fits into a commutative diagram

Reps€ —— ComodsC

reSfT TcoindfO

Reps® —— Comods D
In particular res; does not preserve the forgetful functors to 8, since coindy, does
not, unless fy = id-, in which case f can be seen as a cofunctor and then the two

types of restriction along f (as a functor or as a cofunctor) coincide.

60



Explicitly, given a ®-representation X, its restriction along f is
resp(X) = CpePX

with its canonical structure of left C'-comodule, and the following A-action:

A@Cresf(X) = A®CCf®DX = Af@DX & Cf@DB®DX % Cf@DX = resf (X) .

Here, we are viewing the functor f as a pair (f1, fo) with fo : C — D and f; :
A; — CyePB, as explained in section 4.3. Associativity of the A-action follows
easily from that of the B-action plus functoriality of f, similarly for unitality.
One can proceed similarly with natural transformations. If o : f = g is
a natural transformation between functors € — @, so that (in the alternative
notation of section 4.3) a: Cy — C,e”B is a morphism of C-D-bicomodules, one

can define a natural transformation resy = res, via

ax - CpepX 20, o ogenx 178 o o

Altogether this gives a 2-functor (contravariant on arrows, covariant on 2-cells)

mSHLCat, Cr— RexsC, fr—resy, a— .

6.3 Yoneda’s lemma

The result below generalizes at the same time [Joh, proposition 2.21] and [P, the-
orem 2.2]. The former is the special case when 8 is lex, the latter is for arbitrary
monoidal categories § but for monoids instead of internal categories (i.e. the spe-

cial case € = A). For the definition of monads and monadic functors the reader is

referred to [ML, chapter VIJ.

Proposition 6.3.1. Let € be a category in S, with base comonoid C. Then the

forgetful functor Rep& — ComodsC' is monadic.
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Proof. Let T : ComodkC — ComodsC' be T'(X) = As«°X. Define natural transfor-

mations p: 7% = T and n : Id = T by
m®cidx = ’i®GIdX
px  AeCAeCX — AeCX and ny : X — Ce€X — ACX .

Then the axioms in the definition of internal category (2.3.1) immediately imply
that (T, i, n) is a monad in ComodsC'. Moreover, comparing the definition of alge-
bras over a monad [ML, VI.2] with that of representations of an internal category

(6.1.1), we see that there is an equivalence K as in the diagram below

Reps€ ,
|
K: ComodsC'
v —
(ComodsC)”

where (ComodsC)T is the category of T-algebras in ComodsC. This means that

Reps€ — ComodsC' is monadic. O
We can now derive Yoneda’s lemma for internal categories.

Corollary 6.3.1. The forgetful functor Reps& — ComodsC' possesses a left ad-
joint ComodC — Rem€, which sends X to A<°X, where A°X 1is viewed as

C-representation via the following left C-comodule structure and A-action maps:

S®CidX

C-
AsCX K 00 ACX and ACALX TR A0X

Proof. This follows from proposition 6.3.1 plus [ML, theorem VI.2.1]. O

When 8§ = Sets, the above corollary specializes to the usual Yoneda lemma
(for small categories). To explain this, assume that € is a category in Sets, let
F : € — Sets be a functor and v € C' an object of €. Recall (section 6.1) that F

can equivalently be seen as a representation X of € We can view u as a morphism
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of comonoids u : I — C, and hence consider the corestricted C-comodule /. Then,

the adjunction of corollary 6.3.1 implies in particular that
Homg (A, Xr) = Home ([, XF) .

Now, when viewed as a functor € — Sets, the €-representation A« is precisely
the hom-functor €(u, —), since

A€l ={a€ A/ 3(a)=u}l=][[{fa€ A/ 5a)=u t(a)=v} =[] e(uv).

vel vel
Also, by definition of Xz, Homg ([, XF) & F(u). Hence the bijection above be-
comes

Hom(C(u, —), F) = F(u) ,

where Hom now denotes natural transformations. This is Yoneda’s lemma [ML,
lemma I11.2].

The forgetful functor Reps€ — & does not always have a left adjoint. For
instance, if 8 = Vecy and € = @C, then the result in corollary A.3.1 says that
Reps€ — Vecy has a left adjoint if and only if C' is finite-dimensional. Similarly,

one can show that RepSets@ — Sets has a left adjoint if and only if C' = {x}.

6.4 Representations and admissible sections

We expect representations of an internal category € to be somehow related to
representations of the monoid of admissible sections I'(€). This cannot hold on
the nose since Reps€ consists of objects of § while I'(€) is an ordinary monoid (in
Sets). In some cases it is possible to introduce an internal version of I'(€) (a

monoid in 8) for which there will be a functor

Reps¢ — Mods(T'(€) :
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for reasons of space this is not discussed in this work (unless for the case 8§ = Vecy,
which is addressed in section 9.2). In this section we discuss the “external” version

of this; namely, for each representation X of €, we define a morphism of monoids
I'(€) — Ends(X) ,
which is natural with respect to cofunctors.

Proposition 6.4.1. Let € = (A,C,...) be a category in § and (X,p,a) a repre-

sentation. Then there is a morphism of monoids vx : I'(€) — Ends(X), where
C-:
x(u) s X L CeeX K, pwex X

Proof. First, vx (i) = idy precisely by unitality for the representation X. The fact
that vx transforms multiplication of admissible sections u and v into composition
of maps is the commutativity of the following diagram, which holds since

(1) a is a morphism of left C-comodules

(2) a is associative

X —2= 05X % AzCX & OeCALY ®Md};l®cA®CX &qdﬁ ALX .
al (1) idc}li’ca idAi@Ca 2) la
X CcX _ AsCX - X
p u®C|dX

Next we show that 7 is natural with respect to cofunctors.

Proposition 6.4.2. Let p : € — D be a cofunctor, Y € Rep® and X = res,(Y) €

Reps&. Then the following diagram commutes:

I'(¢) > Endg(X) .
L(y)

(D) —— Ends(Y)

7Y
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Proof. The desired result is the commutativity of the following diagram, where
the top boundary is vy (F(w) (u)) and the bottom vx(u) ((1) and (2) commute by

definition of res,):

oD i P wiCidp e D
Y 2 Dy Y ponpesy ST oo p oot 0N ey Y By
| | l
M L L (@ a
H } } "
X x CeCX e, ACX — < Y
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Chapter 7

Tensor product of internal categories

In this chapter the regular monoidal category 8 is assumed to be symmetric, in

addition. We will introduce a monoidal structure on Catg and Catg and study
its relationship to admissible sections and representations. Deltacategories will be

TS
defined as comonoids in Cats.

7.1 The monoidal 2-category of bicomodules

We proceed in an analogous way to that of chapter 2; namely, we first study the
2-category G of bicomodules and then specialize to graphs and categories. We will
show that, when § is symmetric monoidal, G is a monoidal 2-category. For the
definition of monoidal 2-categories in the general (non-strict) case see [KV]. In
the strict case, a monoidal structure on G is a 2-functor © : § x § — G, which is
associative and unital in the obvious sense. In particular, the tensor product o is
defined on objects, arrows and 2-cells, and preserves the vertical and horizontal
composition and identities.

Recall (section 1.4) that, since S is symmetric monoidal, so is Comong, under the
same symmetry 7 of 8. In particular, given comonoids (C, A, &) and (D, Ap, &),

the following defines a structure of comonoid on CeD:

i(b@TcyD@)idD
=

CeD Lc®lp, CeCoDsD CeDeCoD and CoD <52, [o] =T .

Moreover, given a C1-Cy-bicomodule (A, s4,t4) and a D1-Ds-bicomodule (B, sp, tg),
the following define a structure of CieD;-Cse Dso-bicomodule on AsB:

ict'1 ®TA, D, ®idg
- -

AsB 12258, ChieAeDeB Cie D2 A B

and

idA®T02,B®idD2

AeB A%, AeCye B Dy AeBeCys Dy .
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This defines the tensor product of § on objects and morphisms; schematically:
(02 i C1)®(D2 i Dl) == CQ@DQ A@;B) C1®D1 .

On 2-cells, we let @ be just the tensor product of morphisms in 8. This clearly
preserves vertical composition and identities, since these come from those of 8.
Preservation of horizontal identities is also obvious:

(€S C)e(D 2 D)= CaD L2 CaD |

On the other hand, preservation of the horizontal composition is the content of the

following lemma.
Lemma 7.1.1. In the situation
C’g ClﬂCoandD2HD1—>D0,
there is a canonical isomorphism of CoeDy-Coe Dy-bicomodules
(A1691A5)e(B1eP1By) = (A1e By )s“1%P1( Age By) .
Proof. We will show that the following composite
(A16614,)6(BreP1By) 222920 A 0 Age BieBy 22, A6 Blo Aye By

is the equalizer of the two rows below

51®51®idha id ®7T®idpRideo

A1®Cl®Bl®D1®A2®Bg
A1®Bl®Cl®A2®D1®Bg .

- > —
id11®to®ty id 1 ®ido®TRidh

which by definition is (A;eB;)e“1®P1( AseBs). This will complete the proof.

A1®Bl®A2®BQ A1®Bl®01®D1®A2®Bg 5

To this end, consider the following diagram in §

can®idy o s1®|d2®|d12
A1®01A2 ® Bl®DlBQ) A1®A2 ®(Bl®DlBg) (A1®01®A2>®(31®D132)
id; ®to®id 2
|d12®canJ |d12®can| Jid112®can
i $1®ih®idy
A1®01A2)® Bl®Bg) can® d12 A1®A2 ®(Bl®Bg 1 . (A1®01®A2)®(31®Bg)
id; ®to®id 2
Id12®|d1®t2|[ld12®81®|d2 Id12®|d1®t2l id12o®s1®idh Id112®id1®t2|[id112®81®id2
81®|d2®ld112
A1®01A2 ®(Bl®D1®BQ) A1®A2 ®(Bl®D1® 2 - < (A1®01®A2)®(31®D1®Bg)
can®id; 12 id| ®to®idi 12
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Let us check the hypothesis in Johnstone’s lemma 1.2.1. The squares commute
as required, either by naturality of can or functoriality of . By regularity, all
rows and columns of this diagram are equalizers. Also, (idij29s1eidy, idioeidiets)
and (syeideid 1o, idetasidii2) are both coreflexive pairs, being split respectively by
idi12eidiee, oidy and idiee, eidheidi;p. Thus Johnstone’s lemma applies, and we deduce

that

$1Qih®s1®id
- >

(A1®01A2>®(Bl®DlBg) L@can) A1®A2®Bl®Bg A1®01®A2®31®D1®BQ

idh ®to®id @to
is an equalizer. This is the top boundary of the following diagram, which commutes
since 7T is a symmetry. It follows that the bottom boundary is also an equalizer,
since the vertical arrows are isomorphisms. This is the desired conclusion.
51Qih®s1®ich
(A16%140)8 (B8P 1By 52N, © 40 B1 @ By A19C1®A® B1® D1® By

ich @t2@ich ©t2 id1®idc®7\:;®idp®id2
idi ®7T®id A19C19B1®As®D1®Bo

|
id ®7®idp idho id1®r§>r®idz

51051 ®id
' _1> [?[1®Cl®Bl®D1®A2®BQ

A1®B1®A2®Boy A1®B1®C1®D1®A20 By
—>A1®Bl®01®A2®D1®BQ —_—
id 1 ®to®to I1d) 1 Rido®T®idh

O

The isomorphism of lemma 7.1.1 will be denoted by
T(Al,Ag,Bl,Bg) : (A1®01A2)®(Bl®DlBg) i (A1®Bl)®cl®D1(A2®Bg) .

It is natural in all A;, Ay, By and Bs. Since it is induced by ids,e74, p,idp,, it
is valid to use the same notation 74, B, 4, B,) for its inverse, which is induced by
ida, 27, 4,21d5, .

As explained above, this completes the proof of the fact that the 2-category G of
bicomodules is monoidal under the tensor product described above. In particular,

for any comonoids C' and D in 8, there is a functor
Sc x Sp = Scep, (A,B)+— AsB,
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where Go = G(C, C) is the category of internal graphs over C'. Recall that G¢ is in
turn a monoidal category, under «“. Thus, the fact that e : §x G — G preserves hor-
izontal composition implies that © : §o X Gp — Geoep is a monoidal functor. Since
monoids are preserved under monoidal functors, it follows that « carries internal
categories to internal categories. Explicitly, if € = (A,C,...) and © = (B, D,...)
are categories in 8 then their tensor product €«® = (AeB,CeD,s,t,i,m) is as

follows:

e (oD is a comonoid via

i(b@TcyD@)idD
S

CeD 2222, 0sCoDeD CoDsCeD and CeD <22, [o] = [ ,

tA®tp ido®74, p®idp
5

o t: AesB —= (CeAsDsB CeDsAeB and

ida®7c, p®idp
—_ -

s AeB A28, AeCoBsD AsBoCeD,

o i: (oD 1%, A« B, and

T(A,B,A,B)
—_

o m : (AsB)<c*P( A= B) (A€A)a( BePB) TATME, Ao B.

Moreover, it is clear that if f = (f1,fo) : € — € and g = (¢1,90) : © — D' are

functors, then so is

f®g = (.fl®gla f0®g0) . Q:@@ — ¢,®©/ .

Thus @)g is a monoidal category; the unit object being J = [= I.
Similarly, if ¢ = (1, ¢0) : € — € and P = (Y1,7y) : © — D’ are cofunctors,
then so is 1) : €D — oD’ where (peth)g : Do D’ PO, O and

T(A,B,C!,D’)
) ———— (

(pep); : (AeB)ec®X(C'e D' AcC")e(BePD') 2 AlaB

Thus ﬁg is a monoidal category; the unit object being again J.

Finally, notice that there is a functor
Teo @ Ce® — Dol given by (74,5, Tc.p) -
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This is an isomorphism; in fact, 79 ¢ 0 Te¢ » = ideen. Thus €D = Dl in Catg, and
hence also in ‘cﬁg (isomorphisms in these categories coincide, by remark 4.2.1).
This turns Catg and Catg into symmetric monoidal categories.

We should also remark that when & = Sets, the tensor product of categories

just described boils down to the usual product of categories as in [ML, 11.3].

7.2 Products and admissible sections

We begin by discussing one particular example of tensor product of categories, that
shows that convolution of maps is a particular case of multiplication of admissible
sections. If C' is a comonoid in § with comultiplication A~ and counit €., then
C*“? denotes the same object C' but viewed as a comonoid with comultiplication

Aceop : C 29, CeC 2% CsC and the same counit €cor = €.

Example 7.2.1. Let A be a monoid and C' a comonoid in 8. Then there is an

isomorphism of monoids
I'(AsC) 2 Homg(C, A)

where Homg(C?, A) is a monoid under convolution.

Proof. By remark 3.0.1, there is a bijection

I'(AsC) = Homg(C, AsC) = Homg(C, A), u — @ := (idsse) o u .

We only need to check that this is a morphism of monoids. The unit of F(é@@)
is uqeido, so it gets sent to (idqee.) o (ugeidy) = w4 o €, which is the unit of
Homg(C?, A). The fact that multiplication of admissible sections corresponds to

convolution in Hom(C*®? A) is the commutativity of the following diagram, where
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the top boundary is u * v and the bottom @ * ¥:

—1
ida®Ac T(I,A,C,C) ueGd ® T(A,C,A,C HA®RAL
¢ —Y o a00 DX so ooy ML Le a0 ) — 22 a0 0y A0y RO Mo Aye (0sC0) el AvC
A\LC idA@')AC idA®ibe®éc ido@iéA@)éc idA®iCb:|f>idA®EC idA®idA\L®€c®EC idAi@Ec
CeC —> AsCaC, CeA AeCeA AsA ———> A

' > ARC - - -
| vRido | idy®ec®ide TA,C u®idg ida®ec®idg
C,C TA®C,C
f y /
ceC idc—®z CRARC do®ids®ec

(The first square commutes by definition of admissible section: v is a morphism
of right C-comodules; the others commute by functoriality of , naturality of 7, or

counitality of C'). O

We now study the behavior of admissible sections with respect to products.
Let € and ®© be two categories in 8. The monoidal structure on G (section 7.1)

yields in particular a map
I'(¢) x D(®) = Home(C, A) x Homp(D, B) = Homeep(CoD, AsB) = T'(€eD) .

Proposition 7.2.1. The map (€) x ['(®) = I'(€=D) is a morphism of monoids.
Moreover, it is natural with respect to cofunctors, in the sense that if o : € — &

and 1 : D — D' are cofunctors, then the following diagram commutes:

I'(e) x T'(D) ——T(¢D)
F(<P)XF(¢)l lr(ww)
L&) x T(®D') —=T'(¢eD’)
Proof. The fact that e preserves unit elements is direct from the definition of identi-
ties for €«®. Multiplications are preserved too, since in the following commutative
diagram, the top boundary is (u*u')e(v*v') and the bottom (usv) * (v'ev’), where
u,u’ € ['(€) and v, v’ € I'(D) are arbitrary:

ma®mp

e ueCidy @veD;
CoD u'®v AsB taA®lp (C@CA)®(D®DB) M (A@CA)®(B®DB) — AsB .

| |
T(C,A,D,B T ®idp

(CoD)ec*N AeB) (AeB)e® N AeB)

(u®v)®C®D|dA®B
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Finally, the commutativity of the diagram below yields the desired naturality with

respect to cofunctors, since the top is I'(pet)) (uev) and the bottom I'(¢) (u)sI'(¥) (v).

T A,B,C".D’ 1®Y1
O] (C@D)@C‘X’D(C/@D/) _usy_ (A®B)®C®D(Cl® ([j L?A@@CC/)@(B@DD/) ﬂ A'sB’

T(()C,D,C/,D WD/

(CC")e(DsPD')

O

The map I'(€) x I'(®) — I'(€«D) is not an isomorphism in general. For in-

stance, consider the case § = Sets, € =G and © = }A(, where GG is a monoid and

X a set. Then we know from section 5.2 and example 7.2.1 that
Ne) =G, T'(®)={x} while I'(¢€ x D) = G¥,

the set of all maps X — G under point-wise multiplication (since that is what
convolution boils down to in this case). Hence I'(€) x ['(D) is far from I'(€ x D).
The lack of duals in Sets is responsible for this behavior. On the other hand, let

us look at the “same” example when § = Vecy: € = A, D = (A], where A is a

k-algebra and C' a k-coalgebra. Then
) =A, T(®)=(C"" and T'(€«®) = Hom(C?, A),
from where we see that I'(€) x I'(®) — I'(€«D) induces an isomorphism
[(@)al(D) — I'(CeD)

if and only if C is finite-dimensional. In fact, this turns out to be true for arbitrary
categories in Vecy as long as the base coalgebras C' and D are finite-dimensional,
as we will see in section 9.2. (Notice that in this case I'(€) is not just a monoid

but a k-algebra, under addition of linear maps).
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7.3 Products and representations

Proposition 7.3.1. Let € and ® be categories in S. Consider two representations
X ofCandY of ®. Then XeoY becomes a €D -representation when equipped with

the following C'e D-comodule structure and AeB-action:

Pxoy : XoY Px®py, CeXeDsY =2 CeDe XY
and
axsy : (AeB)e®P(XeY) & (ACX )e(Be"Y) L2, XaY .

Proof. We have to check the axioms in definition 6.1.1. The considerations of
section 7.1 (on the monoidal structure of §) show that XY is a left C'e D-comodule
with structure map pysy and also that axsy is a morphism of C's D-comodules (this
uses lemma 7.1.1). Unitaliy and associativity for axey boil down to those of ax
and ay, plus some obvious naturality properties of the isomorphism of lemma 7.1.1

(which in turn follow from those of the symmetry 7). O

Thus, for any two categories € and 2 there is a functor
Reps® x Reps® = Reps(€2D) .

This may be seen as a natural transformation between the (large) contravariant
functors Reps(—) x Reps(—) and Reps(—e—) : Cats x Catg — LCat, where Catg de-
notes either Catg or Catg, in view of the fact that the following diagrams commute

(where ¢ : € — @ and ¢ : ® — @' are either functors or cofunctors):

Reps€ X Reps® —=—> Reps(€=®)
res, Xresy, T T res ,®q

Reps(€') X Reps(D') —— Reps(¢'=D’) .
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These assertions follow readily from lemma 7.1.1, complemented with routine ma-
nipulations.
We close the section by relating products of representations and admissible

sections of products, via the canonical map « of proposition 6.4.1.

Proposition 7.3.2. Let X and Y be representations of two categories € and 2
and view XeY as a €D -representation as above. Then the following diagram
commutes:

[(¢) x D(D) 22X Ends(X) x Ends(Y)

®l l®

F(€®@) W Endg(X@Y)

Proof. In the following diagram, the top is vx (u)#yy (v) and the bottom 7y xey (usv).
The diagram commutes by naturality of the isomorphism in lemma 7.1.1 and def-

inition of pxey and axey.

u®Cidx®’U®Dldy ax®ay
_ >

XsY Px®PY (C@CX)®(D®DY) (A@cX)®(B®DY) — XY .
L L
m T T %7
(CoD)s®N( XY ) ———— (AeB)s“®( XsY')

(uv)eC® Pidy gy

7.4 Deltacategories

Let 8 continue to be a symmetric regular monoidal category. In section 7.1 it was

stablished that then mg is a monoidal category.
Definition 7.4.1. A deltacategory in 8 is a comonoid in Catsg.

Notice that by construction of the monoidal structure of mg, the forget-
ful functor (mg)of’ — Comong, € = (A,C,...) — C, is monoidal. In par-

ticular, if (€, A ¢€) is a deltacategory with coassociative and counital cofunctors
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A= (AN,L) € — €€ and € = (g,6) : € — T, then the comonoid C is ac-
tually a bimonoid, with multiplication 2y : CeC' — C and unit ¢ : [ — C. In
addition, 4 : AeA(CeC') — A(A®A) is a morphism of C-CeC-bicomodules (where
the subindex denotes corestriction along 2y), ¢ : As°d — J is a morphism of left
C-comodules (where the subindex denotes corestriction along ), and these are
such that seven diagrams commute, expressing the facts that A and e are coasso-
ciative and counital cofunctors. Instead of making these conditions explicit, which
is not very illuminating, we will present several different examples of deltacategories
in Sets in chapter 8. These will be complemented with important examples of

deltacategories in Vecy in chapter 9.

Example 7.4.1. Bimonoids in 8 provide trivial examples of deltacategories in §. In

fact, it is clear that the fully-faithful functors
(Comong)?? — ‘cﬂs, C— 6, Mong — ‘cﬂs, A— A
of example 4.2.1 are monoidal; hence,

H is a bimonoid < H is a deltacategory < H is a deltacategory.

In section 7.3 we constructed a functor
Reps€ X Reps® — Reps(€=D),

which yields a natural transformation between the functors Reps(—) x Reps(—) and

Reps(—e—) : Catg’ x ba_tgp — LCat. This turns the functor
Reps(—) : Catg’ — LCat

into a laz monoidal functor, in the sense that for categories €, © and €&, the

following diagram (clearly) commutes:

Reps@ X Reps® x Rep5€®—in> Reps(€2®) X Reps&

iml g

Reps® x Reps(De€) Reps(CeDe@) .

®
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It is well-known that lax monoidal functors preserve monoids (but not comonoids,
unless one requires the natural transformation in question to be invertible). We

thus obtain that:

Corollary 7.4.1. If € is a deltacategory, then Rep€ is a monoidal category, in

such a way that the forgetful functor Rex& — 8 is monoidal.

Proof. According to the discussion above, if A : € — €o€ and € : € — J are the

structure cofunctors of €, then Reps€® is monoidal under the tensor product
Reps@ x Reps€ = Reps(€s€) =25 RepsC |

with unit object I = res.(I). The forgetful functor is monoidal because resy and

res. preserve the forgetful functors (a general fact for cofunctors, section 6.2). O

The situation for admissible sections of deltacategories is more complicated.
Consider the case § = Vec,. The natural transformation I'(€) x T'(D) = [(€=D)

of section 7.2 induces another natural transformation
[(€)sl(D) S I'(€=D)

(recall that in this case one can view admissible sections as a functor I : ﬁyeck —
Alg,). This turns the functor I' : Cats — Alg, into a lax monoidal functor. As
pointed out above, this can be used to equip I'(€) with a structure of k-bialgebra
only if I'(€)&'(€) — I'(€=€) is an isomorphism. As already announced, this is the
case when C'is finite-dimensional. This is how many interesting quantum groups

arise. We will elaborate on this in chapter 9.
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Chapter 8

Deltacategories in Sets

Deltacategories in Sets are interesting objects deserving further study. In this
chapter we limit ourselves to presenting a few families of examples.

We summarize the distinctive properties of deltacategories in Sets in table
8.1. This shows the relative position among the set-theoretic notions of monoids,
deltacategories and categories.

Here, linearization means passage to a linear category (a category in Vecy)
and then to admissible sections. For the case of monoids this simply yields the
usual monoid-algebra. Unlike the case of arbitrary small categories, the category
of representations of a monoid or deltacategory is monoidal in such a way that the

forgetful functor to Sets (or to Vecy, if dealing with the linear case) is monoidal.
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Table 8.1: Monoids, categories and deltacategories

‘ Type ‘ Representations ‘ Linearization
One-object case monoid monoidal category bialgebra
Many-object case | small category large category algebra
deltacategory | monoidal category bialgebra

Before going into examples, let us say a word about a general deltacategory
(€,Ae) in Sets. Let € = (A, X,...). As explained in section 7.4, X is then
a monoid with multiplication xy = Ay(z,y) and unit element 1 = ¢(x). In the
notation of section 4.3, Ay : A x* (X x X) - Ax A and ¢ : A xX [ — [ provide

lifts of arrows as in the following pictures

& (a,(z,y))
7N id
Cx ¢ (x,y) o J R
y | . L]
¢ Yy e ¢ 1~ 1

The pictures indicate the behavior of A, and ¢ with respect to source and tar-
gets (when targets are not relevant we use the symbol e, which is not to be confused
with the element * € I). They must also preserve compositions and identities. No-
tice that ¢ is uniquely determined, and automatically preserves compositions and
identities. The remaining conditions are coassociativity and counitality. In most
of the examples that follow these will be checked with the aid of this pictorial

notation.

8.1 Double groups

Let (I', G) be a double group (also called a matched pair of groups, as in [K, defi-

nition IX.1.1]). Thus, there is given a left action of I on G, (v,¢9) — 7 - ¢, and a
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right action of G on I'; (v, g) — 77, such that

v-(fg)=0-HE 9 (1)

(39)7 = 57y @

Examples of double groups abound; the simplest one being that when I' acts on G
by automorphisms and G acts trivially on I'.

A deltacategory € = €(I", G) may be attached to every double group (I', G) as
follows. ¢ = (I' x G, G, 3,t,i,m) where

e 5(v,9)=g and t(y,9) =7y,

e i(g)=(1,9) and m((6,7-9),(7.9)) = (67,9).

In pictures:

(7,9) (6:7-9) (1,9)
SN TN )
(07,9)

Composition and identities preserve targets precisely because of the axioms for an
action: §-7v-g = (d7)-gand 1-g = g. Associativity and unitality for m and i boil
down to those of T'.

Notice that the definition of the category structure on € only involves the action
of I' on GG, not the group structure of GG or the action of G on I'. These are used

to define the deltacategory structure (€, A, €) on € as follows.

e N\y:GxXxG — G and ¢ : I — G are the multiplication and unit maps of the
group G,
o A:(IxG)xY(GxG) = (IxG)x(I'xG)is (v, fg,f.9) = (v, [, 9),

o ¢: (I'xG) XTI — Tis (7,1,%) — x.
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Notice that 2y is a morphism of (left) G-graded sets precisely by equation (1)
above, and so is g because it is a consequence of (1) that v-1 =1V y eI It is
obvious that they are morphisms of (right) G x G-graded sets and [-graded sets
respectively. Let us check that A preserves compositions and identities. To this
end, let us denote the arrow (v, g) by g 2 ~ - g. When not relevant, we may also
omit the target and simply write ¢ - o. Below, the picture on the left shows the
lifts of two composable arrows, and that on the right, the lift of their composition.
We see that the composition of the lifts coincides with the lift of the composition

precisely by equation (2) above.

(vF) (6,07 F) (67,(67)7)

RN TN
Ex ¢ (f,9) (v- f, vfj\ (f.9) .

T T T

¢ fo— T fg §-v-fg fg oy - fg

Also, the lift of the identity of fg to (f,g) is

(1,17)
Cx ¢ (f7g>’\. )

which is the identity of (f, g), since it is a consequence of (2) that 1/ =1V f € G.

It only remains to show that A and e are coassociative and counital (recall
that the fact that e preserves compositions and identities is trivial, since J is the
one-arrow category). It is here where associativity and unitality of the action of

G on I enters. Coassociativity and counitality reduce respectively to 4/9 = (y/)9
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and ! = 7, as the following pictures show:

(7 +F ~19) (v F.(v)9)

ExeExC (f,g, ' Cx€xd (f%h)/_\‘
AxidT (v F9) 1 |d><AT I (v?) l
Cx¢ (fg, . Ex¢ (f, gh)/\ .
AT l A] I /V\A 1

¢ fgh v+ fgh ¢ fgh v+ fgh

(") (7,%)
Ix € (*,f)/\° Cx7J (fa*)/\'
5><|dT l (vY) } |d><5] I (v,7h) l
Cx¢€ (1,f)/\- Ex¢ (f,l)/\'
T J I 1 T J I 1
¢ f v f ¢ f v f

The monoidal category of representations of the deltacategory €(I', G) admits
a simple description. A representation is a set X together with a left action of I’

on X, (v,z) — v -z, and a G-grading on X, x — |z|, such that

[y -al =zl
The tensor product of two representations X and Y is X x Y with

||

v (@y) = (y-2,9" - y) and |(z,9)] = [«]ly] ;

this follows immediately from the definition of A and the description of restriction
along cofunctors in example 6.2.1. A particular instance of this is the category of
crossed G-sets, that was introduced by Freyd and Yetter to construct invariants
of knots [K, chapter XIV.5.2]. This is obtained from the double group (G,QG)
arising from the left action of GG on itself by conjugation. It is possible to construct
invariant of knots from more general double groups, and to explicitly describe all

possible braidings on their categories of representations.
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A related example. Let G be any group, and consider the category € = (Z x

G x G,G,...) with source, target, composition and identities described by the

following pictures:

(nvgvf) (mvhvgfgil) (0717f)
TN TN )
(m+n,hg, f)

There is a deltacategory structure on € as follows.
e A\y:GXxG — G and g : I — G are the multiplication and unit maps of the
group G,
o A (ZxGxG)xY(GxG) = (ZxGxG)x (ZxGxG)is (n,x, fg, f,g) —
(n,z(fg)"f~", fon.x(f9)"g™", 9),
o ¢ : (ZxGxGQ)xYT —1Tis(n,g,1,%)— *.
Notice that the underlying category is a particular example of those considered
before (for the double group (Z x G,G) arising from the action of Z x G on
G where Z and G act on G trivially and by conjugation respectively), but the
deltacategory structure is different, so this is really a new example.

The verification of the deltacategory axioms is similar to the case of double

groups. For instance, 4 is a morphism of (left) G-graded sets because
target of Ay (n, @, fy, f,g) = (x(ﬁq)"f‘"ff"(fg)‘"96‘1 ,w(fg)"g‘"gg"(fg)_"fl>

which maps by 24y to

(eCray s 17 (fa) ™) (2(F9)"g 99" (F9) "a™") = w(F9)" Folfg) ™"

= a:fg:)s_l = target of (n,ffj f9,f, 9) .
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Let us check that A preserves identities and compositions, but omit the verifica-
tion of the remaining conditions. Let us denote the arrow (n, g, f) by f 29 gfg L

Thus the lift of fg =5 zfgz"' to (f,g) via A is

(f7 g) n,x(fg)" f~"n,x(fg) g™ " (x(fg)nf(fg)—"x_l7 x(fg)"g(fg)_nl’_l) .

The identity of fgis fg LN fg, and its lift to (f,g) is

0,1(f9)°£79,0,1(fg)%g—° 0,1,0,1
(f.9) — e =(f.9) == (f.9) .

1 my .
— @ 1S

which is the identity of the pair (f,g). The composition fg —= zfgz~

fg T o and its lift to (f, g) is

m+nf7m7n m+n ,—m—n

;m+n,yz(fg) g

m4n,yz(fg)
(f,9) ——=

On the other hand, the lift of fg =5 xzfgz~" to (f,g) is

(f, g) n,x(fg)" f~"n,x(fg)"g™" (a:(fg)"f(fg)_nl'_la x(fg)"g(fg)_nl'_l) s

and the succesive lift of zfgz~! =% o is

—1ym n f—m —n =1 —1\ym n,—m —n,.—1
(m(fg)nf(fg)*nfl,x(fg)”g(fg)*”x*ﬁ’y(xfgx "a(fo)t T (fg) e may(efer” )" a(fg) g™ (fg) e

The composition of these two lifts coincides with the lift of the composition com-

puted above, since

y(@for= ) a(fo)" [ (fg) e a(fg)" f T = ya(fo)" "
and
y(@for ) x(fg) g™ (fg) e x(fg) g " = ya(fg)" g
This construction of a deltacategory is actually a particular case of a more
general one: it is possible to similarly associate a deltacategory to any double group
for which its category of representations is braided. The category of representations
of the new deltacategory is not only braided but balanced in a canonical way. The
case presented above corresponds to the double group (G, G) whose representations

are crossed G-sets.
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8.2 Torsion groups

* 1 —
Zy ifn=m,

Let G be the groupoid with objects Z* and morphisms G(n,m) =
0 if n#m,

where Z; denotes the group of units in the ring 7Z,, of integers modulo n. Let us
use [a],, € Z, to denote the class modulo n of a € Z. Thus G = (A4,Z7%,3,t,i,m)

where

e i(n) =[1], € Z; and m([al,, [b],) = [ab],.
There is a deltacategory structure on G as follows.

o Ny:ZT XZT — Z* is (n,m) — lem(n, m), the least common multiple of n

and m,

e ¢: [ —7Z"isx— 1,

o N :AXE (I X TT) - Ax As ([aliem@n,m) s m) = ([a]n, [a]m),

o ¢ AXZT T — Tis[l]; — .
Notice that A xZ" I = Z; = {[1];}. Also, if ged(a,lem(n, m)) = 1 then ged(a,n) =
ged(a,m) =1, so 4 is well-defined. The verification of the deltacategory axioms
is trivial in this case. For instance, the lift of [a)icm(nmy) to (n,m,l) by either
(A xid) o A or (idx A) o A is ([a]n, [a]m, [a];)

If G is a torsion group (that is, Vg € G 3 n(g) € Z* such that g"9 = 1), then

G can be equipped with a natural structure of G-representation, as follows:

o G — 77 assigns to g € G its (finite) order |g| € Z™; this defines the left

Z"-comodule structure on G,
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a

e the action of [a], € Z; on g € G with |g| =n is [a], - g = ¢

Notice that g* is well-defined because |g| = n; this also implies, since ged(a,n) =
1, that |¢g*| = l|g|, which shows that the action above is a morphism of left
Z*-comodules. The other conditions (associativity and unitality) are clear. The
G-representation structure on G' x H resulting from the deltacategory structure
on G is just the one corresponding to the direct product structure on the group
G x H, because |(g,h)| = lem(|g|,|h|) and (g,h)* = (g% h*). If G is abelian,
then it becomes a monoid in the monoidal category Reps(G), because in this case
lgh| = |g||h| and (gh)* = ¢g“h®, which means that the multiplication of G is a

morphism of G-representations.

8.3 Distributive lattices

Every distributive lattice with top element yields a deltacategory structure on
its underlying poset in a natural way. Before proceeding with the details of this
construction, let us recall the relevant definitions. The reference for this basic
material on lattices is [Gré, 1.1 and 1.4].

A lattice is a poset (L, <) where every pair of elements z, y has a least upper
bound and a greatest lower bound, denoted x V y and x A y respectively. A lattice
is thus equipped with two binary operations V and A that satisfy the following

properties (idempotency, commutativity, associativity and absorption):
(1) zxVve=z=x Az,
(2) xVy=yVuz, TANy=yAux,
3) (xVy)Vz=zV(yVz), (xAyYANz=zA(yA=z),

4) zV(xANy) ==, zA(xVy) ==
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The partial order may recovered from either V or A:
b)) z<yerVy=ysSrAy=ux.

A lattice satisfying any of the equivalent conditions below is called distributive
|Gré, lemma 1.4.10]:
(6) (zV2)AN(yVz)=(xAy)Vz Vx,y z€L,
(6") (zA2)V(yAz)=(xVy Az YV x,y,z€ L.
Now assume for a moment that (L, <) is an arbitrary poset. An element 1 € L

is called a top element if z < 1V 2 € L. A poset possesses at most one top element.

Notice that it satisfies
(0) zvi=1 and zAl=x VazeL.
A poset (L, <) is viewed as a category £ = (A, L, 3,%,i,m) as follows:
e A={(z,y) e Lx L /z<y}
e 3(x,y) =z and t(z,y) = v,
o i(x) = (z,z) and m((y, 2), (z,y)) = (z, 2).

Thus, £ is a subcategory of the pair category E

Now we are ready to describe the deltacategory structure announced above.
Assume that L is a distributive lattice with top element 1. Let us prove that £
admits a deltacategory structure, as follows.

e N\:LxL—Lis(z,y)—aAy and : [ — Lis %+ 1,

o AN AXE(LxL)—AxAis ((x ANy, 2),2,y) — (z, 2V 2),(y,yV 2)),

o ¢ AxET — Tis ((1,1), %) — x.
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The part of the diagram of L relevant to the definition of 4\ is

TV z zVuy

N

4 Y

~ 7

VAT

First notice that 2y and ¢ equip L with a monoid structure by (3) and (0). 2\ is
6 5

a morphism of left L-graded sets, since (zV z) A (y V z) (:) (xANy)V z(:)z And so

is &, because if ((z,y),*) € A x" I then 2 = 1 and then, by definition of 1, y = 1.

A\, preserves identities by (4) and (2):

ANy, zNy),oy) = ((z,2V (2 Ay), (y,yV(zAY) = ((2,2), (y,y)) -

Consider two composable arrows (z Ay, z) and (z,w), and their succesive lifts to

(z,y) in £ x £, as illustrated below:

i N 7N
£2x g (r,y) (xVzyVz) (xVvz)Vw,(yVz)Vw) (x,y) (zVw,yVw)
Lo~

We see that the composite of the lifts coincides with the lift of the composite
because (xV z) Vw =z Vwand (yVz) Vw =y Vw by (3) and (5), since here
z < w. Thus 4 preserves compositions.

It only remains to check coassociativity and counitality for A and ¢. Consider

the lift of an arrow (z A y A z,w) first by A to (z Ay, z) in £ x £ and then by
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A xidto (z,y,2) in £ x £ x £, as illustrated below:

//_\
EXTXE (x,T,z) (:L’\/((:L’/\y)\/w),y\j((x/\y)\/w),z\/w).
xid S
Lx g (x ANy, 2) ((x Ay)Vw, zVw)

J 1 |
£ xAyAz///,’—_—“\\\\\*w
By (3) and (4) we have that z V (z Ay) Vw) = (zV (x Ay)) Vw = x Vw and
(using also (2)) yV ((z Ay)Vw) = (yV(xAy))Vw =y Vw. Thus the lift in
question is ((z,z V w), (y,y V w), (2,2 Vw)). By symmetry this must also be the
lift by (id x A) o A, proving coassociativity.

Finally, the lift by (e x id) o A of the arrow (1 A z,y) to (*,2) in J x £ is

S
Ix g (*, ) (x, 2 Vy)
exidT Al /_\A 1
£x L (1,x) (IVy,xVy)
AT I /\I
£ 1Nz Y

By (0), 1Az =, hence < y, so  Vy =y by (5). This proves left counitality,
right counitality holds by the same reason.
This completes the verification of the deltacategory axioms for (£, A, €).

A related example. A poset may carry a deltacategory structure even if it is

not a lattice. For instance, the discrete category X on a set X is a poset (but not
a lattice, unless X = {x}), and a deltacategory as long as X is a monoid. For a
more interesting example, consider the category

¢= 1£$Ly.

Notice that € is the poset X = {1,z,y} with x < 1, z < y. As such, it is not
a lattice: 1V y does not exist. However, € carries a deltacategory structure, as

follows.
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The monoid structure on X is

1z |y
112y
zlz|y|y
Yyly vy
This is a submonoid of Mj3(N) via 1 = [ég%}, T = [é%g}, and y = [é%g}

The lifting 4 is described through the pictures

(a,idi) (idh,a)
exe (@1 (11) (La)  (1.1)
S P .
¢ x 1 T 1

(z,1)  (y,1) (Lx)  (Ly)

Together with the condition that identities must be preserved, this completely
determines 4. ¢ is, as always, uniquely determined.
Coassociativity, counitality and preservation of compositions are in this case

straightforward.

8.4 Another example

There is a way to enlarge any given category in Sets to a deltacategory, that we
now describe. This construction is due to Chase.

For any set X, let F'(X) =[], X" denote the free monoid on X; X" is the
cartesian product of X with itself n times, X° = {x}. If ¢ = (A, X,5,t,i,m)

is a category in Sets, then F(¢) = (F(A), F(X), F(3), F(t),F(i), F(m) o 1) is a
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category in Monoids, where 7 is the isomorphism of monoids
F(A) xF& FA) & F(AxX A,
(a1, ..., an), (br,...,by)) — ((a1,b1),...,(an,bp)) -
(Notice that F(A) x F(A) 2 F(A x A), though).

F(€) is also a category in Sets, and can be equipped with a structure of

deltacategory in Sets (not in Monoids ), as follows.

o /y: F(X) x F(X) — F(X) is the multiplication of F'(X),
(1, 1), (W, 9a) = (1, T Yty g),s
e ¢: ] > F(X)isx—xel=XO
o A F(A) xFX) (F(X) x F(X)) — F(A) x F(A) is
((a1, - apag), (@1, @), (Y1, 9g)) = ((an, - ap), (Apgas - - Apeg)),

o ¢ F(A) xFX) T — Tis (%, %) > *.

The verification of the deltacategory axioms is straightforward.

If A is a monoid then F(A) is not a one-object category, rather F(A) =

(F(A),N,...). On the other hand, F(}A() = F@, the deltacategory corresponding
to the bimonoid F'(X).
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Part 11

Applications to quantum groups
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Chapter 9

Categories in Vector Spaces

In this chapter we apply the theory of part I to study internal categories in the
monoidal category Vecy of vector spaces over a field k. The connections to quantum
groups are as follows.

First, it will be shown that several basic objects in the theory of Hopf alge-
bras or quantum groups, like Hopf modules or Yetter-Drinfeld modules, naturally
appear as representations of internal categories in Vecy (on the other hand, they
cannot always be seen just as modules over an algebra). Thus, as in the set-
theoretic case, representations of internal categories provide richer examples than
representations of monoids or algebras. Consideration of the underlying internal
categories often allows us to prove facts about their representations without dealing
with the representations themselves, as in the proof of the Fundamental Theorem
on Hopf modules below (corollary 9.7.1); instead, it is possible to compare the
internal categories directly, either by finding functors or cofunctors between them.

The second connection has to do with one of the main goals of the theory
of quantum groups; namely, the construction of monoidal categories and of bial-
gebras or Hopf algebras. Monoidal categories are obtained as representations of
deltacategories in Vecy, and bialgebras as admissible sections of such. In fact, we
find that several important quantum groups, like Drinfeld’s double and Drinfeld’s
and Jimbo’s quantized enveloping algebras UqJr (g), are obtained as admissible sec-
tions of some very natural deltacategories. This culminates in section 9.8 with
the main construction of this thesis, a generalization of the construction of the
quantum groups of Drinfeld and Jimbo, involving the binomial braids introduced
in appendix B. In particular we believe that good evidence is provided to show

that the notion of a deltacategory in Vec; is a natural and useful one.
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Let us describe the contents of the various sections in more detail. In section 9.1
we show that ordinary small linear categories are examples of internal categories
in Vec,. Admissible sections and cofunctors are shown to extend notions already
present in the literature for linear categories. In section 9.2, those aspects of the
theory of internal categories that are particular to the case of vector spaces are
developed. In particular, it is shown that the monoid of admissible sections I'(€)
of a deltacategory € in Vecy carries a structure of k-bialgebra (as long as the base

coalgebra is finite-dimensional) and that there is a monoidal functor
Rep.& — ModI'(€) .

Here, the results of appendix A will be used. In section 9.3, the first examples of
quantum groups are presented. It is shown that Sweedler’s four dimensional Hopf
algebra, as well as its generalization due to Taft, naturally appear as admissible
sections of deltacategories. For later examples, the general considerations on free
and quotient categories of section 9.4 are needed. In section 9.5 we return to the
line of examples, and construct U,(sly) via admissible sections. This is done for
Drinfeld’s double in section 9.6, where we also apply the general theory of internal
categories to deduce several properties of the double. In section 9.7, smash prod-
ucts are seen as admissible sections, and applications to Hopf modules and Hopf
bimodules are presented, along the lines suggested above. Finally, in section 9.8,
we describe a general procedure for constructing a quantum group U7 (X) out of a
finite-dimensional Hopf algebra H and a Yetter-Drinfeld H-module, as admissible
sections of a certain deltacategory U}, (X) in Vecy. The quantum groups of Drin-
feld, Jimbo and Lusztig are obtained through this procedure from the simplest
choice of H: group algebras H = kG of cyclic groups G. In this procedure, the
action of the binomial braids (appendix B) bl(-") on the various tensor powers X"

plays a crucial role.
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When dealing with bialgebras and comodules, Sweedler’s abbreviated notation

will be used, as explained in appendix A.

9.1 Linear categories as internal categories

For any set X, let kX be the group-like coalgebra on X, so that X is a k-basis for
kX, A(x) =xex and e(x) =1V z € X.

The main goal of this section is to show that a small k-linear category with
object set X is the same thing as a category in Vec; with base coalgebra kX. This
important observation is due to Chase.

This is an elaboration on the following basic fact [Mon, example 1.6.7]: if (M, t)
is a left kX-comodule, then M = @,cx M,, where M, = {m € M / t(m) = zem}.
Similarly, if (M, s, t) is a kX-kY-bicomodule then

M = @ M,, where M,,={m e M /t(m)=xem and s(m) = msy} .

zeX, yey

An X-graded k-space is a collection { M, }.cx of k-spaces indexed by the elements
of X. A morphism of X-graded k-spaces is a collection of k-linear maps f, : M, —
N,. X-Y-bigraded k-spaces and their morphisms are defined similarly. The above
shows that there is an equivalence between the category of kX-kY-bicomodules
and that of X-Y-bigraded k-spaces,that to the bicomodule (M, s,t) assigns the
bigraded space with components M, , = {m € M / t(m) = zem, s(m) = mey}.

A small k-linear graph is an ordinary small graph (a graph in Sets) where
each Hom-set carries a structure of k-vector space. Thus, a linear graph with
object set X is just an X-X-bigraded k-space, with components M, , = Hom(y, )
for z,y € X. Recall (definition 2.3.1) that an internal graph in Vec, with base
coalgebra kX is just a kX-kX-bicomodule. It follows from the above that there

is an equivalence between the category G, x of graphs in Vec, with base coalgebra
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kX and the category of small k-linear graphs with object set X.

Let M be a kX-kY-bicomodule and N a kY-kZ-one. Then, clearly, the com-
ponents of the kX-kZ-bicomodule M&YN are

(M#¥N),. = @ M, oN,. .
yey

Recall (definition 2.3.1) that an internal category in Vecy with base coalgebra kX
is a monoid in Gix, with respect to ¢X. It follows that such a category can be
equivalently described as a small linear graph with object set X, equipped with
a structure of ordinary category such that composition Hom(y, x) x Hom(z,y) —
Hom(z, z) is k-bilinear. This is precisely the definition of a small k-linear category
(as in chapter 1.8 in [ML], for the case k = Z). This proves that there is an

equivalence
{ small k-linear categories with object set X } = { categories in Vecy over kX },
that sends the linear category € to the internal category (A, C, s, t,i,m) with

C =kX, A= P Home(y, ),
2,y
s(a) = asz and t(a) = yea for a € Hom(z,y),

i(r) = id,, the identity arrow of z in €, and

m(aeb) = ao b for a € Hom(y, z) and b € Hom(z, y), where o is composition in €.

The notion of representations for internal categories (definition 6.1.1) boils
down to the usual one for linear categories; namely, a representation of a k-linear
category € is just a k-linear functor € — Vec,. In fact, if € = (A, kX, ...) is
as above, then a representation of € is a left kX-comodule V', equipped with an
associative and unital action a : A¢#XV — V. In other words, V is an X-graded

k-space equipped with associative and unital maps Home(y, z)eV, — V,. This
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is equivalent to giving a linear functor € — Vec; that sends x to V, and a €
Home(y, z) to its action V,, — V.

Mitchell defines in [Mit, pages 33 and 51] the matriz ring [€] of a small k-linear
category €, which is in fact a k-algebra. Viewing € as a category in Vecy, € =
(A, kX, ...), we have defined the monoid of admissible sections I'(€) of €, which
is in this case a k-algebra, since the monoid structure is compatible with the
underlying k-linear structure on I'(€) = Homyx(kX, A). We claim that [€] is a
subalgebra of I'(€), and that [€] = I'(€) when the object set X is finite (this was
announced in section 5.2).

In fact, by definition, [€] is the k-space of matrices of the form
g yleyex With a,, € Home(y,z) = A,

and such that each row and column has only finitely many non-zero entries. Thus,

as vector spaces,

€= P A, =A.

z,yeX

Multiplication of matrices a = [, ,] and 8 = [3,,] is the matrix af with entries

(a/@)x,y = Z Qg > O /Gz,ya

zeX
where o denotes composition in €:
Bz,y g,z
y TN p, T .

The algebra [€] does not have a unit element unless X is finite, in which case the

id, ifz=y
matrix § with d,, = is the unit element.

0 ifx#y
On the other hand, from the definition of morphism of X-graded k-spaces we

have that

I'(€) = Homyx (kX, A) = ] Homu(k{y}, P Azy) = [ B 4w

yeX reX yeX reX
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which can be identified with the space of matrices of the form [oy ], ex With
gy € A,, and where each column “y” has finitely many non-zero entries (but

[}

rows “x” may be infinite). Thus, there is a canonical k-linear embedding
€] = I(C) o u,

that views the matrix a € [€] as the admissible section u, € I'(€) whose value on
y € X is ua(y) = D, cx Yy € A. The image of this embedding consists of those
admissible sections of finite support, that is those u € I'(€) such that u(y) # 0 only
for finitely many y € X. In particular, when X is finite this inclusion is surjective;
moreover, it preserves unit elements in this case. Let us check that, in general, it

preserves multiplications:

(ta % ug) (y) = m(uaeida)tus(y) = m(uastida)t (Y  B,)

zeX
= m(uadcxidA)(Z Z‘g’ﬁz,y) = m( Z O‘:c,z@’ﬁz,y)
zeX z,z€X
= Z Qg2 O ﬁz,y = Z(O‘ﬁ)x,y = uoaﬁ(y) :
r,z€X reX

This completes the proof of the claim.

Mitchell’s matrix ring generalizes several other important constructions: the
path algebras of quivers of Gabriel [Gab], the generalized triangular matriz rings
of Chase [Cha2], and the incidence algebras of finite posets of Rota [Rot, GR] (see
[Mit] for more details on this). The functoriality of the construction of the matrix
ring of a linear category is addressed only partially in [Mit]: only functors that are
the identity on objects are considered, but the more general notion of cofunctor
is not discussed (such functors are particular cofunctors, see remark 4.2.1). The
functoriality of the construction of the incidence algebra of a poset is investigated
more carefully in [GR1, section 3.5], presumably for the reason that, for posets,

functors that are the identity on objects are not very frequent (there is such a
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functor P — @ only if the Q-order is a refinement of the P-order). Goldman and
Rota show that there is a morphism between the incidence algebras of two posets
P and @ associated to the following data (called a proper map in [GR1]): a map
o : P — (@ such that

(a) o is injective,
(b) if o(p1) < o(py) then p; < po, and

(c) if o(p1) < g < o(py) then there is a unique p € P such that p; < p < ps and

a(p) =q.

Let us view the poset P as a category B = (Ap, P,...) as in section 8.3; we reserve
P for the underlying set, and Ap = {(p1,p2) € P x P / p1 < ps}. From our point
of view, the above data is just a particular type of cofunctor ¢ : kQ — kP between
the linearization of 9 and 3, and hence the existence of an associated morphism
L(p) : T'(kQ) — I'(KP) from the incidence algebra of @ to that of P is explained
(proposition 5.3.1). In fact, consider the pair ¢ = (¢1, @o) Where ¢g : kP — kQ is
the linear extension of o, po(p) = o(p) Vp € P, and ¢, : kAger%k P — kAp is the

linear extension of

(p1,p2) if ¢ = o(ps) for some py € P,

0 if ¢ € Im(o).

©1 <(‘7(P1)7 Q)®p1> =

Conditions (a) and (b) ensure that ¢, is well-defined. ¢ preserves identities by (a)
and compositions by (c), so it is indeed a cofunctor.

Finally, let us consider general functors and cofunctors between linear cate-
gories. First notice that the functor Sets — Coalg,, X — kX is full and faithful,
being left adjoint to the functor Coalg, — Sets that sends a k-coalgebra C' to

the set {c € C' / Ac(c) = esc, e (c) =1} of its group-like elements.
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Let f = (f1, fo) : € — D be a functor between linear categories € = (A, kX, ...)
and © = (B, kY, ...), in the sense of definition 4.1.1. It follows from the above that
the morphism of coalgebras fy : kX — kY is necessarily the k-linear extension of a
map X — Y. Then, the morphism of kX-kX-bicomodules f; : A — ;By,, must be
given by a family of k-linear maps f,, : A, , = Hom(y, ) — Hom(fo(y), fo(x)) =
Byy(y).fo(x). Preservation of identities and compositions for f translate into the
obvious conditions for f, and f;,. Thus, a functor between linear categories in
the sense of section 4.1 is just a k-linear functor in the sense of [ML, chapter 1.8];
in particular, it is an ordinary functor between the underlying categories in Sets,
and therefore can be represented through pictures as in section 4.3.

The situation for cofunctors is different. Let ¢ = (p1,¢0) : € — D be a
cofunctor between linear categories as above. As before, ¢q : kY — kX must be the
k-linear extension of a map Y — X. Then, the morphism of kX-kY -bicomodules
1 @ Aet*kY — B must given by a family of k-linear maps

A poly) — @ By y -

y'Epy (x)

Therefore, ¢ need not be a cofunctor between the underlying categories in Sets;
such a cofunctor would be given instead by a family of maps
At po(y) = H By, .

yep; (@)
In other words, the “lift” of an arrow a : ¢o(y) — 2’ of € to the object y of
® provided by ¢; does not consist just of a single arrow y — vy’ with po(y') =
a'; rather, it consists of a finite sum of such arrows (which may have different
targets, all mapping to =’ under ¢g). With this modification, the interpretation of
cofunctors as liftings of section 4.3, and the associated pictorial description, can

still be used. Thus, the fact that

o1(asy) = Z b; for some b; : y — .

i=1
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will be represented by a picture like

?:1 b;
D y— >y
N
© ©0 ®o
¢ woly) ™ o

The usage and usefulness of this notation may become clearer after the examples of
later sections; for simplicity, we may omit some of the arrows from these pictures.
Preservation of compositions is easily expressed in these terms: given composable

arrows a; and as as in the picture below, one lifts a; to y

al®y Z bz )

and computes the targets y, of the resulting arrows, then one lifts a; to each of

these targets
a’2®yz Z b %]

then the lift of as 0 a; must be the comp081t10n of the lifts

01 ((ag oa ®y> Z(Zb]> ob; .

>ibi Z]‘ bi,j Z'L(ZJ bi,j)ob;
SN T TN
D Yy y; ° Yy o
@] I a1 I as l = I asoa 1
N , PR RN
¢ vo(y) x L vo(y) ¢

Preservation of identities has the same meaning as in the set-theoretic case:
the lift of the identity of ¢o(y) to y must be the identity of y. Compostion of
cofunctors ¢ : € — ® and ¢ : ® — €& can be described as follows: the lift of an
arrow a of € with source pg1)y(z) to the object z of € is obtained by first lifting a
to the object ¥y(y) of ©® by means of ¢ and then lifting all the obtained arrows to

z by means of .
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9.2 Representations and admissible sections

Let € = (A, C,s,t,i,m) be a category in Vec,. The monoid of admissible sections
I'(€) = Hom¢(C, A) is a k-vector subspace of Homy(C, A), and with respect to
this structure, multiplication of admissible sections is k-bilinear, since it is given

by the formula (proposition 5.1.1)
u kv =m(usfdy)tv, for u,v e I'(€).

Therefore, I'(€) is a k-algebra.
We will use Rep.€ to denote the category of representations of € (section 6.1),

instead of Repye., € . In this section we will show that there is a canonical functor
Rep.¢ — ModI'(€)

and discuss some conditions under which this functor is an equivalence. We will
also show that, if € is a deltacategory and C' is finite-dimensional, then I'(€) carries
a structure of k-bialgebra, and the functor above preserves the resulting monoidal
structures.

Since I'(€) is a k-algebra, we can consider the one-object category I'(€) (exam-

ples 2.4.1).

Proposition 9.2.1. There is a cofunctor ¢ : L(€) — € defined by ¢ = (e, &),

where ¢ : C — k is the counit of C' and e : I'(€)eC — A is the evaluation map

usc — u(c).

Proof. We check the conditions in definition 4.2.1. The counit ¢ is a morphism
of coalgebras. The evaluation map e is a morphism of right C-comodules: for

usc € I'(€)eC' we have, since u is a morphism of right C-comodules,
se(usc) = su(c) = (ueid) Ac(c) = u(cr)ecy = (eside)(usciecy) = (esido) (iAo ) (uec),
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from where se = (esido)(idv/A) as required.
The remaining conditions are preservation of identities and compositions, i.e.

the commutativity of the following diagrams:

idoe idot e&Cida

D(€)eC —= A4 T(€)el(€)eC L5 T(€)eA —Eh T(€)eCtA % Auca

“F<¢)®idCT Tz m@%cl lm

koC' ~—— C [(¢)sC A

e

Evaluating on usvec we see that the second diagram commutes precisely by defini-
tion of multiplication of admissible sections. In the first diagram, ur(¢) denotes the
map that sends 1 € k to the unit element of I'(€), namely the admissible section

7; thus, it commutes trivially. This completes the proof. O

Corollary 9.2.1. There is a functor Rep,€ — Modl'(€), preserving the forgetful

functors to Vecy,.
Proof. This is the result of section 6.2, applied to the cofunctor . O

Remark 9.2.1. By definition of restriction along cofunctors (section 6.2), the action

of I'(€) on a representation (X, p,a) of € is

. C
[(€)eX L2 T (€)eCscX %, AscX & X

On the other hand, by proposition 6.4.1, for each representation X of € there is a

morphism of monoids

U®GIdX

vx : I(€) — Endg(X), such that vx(u) : X & CecX %5 AecX L X

This endows X again with the same structure of I'(€)-module.

We denote by %f the full subcategory of %yeck consisting of those categories
¢ = (A,C,...) in Vec, whose underlying k-coalgebra C' is finite-dimensional (but
A may be infinite-dimensional); we call these categories finite. A linear category

is finite precisely when it has finitely-many objects.
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The results of appendix A will be used for what follows. Let C' be a finite-

dimensional k-coalgebra. Then, by lemma A.2.1, C* is a C-C-bicomodule.

Proposition 9.2.2. Let € = (A,C,...) be a finite category in Vecy. Then the
map

d: AsCC™ — T'(€), d(z afi)(c) = Z filc)a; ,

is an isomorphism of C-C-bicomodules (with respect to the structures described in
section A.2).

Proof. This is a particular case of lemma A.2.3, since I'(&) = Homy,(C, A). O

Remark 9.2.2. A finite-dimensional k-coalgebra is called co-Frobenius if the dual
k-algebra is Frobenius, or equivalently if C* is isomorphic to C' as left C-comodules
[Doil, section 2.1]. Any group-like coalgebra is co-Frobenius, and so is any finite-
dimensional Hopf algebra [Mon, 2.1.3]. If C'is co-Frobenius then proposition 9.2.2
says that I'(€) = A. This was already observed for the case of group-like coalgebras

in section 9.1.

Recall from section 7.4 that the admissible sections functor
I: %Veck — Alg;
together with the natural morphism of k-algebras
[(€)e'(D) — I'(€D)

of section 7.2 (which is given simply by the tensor product of linear maps) define
a lax monoidal functor %Veck — Alg,.

As an immediate consequence of the above proposition we obtain:

Proposition 9.2.3. The functor I : <C?zﬁf — Alg, equipped with the natural trans-
formation I'(€)e(D) — I'(Ce®D) is a weak monoidal functor.
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Proof. We only need to show that I'(€)e,['(D) — I'(€«®) is an isomorphism. This

follows from the commutativity of the following diagram:

T

(AsCC*)e(BePD*)

['(Ce®)

T%

AeB)ee®n(C*eD¥) |

1%

T(A,C*,B,D)
—

where the vertical isomorphisms are those of proposition 9.2.2 (we identify C*e D* =
(CeD)*) and the bottom map is the isomorphism of lemma 7.1.1. This diagram

indeed commutes because so does the following, clearly:

Hom,(C, A)eHomy (D, B) ——— Homy(CeD, A= B)

ET Tg

(AeC)e(BaD*) 220 (AL BYo(CHaD") |

It follows that I'(€)&'(D) — ['(€eD) is an isomorphism and the proof is complete.
U

Corollary 9.2.2. If € is a finite deltacategory, then I'(€) is a k-bialgebra.

Proof. Comonoids are preserved under weak monoidal functors, so the result fol-

lows from proposition 9.2.3. U

Notice that, moreover, the functor res, : Rep,& — ModI'(€) of corollary 9.2.1
preserves the monoidal structures on these categories. This is simply because the
cofunctor ¢ : [(€) — € preserves the deltacategory structures, as one may easily
check.

We turn back our attention to the functor Rep,& — ModI'(€), for the case of
finite categories. Flat comodules are defined in section A.1. Their relevance to the
notions we are discussing is explained by next result. In its proof we will make
use of the following fact: if A — B is a morphism of k-algebras and X is a left

B-module, then the action map BsX — X factors through Be, X — X, where X
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and B are viewed as A-modules by restriction along A — B. This is an obvious

consequence of the associativity of the action.

Proposition 9.2.4. If € = (A,C,...) is a finite deltacategory and A is flat as

right C'-comodule, then the functor Rep.& — Modl'(€) is an equivalence.

Proof. According to lemma A.2.1, we may identify ComodC = ModC*? (left co-
modules and left modules). Thus, the isomorphism of C-C-bicomodules I'(€) =
Ae“C* of proposition 9.2.2 can also be seen as an isomorphism I'(€) = AeCC*P
of C*°P-C*°P-bimodules, and we have an isomorphism of functors ComodC —

ComodC as follows:
NQ%quguwwwmm+qu&@wwwdq)gAw—y

(The isomorphism in the middle is that of lemma A.2.4; here is where the flatness
assumption is used).
Recall (examples 4.1.1) that there is a functor (i,id-) : C — €. By remark 4.2.1,

this can also be seen as a cofunctor. We know from section 5.2 that I'(C) = C*P.

Hence, by proposition 5.3.1, there is a corresponding morphism of k-algebras
c*r =T(C) 5 I(¢) .

Explicitly, 7 sends f € C* to (fei)Ac € T'(€). Restriction along ¢ allows us to
view left or right I'(€)-modules as left or right C**’-modules (or C-comodules). In
particular, one checks easily that the resulting structure of right C*°P-module on

['(€) is the same as the one previously considered, namely
u-f=(feu)No VfeC™ uel(C).

It follows that if X is a left I'(€)-module, then it is also a left C*°P-module (or left

C-comodule) and that the structure map I'(€)e X — X factors through

P(@)@C*opX — X s
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(according to the remark preceding the proposition). Together with the isomor-
phism of functors above, this allows us to endow X with an action A«X — X,
which will be associative and unital because so is the action of I'(€). Thus X

becomes a left €-representation, and we have constructed a functor
ModI'(€) — Rep,C .

Routine verifications show that this is the desired inverse. O

Remark 9.2.3. The flatness hypothesis in proposition 9.2.4 can be substituted by
others. For instance, still assuming that C' is finite-dimensional, but with no
assumptions on A, the functor Rep,€ — Modl'(€) is an equivalence, provided
that one restricts attention to those €-representations and I'(€)-modules whose
underlying C-comodule is flat as C*P-module. In fact, the above proof works
in this case too, because lemma A.2.4 can still be applied under this alternative

hypothesis.

9.3 Sweedler’s algebra as admissible sections

Consider the following (small) graph in Sets

2N
"Co_10-

dy
Let k£ be a field, chark # 2. Linearizing the set of arrows we obtain a k-linear
graph with object set Zs = {0, 1}. We define a k-linear category structure on this
graph by letting eq and e; be the identities, setting dg o dy = d; o dy = 0, and
extending composition linearly. As explained in section 9.1 this yields a category
€= (A,C,...) in Vecy, where A = key®ke,®kdy®kd; and C = kZy = k[c]/(*—1).

It turns out that € is actually a deltacategory as follows:
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A : € — €s€ is the cofunctor A = (A, Ay) given by

Ny:CeC — C and A : As(CeC) — AsA
decd — T eirjo(diod) —  eee;
diyje(ced?) — dise; + (—1)'e0d;
(where the indices ¢ and j are taken modulo 2) and € : € — J is the cofunctor

e = (g,6) given by

6:1 — C and ¢:AT — 1

1 — eg — 1

dg — O
(recall the description of tensor coproducts over group-like coalgebras from section
9.1). By construction, A preserves identities. Let us check that A preserves
compositions, but omit the verification of the other conditions in definition 7.4.1
of deltacategories. Compositions with identities are trivially preserved; the only
relevant composition to be considered is d;;1 0d; = 0 for : = 0,1 mod 2. We use
the terminology and notation explained in section 9.1. We need to show that the
lift of ditj119ditj to (4,7) by A is equal to 0. We first compute the lift of d;;; to
(7,7). This involves various arrows with different targets. We then compute the

lifts of d; ;41 to these targets, as below:

(Z ) di®€J+ (Z + 1,]) di—l—l@ej -+ (—1)i+1€i+1®dj
1‘7 —|—(—1f7'6i®dj (Z,j + 1) di®6j+1 + (—1)i€i®dj+1
i+ diyj 1+j+1 diyjt1

Since A preserves compositions, composing the top rows we find the lift of d;; ;410

diyj to (i,7); it is
(dz’—i-l o di)®6]’ + (—1)i+1di®dj + (—1)Z <d,’®dj + (—1)i6i®(dj+1 9] d]): 0 5
as required.
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Since € is a finite deltacategory, I'(€) is a k-bialgebra (corollary 9.2.2). Let
us describe it. A general admissible section u : C' — A is of the form u(¢/) =
ujej +ud; for some scalars uj, u; € k, for j = 0,1 (a morphism of kZy-comodules
is a morphism of Zy-graded spaces, see section 9.1). Following the definition in

proposition 5.1.1 we find that the multiplication in I'(€) is described by
(uxv)() = ujvje; + (Wyv; + ujpv)d; .

Let x: C — Abex(d) =d;and g: C — Abe g(¢) = (—1)’e; for j =0, 1. Recall
that identities are given by i(¢/) = e;, j = 0,1. It follows that {i = 1,x, g, zg} is
a k-basis for I'(€) (here we use chark # 2) such that

2=0, ¢>=1and 2g = —gz .
Let us compute I'(A)(u), for u = x, g, following the definition in section 5.3:

Ol (CoC)eA(CoC PR O )~ Acc( O ) =

As A

C
i i e e o i e G e Y ] eciec = doses 4 (—1)eed.
cec cedec'sc cMeclac i4jOC ®C o€ + (—1)'e;ed;

= (zel + gex)(c'ad),
Focl — clodlaciod] —= citigdige g (—1)"He; jocted! —— (—1)"e e,
= (g=g)(c'ac?).

Thus I'(A)(z) = zel+gex and I'(A)(g) = geg. Similarly I'(¢)(x) = 0 and I'(¢)(g) =
1. Therefore, I'(€) = H,, Sweedler’s 4-dimensional Hopf algebra, as described in
[Mon, 1.5.6].

There is a generalization of Sweedler’s example due to Taft; namely, for each
primitive n-th root of unity ¢ the author defines in [Taf] a k-algebra T,,(¢) with

generators x and y subject to the relations
2" =0,y"=1 and yx = qxy,
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and proves that it is a Hopf algebra with
Ay) = yoy, A(x) = xzel + yox, e(y) = 1 and €(z) =0 .

Sweedler’s algebra is To(—1). Again, 7,,(q) can be obtained as admissible sections
of a naturally defined deltacategory in Vecy, as follows. Consider the free k-linear

category on the cyclic graph on n vertices

dy N .
AN
AN
{
1 n—2
do dn72
0 ~ " 1
modulo the relations
dizn-10dizpo0...0d;y10d; =0 fort=0,1,...,n—1 mod n.

Let T,(q) = (A,C,...) denote the corresponding category in Vecy, so that, in
particular, C' = kZ, = k[c|/(c¢" —1) and d;, e; € A, where ¢; denotes the identity of
the object i. Then T,,(q) carries a deltacategory structure defined on the generating
arrows as follows (this claim can be checked using the general considerations on
quotient categories in section 9.4 below; it also follows from the results of section

9.8, since T, (q) is a particular binomial deltacategory, as explained in section 9.8.3):

Ny :CeC — C and A : As(CeC) — AsA
decl s AT eirjo(diod) —  eee;

di+j®(ci®cj) = dze; + qi6i®dj
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and
6:1 — C and ¢:AT — 1

1 — eg — 1

dg — 0
Let us check in detail that T,(¢) = I'(T,(¢)) as bialgebras. First, consider the
admissible sections X : C' — A, X(¢') =d; and Y : C — A, Y(c') = ¢'e;. Then,

as in Sweedler’s example, one checks easily that
X"=0,Y"=1 and YX = ¢XY,
CA)Y) =YeY, T(A)(X) = Xel + YeX,T'(e)(Y)=1and I'(¢)(X) =0 .
Hence, there is a morphism of bialgebras T, (q) — ['(T,(¢)) sending = to X and
y to Y. The point is to show that this map is bijective. Notice that {x'y’ / 0 <

i,j <n—1}is a k-basis for T,,(g), so dimT,,(q¢) = n®. On the other hand, recall

from section 9.1 that I'(T,(q)) = A as k-spaces, and
{ei,di,di+1Odi,...,di+n_20...0di+1 Odi / 1= 0,1,...,71,—1 mod n}

is a k-basis for A, from where dimT'(T,(q)) = n? as well. (The fact that this
is indeed a k-basis is clear from the definition of free k-linear category; for the
more general notion of free categories in Vecy see section 9.4 below). Thus, it is
enough to prove that the map above is surjective. We will show that X and Y
generate the k-basis of I'(T,,(¢)) corresponding to the above basis of A. For each
i=0,1,...n— 1, consider the admissible section §; : C' — A, §;(¢/) = ;;e;, where

0;; is Kronecker’s delta. We have a system of equations

(

1= S04+ 014 ... 4 001

Y = So+qo+ ... +qv 1,

Yrl= Gy +q" Mo+ .. 4 g Dg,

\

110



Since ¢ is a primitive n-th root of unity, the Vandermonde matrix [¢"]o<; j<p—1 18
invertible. Therefore, each §; belongs to the subalgebra generated by Y. Notice
that d; is the basis element of I'(T,,(¢q)) corresponding to e; € A. The basis element
corresponding to d;jo...0d;q 0d; € Ais just X714, (computing the product
of these admissible sections we find that its value on ¢” is dindivjo...odip10d;).
This completes the proof.

The Hopf algebra T,,(q) was also considered by Pareigis in [P2]. There it is
shown that the category of left T, (¢)-modules admits a nice simple description in
terms of cyclic complexes, as follows. Given a diagram of vector spaces

da
Vs

\
‘/1 Vn—2

dp—

such that
diyn-10diypo0...0d;y10d; =0 fort=0,1,...,n—1 mod n,

the vector space V = @'-;'V; carries a left T},(q)-module structure, where x € T},(q)
acts on V; C V as the map d; and y € T,(q) acts on V; by multiplication by ¢'.
Conversely, every left T,,(¢)-module arises in this way from a cyclic complex. This
description of ModT},(¢) can be obtained immediately from proposition 9.2.4 (recall

that the flatness hypothesis are always satisfied in the case of linear categories):
Rep: T, (¢) = ModI'(T,,(q)) = ModT,(q),

plus the description of representations of a linear category in section 9.1. The

deltacategory structure on T,(q) (or the bialgebra structure on 7,(q)) induces a
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monoidal structure on Rep,J,,(¢). This is the natural tensor product of cyclic

complexes, as considered by Pareigis.

9.4 Free and quotient categories

In this section we construct the free category on a graph. A priori, “free” could
be understood in two different ways: with respect to functors or cofunctors. Sur-
prisingly, both universal problems have the same solution.

We also introduce the notion of ideal of a category and coideal of a deltacate-
gory, and discuss the corresponding quotient constructions.

First, let us mention that the notions of functor and cofunctor can be defined for
arbitrary graphs instead of categories, by omitting the associativity and unitality
conditions in definitions 4.1.1 and 4.2.1.

Let § = (M,C,s,t) be a graph in Vecy, that is M is a C-C-bicomodule via ¢

and s. Consider the C-C-bicomodule
19(M)=C® M@ (MM) & (MMM @ . . .

(recall from section A.3 that the direct sum of bicomodules carries a natural struc-
ture of bicomodule, and that direct sums commute with tensor coproducts). Let

Cifn=0
us abbreviate M = , so that L9(M) = @7, M. Let

MM 1 if p > 1
i: C — 1L9M) be the canonical inclusion and m : L¢(M)«L%(M) — LY(M)

be such that its component MM — 1C(M) is the inclusion M eM®n =

M&m  16(M). Then, obviously,
T(9) = (LY(M),C, s,t,4,m)

ﬁ
is a category in Vecy. Moreover, there is a canonical functor j = (j,idz) : § —
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T(G), where j : M — 19(M) is the inclusion. This is the free category on the

graph G, in the sense that the following universal property holds.

Proposition 9.4.1. Given any category © and a functor (of graphs) f : § —
D, there is a unique functor (of categories) f : T(G) — D making the following

diagram commutative

Proof. The proof is straightforward but we sketch the details. Let ® = (B, D, ...)
and f = (fi1, fo). Thus fo : C — D is a morphism of coalgebras and f; : [M; — B
one of D-D-bicomodules. Define the components of a morphism f; : LY M)y — B
inductively as

(0)

FY% v =c 2 p L B and

hePR®Y
R LN

AP M = Moo < Mo BB ™ B .

Then f = (f1, fo) : T(§) — D is the desired functor. For instance, the following

commutative diagram shows that f preserves compositions.

&P &k

f p®Df a mp&Pm
MM N [hep)¥7 ——= BhrB¥ — Be"B .
_ 1 1 m
B I [
M®g+q(—> M®g+q B®2+q Mpta B
fl p+q

(Here my = i, my = m and m, = m o (idge’m,,_1) are the iterated compositions in

D). 0

Interestingly enough, T(9) is also free with respect to cofunctors. First notice
that, by remark 4.2.1, there is also a canonical cofunctor 7 : G — T(G) defined by
ide and MecC' = M L+ 1€(M). We thus have:
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Proposition 9.4.2. Given any category © and a cofunctor (of graphs) p : G — D,
there is a unique cofunctor (of categories) @ : T(G) — ® making the following

diagram commutative

Proof. We are given a morphism of comonoids ¢, : D — C' and one of C-D-bicomodules
1 M«,D — ,B. This we extend to a morphism 4y : L9(M)s€,D — ,L¢(M)
with components

619 0,0~ D L B and

(p

5,0 2 MFee,D = MeeM-1e0,p W0 o oy pep 29, pop ™ B

Again, it is obvious that ¢ is the desired cofunctor. For instance, preservation of
compositions for ¢ is the commutativity of the following diagram, which follows

by induction.

id, &5 (@)
M e, DY VB & M Der B D

:l m

M&+asC,D B

b1 (p+49)

O

A representation of a graph § = (M, C) is, by definition, a triple (X,p,a)
where (X, p) is a left C-comodule and a : Ms“X — X is an arbitrary morphism
of left C-comodules. A morphism of representations is defined as for categories
(sectionS:defrepresentations). A representation (X,p,a) of graph § becomes a
representation (X, p,a) of the free category T(G), by extending a : M«“X — X to

a: 19(M)scX — X so that unitality and associativity hold, as in the above proofs.

Conversely, a representation of TJ(G) defines a representation of G by restricting
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along <j_ These define an isomorphism of categories
Rep.S = Rep,T(9) .

We next discuss ideals and quotients. Let € = (A, C, s, t,4,m) be a category in

Vec,. A C-C-subbicomodule J of A is called an ideal of € if
ms(AeCJeCA) C J |

where m3 = m o (mefdy) = m o (idae“m). By unitality this condition is equivalent
to

m(A«“J) C J and m(J«“A) C J .

Let M be a C-C-subbicomodule of A. The ideal generated by M is
J(M) = msz(As“MeCA) C A .

Since m is a morphism of C-C-bicomodules, J(M) is a C-C-subbicomodule. As-
sociativity of m then implies that J(M) is in fact an ideal, and unitality that
J(M) 2 M. Moreover, it is clear that J(M) is the smallest ideal of € containing
M.

The kernel of a functor f : € — 3 is the space
Kerf={a€ A/ fi(a) = O}:Z{M C A/ M is a C-C-subbicomod, f1(M) = 0}.

Since f preserves compositions, Kerf is an ideal of €. Hence, if f1(M) = 0 then
fi(J(M)) =0.

The kernel of a cofunctor ¢ : € — 2 is the space
Kerp = Z{M C A/ M is a C-C-subbicomod and ¢ (Me“D) =0 }.

Since ¢ preserves compositions, Kerp is an ideal of €. Hence, if ¢1(Me°D) = 0

then ¢y (J(M)e“D) = 0.
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Technical difficulties arise when attempting to define the quotient of a category
modulo an ideal, due to the fact that the tensor coproduct of comodules need
not preserve epimorphisms. To get around this, one may restrict attention to
flat comodules, in view of the results of section A.1. In the applications to be
considered in later sections, these assumptions will be satisfied.

Let J be an ideal of a category € = (A,C,s,t,i,m). Assume that A and J
are flat as right C-comodules, and A/J is flat as left C-comodule. The quotient
of € modulo J is the category €/J = (A/J,C,5,t,i,m), where (A/J,5,t) is the
quotient C-C-bicomodule of A modulo J,7:C - A — A/J and

m: (A)J)e(A)T) = AsCA)(JCA + ACT) — AJJ

is the morphism induced by AsA = A — A/J. Above we have made use of the
canonical isomorphism of proposition A.1.1; this is where the flatness assumptions
are needed. The category axioms for €/.J follow readily from those of €. In
addition, there is a canonical functor @ = (m,idy) : € — €/J, where 7 : A — A/J
is the canonical projection.

To abbreviate, we will say that an ideal J of € is nice when the above assump-
tions (on J and A) hold.

Quotient categories satisfy the expected universal property.

Proposition 9.4.3. Let J be a nice ideal of a category €, and f : € — D a
functor such that fi(J) = 0. Then there is a unique functor f : €/J — D making

the following diagram commutative

el .n.

/1
ﬂl//f
¢/J

Proof. Since fy(J) = 0, there is an induced morphism of C-C-bicomodules f; :

A/J — B. Then f= ( fi. fo) clearly satisfies the desired property. O
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As in the case of free categories, quotient categories are also universal with
respect to cofunctors. By remark 4.2.1, there is a canonical cofunctor 7 : € — €/.J

defined by id> and A«C' =2 A 5 A/.J. We thus have:

Proposition 9.4.4. Let J be a nice ideal of a category €, and ¢ : € — D a
cofunctor such that ¢1(JeD) = 0. Assume also that ,D is flat as left C-comodule.
Then there is a unique cofunctor ¢ : €/J — D making the following diagram
commutative

¢c—=9.

\L 7
— s
™ s

s

¢/

Ayl

Proof. By assumption, (A/J)s°D = As°D/J«“D. Hence the morphism ¢; : AsCD —
B of C-D-bicomodules induces another such ¢, : (A/J)«°D — B. Clearly,

@ = (41, po) satisfies the desired property. O]

Let J be a nice ideal of a category € and (X, p, a) a representation of € such that
a(Je€X) = 0. If the left C-comodule X is flat, then it becomes a representation of
¢/J via

(A) )X = ACX/JeCX S X,
where a is the morphism of left C'-comodules induced by a.

Now we consider tensor products of quotients. If J; C A; are vector spaces,

1 = 1,2, then there is a canonical isomorphism
(Al/J1)®(A2/J2) = (A1®A2)/(J1®A2 + A1®J2> . (*)

Let € = (A;,C;,...) be categories in Vec, and J; a nice ideal of &€;, i = 1,2.
We claim that then JieAs + AjeJs is a nice ideal of €;o&€,. In fact, by lemma
A.3.5, AeAs, JivAs , AieJy and JieJy are flat as right CieCs-comodules. Since
(J19Ay) N (Ajeds) = Jieds, lemma A.3.3 applies to conclude that JieAs + AjeJy
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is flat too. Finally, the isomorphism (x) is one of C1eCy-C1eCy-bicomodules, so by
lemma A.3.5 (A1eAy)/(J19As + Ajedy) is flat as left CeCy-comodule.
Moreover, it is now clear that the pair consisting of the identity of C1eCs and

the isomorphism (x) yield a canonical isomorphism
(Q:l/Jl)@(Q:g/Jg) = (@1@@2)/(J1®A2 —|— A1®J2) s

(either in ﬁyeck or ba_tmk, by remark 4.2.1).

We are interested in ideals of deltacategories for which the quotient category
will inherit the deltacategory structure. It is natural to consider first the case
of graphs. A deltagraph is a comonoid in the category of graphs and cofunctors,
that is a graph G equipped with coassociative and counital cofunctors (of graphs)
A:§ — GeGand € : § — J. Notice that in this case the base coalgebra C' of G
becomes a bialgebra, with multiplication 2y : CeC' — C' and unit ¢ : k — C.

Let G = (M,C,s,t,A,e) be a deltagraph in Vec,. A C-C-subbicomodule K of
M is called a coideal of G if

A (Ke(CeC)) C KeM + MeK and ¢(Ke%k) = 0.

A biideal of a deltacategory is an ideal of the underlying category that is at the

same time a coideal of the underlying deltagraph.

Lemma 9.4.1. Let K be a coideal of a deltacategory. Then J(K), the ideal gen-

erated by K, is a biideal.

Proof. Let J = J(K) = m3(AsK«°A). We need to show that .J is again a coideal.
First let K = m(A«K). We have that & (K«(Ca()) C JoA + AsJ, as we see
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from the diagram below (which commutes since A preserves compositions):

ida &N KfA ) A &% K®A

e (A@A)@( + )

ACKe(CeC)
ARK

("F1) 22 As(CoC)roe(

ARK

AsC

(A9K)@(A®A)
m®oid +
(A2 A)e (A2 K)

mem

K@%C@C) ———————————————————————————— > Jo A + AsJ

Similarly we now deduce that A (Je(CeC)) C JeA + AeJ, using that J =
m(KsCA):

_ ide @A —

_ @G
ReAC(CoC) E 2 Raf(As A) 2 Ref(CoC)( As AP S Jo A + Aed)o( AcA)

~

(JoA)s ;1®A)—|—

mefid +(AsA)e(JeA)
mem
J(CoC) = = = = = = = = = - — e — e — - — -~ = Jo A+ AsJ

The fact that ¢(Je%k) = 0 is proved in two steps as above, using that e preserves

compositions. ]

We have now introduced all the terminology required for constructing quotient

deltacategories.

Proposition 9.4.5. Let (€, A €) be a deltacategory in Vecy and J a nice biideal
of €. Assume also that CeC' is flat as left C'-comodule by corestriction via L :
CsoC — C. Then the quotient €/J inherites a deltacategory structure (A, €) for

which the canonical projection T : € — €/.J is a morphism of deltacategories.

Proof. By definition of coideal and proposition 9.4.4, € 2, ¢l — Cal/(JoA +
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AeJ) and € 5 J factor through J:

A

¢ ————= (s ¢c———7.

| k4
<—l — o — <—l 7
K T ™ /o

¥ ;€

€/ - =>C/Jel)] — &l /(JeA + AsJ) ¢c/J

=

Welet A : €/J — €/J=€/J be the composite of the bottom row in the first dia-
gram, and € : € — €/J be as shown. Coassociativity and counitality for (€/J, A, €)
follow from those for (€, A ¢€), plus uniqueness of quotient factorizations. By con-

struction, 7 : € — €/.J preserves the deltacategory structures. O

Remark 9.4.1. Let (€, A,€) be a deltacategory in Vecy, with base coalgebra C.
Then (C, 2y, ¢) is a bialgebra. If in addition C' happens to be a Hopf algebra,
then the hypothesis in proposition 9.4.5 that CeC' be flat as left C-comodule is

automatically satisfied, according to examples A.1.1.

9.5 U,(sly) as admissible sections

Consider the following (small) graph G in Sets

The set of objects is Z, and for each object ¢ € Z there are two arrows with source
1, b; and a;, with targets ¢ + 2 and ¢ — 2 respectively.

Applying the linearization functor Sets — Vecy, S — kS, we obtain a k-linear
graph kG = (M,C) with C = kZ = klc,c™'| and M = @®czka; & kb;. We are
viewing kG as a graph in Vec, as explained in section 9.1. Consider the free
category T(kG) on this graph (section 9.4), T(kSG) = (A, C,...). Let ¢; € A denote
the identity of 7 in T(k9).
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Fix an arbitrary scalar ¢ € k. We claim that T(kG) is a deltacategory. We first
define cofunctors of graphs A : kG — T(kG)eT(kG) and € : kG — T as follows:

Ny:CeC — C and A : Me(CoC) —  AsA
docd — T biyje(cac?) — ewob; + ¢/bee;
ai+j®(ci®cj) = ;%€ + q_i€i®a]‘

and

6&:k — C and ¢:Msk — k

1 — by — O

ag +— 0
Clearly, A and € are cofunctors of graphs (for instance, the targets of e;ob; and
¢bise; are (4,7 + 2) and (i + 2,7), which map by &y to i + j + 2, the target of
b;+j). By proposition 9.4.2, they extend to cofunctors (of categories) A : T(kG) —
T(kG)eT(kG) and € : T(kG) — J. By the uniqueness in proposition 9.4.2, it is
enough to check coassociativity and counitality for A and € on the generating

graph kG.

In order to do this, notice that we have
Al(ei+j®(ci®cj)) = €{®€; and 61(60) =1 5

since by construction A and € preserve identities.
Now, coassociativity for A boils down (by definition of composition of cofunc-
tors in section 4.2) to associativity for the multiplication 4y, which is clear, plus

equality between the following two maps Me“(CeCeC) — AsAs A
((Asid) 0 A); and ((ideA) o A)y .

A k-basis for Me?(CeCeC) is {bijire(ceciact), aijipe(cecdiec”) | i,j k € Z}.
We will check that those maps agree on the first of these elements, the other case

is similar. According to the description of composition of cofunctors in section 9.1,
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the element ((Asid) 0 A)(biyjire(ciaciock)) is called the lift of b,y ;.. to (4,4, k) by
(Asid) o A, and it is computed by first lifting b, ;11 to (i + j,k) by A and then

lifting the result to (7, j, k) by Aeid, as done below

ToTeT (i,7,k) ewejoby, + q"(eob; + ¢/bse;)sey, -
A®idT I I
TaT (i+4,.k) eirjebr + q"biy jeek
] I
T i+7+k bijr

Similarly, the lift of b, ;14 to (7,7, k) by (idsA)o A, that is, the element ((id=A)o

A)l (bi+j+k®(ci®cj®ck)), is

TeTeT (1,7, k) eie(ejoby + ¢Fbjeer) + ¢ Trbse; ey .
TeT (4,7 + k) eiobji + ¢ Fbee 4y
] I

T i+j+k bitj+k

Thus, the two lifts give the same element e;ee;eby, + ¢Fe;ebeer + ¢ b0e;0ey,
as needed. Counitality is checked similarly. This completes the proof of the claim

that (T(kS), A, €) is a deltacategory. We further claim that, if ¢> # 1, the relations

bi_s0a; — aj4a0b; = (i)4e;, foreach i€Z, (*)

_ ¢ —q
q—qt’
k-subspace R of A linearly spanned by the elements r; := b;_s0a; —a;+20b; — (i) €;

where (7), define a nice biideal of T(kG). More precisely, consider the
for ¢ € Z. Since each r; is a linear combination of arrows with the same source
and target i, R is a C-C-subbicomodule of A. Hence, the ideal J(R) generated by
R is defined (section 9.4). It is a nice ideal because, over a group-like coalgebra
like C' = kZ, every comodule is flat (section A.1). To check that J(R) is a biideal

of T(k9), it suffices to show that R is a coideal, by lemma 9.4.1. To see this, we
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need to compute the lift of r;1; to (4,7). The lift of b;y;_5 0 a;1; is computed as
follows. We first compute the lift of a;; to (4, 7). This involves various arrows with

different targets. We then compute the lifts of b;;;_» to these targets, as below:

(i, ) i) (1 —2,5) €i—29b; + ¢’ bi_soe;
»J _'_q_zei@aj (Z,] — 2) 6i®bj_2 -+ qj_2bi®€j_2 '

I .

) —|—j Q5 ) +] -2 bi+j—2
Since A preserves compositions, composing the top rows we find the lift of b;1; 50

a;+j to (1,7); it is
a;eb; + ¢ (bi_g 0 a;)ee; + q_iei@)(bj_g oaj;)+ qj_i_2bi®aj )
Similarly, the lifts of a;4 ;42 0 biy; and (i + j)sei4; to (4, ) are respectively
aiebj + q 'eie(aj2 0 b)) + ¢ (aag 0 b)ee; + ¢ 7 Pbea; and (i + j)gei0e; -
Hence the lift of r;1; to (i,7) is

CL,’@bj + qj(bi_g @) ai)®ej + q_i6i®(bj_2 o aj) + qj_i_Qbi@)aj
- CL,’@bj — q_iei®(aj+2 e} b]) — qj(ai+2 @) bi)®ej — qj_i_2b,~®aj

— (Z + j)q€i®6j
Using the well-known identity (i +j), = ¢/ (i), + ¢ *(j)4, this element becomes
= q] (bi—2 Ooa; — Qjy2 O bl — (i)qei>®ej -+ q_i€i® (bj_g 0] aj — CLj+2 e} bj — (j)qel)
= quiez)ej + q_ieiezarj € ReA+ AsR .

This proves that A (RsA(Ce(C')) C ReA+ AeR. Similarly one shows that ¢ (Re%k) =
0. This completes the proof of the claim that J(R) is a nice biideal.
It follows now from proposition 9.4.5 that the quotient € = T(kG)/J(R) carries

a structure of deltacategory.
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Now consider the following admissible sections of €:

K:C - A FE:C — A and F:C — A

& — q'e ¢ — b d - q

One checks immediately that

(1) K is invertible, with K~1(c%) = ¢ %e;,

(2) KE = ¢?°FK and KF = ¢ ?FK, and
K—-K!

3) EF — FE = .
®) q—qt

For instance:

(K * E)(¢") = m(KsGd)tE(c") = m(K«Ad) (¢ 2sb;) = ¢ m(ejpa9b;) = ¢"2b;
while

(E % K)(c") = m(ECid)tK (') = m(Esd) (q'c'ze;) = ¢'m(bive;) = q'b;

from where KE = ¢ EK. Similarly for the other half of (2). Also,

(E x F)(c") = m(ECid)tF(c") = m(EsAd) (¢ %0a;) = m(bi_ssa;) = bi_3 0 a;
and

(F % E)(c") = m(FCd)tE(c") = m(Feqd) (¢ b)) = m(a;1o9b;) = a2 0 by,
hence

; (), _d-¢' K-K'
(EF — FE)(c') =biz0a; —aipa0b; = (i)4e; = q_q_1ei: q—q!

which proves (3).
Let I'g(€) denote the k-subalgebra of I'(€) generated by K, E and F. The

above shows that there is an epimorphism of k-algebras
UQ(SZQ) - FO(Q) ’
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since Uy(sly) is defined by generators K, E and F subject precisely to relations
(1)-(3) [K, VI.1.1]. We claim that, if ¢ is not a root of unity, then this map is an
isomorphism. We will return to the proof of this claim at the end of the section.
Even though € is not finite, it turns out that I'(A) : I'g(€) — I'(€=€) has its
image in the subalgebra I'y(€)eI'y(€) of I'(€e€). For instance, let us find I'(A)(E),

following the definition in section 5.3:

Ao MoeCd Esfd A
CoC =% (CoC)e(CeC) —— CeCeC) —= AL(CeC) — AsA;
L L o L €;®b;
e — cedecec) — ctectec? > biypjeced +
¢’ b;®e;

thus, T(A)(E)(dec?) = e;2b; + ¢'biee; = (1oF + FoK)(c'ac?); hence I'(A)(E) =
loEl + Eo K € F0(€)®F0(€) AISO,

P()(E): T 2 feop 9090 oy EH o 8,
1 — lel — el — bpel +— O
hence I'(¢)(E) = 0. Similarly,
[(A)F)= K 'oF + Fsl L(e)(F)=0
[(A)(K) = KoK C(e)(K) =1

which proves that the map U, (sly) — I'g(€) is a morphism of k-coalgebras too [K,
VIL1.1J.

Before proving that this map is actually an isomorphism, we define an action of
I'(€) (and hence also of I'g(€)) on the quantum plane k,x,y] = k{x,y)/(xy = qyx)
[K, IV.1]. By corollary 9.2.1, it is enough to show that k,[z,y] is a representation
of €; in turn, in view of the remarks about representations of free and quotient
categories in section 9.4, it is enough to define a representation of the graph G for
which relations () are preserved. This is as follows

pkyz,y] — Cekylz,y] a: Msky[z,y] — kylz,y]
My o ey bin—nex™Y" —  (n) @M lyn!

CrnM, M m—1, n+1
Am—n® LY = (m)qx Y
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The fact that relations (%) are preserved by a boils down to the well-known identity
(n+1)g(m)g — (n)g(m+1)g = (m —n), .

The resulting action of I'y(€) on k,|x, y] is:

K - xmyn — qm—nxmyn
E . l.myn — (n)ql.m—l-lyn—l
F. xmyn — (m)qu—lyn-‘rl

For instance the action of F is, according to remark 9.2.1,

p E&Cd a
kJz,y]: = Ce%kylx,y] —— Akylz,y] — kilz,y]
l.myn — Cm—n®xmyn — bm_n&l.myn — (n)ql.m—l-lyn—l

as claimed.

This means that there is a commutative diagram

Uq(Slg) —>>F0(Q:)

'
End.(kq[z,y]) ,

where U,(sly) — Endg(k,[z,y]) is the canonical action on the quantum plane [K,
VII.3.3]. Now, it is well-known that this map is injective when ¢ is not a root of
unity. (We provide a proof for completeness. By, theorems VII.2.2, VII.3.3.b and
VI.3.5 in [K], if u € U,(slz) is in the kernel of this map, then it annihilates any
finite-dimensional U, (slz)-module of type 1 [Jan, 5.2]. But then u = 0 by [Jan,

5.11 and 5.4] .) It follows from the commutativity of the diagram that the map
Uqg(slz) — Tp(€)

is an isomorphism.
The above construction of U,(sly) resembles that of Cibils and Rosso [CR].

There U,(sl2) is obtained as a quotient of the path algebra of the graph we started
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with; here we introduce all the relevant structure at the more basic level of the
category (the relations and the comonoid structure) and then pass to the associ-
ated algebra. We will proceed in the same way for Drinfeld’s double below; here
consideration of general internal categories in Vecy, is essential, for the category in

question is not linear.

9.6 Drinfeld’s double as admissible sections

Let H be a finite dimensional Hopf algebra with antipode A. Drinfeld’s double is
D(H) = Hx(H*)° with multiplication

(adaf) - (beag) = fi(b1)(abap<gfa) f3(Ab3)

where the product of g and f5 and the diagonalization of f are both in the bialgebra
H*. (This form of Drinfeld’s double is sometimes called the right handed version
[Maj, 7,1,1], to distinguish it from the more common left handed version of [K,
IX.4.1] and [Maj, 7.1.2]).

We define a category ®y = (HeH, H,s,t,i,m) in Vecy as follows:

s: HeH — (HeH)eH, asb —  asbieby
t: HsH — He(HeH), asb —  aybi\(ag)easebs
1:H — HeH, a +— lea
m: (HeHY(HeH) — HeH, asbaced —  €(b)aced

The category axioms (definition 2.3.1) are easily checked. Notice that © g is defined
for any Hopf algebra H. We claim that if H is finite dimensional, so that D(H) is
defined, then I'(®y) = D(H).

To see this, recall from remark 3.0.1 that if V' is a k-space, VeC' is viewed as

right C-comodule via id e/, and (U, p) is a right C-comodule, then

Hom¢ (U, VeC') = Homy (U, V)
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under the maps
w:U—VeC o @: UL Vel 224GV and 0:U - V - U L UeC 2L, voC
It follows from this and the definition of s that, as k-spaces,
I'(®y) = Homy(H, HeH) = Homy(H,H) = HeH* = D(H) .

We need to check that this is an isomorphism of k-algebras. Let w and v in ['(Dp)
be the images of axif and b<ig in D(H). Thus, V h € H,

U(h) = '&(hl)@)hg = f(hl)a®h2 and U(h) = ﬁ(hl)@)hg = g(hl)b®h2 .
We compute:
(uxv)(h) = m(usfid)tv(h) = m(uefid)t(g(hi)bohs) = m(uetid)(g(h1)byhoAbzobyohs)

= m(g(h1)f(b1hg)\b5)a®b2h3)\b4®b3®h4) = g(hl)f(blhg)\b5)e(b2h3)\b4)ab3®h4
= g(hl)f(blhg)\bg)ab2®h3 .

On the other hand, let w € I'(®g) be the image of

(aa f) - (bxg) = fi(br) f3(Ab3)(aba<g fa) .

Then,

w(h) = fi(b1) f3(Ab3)(g.f2)(h1)abazhy = fi(b1) f3(Abs)g(h1) f2(ha)absehs =

= g(h1) f(b1hoAbg)abaehs = (u * v)(h);

thus, (u*v) = w.

Also, 1 xe € D(H) clearly maps to i € I'(®g). Thus I'(Dy) = D(H) as
k-algebras.

The coalgebra structure on D(H) (the usual structure on the tensor prod-

uct of the coalgebras H and H*) can also be recovered from the category; one
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easily checks that it comes from the following deltacategory structure on ®pg:

A: Dy — DyeDy is the cofunctor A = (A, ) given by &y : HeH M H and

idRey ®id2id Ap®id
—_—

A : (HeH)e"(HeH) He(HeoH) —— (HoH)o(HeH)

and € : Oy — T is the cofunctor € = (g, ) given by

idery
—_

6: k-5 H and ¢ : (HeH)s"k H% k.

The description of D(H) as admissible sections of the category Dy can be used

to derive many of its properties, some familiar, some new. We list some next.

1. Subalgebras of the double. A morphism f : H — K of Hopf algebras in-

duces a functor (fef, f) : Oy — Dk; hence also, by corollary 5.4.1, an order-

preserving correspondence
f=1 p(D(K)) — p(D(H))

where p(D(H)) denotes either the lattice of subsets, subspaces or subalgebras

of D(H). This result seems to be new.

2. The square of the antipode. Consider the functors id = (idyey,idy) : Dy —

Dy and g = (XX, %) : Dy — Dy. When H is finite dimensional, both
idg and X, are isomorphisms, so id and g can be seen as cofunctors Dy — D
(remark 4.2.1). The induced morphisms D(H) — D(H) are the identity and

the square of the antipode of D(H) respectively.

Now, one checks easily that there is a natural isomorphism « : id = ¢ defined
by a: H — HeH, a(h) = Ahjehy. This can be seen as a natural coisomor-
phism between the corresponding cofunctors. This implies, by proposition
5.3.2, that the square of the antipode of D(H) is given by conjugation by

a € '(Dy) = D(H). One can then obtain the same conclusion for any finite
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dimensional quasitriangular Hopf algebra in place of D(H), since any such
is a quotient of its double. (A direct proof of this result can be found in [K,

VIILA4.1)).

3. Yetter-Drinfeld modules. The well-known description of (left) D(H )-modules

in terms of (left) Yetter-Drinfeld modules [Mon, 10.6.16] is an immediate
consequence of the description of D(H) as admissible sections, plus propo-
sition 9.2.4 (notice that HeH is free as right H-comodule, in particular
flat, so this proposition applies). In fact, writing down the definition of left
® g-representations one finds that it becomes precisely that of left Yetter-

Drinfeld modules. Let us provide the details of this claim.

A left Yetter-Drinfeld H-module (sometimes called a crossed H-bimodule) is
a k-space X equipped with a left H-module structure y : HeX — X and a

left H-comodule structure p: X — HeX, such that

idH®TH’H®idX

HoHeHeo X HoHeoHo X
Ag®p HH®X
HeX HeX
A]-ﬂ@idxl T}LH@)idX
HeoHe X HeoHe X
im %;
HeXeoH ——— XoH — He XeoH
x®idgy pRidy

commutes. Writing x(hez) = h-x and p(x) = x_1ex, this condition becomes
(h,l . l’)_1h2®(h1 . .CL’)O = hll’_1®h2 +Xo - (YD)

Now, by definition 6.1.1, a representation of Dy is a k-space X equipped

with a left H-comodule structure p : X — HeX and a morphism of left
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H-comodules a : (HeH)s"X — X such that diagrams below commute

idgre ®a

(HoH)s"X —= X  (HeoH)"(HeoH)e"X —— (HoH )o"X .

i®HidX T (1) / m®HidX l (2) la

Heix <~ 7 (HeH)e"X —— X

By propositions 2.2.2 and 2.2.3 and the definition of s, He X dup, (HeH )e"X

idy®e®

is an isomorphism, with inverse (Ho H "X e, o X, Let X = a(idgep) :

HeoX — X so that a = x(idysesidy) : (HeH)s"X — X.

Let us reformulate the conditions on a in terms of x, writing p(z) = x_19x¢

and y(hex) = h - z. First,
(1) & a(lsz_jem0) = 7 X(e(x_1)1®x0> —relo=aVreX.
As for (2) notice that, by the same reasons above, there is an isomorphism
HeHeoX = (HoH)s#(HoH)e"X, hokex — hokiz_o\(ks)ekooz_1oxq .
Therefore, (2) holds if and only if, V hekex € HoHe X,

a(msflidy ) (hekix _oA(k3)oksox_1ex0) = a(idgepe’a)(hekiz_o\(ks)ekeox _191()
& a<e(k1x_2)\(k53))hk2®x_1®zo = a(h@k:lzv_g)\kg@)((e(x_l)k2®x0))
& a(hkex_q0x0) = a(hokix_1 Neseks - o)
= x(e(aj_l)hk@xo) - X(e(klx_l)\kg)h@ckg . xo)

Shk-z=h-k-x.

Thus these conditions simply say that (X, ) is a left H-module. Finally, the

fact that a should be a morphism of left H-comodules rewrites as
pa = (idyea)(tefid,) < pa(idgep) = (idgea)(tefid,) (idyep)
= PX = (IdH®X)(IdH®IdH®€®Idx)(t@ldx)(ldH@)p)
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< p(h - x) = (idgex)(idgeidgeesidy ) (t(hox_1)exg) V hex € Ho X
=4 (h : .C(f)_1®(h . LU)O = (idH®X)(idH®idH®€®idX)(hll’_2>\(h3)®h2®l’_1®xo>
<~ (h . l’)_1®(h . l’)() = (idH®X)(hlx_l)\(hg)@)hg@xo)
=4 (h : .C(f)_1®(h . LU)O = hll’_l)\(hg)@hQ ) Vhe H, reX.
Now, this condition is equivalent to the Yetter-Drinfeld condition (YD): to
imply (YD), tensor both sides with & € H, then replace hek by A(h) = hiehs,
multiply the third and first coordinates and use the definition of antipode;
to deduce it from (YD), tensor both sides of (YD) with k£ € H, then replace

hek by A(h), apply A to the third coordinate, multiply it to the first and use

the definition of antipode.

Thus, a © y-representation (X, p, a) is the same thing as a left Yetter-Drinfeld

module (X, p, x).

. D(kG)-modules. Notice that the definition of ® 5 makes sense for any Hopf

monoid H in a symmetric monoidal category 8. In particular if G is a group
then there is defined a category ®¢ in Sets, which can be described in terms

of pictures:

(h.9) (k,hgh™1) (1,9)
7N T T ()
g hgh=* khgh=1k=1 g
(kh.g)

This is the deltacategory arising from the double group corresponding to the
action of G on itself by conjugation (section 8.1). In particular, Repgots (D)
is the category of crossed G-sets (a crossed G-set is a G-set X equipped with
amap | | : X — G such that |g - z| = g|z|g~!). This is the set-theoretic

analog of the description of Rep,(®y) as Yetter-Drinfeld modules.
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Now, D¢ is an ordinary groupoid. Any small groupoid G is equivalent to the

following disjoint union of groups (viewed as a groupoid)

where 7(G) is the set of connected components of § and Autg(z) is the
automorphism group in G of (any) one object in the component x. For the
groupoid in question this gives an equivalence

@(;N H Zg(llf)

xemo(G)

where 7y (G) is the set of conjugacy classes of G and Z; () is the centralizer of
any element in the class . Applying the linearization functor Sets — Vecy

we obtain an equivalence

DkGN H ]{ZZG(SL‘)

z€mo(G)

between linear categories. Passing to representations we obtain an equiva-

lence

{ left Yetter-Drinfeld kG-modules } ~ H { kZg(xz)-modules } .
z€mo(G)

A different proof of this result can be found in [CR1, proposition 3.7].

9.7 Internal categories and Hopf algebras

9.7.1 Smash products and biproducts

Let H be a k-bialgebra and A be a left H-comodule algebra. In other words, A
is a monoid in the monoidal category ComodH, or more explicitly, (A, pa, ua) is a

k-algebra, (A,pa) is a left H-comodule and

pa : AeA — A and us : k — A are morphisms of H-comodules,
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(where AsA and k are H-comodules by corestriction via py and ¢; respectively),

or equivalently,
pa: A — HeA is a morphism of k-algebras .

Write pa(a) = a_1eag. Then there is a category émﬁ = (AeH, H,s,t,i,m), as

follows:
s:AeH — (AsH)oH, ash +— ashyshsy
t:AsH — He(AsH), ash +— a_1hisagehs
i H — AsH, ho o 1sh
m: (AeH)e"(AsH) — AsH, ashebsk +— e(h)abok

The category axioms (definition 2.3.1) are easily checked.

Since A is a monoid in ComodH, the category Modcomedn A is defined. An object
of this category is a left H-comodule M which is also a left A-module in such a way
that the action map AeM — M is a morphism of left H-comodules (here AeM is
viewed as left H-comodule by using the monoidal structure of ComodH, that is, by
corestriction via ). These objects are sometimes called left Hopf (H, A)-modules
[Mon, 8.5.1].

We claim that Repf(éxﬁ) = Modcomodrr A. In fact, a émﬁ—representation
is, by definition 6.1.1, a left H-comodule M, equipped with a morphism of left
H-comodules a : (AeH )e"M — M, which is associative and unital. Here, AeH is
viewed as left H-comodule by means of t. Notice that this is precisely the structure
obtained by corestriction via gy from its canonical left He H-comodule structure.

Now, by propositions 2.2.2 and 2.2.3 and the definition of s, (As H )e"M = AsM.
Moreover, it is easy to check that this is an isomorphism of left H-comodules, when
both Ae H and A« M are viewed as left H-comodules by corestriction via . There-
fore, to give a morphism of left H-comodules a : (AeH )M — M is equivalent to

giving a morphism of left H-comodules @ : AeM — M. Clearly, associativity and
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unitality for a correspond to those for a. Thus, a A x ﬁ-representation (M,p,a)is

the same thing as an object (M, p,a) of Modcomoedr A-

The algebra of admissible sections of A x His just a smash product in disguise.

More precisely, it follows from remark 3.0.1 and the definition of s that, as k-spaces,
T'(AxH) = Homy (H, AsH) = Homy,(H, A) .
If H is finite-dimensional, then
I'(AxH) 2 Homy(H, A) = AsH* .

Now, in this case, H* is also a k-bialgebra, and A is a left H**’-module algebra;
hence, the smash product A#H*? is defined [Mon, 4.1.3]. It is easy to see that

the above is an isomorphism of k-algebras
T(AxH) = A#H*P .
For arbitrary H, the canonical inclusion
A#H° — Hom,(H, A) =~ I'(A xH)

is a morphism of k-algebras, where H® is the finite dual of H, as in [Mon, 1.2.3
and 9.1.1].

The question of when A x H may be a deltacategory naturally arises. It is easy
to see that this is the case if, in addition to being a left H-comodule algebra, A is
also a left H-module coalgebra, and these structures are compatible in the sense
that A is a left Yetter-Drinfeld H-module (section 9.6) and moreover a bimonoid
in this category (bimonoids are defined in any braided monoidal category). In this

case the deltacategory structure on A xH is given by &y = py : HeH — H and
A (AeH)eH(HoH) — (AoH)o(AsH), (ashk)e(hok) — (a'shy)e( N hy - a®sok)
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and ¢ = uy : k — H and

6 : (AeH)ek — k, asl — €(a) ,

where Ay (a) = a!

#a? and €, are the comultiplication and counit of the coalgebra

A. If H is finite-dimensional one then obtains a bialgebra structure on I'(A ﬁ) =

A#H*P. This is non-other than the biproduct of [Mon, 10.6.5 or 10.6.15], or the

bosonization of [Maj, 9.4.12]. For arbitrary H, A#H°° becomes a bialgebra under

the restriction of

I'(

>
X
E)

9.7.2 Hopf modules

Let H be a k-bialgebra. There is a category My = (HeH, H, s,t,i,m) in Vecy as

follows:
s: HeH —
t:HeH —
i H —
m: (HoH)s"(HoH) —

(HoH)oH,
He(HeH),
HeH,
Hed,

asb
asb
a

asbscad

—

—

a®b1®b2
a1b1®a2®b2
lsa

e(b)acad

In fact, My = H Nﬁ, the category described in section 9.7.1, where H is viewed

as left H-comodule algebra via Ay.

In particular, it follows that Rep My =

Modcomoag H . An object of this category is a left H-comodule M, which is also a

left H-module in such a way that the action map HeM — M is a morphism of left

H-comodules, or equivalently, that the coaction map H — MeH is a morphism of

left H-modules (here HeM is viewed as left H-comodule and H-module by using

the monoidal structures of ComodH and ModH respectively). This is precisely the

definition of a left Hopf H-module [Mon, 1.9.1]. Thus

Rep.My = { left Hopf H-modules } .
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We know from the general considerations for A x H of section 9.7.1 that, when H
is finite-dimensional, ['(My) = H#(H*)P, where H is viewed as left (H*)P-module
algebra via f-a = f(aj)ay for f € H* and a € H. This algebra is sometimes called
the Heisenberg double of H (for a slightly different version, see [Mon, 4.1.10]).

We will now present a new proof of the Fundamental Theorem on Hopf modules
[Mon, 1.9.4]. The usual proof deals with the modules themselves. Instead, we will
prove that there is an equivalence of internal categories 9y = ﬁ/ ~ 7. Passing to
representations we then obtain the theorem.

We first consider representations of the pair category ﬁ/ (examples 2.4.1). Recall

that the one-arrow category J = (k, k,...) is such that Rep,J = Vec.

Since ﬁ’g is a 2-category, the notion of equivalence of internal categories is
defined. Explicitly, two internal categories € and ® are equivalent if there are
functors f : € — © and g : ® — €, and natural isomorphisms « : gf = ids and
0 fg = idp. A natural isomorphism is a natural transformation that is invertible

with respect to vertical composition. For the relevant definitions see section 4.1.

Lemma 9.7.1. For any k-bialgebra H, 13 and J are equivalent as internal cate-
gories in Vecy.

~

Proof. Consider the functors € = (o6, 6) : H — J and U = (ugeuy, uy) :
J— I?I/ We have € @ = ids. On the other hand, one checks easily that the map

ugeidy : H — HeH defines a natural isomorphism o : @€ = idﬁ, with inverse

a~l: idﬁ = U € defined by the map idysuy : H — HeH. O

As explained in section 6.2, passage to representations defines a 2-functor

Cats — LCat, € — Rep€. Since equivalences are preserved under 2-functors,
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it follows that, for any k-bialgebra H, there is an equivalence of large categories
res— : Vecy — Remﬂ :

Side remark: notice that the proof of the lemma remains valid for any coaug-
mented k-coalgebra in place of H, that is a k-coalgebra C equipped with a mor-
phism of coalgebras u : k& — C. Notice that if C' possesses no coaugmentation,

then there is no functor J — @ However, one can show that res— : Vecy, ~ Repﬂg

is still an equivalence for any k-coalgebra C. We omit the proof of this fact. If C
is a finite-dimensional k-coalgebra, then we have, from section 5.2 and proposition
9.24 ,

Mod(EndC') = ModI'(C) 22 Rep,C ~ Vecy, ;

this simply says that the matrix ring End,(C') is Morita-equivalent to k.

Proposition 9.7.1. For any Hopf k-algebra H, EI and My are isomorphic as

internal categories in Vecy,.

Proof. Consider the functors f : My — ﬂ defined by fy =idy : H — H and f; :
HeH — HeH, fi(asb) = abjeby, and g : H — My defined by go = idy : H — H
and g1 : H — H, gi(asb) = aAbjeby, where X is the antipode of H. Then f and g

are inverse functors. The verification of these assertions only amounts to routine

use of the Hopf algebra axioms for H. O
As a corollary we obtain the Fundamental Theorem on Hopf modules:

Corollary 9.7.1. For any Hopf k-algebra H, the functor
Vec,, — {left Hopf H-modules}, V +— HeV |

s an equivalence. Here HeV is viewed as left H-comodule via Ayeid, and as left

H-module via py=id, .
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Proof. Composing the isomorphism f : My 5 ﬁ/ with the equivalence € : ﬁ/ =7

. . _ ~ . . .
we obtain an equivalence € f : MMy — J. Passing to representations we obtain an
equivalence

resz; : Vecy, — Repree, (My) ,

which by definition of restriction along functors (section 6.2) has the announced

form V — HsV. O
We also obtain for free the result of corollary 9.4.3 in [Mon]:

Corollary 9.7.2. For any finite-dimensional Hopf k-algebra H,
H#(H")? = EndyH
as k-algebras.

Proof. The isomorphism f : My — ﬁ/ can be seen as a cofunctor by remark 4.2.1.

Hence, by proposition 5.3.1, there is a corresponding isomorphism of k-algebras

L

H#(H*)® = T(My) = D(H) = Endi(H) .

9.7.3 Categories associated to a Hopf algebra

Let H be a Hopf k-algebra. As we have seen, there are several categories in Vecy
naturally associated to H. We summarize them in table 9.1.

The category ﬂ@ﬁ is a special case of that one discussed in example 7.2.1. It is

also the category A xH of section 9.7.1, for the special case when A = H viewed

as trivial H-comodule k-algebra (i.e. via uysidy : H — HeA).
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Table 9.1: Categories associated to a Hopf algebra H

Category | Representations | Admissible sections : (if H is finite
dimensional)
H left H-comodules (H*)ep
1§ left H-modules H
EI equivalent to Vecy Endy(H)
under V — HeV | under composition :
HeH End,(H) : He(H*)
under convolution : (usual tensor product)
My left Hopf HH(H*)°P
H-modules (Heisenberg double)
Dy left Yetter-Drinfeld D(H)
H-modules (Drinfeld’s double)
By Hopf H-bimodules see below
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The only category that remains to be discussed is Bpy. Its definition is as

follows: By = (HeHeHoH, HeH, s,t,i,m), where

s: H* — (H*Y)e(H®?), gohsash — goheaiebieaseb,
t: H®4 — (H®2)®(H®4), g®h®a®b — glalh1®ggb1h2®g3®h3®a2®bg
i H®? — H®*, asb— leleasb

m: (H*e"(H®) — H®, (foksced)s(geheash) — €(cd) fgohksash .

The set-theoretic analog of By in table 9.2 may be helpful in order to grasp this
definition.

One checks easily that Rep,8y is the category of Hopf H-bimodules, as in
[CR1] or [Ros]. Rosso proves in [Ros] that this category is equivalent to that of
Yetter-Drinfeld modules, by arguing directly with the modules themselves. As in
the case of the Fundamental Theorem on Hopf modules, it is possible to make use
of the notion of internal categories to obtain an alternative proof. Namely, there
is an isomorphism of internal categories By = D yeIy defined by the functors

f: By — DueIMMy and g : DIy — By given by

fo: HeH — HeH, asb —  aA(by)eby
fi: HeHeHoH — (HoH)o(HoH), gshsash — gisal(b)egsbahA(bs)sbs
go: HeH — HeH, asb +—  abyeby
g1 (HeH)o(HoH) — HeHoHoH,  geashsb +— gioA(b)A\(gs)hbssabyeby

The verification of the relevant axioms is lengthy but straightforward.

Together with the equivalence My ~ T of section 9.7.2, we obtain an equiva-
lence By ~ Dpy. Passing to representations yields the announced result.

Cibils and Rosso have constructed, for any finite-dimensional Hopf algebra H,
an algebra X such that ModX is the category of Hopf H-bimodules [CR2]. From
our point of view this requires no additional work: X = I'(By) has this property,

by proposition 9.2.4 (it applies since H** is free as right H**-comodule, hence flat).
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Moreover, since By = D eIy, we also have that X = D(H)s(H#(H*)°). This
result is obtained by other means in [CR2].

The definition of all the categories in table 9.1 makes sense in any symmetric
monoidal category 8 in place of Vec,. In particular they make sense in § = Sets,
replacing the Hopf k-algebra H for a group G. In this case those categories can be
described by means of pictures, as in table 9.2.

These pictures serve as good guides when finding relationships among the var-

ious categories. For instance, the functors f : My — ﬂ and g : ﬁ/ — My of

proposition 9.7.1 can be described in the set-theoretic case through the pictures

(a,b) (ab’1 ,b)
My b /T ab My b /T a.
| |
ﬁ (ab,b) ﬁ (a,b)
~ b Tab > b~ a

These set-theoretic analogies are seldom available when one ignores internal
categories and restricts attention to algebras of admissible sections, because of the
lack of duality in Sets. For instance, the set-theoretic analog of MMy is M, but

the Heisenberg double H#(H*)° has no good set-theoretic analog.

9.8 Binomial braids, U/ (g) as admissible sections

In this section we describe a general procedure for constructing a quantum group
U (X) out of a Hopf algebra H and a Yetter-Drinfeld H-module, as admissible
sections of a certain deltacategory U (X) in Vecy. The quantum groups of Drin-
feld, Jimbo and Lusztig are obtained through this procedure from the simplest
choice of H: group algebras H = kG of cyclic groups G. In this procedure, the
action of the binomial braids (appendix B) bl(-") on the various tensor powers X"

plays a crucial role.
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Table 9.2: Categories associated to a group G

Category Composition Identities
G (only identities) a
b a 1
/NN )
G * * * *
ab
(b,c) (a,b) (a,a)
_ /NN ()
G c \[i/ a a
(a,e)
(c,b) (a,b) (1,a)
_ W )
GxG b b b a
(ac,b)
(e,d) (a,ed) (1,a)
SN TN )
Me d cd acd a
(ac,d)
(c,d) (a,cdc™1) (1,a)
VR N )
Da d cde™t acdc o™t a
(ac,d)
(g,h,a,b) (f,k,gah,gbh) (1,1,a,b)
TN T "
%G (CL, b) (gCLh, gbh) (fgahka fgbhk) (CL, b)

\_/

(fg,hk,a,b)
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9.8.1 Preliminaries on braids

The braid groups B, and the braid category B are defined in appendix B. The
definitions of the first three sections of this appendix are needed for all that follows.
Results from later sections will be quoted as used. In particular, in section B.2.5 it
is explained how Yang-Baxter operators yield monoidal representations of the braid
category 8. In appendix B only one-dimensional representations are considered,
corresponding to the Yang-Baxter operator that simply multiplies by q.

An equivalent way to describe monoidal representations of the braid category
is by means of the following fact: B is the free braided monoidal strict category
on one object (the object 1 € N) [K, XIII.3.8]. This says that given any object
X of a braided monoidal category X, there is a unique functor F' : B — X that
preserves the monoidal structures and the braidings and such that F'(1) = X. If X
carries in addition a k-linear structure (compatible with the rest of the structure),
then F' extends to the linearization of 98, F' : k28 — XK. Usually X consists of
vector k-spaces with some additional structure, and thus F : kB — X yields
linear representations of the various braid groups.

A family of examples arises from the categories KX = Rep, D g of Yetter-Drinfeld
kG-modules (section 9.6) for any group G. An object of this category is a k-space
X equipped with a linear action of G' and a decomposition X = @geaX, into
subspaces, such that the action of h € G carries X, to Xjg4,-1. In this context,
one usually writes |z| = g when x € X, so that the condition just mentioned
becomes |h - x| = h|z|h~t. Since Dy¢ is a deltacategory, Rep,Dyg is monoidal.
Explicitly, the tensor product XeY of two representations is equipped with the
G-action ¢ (z,y) = (9 -, g -y) and the G-grading |(x,y)| = |z||y|. Moreover, this

category is braided, with braiding

Byx:YeX — XaV, Byx(yex) =as|z|™ -y .

144



(This braiding will be more convenient for us than the more usual zey +— (|z|-y)ex).

In particular, for each n > 0, X®" is again a Yetter-Drinfeld K G-module, with
|r1e. . ex,| = |21] ... |z, and g - (10 ... 2,) = (g - 21)o. .. (9 - T0) ;

the braid group B,, acts on X®" by morphisms of left Yetter-Drinfeld kG-modules,

and in such a way that V2 € X®", y € X®", s € B, and t € B,,,
(sot)(zey) = (s7)e(ty) and B, 1 X7 X" — XX is B, (yex) = ze|z| 1y,

where 8, , € B4y, is the braiding of appendix B.

Some results about the actions of the binomial braids bl(-") on the tensor powers
X®" will be obtained in section 9.8.5. Recall from the appendix that if X is one-
dimensional, and s§2’ acts on XeX by multiplication by ¢, then bl(-") acts on X®"

by multiplication by the g-binomial coefficient [ﬂq.

9.8.2 Binomial deltacategories

Let G be a group and X a left Yetter-Drinfeld kG-module, with G-grading | | :
X — G and G-action (g,z) — g - z.
Consider the linear graph &¢(X) with objects G and set of arrows (]_[ gea X g) X

G, where (z,¢) is an arrow from g to |z|g:

(z,9)

/\
g |z]g

As a graph in Vecy, B4(X) = (XokG,kG). Let T(X) be the free category on
this graph, as in section 9.4. Thus T (X) = (A, kG, s,t,1, m) where

A= 1M(XekG) = kG & (XohG) & ((XohG)HA(XokG)) & ...

>~ kG @ (XekG) ® (XoXeokG) @ ... = T(X)ekG,
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where T'(X) is the usual tensor k-algebra of the space X (we have used proposition

2.2.3), and
s: A — AekG, Tog +— Tegey
t:A — EkGeA, reg +— |z|gexeg
i kG — A, g — leg
m: AdCA — A, (ye|z|g)e(xeg) +— yezeg;
or, in pictures,
z®g y®|z|g 1®g
27N
9 [zl lyllzlg 9
yayg

Notice that the G-grading on the tensor powers of X described above endows 7'(X)
with a structure of left kG-comodule algebra, and that T (X) is non-other than
the category Exﬁ of section 9.7.1 (for T'=T(X), H = kG).

We claim that T¢(X) is a deltacategory. There are two ways to proceed at
this point. We could show that 7'(X) is indeed a bimonoid in the category of
left Yetter-Drinfeld kG-modules, and appeal to the remark about deltacategory
structures on categories of the form T x H in section 9.7.1. Instead, we choose to
proceed directly, as follows.

We first define cofunctors of graphs A : &4(X) — Ta(X)eTe(X) and € :
Ga(X) — T, by

Ny kGekG — kG and A (XekG)F(kGekG) — AsA
geh — gh (xegh)e(geh) +— (zog)s(lseh)
+(1og)s(g™" - woh)

and
6:k — kG and ¢ :(XekG)d%k — k

1 — 1 rel — 0
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Here, and below, ¢+

- zoh means (¢g~! - x)eh; also, we sometimes identify k(G x
G) = kGeokG via (g,h) — geh. Notice that the target of (leg)s(g~! - xsh) is
(|I1lg,|g7" - x|h) = (g, 97 |z|gh) (by definition of Yetter-Drinfeld module), which
maps by 2 to |z|gh, the target of zegh, so A preserves targets as required in the
definition of cofunctor.

By proposition 9.4.2, A and € extend to cofunctors (of categories) A : T¢(X) —
To(X)eTe(X) and € : T(X) — J. By the uniqueness in proposition 9.4.2, it is
enough to check coassociativity and counitality for A and € on the generating graph
&5 (X). Arguing along the same lines as in section 9.5, to obtain coassociativity

we need to show the equality between the two lifts of an arrow xeghk to (g, h, k),

via (Aeid) o A and (id»A) o A. In order to do this, notice that we have
A ((1®gh)®(g®h)) = (leg)s(lsh) and g(1e1) =1,
since by construction A and € preserve identities. Now the lifts in question are:

TeToT (g, h, k) <($®9)®(1®h> + (leg)e(g™? - x@h))@(l@k)—l—

T +(leg)e(lah)e(h~tg™! - wok)
A®id
TeT (gh, k) (vogh)e(1ek) + (legh)s(h™1g™! - xek)
: I
T ghk xeghk

(zog)e(leh)s(lek)+
3eiad (9, @’ k) —l—(l@g)@((g_l - xeh)s(lek) + (1eh)s(h~tg™! - x®/€)>

ids A I

TaT (9, hik) (z9g)e(1ehk) + (leg)e(g™" - zohk)
: I
T ghk reghk

Thus, the two lifts agree as required. Counitality can be checked similarly. This

completes the proof of the claim that T4 (X) is a deltacategory.
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Before introducing some relations in T4 (X ), we need to describe the cofunctor
A explicitly. Recall from section 9.8.1 that, for each n > 0, the braid group B,

acts on X®" in such a way that, V2 € X*", y € X®*" se€ B, and t € B,,,
(sot)(zey) = (s7)e(ty) and B, 1 X7 X" — XX is B, . (yex) = ze|z| 1y,

where 3, ,, € Bp4n is the braiding of appendix B. Moreover, the action of B,, on
X®" is by morphisms of left Yetter-Drinfeld modules, that is, it commutes with
the G-grading and the G-action on X®",

We claim that, for any z € X®" and ¢,h € G,

Al((x®gh)®(g®h)> =
= i((b§"’fv)(i)®g)®(g‘l (B 2) 7 sh) € é(x®i®kc:)®(x®("-i>®ke) C AsA |
=0 =0

Here bg") is the binomial braid of appendix B; we have also used the notation
y = yDay®’ for the canonical identification X" &2 X% X®(—1),

We will prove this claim by induction on n. For n = 0 it boils down to
AN <1®gh®(g®h)) = (leg)s(leh), which holds as already mentioned. For n = 1

it reduces to the definition of 2 on the generating arrows:

A ((:E@gh)@(g@h)) = (1eg)e(g™" - woh) + (veg)e(leh) .

Thus, it is enough to prove that if the claim holds for z € X and y € X®" with
n > 1, then it does for yex € X®*tD too. Now, by definition of composition in
Ta(X), yoxegh is the composite of xegh and ye|z|gh. Since by construction A
preserves compositions, we can compute 4\ ((y®x®gh)®(g®h)> by first lifting xegh
to (g, h), then lifting ye|x|gh to the targets of these arrows, and composing.

The lift of zegh is (1eg)e(g™' - zeh) + (zeg)e(leh). The targets of these two
arrows of T(X)eZe(X) are (9,97 |z|gh) and (|z|g, k). The lifts of ye|z|gh to
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these targets are, by induction hypothesis,
S (009 Dsg)e (g7 089D eg algh)
5=0

and
S (@) Delalg)e (g7 ol 0y)on)
j=0

Composing appropiately we find the lift of yexegh, it is

n

> () Deg)e (g7t (08P og ™ - woh )+

=0
+ ( ®x®g) ( a7t (bg»")y)(j)/oah)

J=0

= (leg)e(g™" - yog ™" - wsh) + Z ((b§")y)(j )®g>® (9‘1 (") g mh) +
=1

3

n—1
+ ( )V ®:E®g> ( a7t (bg-n)y)(j)l@h) + (yoxeg)e(leh) |

i=0
(since b = b = id). On the other hand, we want to show that this lift is equal
to
n+1

> (0 yea)Deg ) (g7t (0D (ger) ek ) = (o) (g7 - (yoa) ohe+

=0

n Z( n+l (yoz)) ()®9)®<9_1 ) (bE"H)(y@:E))(i)/@h) + (yexeg)e(leh) .

Comparing these two expressions we see that it is enough to prove the following

equality between elements of X®"+1.

n ) () & N
Z(bgn—i-l)(y®x))(z)®(b§n+l)(y@w))(z) (:) Z(bg )y)(J) (b§ )y)(ﬁ) o
i=1 Jj=1
n—1
+ 3 (0y) Deefz| - (0y) 0
=0
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Recalling the expression for the action of the braid (3, we see that this is in turn

equivalent to

- ?7) < il _ N
S ) 3 e 3 e (07) )
=1 j=1 3=0

n n—1
=01 (yer) + > (1908,1) (b"e1) (yex)
J=1 J=0

Since

1Vs8, ;1 = 1Wes™=tD (1 n — 5 41) = s (j + 1,n+1)

(by equations 12 and 3 in appendix B), the equality in question is implied by
n n n—1
ST = 3T 4 3G L 1))
i=1 j=1 j=0

which indeed holds by Pascal’s identity (equation 14 in appendix B). This com-
pletes the proof of the claim.
Now we are ready to introduce some canonical relations in the deltacategory

Ta(X). Let K© = K =0 and, for each n > 2,

n—1 0
K0 — ﬂ Ker(bgn) X" — X®") and K = @K(") CT(X).
i=1 n=0

Then Ke¢kG is a kG-kG-subbicomodule of A = T(X)ekG, because each K™ is a
left kG-subcomodule of X", since each bE”’ : X" — X®" is a morphism of left
Yetter-Drinfeld £G-modules, and hence, in particular, one of left kG-comodules.

It follows immediately from the above expression for A that KekG is a coideal of

To(X). In fact, if x € K™ and g, h € G then

A ((wsgh)s(geh) ) = i((bﬁ’@(i)@g)@(g—l (") o)

1=

= (leg)e(g™t - xeh) + (v8g)a(1sh) € As(KeokG) + (KekG)sA,

(K is invariant under G because each bl(-") is a morphism of kG-modules); also, by
definition of € (and since it preserves compositions) we have ¢ ((X ®"®k5G)@f“Gk:) =0

¥V n > 1, and since K(©) = 0, we have ¢ ((K@kG)@f“Gk> =0.
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Let J be the ideal of T4(X) generated by KekG. By lemma 9.4.1, J is a
biideal. It is nice, in the sense of section 9.4, because over a group-like coalgebra

every comodule is flat (appendix A). Therefore the quotient category
UHX) o= Ta(X)/ T

is defined, and carries a natural structure of deltacategory, by proposition 9.4.5. We
call it the binomial deltacategory associated to the left Yetter-Drinfeld kG-module
X.

9.8.3 Examples

1. The simplest non-trivial example is obtained when G = {1} and X = kx
is a one-dimensional k-space. In this case each X®" is also one-dimensional
and bl(-") acts on it by multiplication by (:L) (this is the case ¢ = 1 of the
action considered throughout appendix B). Therefore, if chark = 0, there
are no relations and U} (X) is just the deltacategory H corresponding to the
bialgebra H = k[z] of polyonomials in one variable, where

n\ i o
Az") = ZZ:; <Z_>x2®x" :
This is called the binomial bialgebra. This example explains how one may
see the binomial deltacategory U, (X) as a generalization of the binomial

bialgebra k|x].

More generally, if G = {1} and X is any k-space, then 45 (X) is the deltacat-
egory H corresponding to the bialgebra H = S (X) (the symmetric algebra
on X).

2. Let G = Z, and X = kx a one-dimensional k-space, viewed as Yetter-

Drinfeld kZ,-module via |z| =1 € Z, and 1 -x = ¢"'z € X, where ¢ € k
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is a fixed root of unity of order n. Notice that in this case B5(X) is the

linearization of the following graph in Sets

z®0 ®n—2

0<=——n—1

z®n—1
Again each X®™ is one-dimensional, but bgm) now acts by multiplication by

the ¢g-binomial coefficient [’ﬂ, since the action of s§2) = (1 1s
XoX — XeX, xex — zo|z|™! - 2 = quen,

(see appendix B for the explanation of the relation between the actions of
552) and bz(.m)). Since [Tﬂ =0fori=1,...,m—1if and only if ¢" =1, it
follows that

X ifn | m,
Km —

0 otherwise,
from where we see that the relations defining 4} (X) are generated by the
relations 2°"ei € K™WskZ, for i € Z,. Therefore, 5(X) coincides with the

category T,,(q) of section 9.3, under
rei v d;, lei+— e; .

Moreover, the deltacategory structures agree as well, since the deltacategory

structure on 4% (X) is given by

A (ze(i + g)oiog) = (lei)e((—i) - xej) + (xei)e(le))

— g (Lsi)o(weg) + (woi)s(1e)
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In particular, I'(U5(X)) = T,,(q), Taft’s Hopf algebra.

. As before, let G = Z, and X = kx, but now viewed as Yetter-Drinfeld

1

kZ,-module via |z| = 2 and 1 -2 = ¢~ 'z, where ¢ is a fixed root of unity of

order n. Let e € ZT be defined by

n if n is odd,

n/2 if n is even.

In this case bz(.m) acts by multiplication by the g?>-binomial coefficient [T],
from where it follows that the relations defining {45 (X) are generated by
1%%i € K©akZ, for i € Z,. Along the same lines as for Taft’s Hopf algebra,
it follows easily that ['(UL(X)) is generated by the admissible sections K

and F, K(i) = ¢‘(1ei) and E(i) = xei, subject only to the relations
KE=¢FK K'=1 and E°=0.

Since U47(X)) is a finite deltacategory, I'(U5(X)) is a bialgebra, and one

computes
T(A)(K) = KoK and T(A)(E) = 1oE + EsK .

Thus, U5(X) = US(sly), the finite-dimensional quotient of U (sly) intro-

duced by Lusztig.

. Let G = Z and X = kx a one-dimensional k-space, viewed as Yetter-Drinfeld
kZ-module via |r| =2 € Z and 1-z = ¢ 'z € X, where ¢ € k* is a fixed
scalar. Notice that in this case B¢(X) is the linearization of the following
graph in Sets

z®(—4) z®(-2) 280 r®2

............. _4 _2 O 2 4



Each X®" is one-dimensional, and bl(-") acts by multiplication by the ¢g*-binomial
coefficient [ﬂ It follows that if ¢ is not a root of unity then there are no
relations, and U5(X) = TL(X) = (k[z]ekZ, kZ,...). Again, the algebra of

admissible sections I'({4Z (X)) contains two canonical sections
K : k7 — k[x|ekZ, i ¢'(1ei) and E : kZ — k[z]ekZ, i+ 200 ¥V i € Z .
As in section 9.5 or as in the above example, one checks immediately that
KE = ¢*FEK ,T(A)(K) = KeK and I'(A)(E) = 1eE + E=K .

This means that there is an epimorphism of bialgebras from U (sly) onto the
subalgebra of I'(45(X)) generated by K and E. Moreover, we claim that

this map is an isomorphism. To see this, recall from section 9.7.1 that
D(UL(X)) = Homgz(kZ, k[z]ekZ) = Homy(KZ, k[z])

contains the smash product k[z]#k? as a subalgebra, since after all 4} (X) =

TL(X) is the category B xH for B = k[z] and H = kZ. On the other hand,

consider the morphism of algebras 6 : kZ — k% that sends the generator
1 € Z to the function f : Z — k, i — ¢*. The linear extension f : kZ — k
is a morphism of algebras, hence it belongs to the finite dual (kZ)°, and
moreover, it is a group-like of this bialgebra [Mon, 1.3.5]. The powers of f
are all distinct group-likes, because ¢ is not a root of unity; hence, they are
linearly independent [Swe, proposition 3.2.1]. It follows that # maps into
(kZ)°, and that 6 : kZ — (kZ)° is an injective morphism of Hopf algebras.
This allows us to view k[z] as a kZ-module algebra by restriction via 6 from its
(kZ)°-module algebra structure (dual to its kZ-comodule algebra structure).

Recall from section 9.7.1 that the canonical inclusion
klz]#(kZ)° — T(Ug(X))
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is a morphism of algebras. Thus, we have a morphism of algebras
kx| #kZ — k[z]#(kZ)° — T(U5(X)) .

One checks immediately that this composite sends x to £ and 1 € Z to K.

Since it is well-known that this map is an isomorphism
k[z]#kZ = U (sly),

the claim is proved.

The considerations of this example will be treated in greater generality later;

we have included them here for motivation.

9.8.4 Binomial bialgebras

Let G be a group, X a left Yetter-Drinfeld kG-module and 45 (X) the correspond-

ing binomial deltacategory. If GG is finite, then
Ug (X) =T (U5(X))

is a k-bialgebra, by corollary 9.2.2. We call it the binomial bialgebra associated
to G and X. In view of the examples of section 9.8.3, these include symmetric
algebras, Taft’s Hopf algebra and U, (sly).

If G is infinite, T'(U5(X)) fails to be a bialgebra, but there may be canonical

subalgebras which become bialgebras under the restriction of
D(A) : TUE(X)) = D(HE(0)=U5(X))
For instance, there is such a canonical choice associated to a bicharacter
0:GxG—k".
Such a map is supposed to verify the following two conditions:

155



(1) 6(gh,k) =0(g,k)0(h,k) and

(2) 0(g, hk) = 0(g, h)0(g, k) ¥ g, h, k € G.

For example, if G = Z, a bicharacter is necessarily of the form 6(i,j) = ¢ for
some fixed q € k*.

A bicharacter yields, by (1), a morphism of algebras kG — (kG)*, g — 0, =
(g, —); moreover, if y denotes the multiplication kGekG — kG, then p*(6,) =
0,00, € (EG)*«(kG)* by (2). Thus, 8§, € (kG)° by [Mon, 9.1.1], and we have a

morphism of Hopf algebras
kG — (kG)°, g+—0,=0(g,—) .

This can be used to define a bialgebra of admissible sections as follows. Recall

from section 9.8.2 that
UE(X) = Te(X) /T = (A)J kG, ..
where A = T'(X)ekG and J is the ideal of Tg(X) generated by KekG, that is,
J = ms ((T(X)®kG)@f€G(K®kG)@#G(T(X)®kG)) .

It follows from the definition of composition m in T (X) that J = FekG, where
F is the ideal of the algebra T'(X) generated by K. Recall also that the category
Te(X) is of the form T xH for T = T(X), H = kG. Tt follows that the quotient
UL(X) is of this form too, for T = T(X)/F and H = kG. Therefore (section
9.7.1), the subalgebra (T'(X)/F)#(kG)° of T'({45(X)) becomes a bialgebra under
the restriction of I'(A). However, this is not yet the bialgebra we are interested in
defining, as suggested by the case of U (sly) (example 4 in section 9.8.3). Instead,

we define a bialgebra Ug ,(X) as the image of the map

id®6

(T(X)/F)#kG — (T(X)/F)#(kG)" .
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We call UZ 4(X) the binomial bialgebra associated to G, 6 and X.
Notice that when G = Z, (i, j) = ¢* and X is the Yetter-Drinfeld kZ-module
of example 4 in section 9.8.3, this construction reproduces the one given there, and

thus we have

Ug,e(X) = Uq+(312)

when ¢ is not a root of unity. More generally, the quantum groups U (g) of
Drinfeld and Jimbo will also be obtained through this construction, see section
9.8.5.

The construction of binomial deltacategories and binomial bialgebras can in
fact be carried out for any Hopf algebra H (with bijective antipode) in place of
kG. We now briefly describe this more general setting, pointing out the relevant
differences with the case already discussed when they arise.

Let H be a Hopf k-algebra with bijective antipode A\ and (X, p, x) a left Yetter-
Drinfeld H-module, as in section 9.6. Write p(z) = x_j009 € HeX and x(hez) =
h-x € H. As before, the category of left Yetter-Drinfeld H-modules is braided

monoidal, with braiding
Byx :YeX — XoY, Py x(yex) = z00N 01 -y .

Hence, B, acts on the tensor powers X" by morphisms of Yetter-Drinfeld modules.

First of all, one defines a graph in Vec, Gy (X) = (XoH, H, s,t), with
s:XeH — (XeH)oH, xeh — xehiohy, t: XoH — He(XeH), xeh — x_1hioxoehs.

Let Tu(X) = T(B (X)) be the free category on this graph, as in section 9.4. As
before, Ty (X) = (A, H,...) where A = T(X)eH and T(X) is the tensor k-algebra
of X. Again T'(X) inherites a structure of left H-comodule from X, and as such
becomes a left H-comodule k-algebra. Moreover, Ty (X) = @NI?I for T = T(X)

as in section 9.7.1.
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In order to endow Ty (X) with a deltacategory structure, we first define co-

functors of graphs A : &y (X) — Tu(X)eTy(X) and € : &y (X) — T by

Ny:HeH — H and A :(XeH)s(HeH) — AsA
hek +— hk (wohiky)e(hooks) +—  (lehy)e(A"'hy - xek)+
+(xeh)e(lek)
and
6:k — H and ¢:(XeH)"k — k
1 — 1 (zel)el +— 0 .

(In the definition of Ay we have used the fact that
XeoHoH — (XeH)s"(HoH), xohok — (xohik;)e(hooks)

is an isomorphism, which holds by definition of s and proposition 2.2.3).
These extend uniquely to cofunctors A : Ty (X) — Ty(X)eTy(X) and € :
Ty (X) — 7, which turn out to be coassociative and counital as before. Explicitly,

A is given by

Al((:)s®h1k1)®(h2®k2)> -
_ Z((bg")x)“)@@)@(ﬂhl : (b§">x)<i>’®k) € ER(X s H)o(X°"aH) C AsA.
=0 =0
Thus, letting as before

n—1 o0
K™ = () Ker(h” : X* — X*") and K = (P K™ C T(X),
i=1

n=0

we have that KeH is a a coideal of Ty (X). Let F be the ideal of T'(X) generated
by K and J the ideal of Ty (X) generated by KeH. By lemma 9.4.1, J is a
biideal. Moreoever, by the same reason as before, J = FeH. But since Ty (X)

is not a linear category, we have to worry about flatness: we claim that J is a

nice biideal. In fact, by definition of s, A = T'(X)eH and J = FeH are free as
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right H-comodules, hence flat (section A.1); also, A/J = <T(X)/F)®H, which is
flat as left H-comodule by one of the examples A.1.1 (here we use again that A is
bijective). By the same reason, HeH is flat as left H-comodule. Thus the quotient
category

U (X) = Ty(X)/J

is defined, and carries a natural structure of deltacategory by proposition 9.4.5. We
call it the binomial deltacategory associated to the left Yetter-Drinfeld H-module
X.

The definition of binomial bialgebras can also be extended to this context. If
the Hopf algebra H is a finite-dimensional Hopf algebra, then 4};(X) is a finite

deltacategory, so by corollary 9.2.2
Up (X) »= (8 (X))

is a k-bialgebra, which we call the binomial bialgebra associated to H and X (notice
that in this case the antipode of H is necessarily bijective, by [Mon, 2.1.3]).
If H is infinite-dimensional (with bijective antipode), we can still construct a

bialgebra of admissible sections provided that a bicharacter
0: HeH — k*

is given. Such a map is supposed to verify the following two conditions:
(1) O(hkel) = 6(h,l3)0(k,l;) and

(2) O(hekl) = 0(hyok)0(hasl) ¥ h, k,1 € H.

(In particular, a coquasitriangular Hopf algebra is, by definition, equipped with
such a bicharacter [Mon, 10.2.1]). For the case of group algebras H = kG, this

recovers the previous notion.
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A bicharacter yields, as before, a morphism of Hopf algebras
H — H°* h— 0(he(-)) ,

and we may define a bialgebra UE,G(X ) as the image of the map

id26

(T(X)/F)#H == (T(X)/F)#H*" — I'(U; (X)) ,

which we call the binomial bialgebra associated to H, # and X.

9.8.5 U/ (g) as admissible sections

In this section we associate a binomial deltacategory and bialgebra to any integer
square matrix A. Drinfeld and Jimbo’s quantized enveloping algebra associated
to a symmetrizable generalized Cartan matrix C' arises from this construction by
choosing A as the symmetrization of C', as will be explained.

Let A = [apk] € M,.(Z) be an integer square matrix of size r and ¢ € k* a fixed
scalar, not a root of unity. Assume that chark = 0.

Let G = Z", the free abelian group of rank r, and X the vector space with

basis {z1,...,z,}, viewed as left Yetter-Drinfeld £G-module with
‘S(Zk‘ = (alk, .. .,ark) - ZT, (nl, .. ,’/I,T) cTp = q_nhl’h v (nl, .. .,nr) c7 .

To this data there is associated, by the constructions of section 9.8.2, a binomial
deltacategory
U (A) == U5(X) .

q

Consider the bicharacter
0:2 X2 =k, (0 omy), (ma, . ymy) ) o =i

By means of the constructions of section 9.8.4, we may define a binomial bialgebra

of admissible sections as

Uy (A) = Ugp(X) = T'(8y (4)) .

q
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If A=[2] € My(Z), then X and 6 coincide with those of example 4 in sec-
tion 9.8.3; therefore, U (A) = U[(sly). More generally, we will show below that
if A is the symmetrization of symmetrizable generalized Cartan matrix C, then
US(A) = U/S(9(C)), the quantum enveloping algebra associated to the Kac-Moody
Lie algebra defined by C'.

According to the construction of section 9.8.4, Uf(A) = (T(X)/F)#k:ZT,
where F is the ideal of T((X) generated by K = &> ,K™ and

n—1
K™ = (1) Ker(b” : X" — X*") .
=1

The explicit description of the relations F' seems to be a hard problem. We are
able to obtain a complete answer only for the case of Cartan matrices, and this is
based on a non-trivial result of Lusztig (the description of U (g(C')) by means of
“abstract” quantum Serre relations).

We approach this problem now. We will derive a few results about the the
actions of the binomial braids bl(-") on the tensor powers X“". Some of them
hold in greater generality (as will be clear from the proofs), but for simplicity we
restrict from the beginning to the case where X is defined from A as above. At
the end, we will specialize even further to the case of Cartan matrices. Until then,
deltacategories and bialgebras will stand aside from the discussion.

Recall that the braid group B,, acts on X*" by morphisms of left Yetter-Drinfeld

kG-modules, and in such a way that V x € X®" y € X®™ s€ B, and t € By,
(sat)(woy) = (sz)e(ty) and By, (yezr) = x|z -y .
The action of s§2) = (11 € By on XoX is then given in this case by
TheTy & ¢ rpeTy, .
It follows that the action of SE") = 10-DgsPa1(=1) € B on X®" is given by

Tpy® .. .0Tp, > ¢MiME, 0 0Ty, 9Tk . .. 0Ty,

n )
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hence the action of 5™ (1,7) = s§"’ . 82@1 € B, on X" is

x Th, > = ik o T, &Tp,, T x
h®...9Th, q hi®Lh; 1®...0Lp,OLp,; | OLh,;  ,®...0Lp, -

Recall the definition of the Mobius braid p™ € kB, from section B.6.2. The
first observation, which is independent of the particular form of the action of B,

is:
Lemma 9.8.1. K™ C Ker(p™ +1).

Proof. This is an immediate consequence of Cauchy’s identity 26 in appendix B
> uPe1h b — 0,
k=0

since b = b = 1. O

From appendix B we know that, on the one-dimensional subspace k{z7"} of
xXen, b§”’ acts by multiplication by the binomial coefficient [ﬂqaii. Since ¢ is not
a root of unity, this element is non-zero.

For fixed ¢ and j, we will consider in particular the (n + 1)-dimensional subspace
XZ-H of X®("*+1) spanned by 2$"ex; and its permutations, which is clearly invariant
under B,. We abbreviate x; := :)s‘f’%:)sj@z?("_k) € XZ-H. The elements x;, for
k= 0,1,...,n for a k-basis of XZ."]-H. It follows from the above that for each

h=1,...,n+ 1, the action of s"*Y(1, ) on XZ.H is
(

gh=Dantaix, o fO0<k<h-—2

Xp = 4 M, ifk=h—1

gDy, fh<k<n.

\

Let

KT = KO0 a X5t = () Ker(™ X5 — X5
h=1
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Lemma 9.8.2. The action of ™) on Xi"jJrl diagonalizes, as follows. For each
k=0,....n let
n
ap = 9 (077 + kai]— + (n — k)aji .

If n=2m+1 is odd, there are m + 1 eigenvectors of the form
GO 2%y, 4 %, with eigenvalues ¢ FK2 for k=0,....m
and other m + 1 eigenvectors of the form
g%y — ¢ %, with eigenvalues — ¢\ K2 for kb =0,....m .
If n = 2m is even, there are m eigenvectors of the form
¢+ x4 ¢ ?x, i with eigenvalues — ¢\ @k tenK2 fork=0,...,m—1,
other m eigenvectors of the form

anfk/2

q X — “*/?x,,_; with eigenvalues ¢ +1)/2 fork =0,....m—1,

plus the eigenvector

X,, with eigenvalue — ¢“™ .

Proof. By definition, p™*Y = (=1)"*ls0+D(1 n + 1)sM+HD(1,n). .. s (1,1).
The action of sV (1, h) on the basis elements x; of XZ-"jJrl was described above.

It follows that, for each £k =0,...,n,
pmt L xg = (1) gy,

Therefore, each subspace spanned by {xXj,X,_x} is invariant under g™V, If n =
2m and k = m, this space is one-dimensional, spanned by the eigenvector x,,
with eigenvalue —g®m. Otherwise, this subspace is two-dimensional, and it follows
readily that

(g + ™% p, @O P — % i}

163



form a basis of eigenvectors, with eigenvalues as indicated according to the parity

of n. O
Corollary 9.8.1. If (n — 1)a;; + a;; + aj; # 0, then KZ.(;‘H) =0.

Proof. By lemma 9.8.1, KZ.(;LH) = 0 if —1 is not an eigenvalue of p(™*V in XZ."J-H.
By lemma 9.8.2, —1 is an eigenvalue of x(™*1) if and only if ay + v, = 0 for some

k=0,...,n. By definition of oy, this is equivalent to (n —1)a;; +a;; +a;; #0. O

Lemma 9.8.3. If for each h = 1,...,n the braid [h] € By, is injective on X},
then,

Ker(bé"“”xn_ﬂ) — KM Y =10
Proof. Recall the factorial formulas 22 and 16

FWe portt=h) pnth) — gt ) — 1 0g[1] . 10 Dg[2] - 1sln] - [n+ 1] .

We claim that 1s[n] is injective on the space X/*™'. In fact, this space splits as the

ij
direct sum of the one-dimensional space spanned by x, and the space k{z;}s X7,
and both of these are invariant under le[n]. On the first, le[n] acts by multi-
plication by the g-analog [n],:, which is non-zero since ¢ is not a root of unity,
while on the second it is injective by hypothesis. Similarly, all the lower factors

1@We[n 4+ 1 — 4] are injective on X7, for i = 1,...,n. It follows that f and

f+1=h) are injective on XZ-H, for h=1,...,n, and from here that
(n+1) _ _
Ker(bh |Xn_+1) = Ker([n + 1]|Xn_+1> forh=1,...,n.
1] ]
Since KZ-(;L ™) is the intersection of these kernels, the result follows. O

The following result is the first one that uses in an essential way the particular
form of the action of B, on X®" in terms of the matrix A. Below, ¢%i will be

abbreviated by ¢;, ¢*9 by g;;, [n]; will denote the ¢;-analog of the natural number

164



n and [ZL the g;-analog of the binomial coefficient (Z) (the definitions of these

analogs can be found in appendix B). The subindices ¢ and j remain fixed.

Proposition 9.8.1. For each k =0,...,n, let

= PR O and x= 3 huse

k=0

Assume that a; # 0. Then

o) k{x} if —*e€{0,1,2,...,n—1}
ij
0 otherwise .

Proof. By definition, b"*" = STl sM+10(1 h). The action of s (1, h) on
the basis elements x; of XZ-"jJrl was described above. It follows that, for each

k=0,...,n,

b§n+1) - <q(l—l)a“- PG LI q(k—l)a“>xk + i+

+ (q(k+2_2)“ii+aji + q(k+3_2)aii+aji 4+t q(n+1—2)an+aﬂ)xk+l

= [Klixx + %0 + qiqf [n — K]iXp1 -

Let y = >} _, ftx be an element of XZ-"j“, where p;, € k are arbitrary scalars. Then
n+1
Yy =3 lklixe + Y palixo + Y paziatn — Klixi
k=0 k=0 k=0

= Z(Mk[k?]i + pe—1ggid; =k + 1]i)xk+<zuqu>xo ’
k=1

k=0

It follows that y € Ker(bgnﬂ)

X;;H) if and only if

0 = pxlk]; + ,uk_lqjiqf_l[n —k+1]; foreach k=1,...,n and (1)

0= ZMMZ : (2)
k=0
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Equation (1) determines py in terms of pug, for k =1,... n:

H1 = —Hoqj; [n]z

Mo = —MlCinQi% = MOq]ziqi% - /~L0qj2‘iql'[2 ]z
M3 = —uzqﬁqf[ El | = —mﬁﬂf’T - _“Oq?iqf[ii}i
and in general, for k=1,...,n

2

i = (—1)]6#051;%%( )[Z]Z = oA -

Thus, there are two possibilities for the kernel. If the A, satisfy equation (2) in
place of ug, then the kernel is one-dimensional spanned by x, if not, the kernel is

zero. So it only remains to show that equation (2) holds for Ay if and only if

A5 + A j;

—a€{0,1,2,...,n—1} where a=
Qi

To this end, consider the polynomial

k=0

By one of Cauchy’s identities for ¢g-binomials (section B.6.2), f(z) factors as follows:
fl@)=(z -1 —q).. (x-¢"). (*)
Now, when we subsitute juy for Ay in the right hand side of (2) we get
ZqZ'j k= Zqij( ) 4;i4; [kL
k=0 k=0

=St ] = 22
k=0

D@ =—Dg*—q)...(*— ¢

qCLTL

which is zero if and only if —a € {0,1,2,...,n—1}. O
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Corollary 9.8.2. Assume that a; # 0 and let x be as before. Then

E{x} if—w:n—l

K(ﬂ‘i‘l)

v

0 otherwise .

Proof. 1f —% # n — 1 then KZ-(;LH) = 0 by corollary 9.8.1. Suppose that

—W =n — 1. Then, in particular,
Ui 0 k=2 YV k=1,....n.

K23

Therefore, by proposition 9.8.1, bgk) is injective on ij for k =1,...,n. But then

lemma 9.8.3 applies, to conclude in particular that

K5 = Ker (0" lpn ) = k{x)
the last equality by proposition 9.8.1 again. O
Recall that F' denotes the ideal generated by K in T'(X). Let

F™ = Ker(f™ : X*" — X®") and F = éﬁ’(") :
n=0
Our last result in this general setup is:
Lemma 9.8.4. F is an ideal of T(X), and F D F.
Proof. The factorial formula 22

f(i)®f(n—i) AN f(n)

shows that Kerb™ C Kerf™ V i; in particular, K™ C F™ so K C F. On the
other hand, applying the horizontal symmetry * (section B.2.3) to the formula

above yields, by formulas 7 and 18 in appendix B,

This implies that F' is an ideal of T'(X). Since it contains K, it must also contain

F. O
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Now we go back to consideration of the bialgebra

q

U, (A) = (T(X)/F ) #k2Z" = T (4 (4))
This algebra is generated by the following elements, for i =1,...,r
E; = x;2(0,...,0) and K;=1¢(0,...,0,1,0,...,0),
(where the 1 appears in the i-th coordinate). When viewed as admissible sections,
we have
Ei(ny,....,n.) =xe(ng,...,n,) and K;(ng,...,n.) =q"1le(ng,...,n,.) .

It follows easily from the definition of smash product, or by computing the

product of admissible sections directly, that

K, K; = KK, (1)
and

K,E; =q""E;K; . (2)

For general A, the only additional conclusion we have obtained is that

So(=DF 3] g O BB B =0
(3)

whenever a; # 0 and (n — 1)a; +a;; +aj; =0
In fact, this is just a reformulation of corollary 9.8.2.
In general, there is no reason why these relations should generate all relations
F in Uf(A). However, this turns out to be the case in the special case of Cartan
matrices, that we now consider.

Let C = [¢;;] € M, (Z) be a generalized Cartan matriz. This means that
CiiZQVizl,...,T’
cij <0fori#j

if ¢;; = 0 then ¢;; =0 .
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Suppose in addition that C'is symmetrizable. This means that there is an invertible
diagonal matrix D € M, (Z) such that DC is symmetric. In this case, D is unique
up to a constant factor, and all its entries have the same sign. The canonical

symmetrization of C,

A:=DC,

is the one corresponding to the choice of D with minimum positive integer entries.

A generalized Cartan matrix is of finite type if it is positive-definite. Such
Cartan matrices are always symmetrizable. Finite-dimensional semisimple Lie al-
gebras over C are in one-to-one correspondence with symmetrizable generalized

Cartan matrices of finite type. For instance, the Cartan matrix of sl,;;(C) is

2 -1 0 0
-1 2 -1 0
0 -1 2 0
0 0 -1 2]

(a square matrix of size r). For more details on Cartan matrices the reader is
referred to [Kac, chapters 1,2 and 4].

Associated to any symmetrizable generalized Cartan matrix C' there is Lie
algebra g(C'), called a Kac-Moody Lie algebra, and a quantum group (bialgebra)
U,(g(C)), defined by means of generators and relations [Jan, 4.3]. These were first
defined by Drinfeld [Dril] and Jimbo [Jim]. We shall concentrate on the subalgebra
Ut (g(C)), which is defined by generators K; and FE;, for i = 1,...,r subject to

q

the relations that each K; be invertible,

K’LE] = quCLJE]KZ (2’)
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and

k

> (=1)F (n) EFE;EM* = 0 whenever ¢;; =1 —n . (3)
q%i
Here, ¢;; are the entries of C, d; are the (diagonal) entries of D and the g-binomial
coefficient (Z)q is that of [K, VI.1.6] (warning: the notation for binomials in this

work is precisely the opposite of [K]). In terms of the ¢g-binomials [Z]q of appendix

B and the present section, these other binomials are [K, VI.1.§]

n _ —k(n—=k)[n
(1) =,

Let us compare relations (1')-(3’) with those obtained for U;(A) above. The
entries of A, C' and D are related by a;; = d;c;;; ¢i; = 2 and a;; = aj. Thus

relation (2’) corresponds to (2), and obviously (1’) to (1). One checks easily that
(n—l)aii+aij+aji:0<:>cij :1—n,
and that in this case

Ot = ()

so that (3’) corresponds to (3) too. This means that there is a well-defined epi-
morphism of algebras

U, (9(C) = U (A) .

q

One checks easily that this is also a morphism of bialgebras, where the coalgebra

structure on U (g(C)) is

We claim that this is actually an isomorphism.
Recall that U (A) = (T(X)/F) #kZ", where F'is the ideal of T'(X') generated
by K.
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Let S be the ideal of T'(X) generated by the quantum Serre relations
Sp = kzzo(—w (Z) Zdix?k@oxj@x?(n_k) cT(X),
for those 4, j and n for which ¢;; =1 —n.
The element S7; is precisely the element x of proposition 9.8.1, after changing
notation as indicated above. Therefore, by corollary 9.8.2, Si: € K. Together with
lemma 9.8.4, this gives

SCFCF,

where F is the direct sum of the kernels of the factorial braids f™ as above.

On the other hand, Lusztig’s result [Lus, 33.1.5] shows that F is generated by
the quantum Serre relations. [In Lusztig’s book, T(X) is denoted by f, and F is
defined as the radical of certain bilinear form on f [Lus, 1.2.4, 3.1.1]. Schauenburg
has noted that this coincides with F' as defined here [Sch, 3.1].]

Therefore, S = F = F. Thus, we have obtained

q

Ut (A) = (T(X)/s)#k;ZT .

But this is the well-known smash product presentation of Uf(g(C)), as in [Sch,
4.2]. Therefore, Uy (A) = U; (g(C)) as claimed.

Summarizing: to each integer matrix A there is canonically associated a bialge-
bra U; (A), either as certain admissible sections of a deltacategory or as a certain

biproduct. If A is the symmetrization of a Cartan matrix C, then US(A4) =

Uf(g9(C)), the quantum groups of Drinfeld and Jimbo.
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Chapter 10

Categories in Algebras

In this chapter we study categories internal to a category of monoids § = Mong,
in a given monoidal category §,. We present some results that extend well-known
facts about categories in Groups, which is the particular case §, = Sets. We are
mainly interested in the case § = Vecy, § = Alg,, but the results hold in this
more general setting of arbitrary monoidal categories.

Let us describe the contents of this chapter in more detail.

It is well-known that the concept of a category in Groups is equivalent to that
of a catlgroup and to that of a crossed module of groups [Lodl]. We review these
equivalences in section 10.1, pointing out that they hold true for cat'monoids for
which the base monoid is a group. This slightly more general setting is more
natural from the point of view of internal categories, as it permits generalization
to the case when §, is arbitrary, instead of § = Sets. In this section we also
describe the monoid of admissible sections of a category in Groups, and show that
it coincides with Whitehead’s monoid of derivations of the corresponding crossed
module.

Section 10.2 deals with the generalization mentioned above. Namely, cat!monoids
in §, are defined, and the equivalence with categories in Mong is obtained, when
the base monoid is actually a Hopf monoid. Results of this type are known, not
only for the case of catlgroups mentioned above, but more generally for internal
categories to lex categories § (as in examples 2.3.1) [CPP]. The result presented
here goes one step further, in the sense that arbitrary monoidal categories §, are
considered, instead of only lex ones. These results are sometimes known as the
generalized Eckmann-Hilton argument, for the reason that the one-object case of

the equivalence between categories in Mong, and catimonoids in §, simply says that
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a monoid in Mong, is precisely a commutative monoid in §,.

Finally, these considerations are applied in section 10.3 to associate a catlalgebra
to any finite-dimensional quasitriangular Hopf algebra H. A morphism of quasitri-
angular Hopf algebras induces a cofunctor between the corresponding categories in
Alg,. Therefore, composing with the admissible sections functor (section 5.3), one
obtains a monoid (or a group, if only invertible admissible sections are considered),
which is an invariant of finite-dimensional quasitriangular Hopf algebras. Further
study of this invariant is not pursued in this work.

The observation that Drinfeld’s double of a quasitriangular Hopf algebra was
part of a structure somewhat analogous to a catigroup, was what first led us to
consideration of the general notion of internal categories.

For lack of time and space, the results of this chapter will be stated without

proofs. These will we provided in a separate work.

10.1 Catlgroups

Catlgroups were introduced by Loday [Lodl] as algebraic models of homotopy

2-types, along with analogous higher dimensional notions.

Definition 10.1.1. A catigroup is a diagram of groups G%N @G such that

si = ti = idy and [Kers, Kert] = 1 (that is, Kers and Kert commute elementwise).
Crossed modules were introduced by Whitehead [W].

Definition 10.1.2. A crossed module of groups consists of a morphism of groups

0: K — N, together with a left action of NV on K by automorphisms, such that
1. 9(n-k) =no(k)n=?

2. 9(n) -m =nmn~!
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The following result is well-known [Lodl, lemma 2.2].
Proposition 10.1.1. The following data are equivalent:

1. a cattgroup G%N ,
2. a crossed module of groups 0 : K — N,

3. a category in Groups (G, N, s, t,i,m).

Proof. (Sketch). The crossed module is obtained from the catlgroup by setting
K = Kers, letting 0 be the restriction of ¢ and making N act on K by restriction
along i : N — G from the conjugation action of G on K. From the crossed module
one obtains a category in Groups with G = K x N (semidirect product with

respect to the given action of N on K), and

s:G — N, (k,n) — n

t:G — N, (k,n) — 0(k)n

i:N — G, n — (1,n)
m:GxNG — G, (h,o(k)n,k,n) — (hk,n).

From the category in Groups one obtains a catlgroup simply by forgetting the

additional structure m. O

The Whitehead’s monoid of derivations Der(N, K) of a crossed module 0 :
K — N was introduced in [W]; this terminology and notation is taken from [N].

Explicitly,
Der(N,K)={D: N — K / D(nm) = (Dn)(n- Dm) ¥ n,m € N} ;
with multiplication
(D * Dy)(n) = Ds <(8D2n)n> Ds(n)
and unit element Dy : N — K, Dy(n) =1V n e N.
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The following result was already announced in section 5.2. Its proof is straight-

forward.

Proposition 10.1.2. The monoid of admissible sections of a category in Groups
coincides with Whitehead’s monoid of derivations of the corresponding crossed mod-

ule of groups.

The results of proposition 10.1.1 can be slightly generalized, as follows. One
can define catlmonoids, simply by replacing the word group by the word monoid
in definition 10.1.1. One can also relax the requirements in definition 10.1.2 of
crossed modules, by letting K be any monoid (while retaining that N be a group).

With these conventions, we have

Proposition 10.1.3. Let N be a group. The following data are equivalent:
1. a cat*monoid G%N ,
2. a crossed module of monoids 0 : K — N,
3. a category in Monoids (G, N, s,t,i,m).

This setting is more natural from the point of view of internal categories, as

we explain in the next section.

10.2 Catlalgebras

Let § be a symmetric regular monoidal category and 8§ = Mong the (symmetric,
regular) monoidal category of monoids in § (proposition 2.1.1). Let (A, H,s,t)
be a graph in §; according to definition 2.3.1, this means that H is a bimonoid
in § and A an H-bicomodule monoid in §,. Let I be the unit object of §, and

ug : I — H and uy : I — A the unit maps of the monoids H and A. We define

K, (s) = A4 = Eqq ( A =AsH ) and K(t) := [#A = Eqq ( A=HsA ) .

ida®ugy ug ®ida
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When §, = Sets, s is necessarly of the form s(a) = (a,35(a)) for some map
§: A — H,and hence K,.(s) = {a € A/ 5(a) =1 } = Kerd. Similarly K;(¢) = Kert.
When §, = Vecy, K, (s) and K;(t) are the spaces of right and left coinvariants of
the H-H-bicomodule A [Mon, 1.7.1.2]

Definition 10.2.1. Let §, be a symmetric regular monoidal category. A catimonoid

in § consists of a 5-tuple (A, H, s,t,i) where

e H is a bimonoid in §,,
e (A, s,t) is an H-H-bicomodule monoid,
e i : H — Ais a morphism of H-H-bicomodule monoids, and

e K, (s) and K;(t) commute inside the monoid A.

It is clear that, in the case § = Sets, this definition recovers the notion of
catimonoids discussed in section 10.1. To obtain a description of categories in § in
terms of catlmonoids in § we need to make some assumptions on H, that replace
the assumption that H be a group in the case § = Sets. The natural option is
to assume that H is a Hopf monoid in §,. Let \y : H — H denote the antipode
of H (a morphism in §,). Let (A,s,t) be an H-H-bicomodule and i : H — A
a morphism of H-H-bicomodule monoids. Then ¢ is convolution-invertible in the
(ordinary) monoid Homg (H, A) with convolution-inverse i = io )y : H — A. We

define the right and left traces of A over H with respect to i as

idy®7

A AeH U Ao A S Aand AL Hod 9 404

Maps of these sort have been considered in the literature for the Hopf algebra case

[Rad], sometimes under the name of total integrals [Doi2].

Proposition 10.2.1. Let §, and 8 be as before. Let H be a Hopf monoid in §,.

Then, given a category (A, H,s,t,i,m) in 8, (A, H,s,t,1) is a cat*monoid in §,,

176



and conversely, any cat*monoid (A, H,s,t,i) in & carries a unique structure of

category in 8, with composition m given by any of the following
m o AFA S0 As A TN Ao A L A or s AA E0 As A B8 o p 12,

It is also possible to obtain a description of catlmonoids in terms of inter-
nal crossed modules, extending the description of catigroups in terms of crossed
modules of groups of section 10.1. More generally, one can associate a simplicial
object to any augmented internal category (a category equipped with a functor
to the one-arrow category), called its nerve, and define, when 8§ = Mong,, a Moore
functor from simplicial objects in 8 to complexes of monoids in §,, extending the

corresponding theory for simplicial groups.

10.3 Drinfeld’s double as a catlalgebra

Let H be a quasitriangular Hopf algebra with R-matrix R [Mon, 10.1.5] or [K,

VIII.2.2]. Tt is well-known that there is a corresponding morphism of Hopf algebras
¢r: D(H) — H, pr(f=h)=f(R)Rih,

where D(H) is Drinfeld’s double (in the left handed version of [K, IX.4.1], not as
in section 9.6). Since R = 7(R)™" is another R-matrix for H, there is another
morphism of Hopf algebras D(H) “R, H. Tt turns out that the pair D(H) %:H
satisfies some properties formally similar to those defining a catlgroup (definition
10.1.1 above). More precisely, there is a catlalgebra of the form (D(H), H,...),
where D(H) is viewed as H-H-bicomodule algebra by corestriction along ¢ and
PR

Proposition 10.3.1. Let H be a finite-dimensional quasitriangular Hopf algebra
with R-matric R = ), RisR;. Then there is a cattmonoid in § = Vecy of the

form (D(H), H,s,t,1) where
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e D(H)= (H")*P<H is Drinfeld’s double of H, as above,

i: H— D(H) is the canonical inclusion i(h) = leh,
o s:D(H)— D(H)eH is s(fexh) =, fi(R:)(fab<hy)eRhe, and
o t:D(H)— HeD(H) is t(f>ah) = . f2(S;)S;hie(fivdhs),

where S = 7(R)™! =3, SjeS].

Let € be the category in Alg, corresponding to a finite-dimensional quasitri-
angular Hopf algebra (H, R), by means of propositions 10.3.1 and 10.2.1.

A morphism between quasitriangular Hopf algebras (H, R) and (K,S) is a
morphism of Hopf algebras ¢ : H — K such that (pep)(R) = S. Let @th;, denote
the category of finite-dimensional quasitriangular Hopf k-algebras. The relevance

of cofunctors is once again made clear, by the following result.

Proposition 10.3.2. A morphism of finite-dimensional quasitriangular Hopf al-

gebras ¢y : H — K induces a cofunctor ¢ : €g — Cg. This gives a functor
Qth, — Catyy, -

By composing with the admissible sections functor I" : %Algk — Monoids

(section 5.3), we get a functor
@th, — Monoids,

an invariant of finite-dimensional quasitriangular Hopf algebras.
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Appendix A

On comodules over a coalgebra

In this appendix we discuss various properties of the category of comodules over
a k-coalgebra that are used in the main body of this thesis. In section A.1 we
recall the definition of flat comodules and other related notions. In section A.2 we
collect a series of basic facts about comodules and modules over the dual algebra.
Finally, in section A.3 we construct products and coproducts in the category of
comodules. Most of these results are straightforward or can be found scattered
through the literature. The main references are [Doil] and [T1, appendix 2].

We will use the abbreviated Sweedler’s notation: comultiplications A- : C' —

CeC" and comodule structure maps ¢t : M — CeM and s : M — MeC' are denoted
Ac(c) = crecy, t(m) = m_jemg and s(m) = moem,

respectively. Notice that the subindex 0 in comodule structure maps is reserved for
the component that belongs to M, in agreement with [Mon, 1.6.2], but summation
signs are omitted whenever possible. Negative subindices encode coassociativity

as follows:
(Idc@t)t(m) = M _2@MM_1®1MMy = (AC®|dM)t(m) .

The categories of left and right C-comodules over a k-coalgebra C' will be denoted
respectively by Comod'C' and Comod”C'. k will be a field. Hom., and Hom(, will

stand for homomorphisms of left and right C'-comodules respectively.

A.1 Flatness

The tensor coproduct MM, of aright C-comodule (M7, s) with a left C-comodule
s®idch

(Ms, t) is the equalizer of the pair MyeMy —=M;sCeM, . It was defined in the
it
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more general context of regular monoidal categories in section 2.2, where some of

its basic properties were proved.

A left C-comodule M is called flat if the functor
(—)e°M : Comod"C' — Vecy,
is exact, and injective if the functor
Homl,(—, M) : Comod'C' — Vec;

is exact. These two notions are actually equivalent: by [T1, proposition A.2.1],
M is flat if and only if it is injective. Moreover, this is the case if and only if the
functor (—)e°M preserves epimorphisms. In fact, we know from remark 2.2.1 that
the tensor coproduct always preserves monomorphisms.

Let V' be a vector k-space. Then CeV is a left C-comodule with structure
map Aceidy (in the terminology of chapter 3, this comodule is obtained from the
vector space V' by coinduction along ¢.). A left C-comodule M is called free if it
is isomorphic to a left C-comodule CsV as above. By [Doil, corollary 1], every
free comodule is flat. (This is an immediate consequence of propositions 2.2.2 and

2.2.3). This result will be complemented with that of lemma A.3.4 below.

Eramples A.1.1.
Let X be a set and C' = kX the group-like coalgebra on X: Ac(x) = zex
and ¢ (xr) = 1V x € X. Then every left C-comodule is flat. In fact, as already

mentioned in section 9.1, a left C-comodule (M, t) decomposes as
M = @,ex M, where M, = {m € M / t(m) = zem},

and similarly for right C-comodules. Consequently, there are equivalences of cat-
egories

Comod"C = H Vecy, = Comod'C' |

zeX
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preserving the additive structure. The functors

(—)e°M : Comod"C' — Vec;, and H(—)@Mm : H Vec,, — Vecy

zeX zeX

correspond to each other under these equivalences. Since the latter is clearly exact,
so is the former.

Let H be a Hopf algebra. We claim that HeH, viewed as left H-comodule via
HeH — Heo(HoH), hok — hikiohoeks |

is flat. Indeed, HeH is a left Hopf H-module (section 9.7.2 or [Mon, 1.9.1]) when

equipped with the left H-module structure
Heo(HoH) — HeH, hs(feg)— hfeg .

Hence, by the fundamental theorem on Hopf modules (corollary 9.7.1 or [Mon,
1.9.4]), HoH is free as left H-comodule, in particular flat.
However, if H is only a bialgebra, HeH may fail to be flat as left H-comodule.

To see this, consider the bialgebra
B = k[z]/(2* — 2°) with A(z) = zex and e(z) =1 .

Let M = ka be a one-dimensional space, turned into a (left) B-module via z-a = 0.

Then M is not projective as B-module, because the surjection
p:B— M, p(1) =z —2a* p(z)=pa*) =0,
does not split, since the only morphisms of B-modules M — B are
j: M — B, j(a) =z — 2? and its linear multiples

(since z — 22 and its linear multiples are the only elements of B annihilated by x),
and we have pj = 0. On the other hand, view BsB as B-module by restriction via

A. Then M is a direct summand of BeB, since

BeB = k{zel — 2?1} @ k{xs]l + 221, 11, vz, zea?, v%ex, v2er?, lox, 1oa?},

181



is a direct decomposition of BeB into B-modules (assuming chark # 2), and
M = k{xel — 2?1} via o +— 26l — 221 .

Therefore, BeB is not projective as B-module. Let H = B*. It follows that
HeH = (BsB)* is not injective as B-module, or equivalently as H-comodule
(by proposition 1.1.4 in [Doil]). As already mentioned, injective=flat for comod-
ules, so we have an example of a bialgebra H for which HeH is not flat as (left)
H-comodule. The author thanks Warren Nichols for showing him this example.
The final example is a variant on the result above about the flatness of HeH.
Let H be a Hopf k-algebra with bijective antipode and X a left H-comodule, via

T — x_10x9. View XeH as left H-comodule via
zeoh — $_1h1®$0®h2 .

Then X«H is flat as left H-comodule; in fact, it is free, by the fundamental theorem
on Hopf modules in its version for left comodules and right modules (as in the
remarks following 1.9.4 in [Mon]; this uses the assumption on the antipode), since
it is trivial to verify that it becomes a Hopf module when equipped with the right

H-module structure
(XeH)sH — XeoH, (xeh)ok — xehk .

A subspace M of a left C-comodule (A,t) is called a (left) subcomodule if
t(M) C CoM.

Lemma A.1.1. Let C be a k-coalgebra, Ay a right C-comodule and Ay a left one.
Let My and Ny be right C'-subcomodules of Ay and My and Ny left C-subcomodules
of Ay. Then

(Mys°Ms) N (N1e°No) = (M; N Nq)e(May N Ny)

as subspaces of Ao A,.
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Proof. First notice that for any pair of maps A =B and subspace N of A, we
have

Therefore, since (MyoMy) N (N1oNy) = (M; N Ny)o(My N Ny), we have

Eqk( M1®M2 :;M1®C®M2 ) N (N1®N2) =
- Eqk((M1®M2) N (NieNy) — MyeM, = MysCoM, )
- Eqk< (M1 0 NYe(Ma N Ny) = (M, 0 Ny)eCo( M N N) )

= (M N Ny)e(Ms N Ns),
thus
(Mye°My) N (N1eNy) = (My N Ny)e(My N Ny).
Hence, by symmetry,
(MyeMs) N (N1e°Ny) = (My N Ny)e“(My N Ny).
But then also

(Ml N N1)®C(M2 N NQ) = (M1®CM2) N (N1®N2> N (M1®M2) N (N1®CN2)

- (M1®CM2) N (N1®CN2).
0

Side remark: an alternative proof of this result can be based on the fact that
pull-backs commute with equalizers (by the result on page 227 of [ML]), since the
intersection of two subspaces can be seen as a pull-back.

We next consider quotient comodules. If N is a left C-subcomodule of a left

C-comodule B, then the quotient space B/N inherites a left C-comodule structure
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as below

B CsB ,

l |

B/N - - > (CeB)/(CeN) — Ce(B/N)

and 0 - N — B — B/N — 0 is an exact sequence of comodules.

Proposition A.1.1. Let C' be a k-coalgebra, A a right C-comodule and B a left
one. Let M be a left C'-subcomodule of A and N a right C-subcomodule of B,
such that all A, M and B/N are flat as C-comodules. Then there is a canonical

1somorphism

(A/M)e“(B/N) = (A«“B) /(Ms°B + As°N) .
Proof. First, since B/N is flat,

(A/M)(B/N) = % .

Now, since A is flat,
As(B/N) = (A«°B)/(A«“N) , ()
and since M is flat
Me“(B/N) = (Ms°B)/(MeN) .

But according to lemma A.1.1, M«°N = (Me°B) N (A«°N). Hence
Me(B/N) = (M«<B)/ ((M®CB) N (A@CN)> > (MeB + ACN)/(ALN) . (¥

From (*), (**) and (***) it follows that

(As°B) /(AN

(A/M)ABIN) = e E T 42N J(AFN)

~ (As°B)/(Ms°B + As°N) .
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A.2 Assorted lemmas

If C' is a k-coalgebra, then its dual C* = Homy(C, k) becomes a k-algebra with

multiplication determined by

(f ’ g)(C) = f(Cl)g(Cg) v f7g S C*v cE C7 where AC(C) = (C19C2,
and with unit element ¢ € C*.

Lemma A.2.1. Let C be a k-coalgebra and (M, s) a right C'-comodule. Then M

becomes a left C*-module under
f+-m = f(my)mg where s(m) = mgem; € MeC, ¥ f € C*,me M .
This defines a fully-faithful functor Comod"C — Mod C*, which is an equivalence
if C is finite-dimensional.
Proof. See [Mon, lemma 1.6.4] or [Swe, section 2.1]. O

Replacing C' by C'°°P’ one obtains a version of lemma A.2.1 dealing with the
functor Comod'C' — Mod"C*. There is also a more general version for bicomodules.
We will refer to these variants (of this and other results) later in this section or in

the main body of this thesis, even though they will not always be explicitly stated.

Remark A.2.1. If R, S and T are k-algebras, U a R-S-bimodule and V a R-T-one,

then Homy (U, V') carries a structure of S-7-bimodule, via
(s f)(u) = f(u-s)and (f -t)(u) = f(u) -1
V f€Homp(U, V), se S, teTandueU .

Moreover, Hom’, (U, V) is an S-T-subbimodule of Hom, (U, V).

The analogous construction for bicomodules can be performed with the aid of

lemma A.2.1, under some finite-dimensionality assumptions:
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Lemma A.2.2. Let C, D and E be k-coalgebras, U a C-D-bicomodule and V a
E-D-one. If C and E are finite-dimensional, then Hom(U,V') carries a natural
structure of E-C-bicomodule. Moreover, Hom',(U, V') is a E-C-subbicomodule of

Hom,, (U, V).
Proof. The result follows trivially from remark A.2.1 and lemma A.2.1. O

Remark A.2.2. Assume the same hypothesis as in remark A.2.1. Then the dual

space U* is an S-R-bimodule via
(s-fllw)=f(u-s)and (f-r)(u)=f(r-u)V feU*, s€S, re RandueU .
Moreover, the canonical map
d: U*sV — Homy(U, V) defined by d(fev)(u) = f(u)v
is a morphism of S-T-bimodules.

Lemma A.2.3. In addition to the hypothesis of lemma A.2.2, assume that D is

finite-dimensional. Then U* is a D-C-bicomodule, the canonical map
d:VeU" — Homy(U, V)

1s a morphism of E-C-bicomodules, and d restricts to a morphism of E-C'-bicomodules
VePU* — Homp (U, V) |

which is an isomorphism if U is finite-dimensional.

Proof. We endow U* with a structure of D-C-bicomodule by using the previous

results as illustrated below:

C7rD lemma A.2.1 remark A.2.2 * lemma A.2.1 D /rrs\C
U> ——— —— oU)p ———= (U")" .

pUc+
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Explicitly, ¢t : U* — DeU*, t(f) = f_1ofy and s : U — UeD, s(u) = ugeu; are
related by

f(uo)uy = fo(u)f-1 €D . (*)

By remark A.2.2 and lemma A.2.1, d : VeU* — Homy(U, V) is a morphism of
S-T-bicomodules. This map is an isomorphism when U is finite-dimensional.

Thus,the proof will be complete when we show that, for any a € VeU™,
a € VelU" < d(a) € Hom, (U, V) .

Write a = vef (we really mean ), v;of;, but this abuse of notation is harmless).

We have

a € VePU" < s(v)of = vet(f)
& s()ef =vefrefo & VueU, fu)sv)= fo(uveaf

(;QV ue U, f(u)s(v)= f(up)veuy .

On the other hand,

d(a) € Hom, (U, V) < Y u e U, (d(a)sidp)s(u) = sd(a)(u)

& YVuelU, (da)eidp)(upeur) = s(f(u)v) < Yue U, f(ug)vouy = f(u)s(v) ,

which is the same condition. Thus a € VePU* & d(a) € Hom, (U, V) and the

proof is complete. H

Finally, we discuss iterated tensor coproducts and tensor products. Assume
that C' and D are k-coalgebras and, changing notation slightly, U is a right
C-comodule, V a C-D-bicomodule and W a left D-module. In view of lemma
A.2.1, V and W are also right and left D**’-modules respectively. By the same

lemma, Ue“V is a right D*P-submodule of UV (since it is a right D-subcomodule).
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Also, VepwpW is a quotient left C-comodule of Vel (since it is a quotient left

C*P-module). Hence, the following k-spaces are defined
(UeV)epopW and UsA(VeponW) .
By general reasons [ML, IX.2] there is always a canonical map
(UsV)epropW — Ue(VeopwpW) .
Explicitly, this map exists because
sy®id

U®C(V®D*OPW) - Eqk: < U®(V®D*opW)id[my®C®(v®D*opW) )

(sy®idy )Ridy
= Equ (UsV)somaW (UsCoV Yapmon W) )
(idy®t)idy

and

(U@CV)®D*OPW M) (U@V)@D*opw
maps into this equalizer by functoriality.

Lemma A.2.4. In the above situation, if either U is flat as right C'-comodule or

W is flat as left D*°P-module, then the canonical map
(UesV)eprop W — Ue(Vepap W) .
s an isomorphism.
Proof. If U is flat as right C-comodule then Us“(—) preserves the coequalizer

V®D*opW = Coeqk( V®D*OP®W :>>V®W )

SO
Us“(VepropW) = Coeq,( Us“(VeD*PeW) —ZUe(VeW) )
= Coeq,( (UeV)eD*PeW ) —=(UsV )W) )
— (U@W)@D*opw .
The proof is similar if W is flat as left D**P-module. O
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Notice also that if U is a C’-C-bicomodule and W a D-D’-bicomodule, then

the canonical map above is a morphism of C’-D’-bicomodules.

A.3 Products and coproducts of comodules

Arbitrary products in the category of left comodules over a k-coalgebra C' exist.
They are described in terms of products of the corresponding modules over C* in

the final note to [T2]. A more direct description is as follows.

Proposition A.3.1. Let C be a k-coalgebra and {(M;, t;) }icr an arbitrary family
of left C-comodules. Then the product HZC;I M; in the category Comod C' exists and
18

there is a finite dimensional subcoalgebra }

c
{m {mi} € H /C’m of C such that t;(m;) € CppoM; ¥ i € 1

iel
icl
where [],c; M; is the product in the category Vecy.

Proof. First we show that M = HZCe ; M; is in fact a left C-comodule, as follows.
Given m = {m;} € M, let {c;}jc; be a (finite) k-basis of C,,, and write, for each
iel,
ti(m;) = choamij with m;; € M; ¥V j € J.
jeJ

Coassociativity for each t; implies that, for each j € J, the element {my;}ies

belongs to M. Thus we can define t : M — CoM by setting
t(m) = Z cie{mi; tier.
jed
This definition is clearly independent of the subcoalgebra (), chosen. Coassocia-
tivity and counitality for ¢ follow from those for t;.
M; —

Let p; : M — M; denote the restriction of the canonical projection [[,.,

M;. By construction, p; is a morphism of left C'-comodules. Let us check the
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universal property of the product for (M, p;). Let (N, t) be a left C-comodule and

fi + N — M; morphisms of left C-comodules for each i € I. Let f: N — HZ.E] M;,
f(n) ={fi(n)}, be the corresponding map into the product in Vec,. We claim that
f(n) € M. To see this, write t(n) = >, cgony for some (finitely-many) ¢, € C.
Let C,, be the finite-dimensional subcoalgebra of C' spanned by the ¢;’s (this is

possible by the finiteness theorem [Mon, 5.1.1.2]). Then, for each i € I,
ti(fi(n)) = (s fi)t(n) = > cxofi(ng) € Cra M,
k

which shows that f(n) € M. This thus defines a linear map f : N — M such that
pif = f; Vi € I. This latter property clearly determines f uniquely. Moreover, by

definition of t : M — CeM, we have

t(f(n) = ae{filn)} =Y cxef (mi) = (idos f)t(n),
k k
i.e. f is a morphism of left C'-comodules. This completes the proof. O
The following consequence of the above result was quoted in section 6.3.

Corollary A.3.1. Let C be a k-coalgebra. Then the forgetful functor Comod C' —

Vecy has a left adjoint if and only if C is finite-dimensional.

Proof. If C'is finite-dimensional, then there is an equivalence Comod'C' = Mod"C*
(lemma A.2.1), which preserves the forgetful functors to Vecy. But for any k-algebra
A, the forgetful functor Mod"A — Vec, has a left adjoint, namely the functor
(—)oA : Vecp, — Mod" A.

Conversely, assume that Comod'C' — Vegy, has a left adjoint. Then, by theorem
V.5.1 in [ML], this functor preserves all products. Let {c;}ic; be a k-basis of C.
We will show that it is finite by considering products indexed by I. In fact, for
each 1 € I let M; = C with its usual left C-comodule structure, and consider M =

HZCE ; M;. By assumption, there is a linear isomorphism M = [[._; M; preserving

el
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the canonical projections. It follows that this isomorphism must be the canonical
inclusion M — [[,.; M;. In particular, {¢;} € M. This means that there is a

finite-dimensional subcoalgebra Cy of C' such that
Ac(cl) € C(]@C Viel.

But then
¢ = (ideese)Ao(c;) € Co Vi € 1,

from where C' = Cj, i.e. C' is finite-dimensional. O

Similarly, the forgetful functor {X-graded sets} — Sets has a left adjoint if
and only if X = {x}, since the product of two X-graded sets M and N is simply
their tensor coproduct M x* N, which is not preserved by the forgetful functor
unless X = {x}.

Notice that by proposition 3.0.1, the forgetful functor Comod'C' — Vecy, always
has a right adjoint, namely the coinduction functor Ce(—) : Vec; — Comod'C.

Next, we discuss coproducts of comodules. Let {(M;,t;)}ic; be an arbitrary
family of left comodules over a k-coalgebra C'. Let M = ®;e;M;. Given m =
{m;} € M, write for each i € I,

ti(m;) = ch@amij with m;; € M; V j € J.

jed
For each j € J, the family {m,;},c; is finite, since so is the family {m;};e;. Thus
we can define t : M — CeM by setting

t(m) = Z cie{mi; tier.

jed

It is clear that (M, t) is then a left C-comodule, and that together with the canon-
ical inclusions M; < M it becomes the coproduct of the family {A;} in Comod'C.
There are linear inclusions

iel el
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The coproduct M is also called the direct sum of the comodules {M;}.

Finally, we discuss direct sums in relation to flatness.

Lemma A.3.1. Let M be the direct sum of a family {M;} of left C-comodules.
Then M is flat if and only if M; is flatV i € I.

Proof. 1If N is a right C'-comodule, then

N®C(@ M,-) ~ (D (NM) .

iel iel
Thus, there is an isomorphism of functors (—)«“M = ), , ((—)@CMZ), from where

the result follows. O

Lemma A.3.2. Let
0—-J—-A—A/J—0

be an exact sequence of left C'-comodules, where J is flat. Then A is flat if and
only if A/J is flat.

Proof. Since J is flat=injective, the sequence splits. Thus, A = J @ A/J as left

C-comodules. The result now follows from lemma A.3.1. O

Lemma A.3.3. Let My and My be subcomodules of a left C-comodule M. Suppose
that My, My and My N My are flat. Then so is My + Ms.

Proof. By lemma A.3.1, M; & M, is flat. The result now follows from lemma A.3.2,

applied to the exact sequence
0— My NMy— My & My — My + My — 0.
U

Lemma A.3.4. A left comodule is flat if and only if it is a direct summand of a

free left comodule.
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Proof. Let (M,t) be a flat left C-comodule. Then t : M — CeoM is a morphism
of left C-comodules, where we view CoM as left C-comodule via Aceidy (thus,
CeM is free by definition). The map ¢ is injective since it is split by the k-linear
map eeidy : CoM — M. Since M is flat=injective, ¢ also admits a splitting of
left C'-comodules. Therefore M is a direct summand of CsM.

The converse implication follows from lemma A.3.1, since free comodules are

flat, as explained in section A.1. O

For the following result, recall the definition of tensor product of comodules

from section 7.1.

Lemma A.3.5. Let A be a flat left C-comodule and B a flat left D-comodule.
Then AeB s flat as left Cs D-comodule.

Proof. By lemma A.3.4, A is a direct summand of some CeV, and B a direct
summand of some DeW . It follows that A=B is a direct summand of CeDeVeW

hence flat. O
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Appendix B

Braids and g-binomials
B.1 Introduction

The classical identities between the g-binomial coefficients and factorials can be
generalized to a context where numbers are replaced by braids, or more precisely,
elements of the braid group algebras kB,. Thus, for every pair i, n of natural
numbers there is defined an element bl(-") € kB, (section B.3), and these satisfy
analogs of the classical identities for the binomial coefficients (sections B.4 through
B.8). Moreover, by choosing representations of the braid groups one obtains con-
crete realizations of these identities; the simplest such choices yield the identities
for the classical and ¢-binomial coefficients, other choices yield new identities that
involve matrices rather than numbers.

Table B.1 describes the action of the braids introduced in this appendix when
X is certain one-dimensional representation defined by g € k* (section B.2.5). The
definition of the g-analogs will be reviewed before each corresponding braid analog
is introduced.

These binomial braids bl(-") play a crucial role in the generalization of the defi-
nition of the quantum group U;(C') of Drinfeld [Dr1] and Jimbo [Jim] presented
in section 9.8 of the main body of this thesis. In this appendix we concentrate on
their combinatorial properties.

At the level of braids, the proofs of the combinatorial identities follow a con-
stant pattern: first there is the set-theoretic part, which involves dealing with the
same bijections that are used for the case of the classical (¢ = 1) identities, then
there is the geometric part that consists in proving that two braids, labeled by

corresponding elements under the bijection considered, are in fact equal.
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Table B.1: Combinatorial braids and ¢-analogs

Braid name defined in section | action
s generator B.2.1 q
sM (i, 5) B.2.1 ¢
) twistor B.2.2 q(;)
B braiding B.2.4 qm
s\ B.3 Ml
b binomial B.3 (7]
[n] natural B.5 [n]
55 B.5 g™
fo) factorial B.5 [n]!
s;") B.7.1 g™
m multinomial B.7.1 (7]
p™ Mobius B.6.2 (—1)”q(
cm Catalan B.8 C,
G™ Galois B.8 G,
F®) Fibonacci B.8 E,

The classical g-identities that we generalize are taken mostly from papers by
Goldman and Rota [GR]; in particular these include Pascal’s, Vandermonde’s and
Cauchy’s identities, the factorial formula, Rota’s binomial theorem, M&bius inver-

sion, several identities involving multinomial braids and definitions and formulas

for the Galois, Fibonacci and Catalan braids.

It is also possible to define the braid analog of a partition of a set, and then

Stirling and Bell braids. These will be studied elsewhere.

This appendix reproduces [A].
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B.2 Braid groups and the braid category

B.2.1 Basics

(n) (n)

The group B, of braids in n strands has generators s; ’,...,s,_ ; subject to the
relations

sgn)syl) = s§"’s§") if [ —j| > 2, (A1)

505 = 500l f1<i<n-2 (A2

(n)

The generator s; ’ is represented by the following picture, and the product st
of two braids s and ¢ in B,, is obtained by putting the picture of s on top of that
of t. The identity of B,, is represented by the picture with n vertical strands; the
inverse of s is obtained by reflecting its picture across a horizontal line, without

leaving the plane of the picture.

The collection B = ano B,, of all braid groups forms a category, where the
objects are the natural numbers, B, is the set of endomorphisms of n, and there
are no morphisms between distinct objects. This category is monoidal; the tensor
product st € B, 1, of two braids s € B,, and t € B,, is obtained by putting ¢ to
(n), (m) _ (ntm) (ntm

®S -

) . . .
i ®S; i ntj - Moreover, this monoidal category is

the right of s, i.e. s
braided, in the sense that there is a natural map 3, ,, : nem — men, i.e. a braid
Bnm € Bnim, satisfying some axioms (B.2.4 below). For more details on this, the

reader is referred to [K], X.6 and XIII.2.
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We develop some basic notation. For each pair (7, j) with 1 <i < j <mn, define
1 if i =,

We provide a first set of lemmas.

Lemma.
s (i, k) = s™ (i, 5)s™ (4, k) when 1 <i<j<k<n (1)
s§m+") = sz(.m)cal(”) when 1 <i<m—1,n>0 (2)
s (G 5) = s (4, )el™ when 1 <i<j<m,n>0
) — (gl when 1 <i<m-—1,n>0 (3)
s (G 4n, j 4 n) = 1MasM(i, 5) when 1<i<j<m,n>0
s — 1Dl (=D when 1<i<m—1,0<1<n
(4)
s 41 + 1) = 10esM (4, j)e1 D when 1<i<j<m,0<1<n
s (i, j)s = sﬁfﬁls(")(z’,j) when 1 <i<h<j—2 (5)

s (i, ))s™ (h, k) = s™(h+ 1,k +1)s™(i, ) when 1<i<h<k<j—1.

Proof. Equation (1) is a direct consequence of the notation, the first parts of (2)
and (3) hold simply by definition of the tensor product, and the second parts follow

by repeated use of the first ones. Now,

=S

2 3
SETIJ’%) (_) ETl-i-l)@l(n—l) (:> 1(Z)®ng)®1("_l)

Y

proving the first part of (4). Similarly the second part follows from the second
parts of (2) and (3).
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Finally, if 1 <i < h < j — 2, we can write

(i, )51 W 50 1, 1), 50 (b + 2, ) L)
(i, b5y siysy s (h+ 2, ])(12)
(A1)

s™ (i, h)s st s\ s (h 42, 5) =

n 1) ) .
52315 (4, h)sh 32+15 (h+2, )—324215( )(Z7J)7

which proves the first part of (5); now for the second notice that if & = h then

there is nothing to prove; otherwise 7 > k > h so it follows by repeated use of the

first.

U
B.2.2 Vertical symmetry
There is an involution ~ : B, — B, defined by sz(-") = s;"_)l The picture for §

is obtained by rotating in 3-space that of s 180 degrees around a vertical line.

Consider the twistor braid,
™ = sM(1,n)s™(1,n—1)---sM(1,2)s™(1,1) .

For instance

Repeated use of (A1) and (5) shows that c(")sgn) = si"_)ic("), hence ™ is the inner
automorphism defined by conjugation by ¢™. It follows that ¢™? is in the center
of the braid group, since § = s for any s. Moreover, it can be shown that ™?

generates Z(B,,); we won’t make use of this fact.
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Let us prove that, for any s € B,, and t € B,,,

sot = tos . (6)

Proof. Notice that if the statement holds for set and s'st’, then so it does for ss’stt’.

™) and ¢ = s™. Now,

Hence it suffices to prove it for s = s J

n m 2 Y 3 n-r—m n-+—m
(s Z1E) fntm) mam)
sVosy™ = sl ey = SurmiSy A (Gince ntm =i 2 m+1)

Stm) (ntm) (2),(3) @) () _ _(m)__(n) .

m—j n+m—q = sm—j®8n— = sj ®S;
U
B.2.3 Horizontal symmetry
There is a map * : B, — B, defined by the conditions that s/ = s and

(st)* = t*s*. The picture for s* is obtained by rotating that of s in 3-space 180

degrees around a horizontal line.

-1

It is clear that the three operators *,”, ™' : B,, — B, commute pairwise, and

also that
s =3 Vs € B,,
(sot)* = s*et” VseB,, te€ B,, (7)
S (i) =™ (n+1—jon+1—1) Vi, g, (8)
W = M v n. 9)

From (9) it follows easily that
™ = s (n,n)s™(n—1,n)...5"(2,n)s™(1,n)
and from here that

cm? = s (1,n)".
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B.2.4 Properties of the braiding

The braiding (3, is most easily defined in terms of its picture:

It is viewed as a natural map [3,,, : men — nem in the category ‘B of braids,
and as such it satisfies some important properties. We will list some of them below
without proof, since we won’t use them, although they are very easily obtained
through the use of pictures, see [K] XIII.2. However, it will be convenient for us
to have an explicit description of (3,,, in terms of the canonical generators. For
this, we first define some special “powers” for braids as follows.

Let m > 1. For s € B,, and n > 0, define

p

1 if n=20,
s = S ifn=1, (10)
10 Vg . 10 Dgge] - ... - losel™ 2D . go1(=D  if p > 2.

\
Thus s € Byn_y ¥ m >1, n >0 (and it is not defined if m = 0). Notice that

st = 1es{™ . 501, from here it follows easily by induction that

gpra) — 1(@gelp) . gla) g 1(P) YV p,q >0,

1Wasme1®) = [1K)gg1")] ™ Yok h>0. (11)

We then define

B = sV (1,m+ 1) € By . (12)
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It is easy to see that this corresponds to the picture above. These are some of the

properties that ( satisfies:

B - st = tes - By V' s € By, t € By, (naturality of the braiding),
™) = (Mgcm . g Vm,n >0,

Brin = B = By V'm,n >0,

Bpgrr = 1950, - 8,217 ¥V p,q,r >0,

Bptar = Bprgrel @ - 1P, ¥ p.g,r > 0.

B.2.5 Representations

Throughout the appendix k& will denote a fixed field (although any commutative
ring would do just as well).

The identities we will obtain between elements of the braid group algebras
kB, can be converted into matrix or numerical identities by choosing k-linear
representations of the braid groups B,,.

More precisely we will be interested in monoidal representations of the braid
category B, that is a vector space X, such that the braid group B, acts on the

tensor power X", with the property that
sot - xey = (s-x)o(t-y) Vs € B, t € By, 1€ X, ye X,

Since sz(-") = 1(i_1)®s§2)®1("_i+1), this condition implies that the action of B, on
X®" is uniquely determined by the action of s&z) on X«X. Moreover, a linear
operator R : XeX — XeX defines a monoidal representation of 8 if and only if

it is invertible and satisfies the Yang-Bazter equation:
(Reidy) o (idyeR) o (Reidy ) = (idyoR) o (Rsidy) o (idyeR) .
This is a consequence of (A2).
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If X is one-dimensional, then any invertible operator R : X — X satisfies this
equation. R is necessarily given by multiplication by some non-zero scalar q € k.

(n

Hence, in this case, s; ) acts by multiplication by ¢ foreveryn > 2, 1 < <n—1. It
is this simplest choice that will produce the classical g-identities from the identities
for braids. In particular the trivial one-dimensional representation yields the case
q = 1. Higher dimensional representations are are discussed in sections 9.8 and
B.9. In this regard we should add that Majid began the study of combinatorial
identities between operators on tensor powers of a vector space X corresponding
to a Yang-Baxter operator on XeX: in thm. 10.4.12 of [Maj] the case i = 1 of
(21) is obtained.

The chart in section B.1 describes the action of the braids introduced in this
appendix when X is the one-dimensional representation defined by ¢ € k* as above.

Let us also remark that since the non-commutativity of the braid groups nec-

essarily disappears when acting on a one-dimensional representation, the actions

of s, s and s* coincide for any braid s in this case.

B.3 Binomial braids

For each pair (n,i) with ¢ < n let 8;(n) denote the set of subsets of {1,2,...,n}
with cardinality 7.

Recall that the g-binomial coefficients can be defined as
= 3 Mwhere 1] =55 -5
I€8i(n) Jjel Jj=1
The braid analog of this definition is as follows.

First, for each I € 8;(n), write I = {ji1, j2,..., i} with j; < jo < ... < jj;, then

define s € B, as
sﬁ") = s"(i, 5i) -+ 5™ (2, 42)s" (1, 1)
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if i =0 we let sé)") =1.
For instance if I = {m+1,m+2,...,m+n} € §,(m+n) then s; (m-tn) = Bumn-
Then the binomial braid bg") € kB, is defined as

=2 s

Ie8;(n)

Thus b(" b n_ 1V n, while for instance

bf) =1+ s§2), bf’) =1+ sf” + s&g 32 , b(?’ =1+ 3(3) + sf”sf” .

We see that bl(-") # b,(f_)l in general. However:

Proposition. For all n > i > 0,

B = p™. (13)

Proof. Consider the bijection 8;(n) — 8,_;(n) that sends I to I¢, where I =

{n+1—1 /i€ l}. Itisenough to show that, for every I € §;(n),

s = s *)

First, we show that if (*) holds when n € I, then it holds for every I. In fact,
given I € §;(n), let m = max/, and let I’ be the same set I but viewed as en

element of 8;(m). Then we have that

2
Sgn) (:) Syln)@]_(n—m) :

hence, by (6), and assuming (*) for I’,

—_—

/\TL/ m m m 3 n
Sg)zl(n—m) (m) (¥ )1(n m)_ (m) _ 1(n—m)_ (m) (_) (n)

n
@S ®SIC = ®S = s

m+1-1° — Sppi—1c = S

o (*) holds for I as well.
To finish the proof we show (*) by induction on . For i = 0 it is clear. Assume

1 > 1. As just explained, we can also assume that n € I. Therefore, we can
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decompose I = I, U {n} with I; € 8;_1(n — 1); then we have I = I; U {1} and
Lo=Iu{1}.

Write 1¢ = {hy < ho < ... < hn_;}, sothat [} = {1 < hy < hy < ... < hy_i}.
We have

) = SO,y = D e,

hence, by induction hypothesis,

SI = Sn—zsn—z—l 81 Sfl
= s s S sM (=i 1 ) L 8™ (3, ho)s™ (2, By )s™(1,1)

Now using (A1), s (n —i+1,h,_;), can be moved to the left past all the factors

(n) (n)

S 43Sy i_1- Then, it combines with s ; to form s (n —i, h,_;). Similarly the

other factors of the form s™(k + 1, h;,) can be moved to the left until they reach

s,(:) to form s (k, h;). At the end of the process we have

sgn) = s (n — i hyy) ... 5" (2, hy)s™ (1, hy) = s

Ic

This finishes the induction and the proof. O

B.4 Identities of Pascal and Vandermonde
For the g-binomial coefficients Pascal’s identity says that

=]+ ] =]+ 4]
Its generalization to braids is as follows.

Proposition. Forany 1 =1,...,n— 1,

bl(,") = sM™(i,n)- b( " Vel + b "Del = 1e b D4 s (n—i,n)- 1®bl(-"_1) . (14)
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Proof. Consider the bijection 8;,_1(n — 1) U 8;(n — 1) — 8;(n) that sends I €
Si—ci(n—1) to TU{n} € §;(n) and J € §;(n — 1) to J € §;(n). From (2) and the

definition of s; we see that

s = s Vel and ng){n} = s (i,n) - sy Vel ;

summing over all such I and J we obtain the first equality. The other one follows

by applying ~, using (6) and replacing n — i by 1.

]
Vandermonde’s identity says that
p
[ ] =D a0
k=0
Its generalization to braids reads:
Proposition. For any m,n,p with 0 < p < m,n,
p
bl(,m+") = Z 1(k)®ﬁm_k7p_k®1("_p+k) . blgm)®bl()ri)k . (15)
k=0
Proof. Consider the bijection
p
L 8k(m) x 8,—i(n) = 8,(m+mn) , (I,J)—TU(m+J).
k=0
It suffices to show that, for each I € 8;(m) and J € §,_(n),
) 1o, el TP L ) (*)

Let h=p—k. If h = 0 then (*) reduces to s\ = /™21 which holds by (2).

Assume h > 1. Write I = {i; < ... < i} and J = {j; < ... < jp} so that
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Tum+J)={i1<...<ixg<m+7j <...<m+jp}. Then

sy = s (k4 hym o Gi)s™ T (k4 h— Lmo+ ) s (k4 Lm g -

s ()T (B = 1) L sTT (1, 4y)

(1)’:(2) [s(’”*")(k + hym + h)s™ (m 4+ h,m + jh)} :

) [S(m+n)(k; +h—1,m+h—1)s""(m+h—1m +jh—1)] T
e [s(er")(k +1,m+1)s"™™(m4+1,m +j1)} :

. [s(m)(k,ik)@ol(")} [Sw)(k _ 1’%_1)@1@)] [s<m>(1,¢1)®1<n>]

Now notice that each of the factors
s (k4 h—1,m4h—1), s (k+h—2,m+h—2),..., 8" (k+1,m+1)
can be moved to the left past all the factors

ST (4 hom 4 4n), ST (A h—1,m A+ jut), . ST (M4 2,m+ ),

simply because of (A1): s+ (k+h—1,m+h—1) only involves strands m +h — 1

and lower, while s(™*™ (m + h,m + j;,) only involves strands m + h and higher;
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similarly for the others. After performing this commutation we get that

sy 5= (k4 hym 4+ h)s™ T (kb= 1Lm+ b= 1) s (k4 1m 1)
ST (m 4 hom+ ) s (m4+ = 1Lm Ge) s (m4 1, mo+ )
~s§m)®1(")
(2),(3) |:1(h—1)®8(m+n—h+1)(k e 1)] [1(h—2)®3(M+n—h+1)(k‘ +1,m+ 1)®1] .
_ [s(m+n—h+1)(k F1m+ 1)®1(h—1)],
[1(’” 25™ (h, jh)} [1(m)®s(")(h — 17jh—1)} [1(m)®3(n)(1711)] o1
(10) (mern—nn) (k4 1,m + 1)@ . 10mgglm . tm (o)
(2),(3) [1<k)®8(m_k+1)(17 m— b 1)®1(n—h)} W gm )

11
(:)1<k>®s<m—k+1>(1, m — k + 1)Mg1=h) . gmg g

12
(_)1(k ®ﬂ k’h®1(n—h) . ng)®85n) .

Thus (*) holds and the proof is complete.

B.5 Natural and factorial braids

B.5.1 Definition

The g-analog of a natural number n is
n=1+q+¢+...+¢"".
For n > 1, the natural braid [n] € kB, is defined as
Zs (1) =14 s + sl 4 sl s
we also set [0] =0 € kBy.
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Notice that [n] = bg"). Hence, as a particular case of Vandermonde’s formula

(15) we have:
[m +n] = [m]el™ + s (1, m 4 1) - 1™sn] ;

since Bn1 = s™(1,m + 1).

While [1] = [1] = [1]* and [2] = [2] = [2]*, we have
B =1+ sf’) + s§3>s§”, f??] =1+ 853) + s§3>s§3> and [3]" =1+ sf’) + s§3>s§3> :

thus bl(-")* is not another binomial braid in general. However, it will turn out (18)
that the factorial braids are symmetric with respect to both ~ and *.
The g-analog of the factorial number n! is
[l = ™ ;
gESy

where the inversion index of a permutation o € 5, is defined as

inv(0) = #{(i,j) / i < Jj but a(i) > o(j)}.

The braid analog of this definition is as follows. First, for any o € S, and
1=1,...,nlet
rilo) =#{j >1/ o(j) <oli)}.

Thus,

n

inv(o) =Y ri(0) .

i=1

Notice that o(i) —i < r;(0) < (i) — 1 V 4, hence it makes sense to define a braid

s((,") € B, as
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For instance if 0 = (13$4) then

The picture of s is obtained by drawing a straight line from 1 in the bottom to
o(1) in the top, then under that a straight line from 2 to o(2), etc.

In section B.5.3, other expressions for s((,") will be given.

Now, for every n > 1 we define the factorial braid £ € kB, as

= 3
oESn

we also set O =1 € kB,.

We next show that the factorial and natural braids are related by means of a
product formula, generalizing [n]! = [n][n — 1] ---[2][1] for g-numbers. Variations

of this will follow after we study the effect of ~ and * on the s,

Proposition. For every n > 1,
fM =10Dg[1] . 1Dg[2] - ... 1e[n — 1] - ] . (16)

Proof. We need to show that f™ = lef™=1.[n] ¥V n > 1.
Consider the bijection S,,_1 x {1,2,...,n} — S,, (0,1) — (leo)(1,2,...,1).
(From 7 := (1e0)(1,2,...,1) werecover i as 7~ 1(1) and then lec as 7+(1,2,...,41)7 %

here leo is such that (1s0)(j) = o(j — 1) + 1.) It suffices to show that

stV = 1es=D . s (1 4) .

T o
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. 1 .. -1 i il .. n
Since T = (0(1)+1 e o(i=1)4+1 1 o‘(;)_—l—l o(n—1)+1)7 we have that

(

ri—1(0) ifj=i4+1,...,n,

ri(t) =190 if j =i,

rio)+1 ifj=1,...,i—1

\

s = s (r(n) —rp(1),n) oo 8T+ 1) = riga (1), 0+ 1) - sT(T(0) — ri(7),9)-

T

. s(")(T(i — 1) —riq(r),i—1)-...- s(")(T(l) —r(7),1)

=s™M(on—1)+1—r,_1(0),n) ... s™(c(@)+ 1 —ri(0),i+1)-s™(1,i)
s (i —1)+1=riy(o) = 1,i—1)-...-s™(o(1) +1—ri(0) = 1,1)
(i)s(")(a(n D =rpq(0)+1ln—1+1)-...-s"(c(i) —ri(o) + 1,i+ 1)
s (i —1) —riq (o) +1,i—1+1)-...- s (o(1) = ri(0) + 1,1+ 1)-

3
5™ (1,4) ) les" ™D . s(M (1, 4)

g

and the proof is complete. O

B.5.2 Symmetries of the factorial braids

To obtain the announced symmetry of the f()’s, we first describe a multiplicativity

property of the map £ : S, — B, 0 — s, From its definition it is clear that 19

is a section of the canonical projection B,, — S,,, and that £((i,i+ 1)) = SE").l

Lemma. Let 0 = 0, - ... - 0;, € S, be a reduced expression for o as a product of

elementary transpositions o;, = (i5,4; + 1). Then s = sz(.f) Co sz(.L").

Lusztig [Lus,2.1.2] has considered sections of this sort for arbitrary Weyl groups W. From
lemma (B.5.2) it follows that & coincides with Lusztig’s section for W = S,,.
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Proof. We are given that length(c) = [, where the length of a permutation is the

minimum number of elementary transpositions required to write it as a product of
such. We will make use of the well-known fact that inv = length.

Clearly, it suffices to show that if o = 7- (i, + 1) and length(c) = length(7) + 1

(n) (n) . (n)

then ss’ = 57" -5;

- T this case, o = (1) 77 7G21) (1) () riire) o +(n ) Hence
ri(o) =rj(t) V j #i,i+ 1. We claim that 7(i) < 7(i + 1). For if not, we would
have 7;(0) = ri41(7) and ri1(0) = (1) — 1, from where length(o) = inv(o) =
> i—17j(0) = length(7) — 1, against our hypothesis. Thus 7(i) < 7(i+1), and then

ri(0) = ri1(7) + 1 and r;41(0) = (7). Hence,

st = s (g(n) —rp(o),n) ... s (a(1) = ri(0),1)
= s (r(n) — ro(7),n) - ... s (1(i + 2) — riga(T),i + 2)-
s (7(i) —ri(7),i + 1) - s (7(i + 1) = ria (1) — 1,4)-
s(r(i = 1) =71 (), — 1) ... - s (7(1) = ri(7), 1)

(i)s(")(T(n) —rp(7),m) - ST (T(i 4 2) — Tiga(T), i+ 2)-

s (r(i 4+ 1) — riga (1),i + 1) - s (r(i) = ri(7),4) - 5™
. s(")(T(i — 1) —rig(r),i—1)-...- s (1(1) = r1(7), 1)

(A1) (7(n) = ra(7),n) - s (7 (1) = ry(7), 1) - s = s - 5

and the proof is complete. O

211



Corollary.

s = S»(C;"), st = s((:i)l, where 7(j) =n+1—o(n+1—j) (17)
0 = fl) = o (18)
f =10"Dg[1] . 1=2De[2] . .- 1e[n — 1] - [n] (19)

= el D 21D . [ — 1ol - [1]

= [n]* le[n —1]" - ... 10" Dg[2]* . 1= Vg[1]*

O N T I D ) IS Lo N F S TCe

Proof. To prove (17), it suffices by the lemma to check these equalities on the
elementary transpositions, since both ™ and ~! preserve the length of a permutation.
But in this case they hold by definition of ~ and * for braids. Then (18) follows
by summing over all o € S,,, and the product formulas (19) follow from (16) and

(18). O

B.5.3 Other expressions for s,

Forany o € S, andi=1,...,n let
ei(o)=#{j<i/o(j) <a(i)}
There is a simpler expression for s in terms of the €;’s.

Proposition. For any o € S,, and i =1,...,n, (i) = r;(0) + ¢;(c). Hence

sT = 5™ (e, (0),n) - ... - s (ex(0),2) - 5™ (e1(0),1) . (20)
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Proof.
ri(o) +ei(o) =#{j > i/ o(j) <o)} +#{j < i/ o(j) <o(i)}
=#{j>i/0() <o)} +#{j <i/o(j) <o(i)}
=#{j/ o(j) <o(i)} =4{j / o(j) € {1,2,...,0(i)} }
=o(i) .
O

For completeness, we provide another expression for sg"), this time in terms of
some partial inversion indices that are obtained by reading ¢ from right to left.

Forany ¢ =1,...,n let

(o) =#{j <i/o(j) > o(i)}.

Proposition. For any o € S,,, s =

s (n, 07 1) + 1n(oY)) - s (2,0712) + 1a(0h)) - s (L0 (1) + L (o).

Proof. Notice that r;(0) = l,41-:(0) Vi=1,...,n. Hence

st = s (a(n) —ru(0),n) ... s (c(1) = ri(0),1)

* ~——

= s = 80 (o) ~ @)1 s (o () — B (), )

(i)s(”)(n,n +1—0()+1,(3)-...-sA,n+1—0c(n)+ (7))
= 5" (n,5(n) + 1,(@)) - ... - s™(1,5(1) + 1,(3))
@kg@l = s (n,5(n) + 1,(3)) ... - s™(1,5(1) + L (5)) .
Replacing o by ! yields the result. O
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B.5.4 Factorial formulas for the binomial coefficients

Next, we present the analog of the well-known formula [;‘:Z} [ﬂ = [JZ } [ﬂ for g¢-
binomials, from which the factorial formula will be deduced. We choose to provide
a bijective proof, even though a proof based on Pascal’s identity is possible and

shorter, in particular because it yields the stronger result (*) below.

Proposition. Whenever 0 <1 < 7 <n,
1@sp"70 .y = D)1 (=d) . ) (21)

Proof. Consider the map §;(n) x 8;(j) — 8;_i(n—1i) x8;(n), (A, B) — (X,Y), de-
fined as follows. First consider the unique order-preserving bijection k : {1,...,7} —
A and let Y = k(B) € §;(n), then consider the unique order-preserving bijection
AL ... on}\Y = {l,....n—i} and let X := f(A\Y) € §;_i(n —1).

Given (X,Y) € 8;_;(n — i) x 8;(n) one recovers A = Y U f~1(X) and B =
k=1(Y); thus, (A, B) — (X,Y) is a bijection, so to obtain the result it suffices to
prove that

1(i)®sg?_i) : sgf) = sg)eal("_j) : sff) . (*)

We start by examining the right hand side. Write A = {k; < ... < k;} C
{1,...,n} and B = {h; < ... < hj} C {1,...,7}. Notice that then YV :=
{knyy vk} €H{1,...,n}.

For each r = 0,...,7 let sg:) =l <ochis s (2, k,). (This and all products
below are taken in the decreasing order: the index z decreases from left to right.

If the interval (h,, h..1) is empty then we take sff)

T

= 1; also, we set hg = 0 and

hiv1 = j + 1.) Then, by definition,

sﬁ’f): H s (z,k,) =

0<z<j+1
— SX? s (R k) - SX;) -5 (hy, k) - SX? 5™ (hy, k) - SX;) .
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Hence

sg)(@l("—j) : sg@) = sgl)s(;)

-Sfﬁ’-s("’(hi,km) 8542 ") (g, ) - 552 5 (B, Kng) - 55

In this expression, s (1, h;) commutes with all the factors to its right until s%),
including it, since these only involve strands h; +1 and higher. When placed there,
it joins s™ (hy, kp,) to form s™ (1, ky,), by (1). Similarly s (2, hy) commutes past

(n)

sy, where it joins s (hg, kn,) to become s (2,ky,), and finally s (i, h;) and

s (hg, kp,) become s™ (i, ky,). After this transformation we get

sDa1=0) 50 = 5O (G )G (2 k) - s (L k) 5D

Now notice that each factor in s(A) is of the form s™(z, k.) with 1 < z < hy, hence

by (5) and (3)

L k) - sl = Lo 5 (1 )
Similarly we can now commute sg? : 1®3(A Y past s ")(2, kp,), using (5) and (3);
this factor becomes 1®s(£1) : 1(2)®s%)_1) when placed to the left of s (2, ky,). After

doing this for each r =0,...,7 — 1 we get

sg)@ol("_j) . s%) = SXZ) . 1®S£Zi11) e 1(i_2)®sﬁg . 1“‘”@3&@ . 1(i)®s(fo)-
S(n)('é, k‘hl) L S(n)(2, khg) : S(n)(l, k‘hl)
= H 10 g(n=rm) L g
r=0

Thus, to obtain (*), we need to show that

. ®3X H 1(2 r) nr i+r) (**)

To this end, we describe f and X explicitly. By definition, f : {1,...,n} \

{knys. . kn} — {1,...,n—i} is translation by —r on each open interval (k,, ks, ., ),
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for r =0,...,7 (where we set ko = 0 and k;;; = n+ 1). Then, since

A\Y_k({ 7j}\{h'177hz}> = Uk((h'T7h’?“+1>> 9

r=0

we have that

X = fA\Y) = k(b hygr)) =7

r=0

ThU_S lettlng S(n ) = Hhr<z<hr+1 S(n_i)(z - kz - 7’)7 we have that S(n 2 =

M-, sg?:l). But notice that

. . 3
10 %93&? )= H 195D (z — 1 k, — 1) (:) H s™W(z4i—rk,+i—7)

hr<Z<h7«+1 hr<z<h7«+1
(ﬁ) (i—r) (n—i+r) _ 1@G—r)_ (n—itr)
=1 ® H S (z,k,) =1 @Sy, ,
hp<z<hpiy1
hence
(i) g g {1 H 10ss (" D= H 1(1'_”)@3%_””
r=0

so (**) holds and the proof is complete. O

We can now derive the braid analog of the usual expression for the binomial

coefficients in terms of factorials.

Corollary. Whenever 0 < j < n,
f@g fr=i) . bg") = (22)
Proof. Formula (21) with ¢ = 1 says
160"V - [n] = [jle1) . 0V
Repeated use of this yields
1V Ven -5 +1]- 1V g[n -5 +2]-...- le[n — 1] - [n]

= 1070[1Je10=9) . 107D (200100 . . 165 — 1ol . [jle1(n=9) . pl)

16) .. :
(:)f(1)®1(n—3) ) b§n)
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Multiplying both sides by 1%e f("=7) and using (16) we get the result. O

It seems that in the course of the proof of (22) we obtained a stronger “simpli-
fied” formula; in fact this is equivalent to (22) since the braid group algebras do
not possess zero divisors 2.

Recall that the natural braids [j] are not -symmetric. However, an amusing
consequence of (21) is this (choosing n =7+ 1,7 =1):

1oj] - [+ 1) = [fle1 - [+ 1].

Thus this element is fixed by .

B.6 Rota’s binomial theorem, Cauchy’s identities and Mobius

inversion

B.6.1 The binomial theorem

The following remarkable g-binomial theorem is proven in [GR1]: if Py(x,y) =

(x —y)(x—qy)...(x —¢"'y) then

PH(X> Z) = Z[Q}P/ﬁ(xa Y)Pn—k(Ya Z) )
k=0

this is an identity in the ordinary polynomial ring k[x,y,z]. When ¢ = 1 this

reduces to the familiar

We will generalize this result to the context of braids, and derive from it the

other results of the section.

%In fact, B, is right-ordered by a recent result of Dehornoy [Deh], hence kB,, does not possess
zero divisors nor non-trivial units by the results in chapter 13.1 of Passman’s book [Pas]. We
thank Dale Rolfsen for making us aware of this.

217



We consider ordinary polynomial rings kB, [Xy, . . ., X,| over the non-commutative
ring kB,,; thus, the variables commute among themselves and with the coefficients.

The embeddings
B — B, s+— se1"® and B,_, — B, t+— 1®st

extend to embeddings

kBg[xi,...,%x;] — kBu[x1,...,%:] and kB, g[x1,...,%X;] — kB[x1,...,X],

p = pelh) q — 1Msg

where x; is sent to x; in both cases. The images of these maps commute elementwise

inside kB, [x1,...,X;], so there is an induced map

kBi[X1, ... X ok B g[X1, ..., %] = kBu[X1,....,%,], peq — pal™™F) . 1®Wgq |

k)

We will write peq for pe1(=%) . 1(k)gq,
For any k& > 1 let
Pi(x,y) = [x—s®(1,k)y]- [x —s® (1, k= 1)y]-...- [x —s®(1,1)y] € kBix,y];

and set Py(x,y) =1 € kBy.
Then, with the above convention, the binomial theorem is the following identity
in kB,[x,y,z|:

Proposition. For any n > 0,

n

Po(x,2) =Y Pi(y,z)oPui(x,y) - b . (23)

Proof. We do induction on n. For n = 0,1 the statement is trivial. Assuming it
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true for n — 1 with n > 2, we have

P(x,2z) = [x — s™(1,n)z] - [Py_1(x, 2)s1]

—_

=[x —s™(1,n)z] - > [Puly, z)ePo_1_p(x, y)el] - [0 Val]

3

—
B
Il

3

[x— s (k4+1,n)y+s™(k+1,n)y —s"™(1,n)z] [Pu(y,2)oPa_1_i(x, y)el]-

ES
Il
=)

[ Ve1)

3
—

AL S, (3,201 9] i = )k 4+ 1, m)y] - LB,y y)o1:

0

e
i

Vel

3
—

+ D Iy ="k +Dz] - [Puly, 2)o1™ 0] sk + Lon) - 1P n(x,y)e1)-
0

e
Il

[ Vo]

—_

—
)
(]I

[Py, 2)o1 9] [10sfx — 5 (1,n = k)] [Py n(x,y)e1]] - o' o1+

3
|
=l
o

+ 30|y = s* (L k+ 121D - [Ply, 2)s1079] - sk + 1)

B
Il
o

: [1(k)® n—l—k(X7 y)®1] ' [bl(cn_l)@)l]

i
L

(Pi(y, 2)e1™ 9] 1®e P,y (x,y)] - [0 Vel]+

ES
Il
=)

i
L

+ 3 [Peyi (v, 2)s 1 F I s (ke 1n) - [10eP, g (x,y)sl] - b Vel]

ES
Il
=)
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Now we use (5) to commute s™ (k4 1,n) past P,_;_x(x,y) as follows:

sk +1,n) [1®eP, | i(x,y)el]

=s"W(k+1,n) [1Pe[x — s (A n—1-k)y]-... [x—s" (1 1)y]sl

(2>’:(3)s(”)(k: +1,n) - x—s"E+1,n-1)y]-... - [x—sD(E+1,Ek+1)y]

D
(:) x — sk +2,n)y]-... - [x—s"(k+2,k+2)y] s (k+1,n)
3

(:) [1(k+1)®[x — s A — k= 1)y] .. [x = s, 1)y]] s (k41,n)
= [1(k+1)®Pn—k—l(Xa y)] ’ S(n)(k + ]-7 n) :

Substituting this in the above expression for P, we get

=Y [Py, 2)e1" ) - 1P, 4 (x,y)] - [0 Vel]+

Ed

3 |

| <@
—_

+ [Pria(y, Z)®1(n—k—1)] . [1(k+1)®Pn—l—k(X, y)] _S(n)(k +1,n)- [b]gn—l)@)l]

ol

3|
=l
=)

= [Py, 2)ePi(x,y)] - b Vel]+

Ed

- L

+ ) [Py, 2)oPr(x,y)] - 8™ (k + 1,n) - [ V1]

[y

[Pe(y 2)ePap(x, )] - (B ol + 5™ (k + 1,m) - b Vel]

I
= ¢

Il
3 ©

—~
—_
~—

=) STIPu(y, 2)ePai(x,y)] - B

B
Il
o

B.6.2 Cauchy’s identities

These identities are attributed to Cauchy in [GR1]:

n

(= Dx—q)...(x— ¢ =3 [#](-DrqEx*

k=0
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n

X' =Y [Fx=1Dx—q)...(x—¢"") .
k=0
Just as in the g¢-case, its generalizations to braids are easily obtained from the

binomial theorem. In this context, it is natural to introduce the Mobius braid
u®) € kB, as

k) = (_1)kc(k)

where ¢®) = s®) (1, k)s®)(1,k—1)...5s%)(1,1) € kB is the twistor braid of section

B.2.2.

Corollary. For any n > 0,

x—sM(1,n)] - x—sM(1n-1)] ... [x—s"(1,1)] = i W1 (k) B n—k
k=0
(24)
R x—sM(k+1n)] x—sPEk+1Ln—1)] ... - [x—sD(k+1k+1)] 0"
k=0
(25)

Proof. Setting y = 0 and z = 1 in (23) we obtain (24); setting y = 1 and z = 0
we obtain (25). These evaluations are well-defined morphisms of algebras because

the evaluating points commute with the coefficients. O

Mobius inversion formula will we deduced from the following two consequences

of Cauchy’s identities. Setting x = 1 in (24) we obtain
> u®e1 =R = 0¥ > 0, (26)
k=0

and setting x = 0 in (25) (or applying ~ to (26))
> 1 Wep®=R " = 0¥ n > 0. (27)
k=0

Both of these reduce in the g-case to the well-known

S ()R [p] =0V 0> 0.
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Some other interesting consequences of Cauchy’s identities are obtained through
other evaluations; these all reduce to the same identity in the g-case, but are
distinct at the level of braids. To briefly discuss this situation, consider the poly-
nomial ring B[x] over a non-commutative ring B. For each b € B there are two
natural evaluation maps B[x] — B, according to whether we write the variable to

the right or left of the coefficients. More precisely, these are defined as
e : B[x] — B, ap, X'+ ...+ ax+ag— ab” + ...+ a1b+ ag

and

e . B[x] — B, anX" + ...+ a;x+ag— ba, + ...+ ba; +ag .

These maps are not multiplicative in general; however, if h, f and g are polynomials
such that h = fg and b commutes with the coefficients of g, then €} (h) = €} (f)e,(g).
Similarly, if b commutes with the coefficients of f then € (h) = €. (f)el(g).
Consider B = kB, f(x) = [x—s™(1,n)]-[x—s™(1,n—1)]-...-[x—s™(1, 3)]
and g(x) = [x — s™(1,2)][x — s (1, 1)]. Writing x to the right of the coefficients

and evaluating (24) at b = s™(1,2) = sgn) we obtain
> pPe1 =B () 0
k=0

Similarly, letting f(x) = 2—s™(1,n), g(x) = [x—s™(1,n—1)]-...-[x—s™(1,1)],

writing X to the left and evaluating (24) at b = s (1,n) we obtain

n

n—k
Z[Sm(l’n)} B 10
k=0

B.6.3 Mobius inversion

A particular case of the general theory of Mobius inversion [Rot| is the following

g-numerical inversion formula: for any scalars ag, ..., am, bo, ..., bm,
b; = Z[;—}&i_j ‘v’z:O,,m — a; = Z(—l)’q@)[ﬂb,_] VZZO,,m .

J=0 J=0
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Its generalization is:

Proposition. Let ¥ and y® € kB; be given braids for i = 0,...,m. Then

= 1Wsy =D i =0 m = y® ZN 02D i =0, m.
(28)
Proof. (=)
i G), (i) . (0 (YP-) i D[N 0 (i—i—h) . =] . ©
Z,u ®x b = Z,u ®[Zl oY b, } b;
j=0 j=0 h=0
7 i— J
-y [(a o1 (W) gy i3 h)] [1@) b } 50
7=0 h=0
1 i 1—j '
(:)Z [M(J)@,l(h)@y(lﬂ—h)} . [bylﬂ)@l( } b;:—‘,—j
7=0 h=0
] '
- [,m@w—»} _ [b(hﬂ) (i } B0
j=0 h=0
k= h4 ) =T () | : |
( - j) Z[M(])®1(z—]):| . |:b§k)®y(2—k)] . b](g) — y(z)’
k=0 j=0

since by (24) all terms corresponding to k£ # 0 in the above sum vanish.

(<)
Zlu)@y(z’ 7) Zlu [Z“ o == b(i—j)} -b§.">
j=0 7=0
i Z_j . . .
= [1@@#( )®gj<z—]—h>} , [1 j ®b§j‘”] B
j=0 h=0
(21) Q=N G ), =] . [ Gimt] ()
7=0 h=0
_ Hl(»w(h)} B +J)®x(z—1—h)] iy
7=0 h=0
k= R+ ) =T | | ,~ |
(k=) [Z (100649 b§.k)]®x(l_k)} B = 40
k=0 Lj=0
since by (25) all terms corresponding to k # 0 in the above sum vanish. O
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B.7 Multinomial braids

B.7.1 Definition

For each n and r € N let F(n,r) denote the set of all functions {1,...,n} —
{1,...,r}, and C(n,7r) = {(m,....,n,) € N" / m + ... +n = n}. A sequence
n € C(n,r) is sometimes called a weak composition of n into r parts. For any

n € C(n,r) let

8(n) ={feF(nr) [ #f W) =n, #f7(2) =, . #f (1) =}

We usually write f = (32%43) to abbreviate that f: {1,2,3,4,5} — {1,2,3} is
f(1) = f5B) =2, f(2) = f(3) =1, f(4) = 3. One may think of the elements of
8(n) as permutations of the elements of {1,2,...,r} with repetitions as specified
by 1. For this reason the elements of 8(n) are called permutations of the multiset
{1m, 2m i}

There are canonical identifications 8(1,1,...,1) = S, (r ones) and (when r = 2)

8(i,n —1) =38i(n), f—={j€{1,2,....n} / f(j) =1}

Given n € C(n,r), the corresponding g-multinomial coefficient is defined as

[ZL] _ Z qinv(f) 7
)

J€s(n

where the inversion index inv(f) is

inv(f) =#{(,5) /1 <i<j<n, f(i)> f(4)}.

To define its braid analog we proceed as follows. First, for any f € F(n,r) and

ie{l,2,...,n}, set

ei(f)=#{ <t/ fU) < f@)}.

Next, define sgcn) € B, as
£ = s en(F)m) - ses(£),2) - s er(1),1)
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Then, for any 1 € C(n,r), define the multinomial braid m™ € kB, as

o = 3
)

fFe8(n

A few remarks are in order. First, notice that for o € S, = 8§(1,1,...,1) (r
ones), the definition of s given here coincides with that of section B.5, because
of equation (20). Hence m(t1+D = £ the factorial braid.

Second, suppose r = 2, and let I € §;(n) correspond to f € 8(i,n — i)

under the bijection described above: if I = {j; < jo» < ... < 7j;} then f =

(Lot o G2 e i em),
2212 212 2122
joifjél,
Thus, e;(f) = , from where s = s (i, 5;) ... - 8™(2,5,) -
h itj=g,€l
s™(1,5;) = s, and hence m®»=) = b Thus multinomial braids reduce to

binomial braids when r = 2.

Finally, let us check that in the one-dimensional representation defined by ¢
(section B.2.5), s acts as multiplication by ¢™), and hence m™ as [m

To this end, we introduce the n-shuffle oy € S, corresponding to f € 8(n) as
follows: on f~'(1), o is the unique increasing bijection onto {1,...,n;}, similarly
on f~42) onto {m +1,...,m +n}, ..., and on f~L(r) onto {n; + ... + 11 +
L...om+...+n}

We also introduce the partial inversion index r;(f) = #{j > i / f(j) < f(i)},

extending the one already defined for permutations in section B.5. Notice that
inv(f) =22 ri(f).

Lemma. For any f € 8(n) and i € {1,2,...,n}, e;(f) = ei(oy) and r;(f) = ri(oy).

Proof. From the definition of o; we see that:

For j <1, 0¢(j) < 0s(i) & f(j) < f(i). From here, €;(f) = ei(oy).
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For j > i, 04(j) < 04(i) & f(j) < f(i). From here, r;(f) = r;(oy). O

(n)

Now we can show that sf acts as ¢™() ie. that the number of elementary

generators in s (e, (f),n)-...-s (es(f),2)-5™(e1(f), 1) is inv(f). Recall (section
B.5.3) that for any o € S,, we have o(i) = r;(c) + e;(0). Hence, o4(i) = r;(oy) +
ei(of) =ri(f) +e(f), from where

n

#generators in s — 1— € = o —e(f) = ri(f) = inv(
f JAY

i=1 i=1 i=1
as needed.

From the lemma we also deduce that SSC") = s((f}), just comparing their defini-
tions. This shows that our multinomial braids coincide with those braids already
considered by Schauenburg in [Sch, definition 2.6]. Some of the identities we prove

here ((14), (22), and a particular case of (30)) are stated in that paper, altough

the connection to combinatorics is not pointed out.

B.7.2 Symmetry of the multinomial braids

Here we generalize the facts (13) and (18) that bg" = 5™ and f® = f™. For

n—

any 1 = (1,M2, .-, M), let 7= (0, ..., 12,m).

Proposition. For any 1 € C(n,r), mM = m,

Proof. Consider the bijection F(n,r) — F(n,r), f — f, where f(i) = r+1 —
f(n+1—14). This clearly restricts to a bijection 8(n) — 8(7), so it is enough to
show that

st = st f e 8(n)
to obtain the result.
We have that

f*h)y=n+1—fr+1-h),Yh=1,...,m
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from where

of(i) =n+1—os(n+1—i)=07(i) Vi

I
\'l—‘
E

and thus

“m 7)) o

s; ) = sgf)(:)s(%) = s((f}) = 55;)
as needed.

B.7.3 Pascal’s identity for multinomial braids

Let C*(n,r) denote the set of strict compositions of n into r parts, i.e. those
sequences (1y,...,n,) such that 1 +...+n. =nandn, € Z*Vi=1,...,r.
Pascal’s identity (14) is actually a particular case of the following identity for

multinomial braids.

Proposition. For any n € C(n,r),

A sy e, ) - mmmzenr =g (29)
Proof. Consider the bijection
Hs(nlv”’vni - 17"'7777“) - 8(7]177]27"'7777“>
i=1

that sends f € 8(ny,...,mi —1,...,m.) to g € 8(n1, M2, - .-, n) defined by

9() =
i if j =n.
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Clearly,

e;(f) if je{1,2,...,n—1},
ej(9) =
m+...+n ifj=n.

Hence sg") = s (g +m+...+m,n) s

all such f's. O

(f ) 1©1. The result follows by summing over

B.7.4 Multinomials in terms of binomials and factorials

In this section we relate the multinomial braids to the binomials and factorials,

obtaining identities that generalize (21) and (22).

Proposition. Let (ny,...,n,) € C(n,r), s < r, and ny = n + ... + 1, Ny =

Ns+1+ ...+ 1. Then

m(nl 7777 nT) — m(nl ----- 778)®m(775+1 7777 nT) . m(”l7”2) . (30)
Proof. Consider the bijection

8(7]1,. . .,7]7«) — 8(7]1, .. .,T]S) X 8(7]S+1, .. .,7]7«) X S(nl,ng)
= (fi, fa, I)

defined as follows:

I={je{l,....on} / f(4) <s}={j1<je<...<Jn} € 8nln),
IF={ke{l,....n} ] f(k)>s}={ki <k <...<kpn} €8n(n),
Fr="(4Go £Go) = 16y € 8(m, - -5ms),
fo= (s sf(kf) . f(k:2) o) €8(Nss1s--- 10).
(Informally, fi = f[r, fo = fl.)
It is enough to show that

s}") = s(gsf2) . 5l
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We start by noting that for any j € {1,...,n},

ei(f) =#{he{l,...,n} / h<jand f(h) < f(j)}

=#{hel /h<jand f(h) <[} +#{hel®/h<jand f(h) < f(j)}-

Thus, if j = j; € I,

e;(f)=#{hel/h<jand f(h) < f(j)} = elfr), (*)
while if j = k; € I°,

e;(f)=#{hel /h<jy+#{heclI/h<jand f(h) < f(4)}

Now,

8(f1)®8££2) . Sgn) _ 1(m)®8££2) . ngi1)®1(n2) . Sgn) _

(31(”1)@5%2) . S(n)(em(fl)u niy) ... S(n)(ez(ﬁ), 2) - s(")(el(fl), 1)-

sy, gny) e 8T(2,50) - ST )

(AL W) 21 50 e (1)) - 5P en( ). ) - s (e (Fr)s o)

(i)s(n)(nl + €ny (f2),m1 + 12) - s (n1 +ea(f2),n1 +2) - s (n1 +ei(f2),n1 + 1)

’ S(n)(6n1(f1),jn1) et S(n)(62(fl)>j2) ' S(n)(el(.fl)ajl)'

At this point there are two cases to distinguish, according to whether ky = n; + 1
or k1 < ny (notice that necessarily k; < n; + 1, since k; is the first element of ).

If ky = ny + 1 then necessarily j; =i and k; = ny +1i V i, so

s (ny + e;(fo),n1 +1) = s (k; — i + e;(fa), n1 + z)(*:*)

= s (ex, (£),m +1) = 5" (en, 14(f), 1 + 1)
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and
S (). 30 D e (£ 3 = 8O el F),5)

Thus, in this case, all the factors in the above expression for s%l)@s,({?) . s&") are

already in the “right order”:

sl 5f =

= S(n)(enri-nz(f)a ny + n2) et S(n)(em-l-l(f)> ni + 1)'

. S(n)(6n1(f)>nl) et S(H)(el(-f)’ ]‘) - S}n)’

as needed.
The other case occurs when k; < ny. In this case ji, is well-defined. We will
move s (n; +e1(f2),n1 + 1) to its right past the factors x; := s™(e;(f1), 5;) from

i = ny down to i = ky, using (5). We illustrate this process as follows:

@ (n1 +en(f),m +1) Pt P, () (n1 — 1+ ei(fe), 1) pa iy, | Pt
5™ (Z + €1(f2),i + 1) past x; ) (Z 14+ 61(f2), Z) past z;_1
ast Ty, n (**) .
p k S( )(k1_1+61(f2)’k’1) = S( )(6k1(f),k1).

Before proceeding, we must check that the hypothesis of (5) hold, in order to

validate this commutation. In this situation those hypothesis are
ei(fl) S 1—1 +€1(f2) and 1 S ]z — 1, Vie {k‘l,. . .,nl}.

The first inequality holds because, for any f and g, e;(f) < i and e;(g) > 1.
And the second one does too, for if not, we would have that j; < i and hence
{j1,J2---»Ji} = {1,2,...,1}. But since k; < i, this would imply that k, € I, a
contradiction. Thus the commutation process described above is valid.

Returning to the main argument, we next proceed similarly with the remaining

factors s™ (ng 4+ ea(fa),n1 +2), ..., 5™ (ny + en, (f2), n1 +ny), moving them to the
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right until they become s™ (e, (f), k2),. .. ,s(")(eknz(f), kn,). After this has been

done we are left with all the factors in the “right order”:

Ses i) =

= S(n)(em—i-nz(f)u ny + n2) et s(”)(en1+1(f),n1 + 1>

This completes the proof. O

From (30) we can easily deduce expressions for the multinomial braids in terms

of binomials or factorials, that generalize well-known g¢-formulas.

Corollary.
m(nl 7777 777‘) — (31)
— 1(771+~~~+777'71)®b£7717‘) . 1(771+~~~+77r72)®b£7727'7711+777‘) oo 1(n1)®b1(722+...+m) . b7(71z1+...+17r)
m(nl 7777 777‘) — (32)
_ b((]nl)®1(772+~n+7’]7‘) . b7(71z1+n2)®1(173+...+m) o bg]rlh:'.'.ifrzi?)@l(nr) ) b7(7T—1r++t77Zi)1
fg o fm) g meene) — plmttnr) (33)

o seestie) — 1 (1) g g (125105710 _b7(7T+~~+77r)_

From here (31) follows immediately by induction on 7.

Similarly, (32) follows by induction on r from

(M1 yeesr) — oy (M yeeslir—1) 1 () . gy (Mttmr)
m =m ol boys ey

which is the case s = r — 1 of (30).
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The remaining identity can also be obtained by induction on r, as follows:

30)

B.7.5 Witt’s identity

The following identity for ¢g-multinomials is a particular case of an identity that
holds for all finite reflection groups, sometimes known as Witt’s identity:
S0 Y [ = (e
r=0 neCt(n,r)
(this is [H, proposition 1.11] for the case of the reflection group S,,).
Recall that CT(n,r) denotes the set of strict compositions of n into r parts.

0 if n >0,
We should agree that C*(n,0) = , and that m® =1 € B,.

{0} ifn=0

Witt’s identity can be generalized to braids as follows.

Proposition. For every n > 0,

n

Z(_l)r Z m = ™ (34)

r=0 neet(n,r)
Proof. We do induction on n. For n = 0 the statement is obvious. Assume n > 1.

Consider the decomposition

n—1

H Ct(k,r —1) = CT(n,7), (s s met) = (M1s - ey, — ).

k=0

Recall that, by (32), for any n € C*(k,r — 1) we have

mmn=k) — ()1 (n—k) bl(:) ‘
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n—1
Z m™ = (nn—k :Z Z (M) g1 (n=k) . pln
neCt (n,r) k=0 neC*(k,r—1) k=0 nect(k,r—1)
Thus
Sy 3 w27
r=0 neCt(n,r)
n n—1 n
*
=> (-1 = [ Y (n)] o1(=K) . plm)
r=1 nECT (n,r) k=0 Lr=1 neCt(k,r—1)
n—1[n—1 —1
(ind.h
[ ]@1 n—k) kn 1 yp Z ®1 n—k)
k=0 Ls=0 6(‘3*(167“ 1) ke
(26)
— u( )

B.8 Galois, Fibonacci and Catalan braids

The g-numbers

n

Gn=> [i]

k=0

n)

are studied in [GR2], where they are called the Galois numbers. They satisfy the

following recurrence, that when ¢ = 1 simply says that G,, = 2™
Gn+1 = 2Gn + (qn - 1)Gn_1 .
One may define Galois braids G™ € kB, as
SN
k=0
then one easily obtains the following generalization of the recurrence above:

Gt = GMsl 416G+

+ 3 (L R+ 1) s (k4 1,0+ 1) - 1ebl Vel — 16T Vel

k=0
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Alternatively, one can define Galois braids ¢™ € kB, as follows:
k=0

these braids satisfy the simpler formula:
g =14 s"1,n)]-1+sD0,n—1]-...-[14s7(1,2)]- [14s™(1,1)],

in fact, this is just the binomial theorem (23) at x =1,y =0, z = —1.

These Galois braids ¢ specialize to Galois numbers
i k
=g [}]
k=0
and the formula above becomes
G=01+¢"" - 1+¢" ...-(1+q) - (1+1).

The Fibonacci numbers F), count the number of subsets of {1,2,...,n} without
consecutive elements; one has F,, = F,,_1 + F,,_5. It is easy to obtain ¢-versions of
these numbers. More general braid analogs can be defined as follows. Let F(n, k)
denote the set of subsets of {1,2,...,n} with k elements no two of which are

consecutive, and set

Y= 3" s € kB,
IeF(n,k)

As for the Galois braids, we have two options for defining the Fibonacci braids
in terms of the F) ,5"), according to whether we weight by the twistors ¢® or not.
As before, weighting leads to simpler identities. So we define the Fibonacci braids
F™ ¢ kB, as
) — ic(k)@)l(n—k) .Flg”) )
k=0

The same bijection considered in the proof of Pascal’s identity (14) shows that
EY = EM Vel 4 50 (k,n) - B P61
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from here it follows easily that
F = p=Dg] 4 s (1, n) . FM=213)
Thus these braids specialize to g-numbers F), that satisfy
F,=F, 1+q¢"'F,_,.

The Catalan numbers C,, count the number of subsets I of {1,2,...,2n} sat-

isfying the following two conditions:
#I =nand forevery j =1,2,....2n, #IN0{1,2,...,j} > #I°N{1,2,...,5} .
Let C(n) denote the family of those subsets, and set

C™ = 3" 5P € kB,
IeC(n)

It is easy to see from (*) in the proof of (13) that
oM =)
Similarly, from (*) in the proof of (15) one deduces that

cntl) = Z 1(k+1)®ﬂk+17n_k®l("_k) 100 ®eleC k)
k=0

Thus these braids specialize to g-numbers C), that satisfy

Cny1= Z gF=R e O,y

k=0

These are the g-Catalan numbers of Carlitz and Riordan [CR].

B.9 Additional remarks

Further interesting combinatorial phenomena arises from the study of the behavior

of the various braid analogs on higher dimensional representations X of the braid
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groups. In particular, the determinants of bl(-") and f™ on X®" seem to factor
in some rather remarkable ways, intimately related to the combinatorics of the
braid arrangement A, 1 = {Hpx / 1 < h < k <r}, where Hyp, = {(z1,...,2,) €
R" / x, = x}.

For instance, consider the representation constructed from a symmetric matrix
A = [apy] of size r as in section 9.8 of the main body of the thesis. Thus, B,
acts on X®" V n > 0, where X is a vector space with basis {z1,...,2,}. The
subspace X, of X®" spanned by those tensors of the form To(1)9T(2)® - - - 9T (r)
where ¢ runs over S,, is invariant under the action of B,. The matrix of f") :
X, — X, with respect to this basis turns out to be the same matrix that Varchenko
associates to the weighted hyperplane arrangement A, ; (weighted by the apn’s)
[V]. A factorization formula for the determinant of the matrix of an arbitrary
weighted real hyperplane arrangement is obtained in that work. For the special
case of the braid arrangement, further factorization formulas seem to hold, not
only for the determinant of the factorial braid, but also for the binomials, and on
other invariant subspaces of X" as well.

In particular, on the subspace Xj, ; of X ®(+1) spanned by zpery™ and its per-

mutations, one can show that
det (bgn—l—l)‘xh,k) — (qahk+akh; qakk)n[n]!qakk’

where

(@ q)n =1 —2)(1 —gqu)(1 - ¢’x) (1 —¢"'2) .

These questions will be the subject of future work.
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