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Regression models, in which the observed features X ∈ R
p and the response Y ∈ R depend, jointly, on a lower

dimensional, unobserved, latent vector Z ∈ R
K , with K � p, are popular in a large array of applications, and

mainly used for predicting a response from correlated features. In contrast, methodology and theory for inference
on the regression coefficient β ∈R

K relating Y to Z are scarce, since typically the un-observable factor Z is hard
to interpret. Furthermore, the determination of the asymptotic variance of an estimator of β is a long-standing
problem, with solutions known only in a few particular cases.

To address some of these outstanding questions, we develop inferential tools for β in a class of factor regression
models in which the observed features are signed mixtures of the latent factors. The model specifications are both
practically desirable, in a large array of applications, render interpretability to the components of Z, and are
sufficient for parameter identifiability.

Without assuming that the number of latent factors K or the structure of the mixture is known in advance, we
construct computationally efficient estimators of β, along with estimators of other important model parameters. We
benchmark the rate of convergence of β by first establishing its �2-norm minimax lower bound, and show that our
proposed estimator β̂ is minimax-rate adaptive. Our main contribution is the provision of a unified analysis of the
component-wise Gaussian asymptotic distribution of β̂ and, especially, the derivation of a closed form expression
of its asymptotic variance, together with consistent variance estimators. The resulting inferential tools can be used
when both K and p are independent of the sample size n, and also when both, or either, p and K vary with n,
while allowing for p > n. This complements the only asymptotic normality results obtained for a particular case
of the model under consideration, in the regime K = O(1) and p → ∞, but without a variance estimate.

As an application, we provide, within our model specifications, a statistical platform for inference in regression
on latent cluster centers, thereby increasing the scope of our theoretical results.

We benchmark the newly developed methodology on a recently collected data set for the study of the effective-
ness of a new SIV vaccine. Our analysis enables the determination of the top latent antibody-centric mechanisms
associated with the vaccine response.

Keywords: High dimensional regression; latent factor model; identification; uniform inference; minimax
estimation; pure variables; post clustering inference/regression; adaptive estimation

1. Introduction

Latent factor models have been used successfully for several decades for modeling data with embedded
low dimensional structures. In particular, they provide a natural framework for regression problems in
which the covariate vector X ∈ R

p and the response Y ∈ R are jointly low dimensional. In a latent
factor regression model, this is formalized by assuming that there exists a random vector Z ∈ R

K , for
some unknown K < p, that is connected to the observed pair (X,Y ) ∈ R

p ×R via the model

Y = Z�β + ε (1)

X = AZ + W. (2)
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The dimension K , matrix A ∈ R
p×K and vector β ∈ R

K are unknown. The random vectors Z and
W and random variable ε are independent, with zero means, E[Z] = 0, E[W ] = 0 and E[ε] = 0, and
covariance matrices �Z := Cov(Z) and � := Cov(W), and variance σ 2 := E[ε2], respectively.

Factor regression models, and their many variants [8–10,16,17,21,25,28–30,32,35,42–44] have been
introduced to motivate and analyze prediction schemes for Y ∈ R from X ∈ R

p , when p is very large
and the components of X are highly correlated. Parameter identifiability is not required for predic-
tion purposes, as unique predictors can still be constructed when the assignment matrix A and the
covariance matrix �Z of Z are identifiable only up to orthogonal transformations.

Substantially less work has been devoted to inference in factor models, the problem treated in this
work. Classical factor analysis for an observable vector U ∈ R

d postulates the existence of factors
Z ∈ R

K such that U = BZ + E, for some d × K factor loading matrix. Factor regression models
are an instance of factor models, where one emphasizes the different roles, response and covariates,
respectively, of the observable variables U = (X,Y ), and B consists in the matrix A augmented by the
vector β .

This paper proposes and analyses computationally efficient estimators for inference on the regression
coefficient β in identifiable and interpretable factor regression models, an under-explored problem.

1.1. A framework for regression on interpretable latent factors

We begin by summarizing the model parameters, the nature of the data, as well as the relation between
parameter dimensions and sample size. Throughout this work we assume that we have access to an
i.i.d. sample (X1, Y1), . . . , (Xn,Yn) of (X,Y ) ∈ R

p × R, and that (X,Y ) have mean zero and satisfy
(1) and (2).

We allow for p > n, while K < p. In this work, we consider the case of non-sparse β , and K <
√

n,
but allow K to grow with the sample size n. The complementary cases of K >

√
n and β sparse will

be studied in a follow-up work.
Our central interest is on valid inference for β , which first requires establishing its identifiability.

Restrictions on generic factor models of the type U = BZ + E under which the model parameters are
identifiable can be traced back to [37]. A very detailed exposition of possible identifiability restrictions
was first collected in the seminal work of [4]. They have been revisited in several works, for instance,
[6,18,38,50]. Of those restrictions on B , some are of purely mathematical convenience [4], Sections 5
and 6, whereas, as considered in this work, others are practically interpretable, [3,4].

We focus on a class of identifiable factor regression models in which the observed covariates X are
signed mixtures of the latent vector’s components Zk , 1 ≤ k ≤ K , with unknown K . A latent Zk can
be interpreted as the representative of one of the mixtures. Inference on β is thus inference for the
mixture representatives. The nature of a representative Zk is the nature of those few observed Xj ’s that
are connected only to that Zk , justifying their name, pure variables, indexed by Ik , with their totality
indexed by I := ∪K

k=1Ik ⊆ {1, . . . , p}. In Section 2.1 we formalize this model class, and show that it is
identifiable.

Versions of this factor model class are routinely used in educational and psychological testing, where
the latent variables are viewed as aptitudes or psychological states [4,18,45]. The X-variables are test
results, with some tests specifically designed to measure only one single aptitude Zk , for each aptitude,
whereas others test mixtures of aptitudes. By experimental design, I and K are known in this classical
literature.

Another important application of this factor regression model, in which both I and K are unknown,
is to the analysis of biological data sets with hidden signatures. The data sets that we discuss in Sec-
tion 6 have, by design, what we termed pure variables. Furthermore, because of the inherent biological
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Figure 1. An illustrative example of Essential Regression.

redundancy built into the multi-omic screens that generate the components of X, one expects at least
two of the X-variables effectively measuring the same biological signature, and only that one. For in-
stance, there can be two or more paralogous genes with one very specific function, or two or more
different subsets of immune cells carrying out the same specific niche immunological function. Such
signatures are known to exist, but cannot be measured directly, and correspond to the components of
the latent vector Z. Whereas some of these functions are known, it is one of the purposes of the analysis
to discover new ones, as well as new X-variables solely associated with them. Thus, neither I nor K

can be treated as known, nor can K be treated as fixed, since the number of functions K can grow as p

grows, which can in turn grow with n.
Our first contribution is to propose this flexible and, in many applications, more realistic, framework

for estimation and inference on β in factor models with pure variables, in which the index set I and the
number of factors K are not known and have to be estimated from the data. All the results of this paper
are derived in this context, which is the first point of departure from previous results for inference in
factor models derived for models with I and K known, for instance in [3,4,6,50].

To emphasize the specific usage of factor models for regression and inference on mixture repre-
sentatives, under the model specifications formally given in Section 2.1, we refer to it as Essential
Regression.

Figure 1 below gives an instance of Essential Regression. A response Y depends on three latent
factors (Z1,Z2,Z3), which in turn are connected to (X1, . . . ,X10). The measured variables X1 and
X2 have only (100%) function Z1. The ± 1 edge weights indicate that this function activates X1 and
inhibits X2. Variable X3 has mixed functions, 50% is devoted to function Z1, and the sign indicates
that Z1 is an inhibitor, while 30% is devoted to function Z2, an activator. The fact that the weights, in
absolute value, do not sum up to 1 increases the model flexibility, by allowing free association between
X3 and other functions that are not explained by this model.

A similar, data-driven, figure is presented in Section 6, in which we show that the Essential Regres-
sion model fits the data collected in a new SIV-study (SIV is the non-human primate equivalent of
HIV), and offers insights into immunological signatures driving the vaccine response. This example
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illustrates a scientifically-desirable way of modeling a response Y directly at the function (Z) level,
when the observed X-variables have either single or mixed functions.

1.2. Our contributions

Minimax adaptive estimation of β . In Section 3, we construct a computationally tractable estimator
of β . As part of the estimation procedure, the following unknown quantities are also estimated from the
data, under the Essential Regression model: A, I , K , �Z := Cov(Z), σ 2 := E[ε2] and � := Cov(W).
To benchmark the quality of our estimator we derive first, in Theorem 2 of Section 4.1 the minimax
optimal rate of estimating β in �2-norm in an Essential Regression model. We show in Theorem 3
of Section 4.3 that the proposed estimator β̂ is minimax rate adaptive, up to logarithmic factors in n

and p. Our result uses the fact that only the estimation of the |I | × K sub-matrix AI �, instead of the
entire p × K matrix A, is involved in the construction of β̂ . In Section 4.4 we introduce and discuss
various competitors, including an estimator of β that utilizes estimators of the full matrix A. These
estimators are natural consequences of rewriting the identity for β = �−1

Z Cov(Z,Y ), see (4), (5), (6),
(24) and (26). We give insight into why these estimators are less efficient than the estimator proposed
and studied, and confirm this in our simulation study in Appendix I.

To estimate I and K we use the method proposed in [13], as it guarantees that we can consistently
estimate K , without imposing any restrictions on our target for inference, β . Furthermore, this method
also guarantees that I ⊆ Î ⊆ I ∪ J1, where J1 is an index set of what we term quasi-pure variables,
defined formally in Section 4.2. As the name suggests, a quasi-pure variable is a measured X-variable
that is very strongly associated with only one Zk , while having very small, but non-zero, association
with other latent factors. A signal strength assumption on the entries of A would render J1 = ∅, which
would simplify the analysis of β̂ considerably.

To maintain a flexible modeling framework, the proofs of all our results, rate optimality and asymp-
totic distribution, allow for the presence of quasi-pure variables, J1 �= ∅, while controlling their relative
number via Assumptions 3 and 3′. The price to pay for considering a more realistic scenario is an in-
crease in the technical difficulty of the proofs of Theorems 3 and 4 and Proposition 5, for instance in
Lemmas 7, 10, 17, 27, 28, 29.

Inference for β: Component-wise limiting distribution, asymptotic variance and its estimates. Within
various classes of identifiable factor models, and in the classical set-up K and p fixed, [3,4] pro-
posed MLE-based estimators of the rows of identifiable loading factors B , in a generic factor model
U = BZ + E. They pointed out that the asymptotic covariance matrix of the Gaussian limit of their
estimators has a very involved expression, and left its derivation open.

In the regime K fixed and p → ∞, [6] offered a solution to this problem, two decades later. They de-
rived the asymptotic distribution, including the expression of the limiting covariance, of MLE-inspired
estimators of the rows of B , under various identifiability restrictions on B , including a version of the
conditions given in Section 4.5 below, corresponding to I and K known. Their proof uses a lineariza-
tion argument, and requires p → ∞ to establish that the corresponding remainder term converges in
probability to zero. The practical implementation of the estimator involves an EM-type algorithm that
is very sensitive to initialization, and becomes problematic in high dimensions. The estimation of the
limiting covariance is not considered in their work.

Computationally feasible estimators of the rows of B , and in particular of the entries of β , with
closed form, estimable, asymptotic variances continue to be lacking in the classical regime K,p fixed,
and also when both dimensions are allowed to grow. Furthermore, no results of this type have been
established when K and I are unknown.
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K and I both known K and I both unknown
K,p fixed K fixed, p → ∞ K,p → ∞ K,p fixed K fixed,

p → ∞
K,p → ∞

Existing
results

[4], MLE estimator,
no closed form of

the asymptotic
variance.

[6], MLE-inspired
estimator, computationally

involved; closed form
asymptotic variance Qk

when λK  p.

NA NA NA NA

Theorem 4,
Section 4.5

Computationally tractable β̂k and asymptotic variance Vk
� Vk reduces to Qk when

λK → ∞ and λK �
(p/

√
n) log(p ∨ n).

� � � �

Table 1. Asymptotically normal estimators of βk in a class of factor models: existing and new results (Theorem 4)

As our main contribution, we address these open questions in this work, via a unifying analysis, by
studying the component-wise distribution of estimators of βk , for 1 ≤ k ≤ K

Theorem 4 of Section 4.5 shows that the computationally tractable estimator proposed in Section 3
is asymptotically normal, with consistently estimable variance, under all scenarios of interest. A con-
sistent estimator of this variance is given in Section 4.5 and its consistency is proved in Proposition 5.
Table 1 below offers a snap shot of our asymptotic normality results, relative to existing results.

The quantity λK := λK(A�ZA�) quantifies the size of the signal in X = AZ + W . Theoretical
analyses under the regime p > n are performed under a conservative signal strength assumption, λK 
p, in the existing literature on factor models. See, for instance, [5,9,23,25–27]. This includes results
pertaining to inference on β of [6], which are most closely related to our work.

In Section 4.5 we prove that our proposed estimators of β attain a Gaussian limit under a consid-
erably relaxed condition, λK � p/

√
n (up to logarithmic log(p ∨ n) factors), within a framework in

which K can grow as fast as O(
√

n/ log(p ∨ n)). A technical discussion of this condition is provided
in Section 4.2, and in Remark 3 of Section 4.5.

Table 1 offers a complete picture, to the best of our knowledge, of the existing literature on inference
for β , under the modelling framework considered in this work. For completeness, we summarize in
Remark 2 of Section 4.3, other approaches proposed in the literature for the selection of K , in other
identifiable factor models. We summarize them, and state sufficient conditions for their consistency in
Table 2.

For clarity of presentation, we give below the expressions of the limiting variances in the par-
ticular case when Cov(W) = τ 2Ip. By letting σ 2 = E[ε2], Cov(W) = τ 2Ip, 
 := A�Z and 
+ =
(
�
)−1
�, the asymptotic variance derived in [6], in the regime K = O(1) and λK  p → ∞, is

Qk =
(
σ 2 + τ 2‖β‖2

2

)[
�−1

Z

]
kk

.

The assumption that λK  p is made in [6] indirectly, as a consequence of their assumption (A)
(�Z is positive definite and K is fixed) and of their Assumption (C) (‖Ai �‖2 ≤ C, c ≤ �ii ≤ C and
p−1A��−1A converges to some positive definite matrix as p → ∞), see page 438 of [6].

The asymptotic variance of our proposed estimator, valid for all the regimes represented in Table 1
above, has the formula derived in Theorem 4 of Section 4.5,

Vk =
(

σ 2 + τ 2

m
‖β‖2

2

)[[
�−1

Z

]
kk

+ τ 2e�
k

(

�

)−1

ek

]
+ τ 4

m(m − 1)

K∑
a=1

β2
a

∑
i∈Ia

[
e�
k 
+ei

]2
,
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where {e1, . . . , eK} is the canonical basis of RK .
To contrast the two asymptotic variance expressions, we consider the common regime K = O(1)

and p → ∞, in which case we note that the signal strength requirement under which our Theorem 4
is established reduces to λK � (p/

√
n) log(p ∨ n). Theorem 4 shows that, in this case, if we further

assume that λK → ∞, the asymptotic variance of our estimator reduces to

Vk =
(

σ 2 + τ 2

m
‖β‖2

2

)
�kk,

and thus limn→∞ Qk/Vk ≥ 1. The two asymptotic variances coincide when m = 1, which is the mini-
mum identifiability requirement for a factor model with pure variables in which the pure variable set I

is known. Hence we recover, in this regime, the asymptotic variance derived in [6], while at the same
time relaxing their signal strength conditions required for this derivation.

As noted above, and as we prove formally in Theorem 4, the expression of the asymptotic variance
Vk is valid in all the regimes presented in this table. In particular, in the classical regime in which K

and p do not vary with n, its derivation requires only λK � n−1/2.
In order to provide a unifying analysis, valid for both fixed and growing dimensions, we use the

classical Lyapunov CLT for triangular arrays. The verification of the third moment condition of this
theorem requires the lengthy, technical, derivations in Lemmas 16 and 19. Finally, although the expres-
sion of the asymptotic variance Vk is involved, it can be estimated consistently for each 1 ≤ k ≤ K ,
by a computationally efficient estimator. This result is given in Proposition 5 of Section 4.5 and its
proof, which requires considerable attention, is presented in Appendix F, followed by a list of the
many technical lemmas used in this proof, Lemmas 21–29.

An application to regression on latent cluster centers. The identifiable factor model X = AZ + W

satisfying Assumption 1 in Section 2.1 below can be used to define, uniquely, overlapping clusters of
the coordinates of X. The clusters are centered around the components of the latent vector Z, and X-
variables in cluster k have indices in the set Gk := {j ∈ [p] : |Ajk| > 0}, for 1 ≤ k ≤ K . A procedure
for estimating consistently K and the corresponding clusters has been developed recently in [13]. With
this interpretation, the Essential Regression framework can be employed for inference on the latent
cluster centers. We show in Section 5 that although it may be tempting to replace the components
of Z by weighted averages of variables within a cluster, and subsequently regress Y onto them, this
procedure would not estimate β in (1). However, we further show that this can be immediately corrected
by regressing on the best linear predictor of Z from these weighted averages. With this correction,
we obtain exactly the estimator of β constructed in Section 3, and the inferential tools developed
in Section 4.5 can be used for inference in regression on unobserved, latent, cluster centers. In the
context of the applications to biological data sets mentioned in Section 1.1, this will be inference at the
biological signature level, as illustrated in Section 6.

1.3. Organization of the paper

The rest of the paper is organized as follows.
Section 2 gives a set of modeling assumptions under which the model given by (1) and (2) is iden-

tifiable. Section 2.1 introduces and discusses these assumptions, including parameter interpretability.
Section 2.2 shows that our central parameter, β , along with other important parameters, is identifiable.

Section 3 introduces our proposed estimator β̂ of β . Section 4.4 discusses other natural estimators,
and explains why they should be expected to have inferior theoretical and practical perfomance relative
to β̂ . The numerical performance of these alternate estimators is presented in Appendix I.
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The performance of estimators of β in factor regression models satisfying Assumption 1 is bench-
marked in Section 4.1. Theorem 2 provides the minimax lower bound for estimating β in this class of
models, with respect to the �2 loss.

Section 4.3 shows that the estimator β̂ proposed in Section 3 is �2-norm consistent, and minimax-
rate adaptive, under assumptions collected in Section 4.2.

Section 4.5 is devoted to the component-wise asymptotic normality of β̂ and to the estimation of the
asymptotic variance, as well as to a comparison with existing literature.

Section 5 presents an application of the framework, methodology and theory developed in previous
sections to regression on latent cluster centers, when the clusters are allowed to overlap.

Section 6 shows how our methodology can be used to make inference on unobserved, latent, im-
munological modules, using a data set collected during a study on the effectiveness of a new SIV-type
vaccine.

All proofs are deferred to the supplement [15]. Appendix B gives the proofs of Proposition 1 and
Theorem 2, on identification and minimax lower bounds, respectively. Appendix C provides necessary
preliminary results, and could be skipped at first reading. The proof of Theorem 3 concerning the
convergence rates of β̂ is given in Appendix D. The proof of Theorem 4 on the asymptotic normality
of β̂ is given in Appendix E, while Proposition 5 on consistent estimation of the asymptotic variance
Vk is proved in Appendix F.

1.4. Notation

For any positive integer q , we let [q] = {1,2, . . . , q}. For two numbers a and b, we write a ∨ b :=
max{a, b} and a ∧b := min{a, b}. For a set S, we use |S| to denote its cardinality. We use Hd to denote
the set of all d × d signed permutation matrices and Sd−1 to represent the space of the unit vectors
in R

d . We denote by Id the d × d identity matrix, by 1d the d-dimensional vector with entries equal
to 1 and by {ej }1≤j≤d the canonical basis in R

d . For a generic vector v, we let ‖v‖q = (∑i |vi |q
)1/q

denote its �q norm for 1 ≤ q < ∞. We also write ‖v‖∞ = maxi |vi | and ‖v‖0 = | supp(v)|. Let Q

be any matrix. We use ‖Q‖op = supv∈Sd−1 ‖Qv‖ and ‖Q‖∞ = maxi,j |Qij | for its operator norm and
element-wise maximum norm, respectively. For a symmetric matrix Q ∈ R

d×d , we denote by λk(Q)

its kth largest eigenvalue for k ∈ [d]. For a positive semi-definite symmetric matrix, we will frequently
use the fact that λ1(Q) = ‖Q‖op. For an arbitrary real valued matrix M , we let σK(M) denote its kth
singular value (in decreasing order).

For any two sequences an and bn, an � bn stands for there exists constant C > 0 such that an ≤ Cbn.
We write an  bn if an � bn and bn � an. We also use an = o(bn) to denote an/bn → 0 as n → ∞.

2. Modeling assumptions and identifiability

2.1. Modeling assumptions

We begin by formalizing and explaining the set of model identifiability assumptions that will be used
in this work.

Assumption 1.

(A0) ‖Aj �‖1 ≤ 1 for all j ∈ [p].
(A1) For every k ∈ [K], there exists at least two j �= � ∈ [p], such that |Aj �| = |A� �| = ek .
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(A2) �Z := Cov(Z) is positive definite. There exists a constant ν > 0 such that

min
1≤a<b≤K

(
[�Z]aa ∧ [�Z]bb − |[�Z]ab|

)
> ν.

In (A1), the absolute value is taken entry-wise and we use {e1, . . . , eK} to denote the canonical basis in
R

K . For future reference, we denote the index set corresponding to pure variables as

I =
K⋃

k=1

Ik, Ik = {i ∈ [p] : |Ai �| = ek} . (3)

Its complement set is called the non-pure variable set J := [p] \ I .
Assumption 1 guarantees that A and �Z are identifiable, up to signed permutations [13], Theorem

2. We refer to the second assumption (A1) as the pure variable assumption. It states that every Zk ,
1 ≤ k ≤ K , must have at least two components of X, the pure variables, solely associated with it, up to
additive noise with possibly different variance levels. An in-depth comparison with the rich literature
on factor models of type (2) and a detailed explanation of assumptions (A0)–(A2) can be found in [13],
and thus we only offer a brief set of comments here.

If A�ZAT is identifiable, we show in Corollary 1 in Appendix A that A and �Z are identifiable up
to signed permutations under Assumption 1, but when (A1) is relaxed to

(A1’) For each k ∈ [K], there exists at least one index i ∈ [p] such that Ai· = ek .

However, the existing conditions under which A�ZAT can be identified from the decomposition � =
A�ZAT + � can be incompatible with factor models with pure variables, for instance the incoherence
condition in [24], or can be very stringent growth conditions on the eigenvalues of A�ZAT . For an
instance of the latter we refer to [7,27] and also to Table 2. These difficulties can be bypassed under
(A1) of Assumption 1, using the approach taken in [13], which does not rely on separating out A�ZAT

from � in the first step. In Assumption 1, (A0), we set the scale to 1 to aid the interpretation of matrix
A as a cluster membership matrix, and thus view the model X = AZ + W as a latent clustering model,
following [13]. The equality between the weights of two pure variables, |Aj ·| = |A�·| = ek has been
relaxed in a recent work, [14], but under a slightly different scaling condition than (A0), and we do not
pursue that approach here.

Furthermore, we mention, for completeness, that a more rigid form of assumption (A1’), specifically

(A1”) For each k ∈ [K], there exists a known index i ∈ [p] such that Ai· = ek ,

has had a long history, as it is one of the few “user-interpretable” parametrizations of A that elimi-
nates the rotation ambiguity of the latent factors. In psychology, the “pure” variables induced by the
parametrization are called factorially simple items [39]. A similar condition on A can be traced back
to the econometrics literature, and an early reference is [36], further discussed in [4], who called it
“zero elements (of A) in specified positions”. We refer to [4,36,45] for more examples in psychology,
sociology, etc. This parametrization is also called the errors-in-variable parametrization and has wide
applications in structural equation models, see, [33,34]. The more recent review paper [50], and the
references therein, provide a nice overview of many other concrete applications that support interest in
factor models under a parametrization of this type. We provide another example below.

In the context of Assumption 1, we interpret the entries in A as (signed) mixture weights. Under
model (1), each Xj is a signed mixture of Z1, . . . ,ZK , according to these weights. This assumption,
which is sufficient for identifiability, is also a a desirable modelling assumption.
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As an illustration, assume that X ∈ R
p contains gene-level measurements, and that Z ∈ R

K cor-
responds to their biological functions. Then, (A0) enables, in this example, to associate a gene with
multiple biological functions, in different proportions per function. The inequality sign in (A0) further
allows some genes not to be associated with any of the functions captured by this model, thereby in-
creasing the robustness of the model. The second requirement, (A1), simply says that the measured Xj

and X� have the same biological function Zk , and only that function. We considered signed mixtures
to increase the flexibility of the model. In this example, signs correspond to the nature of the function.
For instance, if gene Xj activates a signaling pathway, and Zk has positive sign, then Zk has a function
associated with the activation of this pathway, whereas a negative sign indicates a function associated
with its inhibition.

Assumption (A2) allows us to depart from the widely used, and restrictive, assumption of indepen-
dence among the latent factors. We require the variability of the factors to be strictly larger than that
between factors. This implies the minimal desideratum that the factors be different.

We first discuss the identifiability of β in Section 2.2. Then in Section 3, we propose our estimator
of β which uses its identifiability constructively.

2.2. Identifiability of β: A constructive approach

Under model (1), we have Y = Z�β + ε, and thus the coefficient β satisfies

β = [Cov(Z)]−1Cov(Z,Y ) = �−1
Z Cov(Z,Y ). (4)

Since model (2) and Assumption 1 imply Cov(Z,Y ) = (A�A)−1A�Cov(X,Y ), we have

β = �−1
Z (A�A)−1A�Cov(X,Y ) (5)

= (
�
)−1
�Cov(X,Y ) (6)

with 
 = A�Z . Therefore, β is uniquely defined whenever 
 is unique. By partitioning the p × K

matrix A as AI � ∈ R
|I |×K and AJ � ∈ R

|J |×K corresponding to I and J , respectively, model (2) and
Assumption 1 imply the following decomposition of �,

� =
[
�II �IJ

�JI �JJ

]
=
[

AI ��ZA�
I � AI ��ZA�

J �

AJ ��ZA�
I � AJ ��ZA�

J �

]
+
[
�II

�JJ

]
.

In particular, we have �II = AI ��ZA�
I �+ �II and


 = A�Z = (� �I − � �I )A�
I �(A

�
I �AI �)

−1. (7)

The uniqueness of 
 is thus implied by that of AI � and �Z . Theorem 1 in [13] shows that, under As-
sumption 1, the matrices AI � and �Z can be uniquely determined, up to a signed permutation matrix
P , from � := Cov(X). As a result, 
 can also be recovered from (7) up to P �, hence β is identifiable
from (6) up to P �. We remark that the permutation matrix P will not affect either inference or predic-
tion. Indeed, writing Ã = AP , Z̃ = P �Z and β̃ = P �β , one still has Y = Z̃�β̃ + ε and X = ÃZ̃ +W .
We summarize the identifiability of β in the proposition below. Its proof can be found in Appendix B.1.

Proposition 1. Under models (1)–(2) and Assumption 1, the quantities � and Cov(X,Y ) define β

uniquely, via (6) and (7), up to a signed permutation matrix.
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Our estimator, given in the next section, is based on the representations (6) and (7), followed by
appropriate plug-in estimators.

3. Estimation of β

We assume that the data consists of n independent observations (X1, Y1), . . . , (Xn,Yn) that sat-
isfy model (1) and (2). We write X := (X1, . . . ,Xn)

� for the observed n × p data matrix and
y := (Y1, . . . , Yn)

� for the observed response vector. Let �̂ = n−1∑n
i=1 XiX

�
i denote the sample

covariance matrix. Motivated by equations (6) and (7), we consider the plug-in estimator of β via the
following steps:

(1) Obtain estimates K̂ and {Î1, . . . , ÎK̂} from �̂ with tuning parameter δ by using Algorithm 1 in
[13]. For the reader’s convenience, we state the procedure in Algorithm 1 below.

(2) Next, for each a ∈ [K̂] and b ∈ [K̂] \ {a}, we compute

[�̂Z]aa = 1

|Îa|(|Îa | − 1)

∑
i �=j∈Îa

|�̂ij |, [�̂Z]ab = 1

|Îa||Îb|
∑

i∈Îa ,j∈Îb

ÂiaÂib�̂ij , (8)

to form the estimator �̂Z of �Z . Furthermore, the estimation of AI � follows the procedure in
[13]. For each k ∈ [K̂] and the estimated pure variable set Îk ,

Pick an element i ∈ Îk at random, and set Âi �= ek; (9)

For the remaining j ∈ Îk \ {i}, set Âj �= sign(�̂ij ) · ek . (10)

(3) Estimate � �I by �̂ �̂I with

�̂ii = �̂ii − Â�
i ��̂ZÂi �, ∀ i ∈ Î , �̂j i = 0, ∀ j �= i. (11)

(4) Compute


̂ = (�̂ �̂I − �̂ �̂I

)
ÂÎ �

(
Â�̂

I �
ÂÎ �

)−1
. (12)

Provided that 
̂�
̂ is non-singular, estimate β by

β̂ =
(

̂�
̂
)−1


̂� 1

n
X�y. (13)

The above procedure requires a single tuning parameter δ, and that K < n. The theoretical order
of δ is given in (17) of Section 4.2 under the sub-Gaussian distributional assumptions. A practical
data-driven procedure of selecting δ is stated in Appendix H. We show in Section 5 that β̂ coincides
with the ordinary least squares estimator that minimizes ‖y − Ẑβ‖2

2 over β , based on an appropriately
constructed predictor Ẑ of the latent data matrix Z := (Z1, . . . ,Zn)

�. We prove in Theorem 3 of Sec-
tion 4.3 that 
̂�
̂ is non-singular with high probability. In practice, in case that 
̂�
̂ is singular or
ill-conditioned, we propose to invert 
̂�
̂ + t · IK̂ instead, for any small t > 0.

In Section 4.4 we discuss other possible estimators based on the alternative representations of β

given in (4), (5) and (6).
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Algorithm 1 Estimate the partition of the pure variables I by Î
1: procedure PUREVAR(�̂, δ)
2: Î ← ∅.
3: for all i ∈ [p] do
4: Î (i) ← {l ∈ [p] \ {i} : maxj∈[p]\{i} |�̂ij | ≤ |�̂il | + 2δ

}
5: Pure(i) ← T rue.
6: for all j ∈ Î (i) do
7: if

∣∣|�̂ij | − maxk∈[p]\{j} |�̂jk|
∣∣> 2δ then

8: Pure(i) ← False,
9: break

10: if Pure(i) then
11: Î (i) ← Î (i) ∪ {i}
12: Î ← MERGE(Î (i), Î )
13: return Î and K̂ as the number of sets in Î

14: function MERGE(Î (i), Î)
15: for all G ∈ Î do � Î is a collection of sets
16: if G ∩ Î (i) �= ∅ then
17: G ← G ∩ Î (i) � Replace G ∈ Î by G ∩ Î (i)

18: return Î
19: Î (i) ∈ Î � add Î (i) in Î
20: return Î

4. Statistical guarantees

4.1. Minimax lower bounds for estimators of β in essential regression

To benchmark our estimator of β , we derive the minimax optimal rate of ‖β̂ − β‖2 over the parameter
space (β,�Z,A) ∈ S(R,m) with

S(R,m) := {(β,�Z,A) : ‖β‖2 ≤ R, Cmin ≤ λmin(�Z) ≤ λmax(�Z) ≤ Cmax,

A satisfies Assumption 1 with min
k

|Ik| = m
}
,

where Ik is defined in (3). For the purpose of the minimax result, it suffices to consider the joint
distribution of (X,Y ) as[

X

Y

]
∼ Np+1

(
0,

[
A�ZA� + τ 2Ip A�Zβ

β��ZA� β��Zβ + σ 2

])
(14)

for (β,�Z,A) ∈ S(R,m) and some positive constants σ 2 and τ 2.

Theorem 2. Let K ≤ c̄(R2 ∨ m)n for some positive constant c̄. Let (X1, Y1), . . . , (Xn,Yn) be i.i.d.
random variables from the normal distribution in (14). Then, there exist constants c′ > 0, c′′ ∈ (0,1]
depending only on c̄, Cmax, Cmin, σ 2 and τ 2, such that

inf
β̂

sup
(β,�Z,A)∈S(R,m)

P

{
‖β̂ − β‖2 ≥ c′

(
1 ∨ R√

m

)
·
√

K

n

}
≥ c′′. (15)
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The inf is taken over all estimators β̂ of β .

Proof. The proof is deferred to Appendix B.2. It uses the classical technique in [46] for proving
minimax lower bounds. After carefully constructing a set of “hypotheses” of β , we observe that the
Kullback-Leibler (KL) divergence between joint distributions of (X,Y ) parametrized by two hypothe-
ses of β can be calculated from the log ratio of corresponding conditional densities of Y |X. This
observation greatly simplifies the proof. �

The factor
√

K/n in (15) is the standard minimax rate of estimation in linear regression with ob-
served Z and sub-Gaussian errors. The factor multiplying it can be viewed as the price to pay for not
observing Z. It quantifies the trade-off between not observing Z, with strength ‖β‖2, and the num-
ber of times, given by m = mink |Ik|, each component of Z is partially observed, up to additive error.
The ratio ‖β‖2/

√
m indicates that, under the Essential Regression framework, the fact that Z is not

observed can be alleviated by the existence of pure variables, and the quality of estimation is expected
to increase as m increases. Theorem 2 above shows that, from the point of view of estimating β con-
sistently in Essential Regression, the number of factors K can grow with n, a scenario not treated in
the more classical factor regression literature. It also reveals that, as in the classical regression set-up,
although K can grow with n in Essential Regression, consistent estimation of unstructured β cannot
be guaranteed when K > n. This will be treated in follow-up work.

To the best of our knowledge, the minimax lower bound established above is a new result in the factor
regression model literature and it is interesting to place our results in a broader, related, context. For
this, note that under the Essential Regression framework, if I and AI � were known, the pure variable
assumption implies

Y = Z�β + ε, X̄I = Z + W̄I (16)

with X̄I := (A�
I �AI �)

−1A�
I �XI and W̄I := (A�

I �AI �)
−1A�

I �WI . Model (16) becomes an instance of an
errors in variables model where the covariance structure of the error term W̄I is diagonal. The minimax
optimal lower bound for estimating β in such models has been derived recently in [11], under sparsity
assumptions on β . In the particular case of non-sparse β , which we treat here, their lower bound agrees
with that given by our Theorem 2, although their bound is derived over a larger class, and can only be
compared with (15) when I is known. The closest result to that of Theorem 2 is the minimax lower
bound on rows of A bounded in �1 norm, and has been derived in [13]. We complement this here, in
the latent factor regression context, by providing a minimax lower bound on β with a �2 norm allowed
to increase with n.

4.2. Assumptions

In this section we collect the assumptions under which we evaluate the performance of our proposed
estimator β̂ .

We first make the following distributional specifications for ε, W and Z defined in model (1):

Assumption 2. Let γε, γw, γz and Bz be positive finite constants. Assume ε is γε-sub-Gaussian1 and
W has independent γw-sub-Gaussian entries. Further assume ‖�Z‖∞ ≤ Bz and the random vector
�

−1/2
Z Z is γz-sub-Gaussian2.

1A mean zero random variable x is called γ -sub-Gaussian if E[exp(tx)] ≤ exp(t2γ 2/2) for all t ∈R.
2A mean zero random vector x is called γ -sub-Gaussian if v�x is γ -sub-Gaussian for any ‖v‖2 = 1.
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The quality of our estimator β̂ given by (13) depends on how well we estimate K , I , its partition
{Ik}1≤k≤K , as well as 
. Our goal is to estimate K consistently, under minimal assumptions. However,
consistent estimation of the partition requires a stronger set of assumptions that we would like to avoid.
We introduce and discuss below a set of assumptions under which the partition is recovered sufficiently
well for the purpose of inference on β̂ .

Assumption 2 implies that Xj is γx -sub-Gaussian with γx = (γz

√
Bz + γw), as shown in Lemma 4

in Appendix C.3, and it is well known (see, for instance, [12], Lemma 1) that in this case,

P

{
max

1≤j<�≤p
|�̂j� − �j�| ≤ δ

}
≥ 1 − (p ∨ n)−c′

(17)

with δ = c
√

log(p ∨ n)/n, for some constant c′ > 0 and c = c(γx) > 0 sufficiently large.
Under Assumptions 1 and 2, and when logp ≤ c′′n for some constant c′′ > 0, [13] provides an

algorithm for estimating K and I , and prove in their Theorem 3 the following:

(1) K̂ = K ;
(2) Ik ⊆ Îπ(k) ⊆ Ik ∪ J k

1 , for all k ∈ [K],
where π : [K] → [K] is a permutation and J k

1 := {j ∈ J : |Ajk| ≥ 1 − 4δ/ν} with constant ν defined
in Assumption 1 of Section 2.1 above.

Since we do not impose any separation condition between the pure variable rows AI � and the re-
maining rows in AJ �, the sets {J k

1 }Kk=1 are typically not empty, and as formalized in (2) above, we
cannot expect to recover I perfectly in the presence of quasi-pure variables with indices belonging to
the set J1 :=⋃K

k=1 J k
1 . Indeed, when logp = o(n), for any j ∈ J k

1 we have |Ajk| ≈ 1 and Ajk′ ≈ 0 for
any k′ �= k, so variables corresponding to J k

1 are very close to the pure variables in Ik , and possibly
indistinguishable from one another, in finite samples.

While allowing for J1 �= ∅ increases the flexibility of the model, it also poses significant technical
difficulties in the analysis of the asymptotic distribution of β̂k , for each k, evidenced in the proofs of
Theorem 3, Theorem 4 and Proposition 5. Nevertheless, the limiting distribution can still be derived
when |J1| is small relative to |I |. The influence of the misclassified X-variables with entries in J1 be-
comes negligible in both the finite sample rate analysis of β̂ provided in Section 4.3 and the asymptotic
analysis of Section 4.5 under the condition given below. We introduce

ρ̄2 =
K∑

k=1

(
|J k

1 |
|Ik| + |J k

1 |

)2

(18)

to quantify the influence of quasi-pure variables on the quality of our estimation. Theorem 3 shows that
optimal estimation of β is possible in the presence of quasi-pure variables as long as their number is
negligible relative to the number of pure variables in the same group, in that the following assumption
holds.

Assumption 3. 3 The overall proportion ρ̄2 satisfies mρ̄2 = O(1) with m := mink∈[K] |Ik|.

We briefly discuss this assumption below. Let s ≤ K be the number of factors that have quasi-pure
variables, that is,

s = |S|, S = {1 ≤ k ≤ K : |J k
1 | ≥ 1}.
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1. Note that, by (18), we have ρ̄2 ≤ s, and therefore mρ̄2 ≤ ms. Thus, if both s (and in particular K ,
when s = K) and m remain bounded, as n → ∞, Assumption 3 holds. In other words, in factor
models with a possibly large, but fixed, number of factors K , such that one of the factors has very
few X-variables solely associated with it, the assumption holds.

2. Otherwise, if ms → ∞, we note that if we assume that

|J k
1 | ≤ c(|J k

1 | + |Ik|)/√ms, (19)

holds for all k ∈ S where c > 0 is some universal constant, then ρ̄2 ≤ c2/m, and Assumption
3 holds. To gain insight into (19), note that it also implies that, for each cluster k ∈ S, |J k

1 | =
o(|Ik|), and therefore |J1| = o(|I |). Thus, in factor models with a growing number of factors and
a growing number of pure variables per factor, (19) prevents the number of quasi-pure variables
to grow faster than the number of pure variables.

3. In support of the above discussion, we also offer a calculation of ρ̄2 in a particular case. Assume
that each Ik has the same size m, and each J k

1 has the same size m′. Then ρ̄2 = s(m′/(m+m′))2,
and we can verify Assumption 3 explicitly in terms of m,m′ and s. Consider
a) |Ik| = m with m ≥ 1, m fixed, and |J k

1 | = m′ ≥ 1, for all k ∈ S. Then ρ̄2 = s(m′/(m + m′))2,
and Assumption 3 is met if and only if s remains bounded.

b) |Ik| = m and |J k
1 | = m′ = O(mα), for all k ∈ S, with 0 ≤ α ≤ 1 and m → ∞. A simple

calculation shows that Assumption 3 is met only if s = O(m1−2α). In particular, α < 1/2
allows s → ∞; α = 1/2 requires s to be bounded, and the case α > 1/2 forces s = 0 (all the
stated limits are in terms of n → ∞).

Another quantity that needs to be controlled is the covariance matrix �Z . It plays the same role as
the Gram matrix in classical linear regression with random design.

Assumption 4. The smallest eigenvalue λmin(�Z) > Cmin for some constant Cmin bounded away from
0.

Assumptions 2–4 allow for a cleaner presentation of our results. We can trace explicitly the depen-
dency of the estimation rate for β on ρ̄ and Cmin in the proofs. An important feature of this framework
is that under Assumptions 1–4 and K = O (n/ log(p ∨ n)), the matrix 
̂�
̂ can be inverted, with
probability tending to 1.

We require one more condition, which measures the strength of the signal A�ZA� retained by the
low rank approximation of � = A�ZA� + �.

Assumption 5. The K th eigenvalue λK := λK(A�ZA�) of the signal A�ZA� satisfies

λK ≥ c p

√
log(p ∨ n)

n
(20)

for some sufficiently small constant c > 0. This implies K �
√

n/ log(p ∨ n).

The implication K �
√

n/ log(p ∨ n) follows immediately from (20) and the bound λK ≤ Bz(p/K)

in Lemma 14.
We recall that the quantity λK := λK(A�ZA�) quantifies the size of the signal in X = AZ+W . It is

a key quantity in the well studied problem of signal recovery from a n×p matrix of noisy observations
X, with rows corresponding to n i.i.d. copies of X. The signal can be recovered from n−1X�X as soon
as λK is above the noise level [20,22,31,48,49]. The noise level is quantified by the largest eigen-value
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λ1(n
−1W�W), based on the n × p data matrix W with rows corresponding to n i.i.d. copies of W .

Standard random matrix theory shows that λ1(n
−1W�W) concentrates with overwhelming probability

around its mean, which is of order (n+p)/n, see [47]. Therefore, one needs at least λK � (n+p)/n to
distinguish the signal from the noise. For the more specific task of optimal estimation of β , we require
Assumption 5 (see Lemma 13 in Appendix D). The investigation of its optimality is beyond the scope
of this paper, and will be studied in a follow up work. However, we emphasize that, as mentioned in
the Introduction, the consistent estimation of rows of the factor loadings in factor models, especially
when p > n, has only been established under the stricter condition λK  p [5,6,26,27]. The intuition
behind this more restrictive assumption is as follows. If �Z is positive definite, with finite eigenvalues,
and the rows of A are p i.i.d. draws of a K-dimensional sub-Gaussian random vector, p > K , then
reasoning as above and using the results in [47], λK  p, with high probability. However, for a generic,
deterministic, A, it would be an assumption, that we show can be considerably relaxed to Assumption
5. More details are provided in Remark 3 of Section 4.5.

4.3. Consistency of ̂β in �2-norm: Rates of convergence and optimality

The following theorem states the convergence rate of minP∈HK
‖β̂ − Pβ‖2.

Theorem 3. Suppose Assumptions 1–4 hold and assume K log(p ∨n) ≤ cn for some sufficiently small
constant c > 0. Then, with probability greater than 1 − (p ∨ n)−c′

for some constant c′ > 0, K̂ = K ,
the matrix 
̂�
̂ is non-singular and the estimator β̂ given by (13) satisfies:

min
P∈HK

∥∥β̂ − Pβ
∥∥

2 �
(

1 ∨ ‖β‖2√
m

)√
K log(p ∨ n)

n

(
1 ∨ p

λK

√
log(p ∨ n)

n

)
(21)

If additionally Assumption 5 holds, then with the same probability, β̂ given by (13) satisfies

min
P∈HK

∥∥β̂ − Pβ
∥∥

2 �
(

1 ∨ ‖β‖2√
m

)√
K log(p ∨ n)

n
. (22)

Proof. The proof is given in Appendix D. �

Remark 1. The estimator β̂ achieves the minimax rate in Theorem 2 up to a logarithmic log(p ∨ n)

term. Inspection of the proof, when K grows with n, shows that the log(p ∨ n) terms appearing in
the condition K log(p ∨ n) ≤ cn and in the upper bound (22) can be improved to logK , but in that
case the probability tail in Theorem 3 will change to 1 − K−c . This additional logK is the price to
pay for not observing Z. On the other hand, comparing (22) with the convergence rate of the oracle
least squares estimator (OLS) when Z is observable, the extra factor ‖β‖2/

√
m is due to the error term

W in X = AZ + W . This extra factor becomes negligible when the coefficients of β are uniformly
bounded (‖β‖∞ � 1) and the number of latent factors cannot grow much faster than the cardinality of
the smallest subgroup of pure variables (K � m). In the worst case scenario the rate of β̂ is slower than
the aforementioned OLS by a factor of the order of ‖β‖2.

Remark 2. The selection of K , the number of latent factors, has been thoroughly studied, in general
factor models. For completeness, we provide Table 2 summarizing the existing approaches of selecting
K , as well as the conditions under which the resulting estimates are consistent. As the table shows,
consistent estimation of K via the existing methods is proved under the assumption that there exists
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K̂ = K w.h.p. K is fixed K grows with n

Existing literature: [2,7,41] λ1  λK  p, ‖�‖∞,1 = O(1) NA
Proposed method Assumption 1, � is diagonal with bounded entries, logp = o(n)

Table 2. Selection of the number of factors K : methods and sufficient conditions for consistency. We write
λ1, . . . , λK for the top K eigenvalues of A�ZAT

a large gap between the eigenvalues of A�ZAT and �, respectively. Although in the inference results
derived in this manuscript we also need λK = λK(A�ZAT ) to satisfy Assumption 3, that is,

λK

p
� log(p ∨ n)√

n
,

this is not used to guarantee the correct selection of K (this can be readily seen from the discussion
in the middle of page 15), hence it is much milder than the conditions in the existing literature [2,
7,41], as seen from the table. We do, however, also establish that K can be consistently estimated
by our procedure. Leveraging the particular class of factor models treated in this work, we show that
our method is consistent, for both growing K and fixed K , but under a set of conditions that is very
different than those previously considered (please see Table 2). In particular, we do not require λ1 and
λK to be of equal order p, but we do consider only diagonal error structures �.

4.4. Other possible estimators

We discuss other natural estimators that could be considered in this model, based on equivalent repre-
sentations of β . Each of these representations offer a valid basis for estimating β via plug-in estimation
of the unknown quantities. However, we recommend the estimator β̂ in (13) above, as it has several
advantages over these other candidates, both theoretically and numerically.

(a) Recall that β can be uniquely defined via identity (5) as long as A and �Z are unique up to
signed permutations. The expression (5) suggests the following estimator

β̃(A) = �̂−1
Z

(
Â�Â
)−1

Â� 1

n
X�y (23)

based on some estimates Â of A and �̂Z of �Z . For instance, one can estimate A and �Z by the
procedure given in (8), (9), (10) and (33), as these estimates have optimal convergence rates [13].

(b) Building on identity (5), using � − � = A�ZA� and writing B = A(A�A)−1, we can show
that

β =
[
B�(� − �)B

]−1
B�Cov(X,Y ). (24)

If A and �Z are unique up to signed permutations, then so is � = � − A�ZA�. Equipped with
Â, one can further estimate � via (30) and estimate B by B̂ = Â(Â�Â)−1. Then expression (24)
provides another way of estimating β via

β̂(A) =
[
B̂�(�̂ − �̂)B̂

]−1
B̂� 1

n
X�y. (25)

The two estimates are the same, β̃(A) = β̂(A), if �̂ = �̂ − Â�̂ZÂ� in (25). Since β̂(A) uses the diagonal
structure of �, it is expected to have better performance than β̃(A). However, both (23) and (25) require
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separate estimation of A and �Z by Â and �̂Z , respectively. In contrast, our estimator β̂ in (13)
estimates 
 = A�Z as a whole, leading to better rate performance as evidenced in the simulation
section. Furthermore, as we mentioned in Section 3, the proposed β̂ has a simple interpretation, as a
ordinary least squares estimator, relative to appropriately constructed predictors of Z, which makes it
more appealing in practice. We give the details in Section 5.

(c) Recall that XI = AI �Z +WI and AI � has full rank under model (2) and Assumption 1. By using
(4) and Cov(Z,Y ) = (A�

I �AI �)
−1A�

I �Cov(XI ,Y ), we find the identity

β = �−1
Z (A�

I �AI �)
−1A�

I �Cov(XI ,Y ) =
(
�ZA�

I �AI ��Z

)−1
�ZA�

I �Cov(XI ,Y ). (26)

This expression of β relies only on AI ��Z rather than the full matrix 
 = A�Z as in (5). This is
yet a different way of estimating β and identity (26) suggests the following estimator of β

β̂(I) = �̂−1
Z

(
Â�̂

I �
ÂÎ �

)−1
Â�̂

I �

1

n
X�y. (27)

In Appendix G, we state, without its lengthy proof due to space restrictions, that β̂(I ) has the same
convergence rate as (22) under Assumptions 1–4. However, we still recommend β̂ over β̂(I ) as β̂ has
better numerical performance and has a smaller asymptotic variance (see Theorem 4 and Theorem 31
in the Appendix). We also verify these points in the simulation study presented in Appendix I.

4.5. Component-wise asymptotic normality of ̂β

In this section, for ease of presentation, we assume that the signed permutation matrix P is identity
and we consider � = τ 2Ip and |Ik| = m for all k ∈ [K], but our proof holds for the general case and
the corresponding explicit, general, expression of the asymptotic variance is given in display (76) of
the Appendix.

The component-wise asymptotic normality of β̂ is proved under the challenging, but realistic, sce-
nario in which some of the non-pure variables are very close to the pure variables, justifying their
name, quasi-pure variables, introduced in Section 4.2 above. Allowing for this situation is similar to
relaxing the signal strength conditions used in the literature on support recovery. In our context, they
would correspond to requiring that the pure and non-pure variables are well separated, in that

min
j∈J

min
P∈HK

∥∥Aj �− P e1
∥∥

1 ≥ c
√

log(p ∨ n)/n

for some universal constant c > 0, an assumption that we do not make. We note that such assumption
would be equivalent to requiring ρ̄ = 0, for ρ̄ defined in (18).

In Section 4.2 we established the convergence rate of β̂ when ρ̄ �= 0, but satisfies Assumption 3. For
the asymptotic normality result, we can still allow for ρ̄ �= 0, but require it to be of the smaller size
stated in Assumption 3′.

Assumption 3′. The overall proportion ρ̄ satisfies ρ̄2 log(p ∨ n) = o(1/m) as n → ∞.

Assumption 5′. The K th eigenvalue λK = λK(A�ZA�) of A�ZA� satisfies

λK

/
p log(p ∨ n)√

n
→ ∞, as n → ∞.
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Theorem 4. Under Assumptions 1, 2, 3′, 4 and 5′, assume γw/τ = O(1) and γε/σ = O(1). Then, with
probability tending to one, K̂ = K , 
̂�
̂ is non-singular and for any 1 ≤ k ≤ K ,√

n/Vk(β̂k − βk)
d→ N (0,1) , as n → ∞,

where, with 
+ = (
�
)−1
�,

Vk =
(

σ 2 + τ 2

m
‖β‖2

2

)[
�kk + τ 2e�

k

(

�

)−1

ek

]
+ τ 4

m(m − 1)

K∑
a=1

β2
a

∑
i∈Ia

[
e�
k 
+ei

]2
. (28)

Furthermore, if additionally λK/τ 2 → ∞ holds, then

Vk =
(

σ 2 + τ 2

m
‖β‖2

2

)
�kk. (29)

Proof. The proof is deferred to Appendix E, and we offer insights into its main steps below. �

Outline of the proof of Theorem 4. There are four main steps in the proof. We briefly explain them
below and highlight the difficulties in each step.

In the classical approach of establishing the asymptotic normality for β̂k − βk , a crucial step is to
decompose the expression of β̂k −βk as a sum of independent mean-zero random variables, that serves
as the leading term, plus a remainder term of smaller order. The asymptotic variance of the main term
determines the asymptotic variance of β̂k − βk .

Under our setting (1) and (2), the first step of proving Theorem 4 is to establish such a decomposition
on the event that the dimensions of β̂ and β are equal. This event holds with overwhelming probability
tending to one. In display (75) of the proof, we show that indeed, on this event,

√
n(β̂k − βk) = 1√

n

n∑
i=1

ξik + √
n([Rem1]k + [Rem2]k),

with Rem1 and Rem2 defined in display (72). Each summand ξik is in turn a sum of four terms that
are bi-linear combinations of ε, Z and W . The ξik are independent and form a triangular array since
K and p may grow in n. Interestingly, if X = AZ and W = 0, ξik reduces to e�

k �−1
Z Zi �ε, the usual

error term in the analysis of the ordinary least squares estimator based on observed Z. For the two
remainder terms, we note that Rem1 depends on the error of estimating 
+ := (
�
)−1
�, while
Rem2 is induced by the existence of quasi-pure variables indexed by J1.

The second step of the proof is to calculate the first two moments of ξik via Lemmas 15 and 18,
which is relatively straightforward algebra.

In the third step, we apply Lyapunov’s central limit theorem to
∑n

i=1 ξik for triangular arrays. Veri-
fication of the Lyapunov condition requires calculation of the third moments of ξik . We rely on Rosen-
thal’s inequality and a careful analysis to accomplish this in Lemma 16.

The final, fourth step is to show that both [Rem1]k and [Rem2]k are negligible as n → ∞. This
requires a fair amount of work.

To control the remainder term Rem1, a key step is to provide upper bound for the quantity (
̂ −

)�
̂(
̂�
̂)−1 and even establishing the existence of (
̂�
̂)−1 requires a delicate analysis. Lemmas
10 and 13 are devoted to this goal. In order to ensure that [Rem1]k/√Vk = op(1), we need the signal
strength condition in Assumption 5′, which is slightly stronger relative to Assumption 5. Assumption
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5′ implies K log(p ∨ n) = o(
√

n), needed for analyzing the estimator of (
�
)−1, as we recall that
we allow for 
�
 to be general, in particular we do not impose any sparsity assumption on it.

The remainder term [Rem2]k is a complicated function of random quantities that involve sums or
maxima over the quasi-pure variable index set J1. If no such variable exists (ρ̄ = 0), then Rem2 = 0,
and the proof ends. However, since we allow for ρ̄ �= 0, it turns out to be challenging to show that√

n/Vk[Rem2]k still vanishes asymptotically under Assumption 3′. This is done in Lemmas 17 and 20.

In practice, estimation of Vk is required to construct valid confidence intervals for individual coor-
dinates of β . We propose a simple plug-in estimator V̂k by substituting σ 2, τ 2

i , |Ik|, β and � by their
estimates. Specifically, we use �̂ = �̂−1

Z and estimate σ 2 and τ 2
i by

τ̂ 2
i = �̂ii − Â�

i ��̂ZÂi �, for all i ∈ [p]; (30)

σ̂ 2 = 1

n
y�y − 2β̂�ĥ + β̂��̂Zβ̂ (31)

with

ĥ = 1

n

(
Â�̂

I �
ÂÎ �

)−1
Â�̂

I �
X�
�̂I

y. (32)

If either τ̂ 2
i or σ̂ 2 is negative, we set it to 0. We estimate AI � according to (9) – (10) and estimate AJ �

by using the Dantzig-type estimator ÂD proposed in [13] given by

Âj �= arg min
βj ∈RK

{
‖βj‖1 :

∥∥∥�̂Zβj − (Â�̂
I �

ÂÎ �)
−1Â�̂

I �
�̂Î j

∥∥∥∞ ≤ c
√

log(p ∨ n)/n
}

(33)

for any j ∈ Ĵ , with some constant c > 0. The estimator Â enjoys the optimal convergence rate of
maxj∈[p] ‖Âj �− Aj �‖q for any 1 ≤ q ≤ ∞ [13], Theorem 5. Finally, 
 is estimated by (12).

The next proposition shows that the plug-in estimator V̂k consistently estimates the asymptotic vari-
ance Vk of β̂k .

Proposition 5. Under the same conditions of Theorem 4, we have with probability tending to one,
K̂ = K and ∣∣∣V̂ 1/2

k /V
1/2
k − 1

∣∣∣= op(1).

Consequently, we have with probability tending to one, K̂ = K and√
n/V̂k(β̂k − βk)

d→ N(0,1), as n → ∞, k ∈ [K].

Proof. The proof of the consistency of V̂k is given in Appendix F and the rest of the proof follows
from Theorem 4 and an application of the Slutsky’s theorem. �

Remark 3. If we treat model (1) and (2) as an augmented factor model, the vector β simply corre-
sponds to a particular row of the augmented matrix Ã = [A�, β�]�. As mentioned in the Introduction,
and to the best of our knowledge, the only asymptotic normality results, with explicit asymptotic vari-
ance, have been derived in [6], when I and K are known, K is a fixed constant, and p → ∞. In this
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framework, [6] show√
n/Qk(β̃k − βk)

d→ N(0,1), with Qk =
(
σ 2 + τ 2‖β‖2

2

)
�kk, (34)

as n → ∞, for 1 ≤ k ≤ K , for an MLE-type estimator β̃ of β .
We discuss below the relative computational and theoretical enhancements offered by Theorem 4

above, first within their framework, and then beyond it.
At the computational level, [6] propose to estimate β via an alternating EM-algorithm, but offer no

guarantees that this estimator coincides with the MLE-type estimator β̃ that is theoretically studied.
In contrast, the estimator β̂ constructed in Section 3 is also the estimator analyzed theoretically in this
work.

At the theoretical level, the estimator β̃ of [6] is analyzed under

p � λK(A�ZA�) ≤ λ1(A�ZA�) � p, c ≤ λK(�Z) ≤ λ1(�Z) ≤ C (35)

for some constants 0 < c < C < ∞, among other technical assumptions. Our estimator β̂ is analyzed
under considerably weaker assumptions. For instance, our condition on λK(A�ZA�) in Assumption
5 considerably relaxes the above condition (35), we don’t require λ1(A�ZA�)  λK(A�ZA�), but
we allow the condition number of A�ZA� to grow as fast as n1/2/ log(p ∨ n). The latter follows from
Assumption 5′ in conjunction with the fact that λ1(A�ZA�) � p.

Furthermore, when (35) holds, ‖β‖2 is bounded and p → ∞, as assumed in [6], display (29) shows
that the asymptotic variance Vk of our estimator β̂k reduces to Qk given in (34) above, when m = 1
and I is known, as considered in [6].

In summary, Theorem 4 holds uniformly over β ∈ R
K , and for both fixed and growing dimensions

K and p, and whether I is known or not. While unifying these cases requires a much more complicated
analysis, the reward is that our asymptotic analysis, and in particular the asymptotic variance Vk can
be derived simultaneously for all cases of interest. Furthermore, we provide a consistent estimator of
Vk , which to the best of our knowledge has not been considered elsewhere.

5. Essential regression as regression on latent cluster centers

The decomposition (2) in our model formulation can be used as a model for possibly overlapping
clustering. For this, we interpret A as an allocation matrix that assigns the X-variables to possibly
overlapping groups Gk corresponding to the components of Z via

Gk = {j ∈ [p] : Ajk �= 0}.
This approach was first proposed in [13], and their algorithm, called LOVE, was shown to estimate
clusters consistently. With this interpretation, the quantity (at the population level)

X̄ := (A�A)−1A�X,

can be viewed as weighted cluster averages of all variables. As discussed in the Introduction, Essential
Regression provides a framework within which we can analyze when the commonly used cluster aver-
ages can be used for downstream analysis, with statistical guarantees. For inference on β , we remark
that, at the population level,

β = arg min
α

E

[(
Y − α�Z̃

)2] �= arg min
α

E

[(
Y − α�X̄

)2]
(36)
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Figure 2. Two representative clusters with their pure variables. (The overlapping variables between these two
clusters are more than the plot shows.)

where Z̃ is the best linear predictor (BLP) of Z from X̄, given by

Z̃ = Cov(Z, X̄)[Cov(X̄)]−1X̄ = 
�

(

��


)−1

�X. (37)

Display (36) suggests that estimation of β should be based on the BLP of Z rather than the weighted
cluster averages. This is indeed true. We let Ẑ = X
̂(
̂��̂
̂)−1
̂�
̂, which is well defined provided
that (
̂��̂
̂)−1 exists. The latter is met with high probability under Assumption 5. Consider the least
squares estimator β̃ corresponding to regressing y onto Z. Then

β̃ =
(

Ẑ�Ẑ
)−1

Ẑ�y =
(

̂�
̂
)−1 (


̂��̂
̂
)(


̂��̂
̂
)−1


̂�X�y = β̂,

by using �̂ = n−1X�X. This natural approach yields exactly the same estimator β̂ we introduced in
Section 3. We can thus view β̂ as a post-clustering estimator, and the results of Theorems 3 and 4 as
pertaining to post-clustering inference, at the factor level.

6. Analysis of SIV-vaccine induced humoral immune responses

We tested Esential Regression on a high-dimensional dataset of vaccine-induced humoral immune
responses, from a recently published study that demonstrated multiple antibody-centric mechanisms
of vaccine-induced protection against SIV [1], the non-human primate equivalent of HIV. The dataset
comprised p = 191 antibody functional and biophysical properties, including Fc effector functions,
glycosylation profiles and binding to Fc receptors. The properties were measured for n = 60 non-
human primates (NHPs). For each NHP, the level of protection offered by the vaccine (number of intra-
rectal SIV challenges after which the NHP got infected or whether the NHP remained uninfected after
the maximum number of challenges for the study, 12, normalized by the total number of challenges)
was used as the outcome Y ∈ [0,1] we regressed to.

One goal of the study was to determine the un-observed humoral signatures associated with the level
of protection offered by the vaccine Y , and suggests therefore a latent factor regression framework.
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In particular, the Essential Regression model is ideally suited for this data set, in light of prior bio-
logical knowledge on the measured X-variables: some of the measured antibody properties work in
tandem with several other properties (mixed-function variables), while others are part of individual im-
munological signatures (pure/single-function variables) [19,40]. For this data set we used the algorithm
developed in [13] to obtain an estimator K̂ = 10 of the number of factors.

We used the asymptotic normality of β̂ , established in Section 4.5 above, to determine the strength
of association between Y and the biologically interpretable immunological signatures. This task is
difficult to accomplish, with theoretical guarantees, outside a latent factor regression framework. Com-
mon existing approaches include standard regularized regression at the observed bio-marker level,
followed by an ad-hoc re-creation of clusters and cluster centers [1]. Although subsequent regression
of Y onto cluster centers, appropriately defined, can be easily performed, theoretical justifications of
such procedure is lacking. In contrast, Essential Regression coupled with Theorem 4 and Proposition
5 provides a principled way of regressing directly onto the latent cluster centers. Figure 2 depicts the
top two biological functions associated with the level of protection offered by the vaccine, under FDR-
control. The estimated coefficients are β̂1 = 0.104 with asymptotic 90% confidence interval [0,0.21],
and β̂2 = 0.105 with 90% asymptotic confidence interval [0.02,0.19], corresponding respectively to
Z1 on the left of Figure 2, and to Z2, on the right. On the basis of the pure and mixed variables in
the two associated clusters, Z1 and Z2 can be broadly defined as Polyfunctionality involving multiple
Fc effector functions and Enhanced IgG titers and FcR2A binding, respectively. These findings are in
excellent alignment with biological expectations, providing strong support for the applicability of the
methods and theory developed in this work even in data sets of modest sample size.
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