Loop Spaces and Operads

MARU SARAZOLA

This document serves as an introduction to operads and their algebras,
along with basic examples. We review the theory necessary to show May’s
recognition principle for loop spaces; namely, that every loop space QF X is
an algebra for the little k-cubes operad, and every connected little k-cubes
algebra has the weak homotopy type of a k-fold loop space [May72]. We
then follow Berger and Moerdijk [BMO02] and present a model structure
on the category of operads which allows us to show that every loop space
can be rectified to a topological monoid.

Recognizing loop spaces

In algebraic topology, one of the main ways to probe a space X is by looking
at maps from spheres S™ — X. If we fix a point * € X, we can define its nth
loop space 2" X as the space of all maps S™ — X taking the north pole to *,
with the compact open topology. Loop spaces are of great importance, and so
it makes sense to wonder when a given space X is of the homotopy type of a
k-fold loop space QFY for some other space Y.

Let’s start by looking at QY. Some properties are easy to pin down; first on
the list is the fact that we have a binary operation

p: QY x QY —- QY

given by concatenation of loops. As we well know, this operation is not asso-
ciative: p(1 x p) and p(p x 1) are not equal, but instead differ by a change of
parametrization.
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However, there is a homotopy h between these maps, which we can easily rep-
resent as
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and which makes p a homotopy associative operation, that is, associative up to
homotopy.

What happens when we try to multiply four maps? Well, if we remember
our choice of homotopy A for multiplying three maps, we get homotopies
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f1(fa(f3fa)) ECE L (f1.f2)(f3fa) RCELE ((f1f2)f3)fa

and once again, we can find a homotopy between these homotopies! Iterating
this process, we see that by remembering our choices of homotopies along the
way, we get that loop composition is an operation that’s associative up to ho-
motopy, with homotopies between these homotopies, and homotopies between
those, and so on.

How can we keep track of all of this structure in a reasonable way? Note
that we can encode each possible way of composing n loops as an embedding
of n copies of the unit interval I into itself, as we did in a previous picture for
two cases of n = 3. Asking for these higher homotopies that we find in the loop
space scenario essentially boils down to making sure each of these spaces of n
embeddings is contractible.

What about iterated loop spaces? Following the same train of thought, we
can encode a composition of n maps S¥ — X as an embedding of n copies of the
cube I* into itself. Aside from having all higher homotopies for associativity,
we know that a space that can be delooped twice will have a product that’s
commutative up to homotopy. Moreover, one can see that the number of times
the space can be delooped corresponds to how many levels of higher homotopies
one has for commutativity, and this in turn is given by the connectivity of these
spaces of embeddings.

By this point, it looks like there has to be a connection between loop spaces
and some adequate spaces encoding embeddings, since these seem to capture
many essential properties. But even if this connection is apparent, it is still far
from obvious to what extent they can actually be used to characterize (iterated)
loop spaces. Our goal will be to show a sketch of the following result:

Theorem 1 (May). There exists an operad Cy, suitably encoding embeddings of
copies of I* into itself, with the property that every loop space QX is a Cj-
algebra. “Conversely”, every connected Cy-algebra has the weak homotopy type
of a k-fold loop space.

Operads and their algebras

A key component in our main theorem is the notion of operad and that of
algebra for an operad, so we will start by introducing them, assuming basic
notions from category theory.

Conceptually, an operad O consists of a family of sets {O(n)},>0, where
each O(n) is interpreted as a set of abstract “n-ary operations”, together with
structure maps indicating how composition behaves.

The following insightful representation, found in a review written by John
Baez[Bae02], is good to keep in mind before moving on to a more formal defini-
tion: if we think about these abstract n-ary operations as black boxes with one



wire coming in for each input and one coming out for the output,

we require the following:

e There should be a way to compose an n-ary operation with n other oper-
ations, which we can interpret as the grafting of the boxes
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e Composition should be associative, allowing us to make sense of a picture

like
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e There must exist a unary operation that acts as an identity for composition



in the two obvious ways.

e Permuting the inputs of an n-ary operation gives us a new operation

W

in such a way that this constitutes a right action of the permutation group
Sy, on the set O(n).

e Compositions must be compatible with the actions, as represented by

Let’s formally define all of this!

Definition 2. An operad in a (strict) symmetric monoidal category C is a
family of objects {O(n)},>0, together with morphisms

Tnimy,...,ma - (’)(n) & O(ml) R O(mn) - O(ml et mn)
satisfying the following axioms:

e Associativity. The following diagram commutes
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where p uses the symmetry in C to permute the factors accordingly.

e Unit. If 1 is the unit object of C, then there exists a morphism 7 : 1 — O(1)
such that the compositions

o) @ 18" 227 oy e 01) ® - © 0(1) M o)

1 O0(m) 225 0(1) ® O(m) 222 O(m)

are the right and left unit morphisms given by the monoidal structure in

C.
e Action. Each O(n) admits a right action by S,,.

e Fquivariance. Given o € S, the following diagram commutes

O(n) @ O(m1) &+ & Omn) = O(n) ® O(Mg-1(1)) ® -+ ® O(Mg-1(r))

J/’Yn;'mafl(l) ,,,,, 7"0*1(n)

o®1 O(my+---+my)

lamb---,"m

O(n) ® O(m1) @ -+ ® O(my,) _ Ommamn O(my + - +my)

where 0, ,....m, takes a tuple of m; + --- + m,, elements, splits it into n
blocks of lengths my,...,m, (in that order) and permutes the blocks by
applying the action of o.

Operads form a category Op(C), where a morphism of operads is a collection
of morphisms {O(n) — P(n)}n>0 preserving compositions, units, and the action
of the S,,’s.

Let’s take a look at some examples.



Example 3. When it comes to examples, perhaps the most notable case is the
one of the endomorphism operad. For an object X in a symmetric monoidal
closed category C, the operad £ndy is defined as

Endx(n) = Hom(X®", X)

where composition
Yoo reem  Endx (N)@End x (M1) @+ - @Endx (my) — Endx(mi+---+my,)
is given as follows:

If C = Set, then

Vrymayeomn (fs 915 gn) = fo (g1 X+ X gn)

More generally, the element
Vnma,...omn € C(ENdx (N)@ENdx (M) @ - - @Endx(my,),Endx (mi+---+my))
is defined as the transpose of the map

JeC((Endx(n) ®Endx(my) ® -+ @ Endx (my,)) @ XEmM T tmn X))

given by the composition

(57de(n) ®@Endx(m1) ®@ -+ ® 5ndX(mn)) ® X ®mat-tmn

|

Endx(n) ® (Endx(my) ® X))@ -+ @ (Endx (my,) @ XO™n)

J{l@ev(@"

EndxM)@X®@---@X

Jev

X

The unit n : 1 — Endx (1) = Hom(X, X) is the transpose of the unit isomor-
phism 1® X ~ X, which in the case of Set turns out to be the identity map, and
the right action of S,, on £ndx is given by acting on X®" using the monoidal
structure of C.

We will soon be able to appreciate the importance of this operad in the
bigger picture.

Ezample 4. Denote by S the cartesian category whose objects are the natural
numbers, identified with the sets [n] = {1,...,n}, and whose only maps are the
permutations S,.

Permutation groups form an operad over the category S, with

O(n) =5,
and composition given by
Yrgmremp © 90 X Sy X oo X S = Sy,

(07 Pls--- 7pn) = Omy,...,m, © (Pl X X pn)
so, split the tuple of my +- - - +m,, numbers into n blocks of lengths my,...,m,,
act within the ¢-th block as prescribed by p;, and then permute the blocks
according to o.



Example 5. The associative operad is defined by
Ass(n) = H 1
Sn

where compositions and S, actions are induced by the operad structure of the
permutation groups as shown in example 4.

Ezample 6. The commutative operad is
Com(n) =1
the monoidal unit, where all compositions consist of the unit isomorphisms
1(1l®--®1) —— 1

The following is a historically relevant example, being the main reason op-
erads were defined and what convinced many mathematicians that their study
was worthwhile —not to mention, why we’re doing all this in the first place.

Example 7. Let I*¥ denote the standard k-dimensional unit cube in R*. A little
k-cube is a linear embedding ¢ : I¥ — I* with parallel axes, that is, a map

c(try . tn) = (cH(t1),...,c"(tn)), ti €T
where ¢ : I — I is a linear function of the form
Ht) = (1 —t)w; +ty; with 0 <y <y <1

This means each function ¢’ takes the interval [0, 1] to an interval [z;,y;] inside
of [0, 1].
The little k-cubes operad Cy, consists of the spaces

Cr(n) = 1Emb(] ] I*,1%)

of linear embeddings , so an element is an n-tuple (cy,...,cy) of little k-cubes,
such that the interior of the images c;(I*) are mutually disjoint. As a topolog-
ical space, we identify Ci(n) with a subspace of R?*" using the {z;,y;}X_, as
coordinates.

An element of C(n) looks like a k-cube with n little disjoint k-cubes inside
it. The symmetric groups S,, act on Ci(n) by permuting the labels of the n
little cubes, and composition is defined by iterating embeddings as shown in the
following picture:

S —
2 [ : he

Note that for every k there exists an injective operad morphism Cy < Ci41
given by “embedding into the equator”, and it is with respect to these inclusions
that we define Co, = colim Cy,.



Operads are not all that interesting by themselves; usually the real purpose
is to study their algebras. The following is the definition of algebra over an
operad, which mirrors that of a module over a ring. Recall that one can define
a module M over a ring R to be an abelian group along with a morphism

R — Hom(M, M)
where we consider the Hom functor internal to abelian groups. Similarly;

Definition 8. Let O be an operad in a symmetric monoidal closed category C.
An algebra for O is an object X together with an operad morphism

a:0 — Endx

that is, a collection of morphisms a, : O(n) — Hom(X®", X) that is compatible
with compositions, units, and the actions of S,,.

Equivalently, using the adjunction we can describe an algebra structure on
X as a family of morphisms

an:O(n) @ X% — X

which are compatible with compositions, the unit, and are S,-equivariant (here
the action of S,, on the target X is the trivial one).

Given an operad O, its algebras form a category which we denote O-Alg.
A morphism of O-algebras is a map ¢ : X — Y in C that makes the following
diagram commute

OéX
On) @ Xo 2, X

1®¢®nl l@
Y

On)@Y®e" 22,y

Note that a map of operads O — P induces a “change of rings” type of map
P-Alg — O-Alg given by O — P — Endx.

We can now understand why £ndyx is so important: every object X has a
canonical End x-algebra structure via id : Endx — Endx, or equivalently, via
the evaluation morphisms Hom(X®" X) ® X®"* — X, and thus Endx is in
some sense the universal operad acting on X, since definition 8 tells us that
every other operad action must factor through that of Endx.

Also, we can see that the definition of operad algebras is what motivates the
idea of operads as abstract n-ary operations, since having an algebra structure
on X means that each element of O(n) will be given an interpretation as an
element of Hom(X®", X'). With this in mind, it is only natural that Endx, the
object of all n-ary operations on X, plays a major role in the theory.

Example 9. Algebras over Ass are associative unital monoids, explaining this
operad’s name.

Proof. [Frel7, Prop. 1.1.17] Let M be an associative unital monoid, with mul-
tiplication p: M ® M — M and unit n : 1 - M. We want to define an algebra
structure on M, that is, a collection of maps

Ass(n) — Endpr(n)



Given a permutation ¢ € S, we associate to its corresponding element in
Ass(n) the morphism f, : M®" — M that takes an n-tuple, permutes it via o,
and multiplies the elements by iterating u. If our category had elements, the
explicit expression for f would be

f(mlv'“amn) = Mg(1) -+ Mg (n)

When n = 0, we associate to the unique (trivial) permutation idy € Sy the
unit map n: 1 = M®° — M.

In the other direction, given an algebra structure on M we can consider the
map 1 : 1 — M associated to the trivial permutation idg € Sy, and the map
uw: M®M — M associated to the trivial permutation ids € Ss. The map
associated to the trivial permutation id; € S;, which denotes the unit of the
operad Ass, acts as the identity map on M.

From the identities

iy (ido, id;) = idy = id(idy, ido)

and
ida(ida, idy) = idg = ida(idy, ids)

in Ass we (respectively) deduce the unit condition
po(n®ln) ~1y = po(ly ®@n)
and the associativity relation
po(p®@ly)=po(ly ®pu)
in M. O

Note that the associative operad has exactly n! elements in its set on n-
ary operations, representing the fact that in an associative monoid we have
precisely n! ways of multiplying n elements, one for each possible ordering,
since parenthesising is rendered useless because of the associativity.

Ezxample 10. Similarly to the previous example, it’s not hard to show that
algebras over Com are commutative (associative, unital) monoids.
All the same arguments apply, with the following addition: the instance

Com(2) ® M®2 127, Com(2) ® M®?2

|oe1 o

Com(2) @ M®? ——*— M
of the equivariance axiom for o = (1,2) implies that
ao(oc®@1)({*} ®@mi ® my) = mims
is equal to
ao(1@o)({*}®@m1 ®@ms) = a({*x} @me ® my) = mamy

and then the binary operation must be commutative.



One of the following sections will be devoted to characterizing algebras for
the little k-cubes operad. But before delving into that, we must establish a
relation between operads and another familiar type of structure.

Operads and monads

Let’s start by recalling some basic definitions.

Definition 11. Let C be any category. A monad in C is an endofunctor T :
C — C together with a multiplication transformation p : 72 = T and a unit
transformation 7 : 1 = T making the diagrams below commute

T AT 2 éTW T T3 T#; T2
N A for |
T T2 =t> T

Definition 12. If T : C — C is a monad, then a T-algebra is an object X in
C together with an algebra structure map 6 : TX — X such that the following
diagrams are commutative

X 1. TXx 72X L%, TX
& le lﬂ le
X X —% 4 X

For any object X in C, it is always the case that (TX,u: T?X — TX) is a
T-algebra, which we call the free T-algebra generated by X.
We are interested in two ways through which we can define a monad.

Proposition 13 (Monad associated to an adjunction). Let F' : C — D and
U : D — C be adjoint functors, that is, there exists an isomorphism

D(FC, D) = C(C,UD)

or equivalently, unit and counit natural transformations n : 1l¢ = UF and
€: FU = 1p such that the compositions

F- 2 FUF £ F

U2, uru YUy

are the identity transformations on F and G.

Then UF : C — C is a monad, with multiplication p = UeF : UFUF = UF
and unitn:1=UF.

Ezample 14. Let X denote the reduced suspension functor, and recall the ad-
junction
Hom, (XX,Y) & Hom, (X, QY)

of pointed maps and pointed spaces. Note that

Hom, (£%X,Y) 2 Hom, (XX, QY) = Hom, (X, Q?Y)

10



and so by iterating this adjunction we get that
Hom, (2FX,Y) = Hom, (X, QFY)

Therefore, proposition 13 implies 2*3* has a canonical monad structure.
Consider the maps

o QFEFX — QFFIgkH Y
taking amap f € Q*YFX = Hom, (S*, X¥X) to the map o (f) € QFFITrHIX =
Hom, (S*+1, k41 X) given by
NI L5 NCERS s ¢
Note that each oy, is an inclusion, and it’s with respect to these that we define
Q%> = colim QFxF

This will also be a monad, with product o, = colim py and unit 7. = colim 7.

Now, given an operad O, we will show a way to define a monad whose
algebras coincide with those of O. Define maps o; : O(j) — O(j — 1) for
0 <i<jbyoi(f)=~(f,si) where

si=1"xxx ™17 O(1)" x 0(0) x O(1)I~+*
Also, let s; : X7~ — X7 be the map
si(xl, e 7I’j_1) = (5617 ey Ly, *7l’i+17 e 717]'—1)

Proposition 15 (Monad associated to an operad). [May72, Constr. 2.4] Let O
be an operad, and X an object in C. We define O : C — C, the monad associated
to the operad O, as

0X =JJoG) x X7/ ~
]
where

(oif,x) ~ (f,si) and  (fo,x) ~ (f,0x)

If we denote the image of (f,x) in OX by [f, x|, then, given a map g : X —
X', define Og : OX — OX' by Oglf,x] = [f, g’z]. For the monad structure, we
define the multiplication and unit transformations by

n(F 2 e 12 = O e ), ()]
n(x) = [n(1), 2]
(note that 02X = [1,0(j) x (0X)/] ~= 11, 0() x (II, O(i) x X'/ ~)i/ ~)

The following result shows the relation between the operad O and its asso-
ciated monad O.

Theorem 16. [May72, Prop. 2.8] Let O be an operad and O its associated
monad. Then there is a one-to-one correspondence between O-algebras and O-
algebras.

11



Proof. Let X be an O-algebra, with structure maps a,, : O(n) x X™ — X. We
define a map a : OX = []; O(j) x X7/ ~—s X by alf,z] = a,(f, ).
Conversely, given an O-algebra X with algebra map a : OX =] ; O(j) x
X7/ ~— X, we can make it into an O-algebra by defining structure maps
an:O0(n) x X" = X as an(f,z) = off, z].
It’s a routine problem to check that « is well defined, and that all the
corresponding diagrams commute. O

The bar construction

Let’s go back to the simplest instance of our problem: given a space X, we
want to know if X is a loop space; that is, if there exists a space Y such that
X ~ QY. When our space is a topological group G, the answer is affirmative:
we can define its classifying space BG, and we know that G ~ QBG [Hat02,
Prop. 4.66]. With this in mind, our approach will be to show that all Cx-algebras
admit a generalization of a classifying space satisfying this same property.

Let’s start by recalling the construction of the space BG. If we look at G
as a one-object category, then BG is defined as the geometric realization of the
nerve of G. Explicitly,

BG = |B.G]

where B,G is the simplicial space with components
B,G =G",

face maps d' : B, 411G — B, G given by

® (90:--:9n) = (915, 9n), for i =0

® (goy---s9n) — (G0s- -1 GiGit1, -y gn), for 0 <i<mn

e (g0y---y9n) = (goy---ygn-1), fori=n
and degeneracy maps s’ : B,,G — B, 41G given by

(905, 9n—1) — (g0s---+Gi-1,1,Gi, -, Gn—1)
In order to generalize this construction, we introduce the following notion.

Definition 17. Given a monad T on C, a functor F' : C — D is said to be a
T-functor if T acts on F' on the right via a natural transformation A\ : FT = F|
which is required to satisfy analogue conditions for those of a T-algebra structure
map. Namely, the following diagrams must commute:

F =24 BT T2 _E pp

DN

FT =2 T

Remark 18. It follows from this definition, and that of a monad, that T is always
a T-functor.

12



Now, given a triple (F,T, X) where T is a monad, F' a T-functor and X a
T-algebra, we can construct a simplicial object B, (F, T, X) where

By(F,T,X)=FTX,
the face maps are given by
e the T-functor structure map FT — F, for i =0
e the multiplication T2 — T, for 0 < i < ¢
e the algebra structure map TX — X, for i = ¢

and the degeneracy maps are given by n: 1 — T.

Example 19. If G is a topological group, we can use the group product and unit
to define a monad G : Top — Top by G(X) = G x X.
This allows us to recover the usual classifying space of G:

BG = |B.(x, G, *)|
The main result

We finally have all the tools we need to give a sketch of the proof of the
following result:

Theorem 20. [May72, Thm. 15.1] Let Cy, denote the little k cubes operad, for
1 < k < o0o. Then every loop space QX is a Ci-algebra, and every connected
Ci-algebra has the weak homotopy type of a k-fold loop space.

Proof. The easy part: defining an action oy, : Cp, = Endar x-
First consider k < oo; for a fixed n, we define

Qo Cp(n) @ (X)) — QFX

as follows: denote an element A € (Q*X)" as a tuple (\1,...,\,) of maps
i @ (I%,01%) — (X, %), and a little k-cube in Ck(n) as (c1...,c,), where ¢
are the numbered smaller cubes inside I*. Then, aj ,((c1...,¢c,),A) is defined

as the map (I*,0I%) — (X, ) which is )\; (rescaled) on ¢;, and which maps

everything in the complement of the n cubes to the basepoint *. Staring at the

action for a bit is probably enough to convince yourself that this actually works.
Note that in the case X = QY’, the actions are coherent

Ce(n) ® (QFQY)" 257 QkQY
axll Qht1m
Crr1(n) ® (Q*QY)"

where o : Cp < Ciy1 denotes the embedding, and so they induce an action
Coo(n) ® (X)) — Q> X.

A sketch of the sophisticated part:

Due to construction 15 and theorem 16, we know there exists a monad Cj
whose algebras are the algebras of the operad Cj. Recalling the monad QFX*

13



from example 14, we can define a morphism of monads py : Cy — QFXF given
by the composition

OLX -G, o akskx %, vk x

(recall that an action map of the operad Cj over Y corresponds to an algebra-
structure map CY — Y).
With considerable effort, it’s possible to show ([May72, Thm. 6.1]) that if
X is connected, then py, : C1, X — QF¥FX is a weak homotopy equivalence.
We now use the bar construction to find a “simplicial resolution” of our space
X. From remark 18, we know that every monad T is a T-functor; in particular,
C is a C-functor and it makes sense to consider the simplicial space

B*(CkyckaX)

Let X, denote the simplicial object with X at every level and 1 : X — X as
face and degeneracy maps. The map

B*(Ck,Ck,X) — X*

q
C’EHX ELAENYH' LIEN'¢
is a homotopy equivalence, with inverse

X, = B,(Ci,Cy, X)

q+1
X 21— oft'x

Recalling that, by definition of algebra over a monad, the following diagrams
are commutative

X 15 X o2x o o x

\‘ J{(Gk leQk ” l&k

O X — % 5 x

we can see that
nt? +1 nl 0
X —— C’Z X — O X — X

is the identity on X. For the other composition, we can define a simplicial
homotopy

i . i+1
hi: O X L ot X T OfPPX

and see with some work that everything checks out.

For completeness’ sake —and because I find it impossible to remember— we
include the definition of simplicial homotopy. As expected, it can be defined
by mimicking the definition of homotopy in Top, or by using the combinatorial
structure of simplicial objects.

14



Definition 21. A homotopy between two morphisms of simplicial objects
fyg : X = Y is a morphism H : X x A[l] — Y that makes the following
diagram commute

X~ X x AJ0] 9% x x AR X x o Al0] ~ X
H

\Y/

Equivalently, a simplicial homotopy is a family of morphisms h; : X,, = Y, 1
for i =0,...,n and for every n, such that

dOhO = fna dnJrlhn = 0gn

and
hj_1d;, 1<j
dihj = dihi—1, i=3j#0
hjdi_l, 1>354+1
sihj = hytasi, Z Sj
hjsi—1, > ]

Going back to our proof, so far we have homotopies
X 2| X,| +— [Bi(C, Ck, X))

Next, we can see that the monad map py : C, — QF%F constructed pre-
viously, together with its transpose pf : $¥Cy X — ¥*X via the adjunction
¥k 4 QF make QFSF and ¥F into Cj-functors:

kakpk

QFskC, QFekQksk By QFyk

Pk# k
RO s %
Therefore, we can consider the simplicial spaces
B*(kakvckvX) 3 B*(Zk7ckaX)

Since py : CpX — QFYFX is a weak homotopy equivalence, it induces a
weak homotopy equivalence

B,(C, Cr, X) — B,(Q*ZF Oy, X)

~

Finally, using the fact that there exists a weak homotopy equivalence |Q{Y}, }| &
QY. }| whenever {Y;,} is a nice enough simplicial object, we get a chain of weak
homotopy equivalences

X 2 |X,| + |Bi(Cy, Cr, X)| — |BL(QFZF Cr, X)| — QF| B (2F, O, X))

which gives us a precise description of X as a k-fold loop space!

15



Remark 22. The use of the monad QF%F is far from coincidental. Note that a
map X — X' determines and is determined by a loop map QX — QFX’. and

SO
Hom, (ZF X, Y) ~ Homyops (2 EF X, QFY)

But we also know that
Hom, (¥ X,Y) ~ Hom, (X, QFY)
so we conclude that
Hom, (X, QFY) ~ Homyops (QFEF X, QFY)
which makes QF¥*X the free k-fold loop space generated by X.
Rectifying loop spaces

From now on we will focus on the little intervals operad C;. From theorem 20,
we know that every C;-algebra X is weakly equivalent to a loop space, X ~ QY.
We also know from our previous discussion that loop spaces are associative and
unital up to coherent homotopy, but never strictly. What is the relation between
C1-algebras and strict topological monoids?

If we start with a topological monoid M with unit 1 € M and product
m: M x M — M, then we can give M a C;-algebra structure as follows:

C1(0) » Hom(x, X), 1
C1(1) - Hom(X, X), c+—idx
Ci1(2) - Hom(X?2 X), ¢+ mo,
X°, X)

Ci1(3) = Hom(X3 X), ¢ m(l x m)o.

Where 0. denotes the permutation that gives ¢ its numbering, read left to right.
We are not making any arbitrary choices here, since the associativity of m
ensures that all possible ways to multiply n elements will coincide. Our goal
will be to show the closest thing to a converse that we are able to get; namely,
that every cofibrant Ci-algebra can be rectified to a topological monoid.

Fortunately, we know of an operad whose precise purpose is to model asso-
ciative unital monoids in any category: the associative operad (recall examples
5 and 9). Thus, our strategy will be to relate the operads C; and Ass in a way
that gives us the relation that we need between their categories of algebras.

Here is a glimpse of how this will work: we will define a model structure on
the category of operads over a given symmetric monoidal closed model category,
and show that both our operads satisfy a weaker version of cofibrancy. Next,
we will construct a weak equivalence

Ci ——=— Ass
and explain how this implies we have a Quillen equivalence
Ci-Alg = Ass-Alg
for a suitable model structure on the categories of algebras, which will yield our

rectification property. This section follows [BMO02].
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Some preliminaries on model categories

Definition 23. A monoidal model category is a closed symmetric monoidal
category together with a model structure satisfying the pushout-product axiom:

Given cofibrations f: X — Y and f’': X’ — Y”, the induced map from the
pushout

XX — Y X'

YeY’

is a cofibration, and it is trivial if either f or f’ are. Formally we should also
require another axiom, which becomes irrelevant if we assume the unit object
is cofibrant.

Remark 24. 1t’s tedious (but not hard) to show that a category will satisfy the
pushout-product axiom if and only if it satisfies its dual, the pull back-Hom
axiom:

For a cofibration f : X < Y and a fibration f’: X’ — Y”, the induced map
to the pull back

Hom(Y, X’)

Hom(Y,Y’) —— Hom(X,Y”)

is a fibration, and it is trivial if either f or f’ are.

We now show a handy result about model categories, from which we deduce
a lemma we will use on multiple occasions.

Lemma 25. [Ken Brown’s lemma][Hov99, 1.1.12] Let C be a model category
and D a category with weak equivalences which satisfy the two out of three az-
iom. Suppose F : C — D is a functor which takes trivial cofibrations between
cofibrant objects to weak equivalences. Then F takes all weak equivalences be-
tween cofibrant objects to weak equivalences (and the dual version is, of course,
also true).

Proof. Suppose f : X — Y is a weak equivalence of cofibrant objects. Factor
the map (f,15) : X[[Y = Y as

X]_[Y=T>Z—;»Y
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The pushout diagram

00— X

Y — XY
shows that the inclusion mapsi; : X — X [[Y and iy : Y — X [[Y are cofibra-
tions. By the two out of three axiom, both ¢i; and gis are weak equivalences,
hence trivial cofibrations (of cofibrant objects). By hypothesis, we then have
that both F(qi;) and F(qiz) are weak equivalences. Since F(pgiz) = F(1p) is
also a weak equivalence, we conclude from the two out of three axiom that F'(p)

is a weak equivalence, and hence that F(f) = F(pgi1) is a weak equivalence, as
required. O

Lemma 26. [BM02, 2.8] Let f : X — Y be a map between cofibrant objects
of a monoidal model category. If f is a weak equivalence, then for every fibrant
object Z, the induced map f* : Z¥ — ZX is a weak equivalence.

Proof. If f is a trivial cofibration, we can apply the pull back-Hom axiom to the

maps X —~— Y and Z — 1 and conclude that f* : Z¥ — Z%X must be a
weak equivalence. Ken Brown’s lemma (25) allows us to conclude the proof O

The following transfer principle will be crucial in constructing the desired
model structures on the categories of operads and operad algebras:

Theorem 27. Let D be a cofibrantly generated model category and let
F:DsE:G

be an adjunction with left adjoint F' and right adjoint G. Assume that £ has
small colimits and finite limits. Define a map f in € to be a weak equivalence
(resp.  fibration) iff G(f) is a weak equivalence (resp. fibration). Then this
defines a cofibrantly generated model structure on £ provided

1. the functor F preserves small objects;
2. &€ has a fibrant replacement functor;

3. € has functorial path-objects for fibrant objects, that is, for every fibrant
X there exists a functorial factorization of its diagonal as

X —=— Path(X) —» X x X

The proof of this theorem can be easily adapted from [SS00, Lemma 2.3],
where the authors assume every object to be fibrant. Clearly, the first hypothesis
is there so that we can use the small object argument for F'(I) and F(J), where
I (resp. J) denote the generating sets of cofibrations (resp. trivial cofibrations)
in D. The other two, which are perhaps a bit obscure at a first glance, are used
to obtain some notion of right homotopy, and relate the maps in F'(J) to trivial
cofibrations in &.

Model structure on operads and their algebras
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For a discrete group G, denote by £ the category of objects of £ with a
(right) G-action. If € is a symmetric monoidal closed category, then so is £,
and we have a free-forgetful adjunction

F: £EsEY.U

where F(X) =[], X. If we consider the permutation groups, we can define the
category of collections by
Coll(&) = ] &5

n>0

If our free-forgetful adjunction satisfies the hypotheses for the transfer princi-
ple, then the model structure on £ will induce a product model structure on
Coll(€), and we can apply our transfer principle once again to the free-forgetful
adjunction

F:Coll(§) S 0p(€):U

to obtain a model structure on the category of operads over £. Here U is the
functor that forgets the unit and compositions, and F' is the free operad functor.

Since the model structure on Op(E) relies on it, we take a moment to de-
scribe the construction of the free operad functor

F: Coll(&) — Op(€&)

Let T be the category of finite rooted planar trees, and non-planar isomor-
phisms. Each edge has an orientation (going downwards), and any tree will have
three kinds of edges: internal edges with a vertex at the beginning as well as
at the end, input edges with a vertex only at the end, and one outgoing edge,
called the output of the tree, with the root vertex as its beginning and no vertex
at its end.

Any tree T with a root having n incoming edges decomposes canonically into
n trees 11, ...,T, whose outputs are grafted upon the inputs of the tree ¢,, with
one vertex and n inputs. We denote this grafting operation by
T=t,(Th,...,Ty).

Note that the number of vertices of each T; is strictly less than the number
of vertices of T, which allows for inductive definitions. Any tree isomorphism
¢ : T — T decomposes as ¢ = o(p1,--.,@n) with isomorphisms o : ¢, — t,
and @; : T; — 17 .

For any collection C we define a functor C' : T°? — £ by setting inductively
C(]) =1 and

C(T)=C(tn(Th,....,T0)=C(n)@C(T)® - @ C(T,)
On morphisms, for a map ¢ : T'— T, we get again by induction
Cp=0C(p1,---,0n) =0 @ CPs-1(1) @+ @ CPg-1(n)

Finally, define T(n) = {T' € T : T has n inputs}. The inputs of a tree
in T(n) admit n! different numberings, so we associate to it the object [[g 1.
Then, an automorphism ¢ : T' — T induces a permutation on the factors of

s, 1.

We use all this information to define the free operad functor,

F: Coll(€) — Op(€)

19



FCn)= J[ C(T)®aur ls,1
(T]€T(n)/~
where T(n)/ ~ denotes the isomorphism classes of trees.
Now that we have a good understanding of the key adjunction involved, let’s
start by proving we can define a model structure on £ by transfer.

Proposition 28. For any cofibrantly generated, symmetric monoidal closed
model category € with cofibrant unit, the adjunction F : £ = £F : U satisfies
the hypotheses of the transfer principle.

Proof. Since limits and colimits in £ are computed pointwise, we trivially have
U(colim X;) = colim U (X;) and so U preserves (filtered) colimits.

Now, & is cofibrantly generated and therefore has a fibrant replacement
functor (the one given by the small object argument, if nothing else). Given,
X € £Y, consider its fibrant replacement in &,

X "5 X~ ——1
Then, X~ € £ by composing the functors

G— eV, ¢

b X — X7~

and X —~— X~ is a map in £ due to the fact that ()™ is functorial.
Let X be a fibrant object in £. Consider the folding map 1]]1 — 1 and
factor it using the model structure in £ as

11l — J — 1

(note that 1 is also in £, with the trivial action). Then, we have
Xoext— X — XX x X

where, like before, one can easily see these to be G-maps between G-objects. It
remains to show that this composition consists of a weak equivalence followed
by a fibration (since it was already constructed in a functorial manner).

For the first map, note that the fact that 1 is cofibrant implies 1]] 1 is too,
and so the cofibration 1]]1 < J makes J cofibrant as well. Then, since X
is fibrant we can use lemma 26 for the weak equivalence J —» 1 to get that
X' — X7 is a weak equivalence.

Finally, we apply the pull back-Hom axiom to the maps 1][1 — J and
X — 1 and conclude that X7 — P = X' is a fibration. O

Now we move on to the second part of our proof: we have shown that
Coll(€) is a (cofibrantly generated) model category, and so we apply the transfer
principle to the adjunction

F:Coll(€) = 0p(€):U

to define a model structure on the category of operads.
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Theorem 29. [BM02, Thm. 3.2] Let £ be a cofibrantly generated, cartesian
closed model category with cofibrant unit, possessing a symmetric monoidal fi-
brant replacement functor. Then, there exists a cofibrantly generated model
structure on Op(E) where a map P — Q 1is a weak equivalence (resp. fibration)
if and only if the map P(n) — Q(n) is a weak equivalence (resp. fibration) in
E, for every n.

Proof. Once again, we will check the hypotheses for the transfer principle. First,
note that the forgetful functor trivially preserves (filtered) colimits.

Let’s define a fibrant replacement functor in Op(€). For an operad P, we
define its fibrant replacement P~ as the operad P~ (n) = (P(n))~. Here the S,
action is given by

P~(n) —Z— P~(n)
using the fact that ( )™ is a functor, and the operad structure maps are defined
as

where the first isomorphism is given by ( )™ being symmetric monoidal. Note
that this is functorial because ( )™ is, and that it was defined to be an operad
map.

Now, given a fibrant operad P (that is, an operad such that each P(n) is
fibrant in &), we will define a functorial path object

P —— Path(P) —» P x P

This will be done just like in Prop. 28: we factor the folding map 1]]J1 — 1
using the model structure in £ as

1l — J —>»1
and then claim that our path object sequence will be given by
PPl — P/ —pHlapxp

Here we define PX as the operad PX(n) = Hom(X,P(n)), with S,, action
given by

Hom(X,P(n)) Hom(X,0) Hom(X,P(n))
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and operad structure given by

Hom(X,P(n)) x Hom(X, P(my)) x --- x Hom(X, P(my))

E

Hom(X,P(n) x P(my) x --- x P(my))
Jom(x.2)
Hom(X,P(my + -+ +my))

where the isomorphism is due to the fact that, in a cartesian closed category,
exponentiation is symmetric monoidal.

It’s easy to see from the definition that all maps in our sequence are operad
maps, so it suffices to show that the composition consists of a weak equivalence
followed by a fibration (since it was already constructed in a functorial manner).

For the first map, the fact that 1 is cofibrant implies 1]]1 is too, and so
the cofibration 1] 1 < J makes J cofibrant as well. Then, since each P(n) is
fibrant, we can use lemma 26 for the weak equivalence J — 1 to get that each
P(n)! — P(n)” is a weak equivalence, and therefore, P* — P7 is a weak
equivalence.

Finally, we apply the pull back-Hom axiom to the maps 1][1 < J and
P(n) — 1 for each n and conclude that each P(n)’ — P(n)* ! is a fibration,
and then so is P/ — P, O

Example 30. Let Top denote the category of compactly generated Hausdorff
topological spaces. This is a cofibrantly generated, cartesian closed model cat-
egory, where every object is fibrant. Therefore, topological operads admit a
model structure.

Now that we have defined a model structure on the category of operads
(over certain model categories), we proceed to define a model structure on the
category of algebras for a (certain type of) operad. Once again, we will do this
by using the transfer principle for the free-forgetful adjunction

Fo:£E20-Alg: U
where Fo(X) = [[; O(j) x X7/ ~, with relations as in Prop. 15.

Definition 31. An operad O in Op(€) is called admissible if the category
0-Alg carries a model structure which is transferred from & along the free-
forgetful adjunction.

The following result shows that, in the context with which we are dealing,
all operads are admissible.

Theorem 32. Let £ be a category under the hypotheses of Theorem 29; that
s, a cofibrantly generated, cartesian closed model category with cofibrant unit,
possessing a symmetric monoidal fibrant replacement functor. Then all operads
in Op(&) are admissible.

Proof. We will show that the conditions for the transfer principle are satisfied
for any operad O. Note that the forgetful functor U : O-Alg — £ preserves
filtered colimits.
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To define a fibrant replacement functor on O-Alg, let X be an O-algebra and
consider its fibrant replacement in £, X —/—— X~ . If O —— O~ denotes
the fibrant replacement that we get from Thm. 29, then X~ has an O™~-algebra
structure given by

O~ (n) x (X™)" —== O(n)~ x (X")~ —== (O(n) x X")~ —— X~

where the existence of the two isomorphisms is ensured by the fact that the
fibrant replacement functor in £ is monoidal.
Then, the operad map O —~— O~ induces an O-algebra structure on X,
by
On) x (X™)" = 0~(n) x (X" - X~

which makes the map X —=— X"~ a weak equivalence of O-algebras.
Now suppose X is fibrant. In the same way as before, we factor the folding
map 1J[1—1 as

11— J —>»1
using the model structure in £, and consider
X X' —x/ — xH e X x X

The first map is a weak equivalence by lemma 26, and the second map is a
fibration, as we can see from an application of the pull back-Hom axiom to the
maps 1[J1 < J and X — 1.

This construction is clearly functorial, so in order for it to work, we just need
to show this factorization lives in the category O-Alg. But X7 can be made
into an O-algebra by

O(n) x Hom(J, X)™

laxgp

Hom (X", X) x Hom(J", X™)

E

Hom(X™, X) x Hom(J", X") x 1

llxlxd

Hom (X", X) x Hom(J", X™) x Hom(J, J")

lo

Hom(J, X)

where a : O(n) — Hom(X™, X) is the algebra map, ¢ : Hom(J, X)" —
Hom(J™, X™) is the map that defines a morphism coordinate-wise, d : 1 —
Hom(J, J™) is the map that chooses the diagonal, and o is composition. It’s
easy to check that this is actually an algebra structure map, and that it makes
the maps X — X7 and X/ — X x X into algebra maps. O

Ezxample 33. Since the category of compactly generated Hausdorff spaces sat-
isfies the hypotheses of Theorem 29, we conclude that all topological operads
must be admissible.
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The category of algebras for a cofibrant operad will behave nicely (homo-
topically speaking) but being cofibrant is, in practice, too strong a condition
sometimes. Fortunately, full cofibrancy is not always necessary, and we can
weaken it to the following.

Definition 34. An operad O in Op(€) is said to be X-cofibrant if its underlying
collection is cofibrant for the model structure in Coll(£).

Recall that a model category is called left proper if weak equivalences are
preserved by pushouts along cofibrations.

Theorem 35. [BM02, Thm. 4.4] Let £ be a left proper monoidal closed model
category with cofibrant unit, and

P — Q

be a weak equivalence between Y-cofibrant operads. Then the base-change ad-
Junction
o1 P-Alg 2 Q-Alg : ¢*

is a Quillen equivalence.

Proof. First, recall that by the definition of the model structures, an algebra
map f: X — Y is a weak equivalence (resp. fibration) if and only if it is so as a
map in &, forgetting the algebra structure. Then, since p* f = f, we see that ¢*
preserves weak equivalences and fibrations, and so the base-change adjunction
is a Quillen pair.

Since ¢* also reflects weak equivalences, the derived adjunction will be an
equivalence if (and only if) the unit induces a weak equivalence

X = ¢*Rp X

for each cofibrant P-algebra X.[Hov99, 1.3.16]
This is a very technical condition to verify, that uses the fact that the model
category is left proper, and the operads are Y-cofibrant. O

With these results in hand, we are finally ready to start proving our rectifi-
cation property; we will do so by using Theorem 35. First of all, note that the
operads involved, C; and Ass, are admissible since by Example 33, all topolog-
ical operads are. We will start by showing that they are also X-cofibrant.

Let’s convince ourselves that every connected component of C;(n) is a CW-
complex. For each n, the space of embeddings C;(n) will have one connected
component for each possible ordering of {1,2,...,n}. Let’s look at one of those
components; say, the one indexed by id € S,. If the starting point of the ith
embedded little interval is denoted by z;, and the endpoint by y;, then this
connected component can be identified with the subspace of [0, 1]?" of vectors
(z1,Y1,---,%n,Yn) such that

$1<y1§$2<y2§'“§$n<yn

That is, we consider the hyperplanes x1 = y1, y1 = x2,...,2, = y, that divide
[0,1]?™ into sections, and our connected component will be the chunk of space
given by the correct intersection of sections. This is clearly seen to be a CW-
complex (and moreover, contractible, which we will need in the future).
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Now, consider a commuting diagram of collections and collection maps
) —
l lf
C1

where f is a trivial fibraton. We want to define a lift h : C; — C in Coll(Top),
that is, a family of maps h, : C1(n) — C(n) that preserve the S, actions and

such that
/ lf"

commutes. Let C(n)'d denote the connected component of C;(n) whose little
intervals are numbered by id € S,,. Then a lift exists in the following diagram

since f,, is a trivial fibration and C;(n)¢ is a CW-complex (and therefore, cofi-
brant).

Noting that any point in another connected component x € C;(n)? can be
written as oy for a unique y € Ci(n)'d, we define hg : C1(n)° — C(n) by
h¢(z) = ohid(y). These will be continuous, since the S, action acts continu-

ously, and

Fa(h(2)) = fu(ohi (1) = o (il (y) = 09n(y) = gn(oy) = gn(2)

so each h? effectively defines a lift on its corresponding component.

Putting all these together, we get a function h, : C1(n) — C(n), that will
be continuous since it is so on every connected component. This will be a lift
for our diagram, and a collection map (since we specifically defined it for this
purpose).

This shows C; is a Y-cofibrant operad; verifying that Ass is Y-cofibrant is
identical, since its connected components {*} are CW-complexes, and the point
* in the component indexed by ¢ is obtained as *, = ox*q.

The only thing left to see in order to use Theorem 35 is that there exists a
weak equivalence

g

C; —— Ass

For each n, let f, : C1(n) — Ass(n) = [[g {*} be the map that takes an
embedding of n little intervals to the point {*} in the coproduct indexed by the
permutation corresponding to the numbering of the embedding, read from left
to right. Do these define an operad map?

It’s clear that the maps will respect the S,-action and the unit. Drawing a
picture for a particular case illustrates how this will also respect compositions.
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According to the model structure on operads, this map will be a weak equiv-
alence if and only if each f,, is, so we need to show that all f,,’s induce isomor-
phisms on the homotopy groups, for all choices of basepoints. But Ass(n) is a
discrete space, so mo(Ass(n)) = S, and m;(Ass(n)) = 0 for every n and i > 0.
Then, it suffices to show that the maps f, induce bijections on my and that
7m;(C1(n)) = 0 for every n and ¢ > 0.

For each n, the space of embeddings C;(n) will have one connected compo-
nent for each possible ordering of {1,2,...,n}, so m(C1(n)) = S,, and we can
see that f, = id. Furthermore, each of these components will be contractible,
so no matter the choice of basepoint we will have 7;(C1(n)) = 0 for every n and
1> 0.

Therefore, Theorem 35 ensures us that the induced adjunction

o1 : C1-Alg = Ass-Alg : p*

is a Quillen equivalence, which implies that for every cofibrant C-algebra X,
the unit map X — ¢*¢»X is a weak equivalence in C1-Alg. But ¢ X is an
Ass-Alg, i.e. a topological monoid, and ¢* ¢ X is equal to ¢ X as a space, with
a Cy action that’s constant in each connected component of C;, and acts like
Ass on each of them, that is, p*p1 X is also a monoid as a C;-algebra.

We conclude that cofibrant Ci-algebras can be rectified to topological monoids;
that is, for every cofibrant Ci-algebra X, there exists a topological monoid M
and a weak equivalence

X =M
that respects the Ci-algebra structures. Furthermore, we have an explicit de-
scription of M as M = ¢* ¢ X.
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