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The purpose of this talk is to give a brief introduction to algebraic K-
theory in the sense of Quillen. Since defining the higher K-groups was an
effort of over a decade of work, it seems worthwhile to begin by mentioning
the initial motivation and constructions.

1 Lower K-groups of a ring

The story starts within algebraic geometry, when in 1957 Grothendieck de-
fined K0 of an algebraic variety (which we now call the Grothendieck group
of a variety) in order to prove a generalization of the Riemann-Roch theorem.
It was defined as follows:

Definition 1.1. Let X be an algebraic variety, and consider the category
P(X) of vector bundles over X of finite rank. The Grothendieck group
K0(X) is defined as the abelian group given by:

• generators: one symbol [E] for every isomorphism class in P(X),

• relations: [E2] = [E1] + [E3] for every short exact sequence

0→ E1 → E2 → E3 → 0.

Motivated by Grothendieck’s construction, Atiyah and Hirzebruch (1959-
1961) defined K0 of a topological space by using topological vector bundles,
and showed that, in fact, the construction could be extended to higher groups
Kn that assemble into a cohomology theory K∗.

It was then hoped that one could analogously extend K0 back in the
algebraic setting, at least for the case of an affine scheme X = Spec(R),
since in that case, vector bundles over X of finite rank correspond to finitely
generated projective R-modules; one could thus drop the geometry and work
in this purely algebraic setting. Rewriting Grothendieck’s original definition
in terms of rings and their modules, we get the definition of K0 of a ring:

Definition 1.2. Let R be a ring, and consider the category P(R) of finitely
generated projective R-modules. The Grothendieck group K0(R) is defined
as the abelian group given by:
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• generators: one symbol [P ] for every isomorphism class in P(R),

• relations: [P2] = [P1] + [P3] for every short exact sequence

0→ P1 → P2 → P3 → 0.

Just in case it’s not immediate from the definition, let’s clarify how
addition is defined for the generators. Given two classes [P1], [P2], we can
always consider the trivial extension

0→ P1 → P1 ⊕ P2 → P2 → 0,

and thus the relation induced by this exact sequence gives

[P1] + [P2] = [P1 ⊕ P2].

Then, one can see than an alternate description of K0(R) can be obtained
by considering the monoid formed by these iso classes, together with the
addition induced by direct sum; then take the group completion of that
monoid, adding the necessary formal inverses to get a group, and lastly mod
out by any remaining relations coming from short exact sequences.1

The hope was to be able to get, just like in the topological case, a se-
quence of abelian groups K0,K1, . . . ,Kn, . . . starting with the Grothendieck
group, that produced long exact sequences in some meaningful way.

The algebraic version proved much harder than its topological counter-
part, with the next K-group of a ring appearing in 1964 due to Bass: he
defines

K1(R) = GL(R)/[GL(R), GL(R)]

where GL(R) denotes the infinite general linear group, and the brackets its
commutator. Evidence of the correctness of this definition is given, among
other things, by the fact that there exists an exact sequence

K1(⊕pR/p)→ K1(R)→ K1(F )→ K0(⊕pR/p)→ K0(R)→ K0(F )→ 0
(1)

where R is a Dedekind domain, F its field of fractions and p runs over its
prime ideals. Later, in 1967, Milnor proposes a definition of K2(R) that
succeeds in extending the exact sequence above by two terms.

Before moving on to the higher K-groups, I should briefly try to give
indications of why this is worthwhile. For the categorically inclined, the
evidence I’ve given so far is quite possibly compelling enough to justify the
search for an extension to higher invariants. But this was not the only
reason behind this project: it was quickly seen that the groups K0 and K1

1In fact, since every short exact sequence ending in a projective splits, there will be
no extra relations, but this general description will hold in the more general cases we will
deal with in a bit.
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carry relevant information about the ring. To name a few simple examples,
K0(R) = Z⊕Cl(R) computes the class group of a ring when R is a Dedekind
domain2, and K1(F) = F× for any field. Therefore, it was to be expected
that higher invariants would contain other valuable information that would
help further our understanding of these structures.

2 Higher K-theory: from rings to abelian cate-
gories

In the early 70’s, various definitions of the higher K-groups of a ring were
proposed, most of which were later shown to agree. The most popular of
these is probably Quillen’s “+” construction, but there were other construc-
tions due to Swan, and Karoubi-Villamayor, to name a few.

Even though computational tools were developed for each, they all had
the drawback of not producing the desired long exact sequences, or other
nice foundational results that are present for the Q-construction.

The most notable development came in 1972-1973, when Quillen defined
the higher K-groups for a class of structures more general than rings, and
then proceeded to extend the fundamental results present for K0,K1 and
K2 (among them, the Localization theorem providing a long exact sequence
that completes 1).

In what remains of this talk, we will define Quillen’s construction for the
higher K-groups, as well as the class of structures it applies to.

2.1 Quillen’s Q-construction

Let’s take a moment to go back to the definition of K0(R). We can see
that the construction of the Grothendieck group does not make use of the
full structure of the category P(R) of finitely generated projective modules
per se, but rather of the fact that this category has a notion of short exact
sequence. These are used to extract the information of how our building
blocks [P ] “split”, or equivalently, of how smaller, more elemental building
blocks [Pi] assemble to form larger building blocks.

Based on the above, one could venture that in order to define K0, all
we really need is a category with an appropriate notion of “short exact
sequence”. Those of you interested in homological algebra will surely know
that this setting is that of abelian categories. There, the usual notions of
kernel, cokernel and image are well-behaved, which allows us to define short
exact sequences just like we do for R-Mod.3 If you’re not familiar with

2In case you don’t recall the exact definition, the class group of a ring tells you how
far the ring is from having unique prime factorizations.

3Actually, Quillen defines the Q-construction in the setting of exact categories. These
are subcategories of abelian categories where one can customize the class of short exact
sequences available in the category.
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abelian categories, you will not be far off by thinking about R-Mod.
Given an abelian category A, we can then define K0(A) by mimicking

the definition of the Grothendieck group of a ring given in 1.2.
In order to construct the K-theory groups of an abelian category A,

Quillen defines an auxiliary category QA, as follows.

Definition 2.1. Given an abelian category A, QA is the category with the
same objects as A, and for which a morphism from X to Y is an equivalence
class of diagrams of the form

X Y ′ Y
p i

where i is a monomorphism and p a epimorphism in A. Two such diagrams
are equivalent if there is an isomorphism between them which is the identity
on X and Y .

Composition is given by pullback:

Y ′ ×Y Z
′

Y ′ Z ′

X Y Z

With this category in hand, one can define the K-theory space of an
abelian category A by

KA = Ω|N(QA)| = ΩBQA,

and then the K-groups of A are

Kn(A) = πnKA = πn+1|N(QA)|.

With this approach, the K-groups of a ring R are precisely the K-groups
of the category of finitely generated projective R-modules.4

At this point it may seem like we’re requiring a huge leap of faith: we
started with very concrete definitions for K0 and K1 of rings, and ended up
with this seemingly untractable abstract definition of higher K-groups. One
could indeed show that the newly defined K0 and K1 agree with the desired
groups, and that, for example, there exist key theorems (called Localization
and Devissage) that yield a long exact sequence that continues (1). For
more on these, come to Inna’s talk!

In an attempt to bring things back down to Earth, we conclude this talk
by giving some indication of why this is in fact an extension of the notions
we had defined previously: we show that this construction yields the correct
K0.

4We’re slightly lying here, since that category is not abelian, but exact. The definitions
are exactly the same, though.
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Proposition 2.2. π1(BQA) = K0(A)

Proof. Let T denote the family of all maps 0 ↪→ X in QA. Note that T is a
maximal tree, and so by basic algebraic topology tools, we know π1(BQA)
is generated by the maps in QA, modulo the relations [0 ↪→ X] = 1 and
[f ][g] = [fg].

One can observe without much work that, for any map in QA, the fol-
lowing holds:

[X � Y ′ ↪→ Y ] = [X � Y ′] = [0 � Y ′][0 � X]−1,

so we see that the class of a map is given by its “epi part”, and the maps
[0 � X] generate the group.

Now, given an exact sequence

0→ X ↪→ Y � X → 0,

one can easily observe that

0 � X ↪→ Y = 0 ↪→ Z � Y

and so
[0 � X] = [Z � Y ] = [0 � Y ][0 � Z]−1

which yields the desired relation. Moreover, we see that the class of an epi
is uniquely determined by the class of its kernel.

Finally, any relation [f ][g] = [fg] can be obtained through the additivity
relation we get from exact sequences. To see this, note that requiring the
above relation amounts to requiring, in the composition diagram

Y ′ ×Y Z
′

Y ′ Z ′

X Y Z

that [Y ′ � Y ′ ×Y Z
′] = [Y � Z], but since both epis have the same kernel,

the two classes must be the same.

Aside from checking a basic requirement, this proof gives us some in-
tuition as to why ΩBQA is a reasonable space to define K-theory. As we
mentioned before, recall that an alternate construction of K0 would be the
following: take the monoid generated by iso classes [X], with addition given
by direct sum, [X] + [Y ] = [X ⊕ Y ]. Then, take the group completion of
this monoid, adding the formal inverses that were not already present in
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the monoid. Finally, quotient out by the extra relations given by the exact
sequences.

Looking at our space, we see that ΩB acts as a “homotopical group
completion” in some sense. Then, any category that occupies the place of
QA should be built so that it records all the relevant information in A, and
so that, in the group completion, the relations are exactly the ones given by
the short exact sequences.

The category QA is engineered for this very purpose: the maps in QA
encode the information present in the short exact sequences, and moreover,
come with a canonical epi-mono factorization that is built into the way
composition is defined in the category; these are the key facts used in the
proof above, and something that would not be true if we simply considered
the category A, even if it was abelian.
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