MATH 4530 – Topology. Prelim I Solutions

In class 75min: 2:55-4:10 Thu 9/30.

Problem 1: Consider the following topological spaces:

- (1) \mathbb{Z} as a subspace of \mathbb{R} with the finite complement topology
- (2) $[0,\pi]$ as a subspace of \mathbb{R} .
- (3) $[0,\pi]$ {1} as a subspace of \mathbb{R} .
- (4) The unit *n*-sphere $S^n := \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^n \mid x_1^2 + \dots + x_{n+1}^2 = 1\}$ as a subspace of \mathbb{R}^{n+1} . (5) The unit *n*-disk $D^n := \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^n \mid x_1^2 + \dots + x_{n+1}^2 \le 1\}$ as a subspace of \mathbb{R}^{n+1} .
- (6) $S^1 \times S^1$ with the product topology, called the *torus*.
- (7) \mathbb{RP}^2 defined as a quotient space of $\mathbb{R}^3 \{(0,0,0)\}$ by the identification $(x,y,z) \sim (\lambda x, \lambda y, \lambda z)$ for all $\lambda \in \mathbb{R} - \{0\}$.
- (8) The quotient space of \mathbb{R}^2 by the identification $(x, y) \sim (\lambda x, \lambda y)$ for all $\lambda \in \mathbb{R}_{>0}$.
- (9) O(2, \mathbb{R}) the set of all 2 × 2 matrices M with real values such that $MM^t = I_2$, as a subspace of \mathbb{R}^4 .
- (10) The quotient space of \mathbb{R}^2 by the identification $(x, y) \sim (x + n, y + n)$ for all $n, m \in \mathbb{Z}$.
- (11) The closure of $\{(x^2, \sin(1/x)) \in \mathbb{R}^2 \mid x \in \mathbb{R}_{>0}\}$ in \mathbb{R}^2 .

Q1-1: Find *all* compact spaces. (11pts)

Solution:

- (1) Compact: Any infinite set with finite complement topology is compact. The proof is as follows. Let X be an infinite set with the f.c. topology. Let $\{U_{\alpha}\}$ be a covering of X. Then $X - U_{\alpha}$ is a finite set, say $\{x_1, \dots, x_n\}$. Let U_{α_i} be one of the open sets that contains x_i . Then $U_{\alpha} \cup U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} = X$.
- (2) Compact: This is the most basic key fact of compactness.
- (3) Not compact: Let $U_n := [0,1) \cup (1+1/n,\pi]$ for $n \in \mathbb{Z}_{>0}$. Then $\{U_n\}$ is an open covering. If there is a finite subcovering, say, $\{U_{n_i}\}_{i=1,\dots,m}$. Let $a:=\max\{n_1,\dots,n_m\}$. Then $\bigcup_{i=1}^{m} U_{n_i}$ cannot contain 1 + 1/(a+1). So it can't be a covering.
- (4) Compact: Any closed, bounded subset in \mathbb{R}^n is compact.
- (5) Compact: Any closed, bounded subset in \mathbb{R}^n is compact.
- (6) Compact: S^1 is compact from (4). A finite product of compact spaces is compact.
- (7) Compact: It is actually a quotient of $S^2 \subset \mathbb{R}^3 \{(0,0,0)\}$. Since S^3 is compact from (4), \mathbb{RP}^2 is the image of the quotient map of a compact space. Since the image of a compact space under a continuous map is compact, it is compact.
- (8) Compact: The quotient map factors through a surjective map $S^3 \cup \{(0,0,0)\} \rightarrow$ \mathbb{R}^2/\sim . This map is not quotient map but it is still continuous (the restriction of a continuous map on a subspace is continuous). Since $S^3 \cup \{(0,0,0)\}$ is bounded and closed, it is compact. Thus \mathbb{R}^2/\sim is the image of a compact space, so it is compact.
- (9) Compact: The row vectors \vec{v}_1, \vec{v}_2 of orthogonal matrices are unit vectors. As a vector in \mathbb{R}^4 , (\vec{v}_1, \vec{v}_2) has length 2. So O(2, \mathbb{R}) is bounded, actually is contained in S^3 . Consider the continuous map $M \mapsto M \cdot M^t$. Then $O(2,\mathbb{R})$ is the pre-image of I a point in \mathbb{R}^4 , thus it is closed. Closed and bounded subsets in \mathbb{R}^4 are compact.
- (10) Compact: The quotient map restricted to the compact supspace $[0,1] \times [0,1]$ is surjective continuous. Thus the quotient is compact.
- (11) Not compact: It is not compact since it is not bounded.

Q1-2: Find all connected spaces. (11pts)

Solution:

- (1) Connected: any infinite set with a f.c. topology is connected.
- (2) Connected: it is the closure of $(0, \pi)$ which is homeomorphic to \mathbb{R} .
- (3) Not connected: It is a disjoint union of non-empty open sets.
- (4) Connected: since it is path-connected.
- (5) Connected: since it is path-connected.
- (6) Connected: since it is path-connected.
- (7) Connected: since it is path-connected.
- (8) Connected: since it is path-connected.
- (9) Not connected: the determinant map $M \mapsto \det M$ sends orthogonal matrices to ± 1 . The preimage of ± 1 are non-empty closed sets and so $O(n, \mathbb{R})$ is a disjoint union of non-empty closed sets.
- (10) Connected: since it is path-connected.
- (11) Connected: since it is the closure of a connected space.

Q1-3: Find all Hausdorff spaces. (11pts)

Solution:

- (1) Not Hausdorff: Every two open sets would intersect non-trivially in an infinite set with f.c. topology.
- (2) Hausdorff: Any subspace of a Hausdorff space is Hausdoff.
- (3) Hausdorff: Any subspace of a Hausdorff space is Hausdoff.
- (4) Hausdorff: Any subspace of a Hausdorff space is Hausdoff.
- (5) Hausdorff: Any subspace of a Hausdorff space is Hausdoff.
- (6) Hausdorff: The finite product of Hausdorff space is Hausdorff.
- (7) Hausdorff: We are identifying all points on a line through origin. If we have two distinct lines, there are open sets separating those two, if we take the origin out.
- (8) Non-Hausdorff: Any open set around the origin intersects with any line minus origin, so we can't separate the image of the origin from other points in \mathbb{RP}^2 .
- (9) Hausdorff: Any subspace of a Hausdorff space is Hausdoff.
- (10) Hausdorff: Because it is homeomorphic to (6).
- (11) Hausdorff: Any subspace of a Hausdorff space is Hausdoff.

Q1-4: Find two spaces that are homeomorphic. (2pts)

Solution: (6) and (10) are homeomorphic. First \mathbb{R}/\mathbb{Z} is homeomorphic to S^1 . The quotient space in (10) is $\mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$, so it is homeomorphic to $S^1 \times S^1$.

Q1-5: Find *all* path connected spaces from (2) - (11). (10pts)

Solution:

- (1)
- (2) Path-connected: a path from x to y is given by tx + (1 t)y.
- (3) Not path connected: because it is not connected.
- (4) Path connected: There is a continuous surjection $R^{n+1} \{(0, \dots, 0)\} \to S^n$ defined by $\vec{x} \mapsto \vec{x}/|\vec{x}|$. Since $R^{n+1} \{(0, \dots, 0)\}$ is path connected, S^n is path-connected (image of a path connected is path connected).
- (5) Path-connected: the path $t\vec{x} + (1-t)\vec{y}$ stays inside of the disk.
- (6) Path-connected: the finite product of path-connected spaces are path-connected.
- (7) Path-connected: similar to (4).
- (8) Path-connected: similar to (4).
- (9) Not path-connected: because it is not connected.
- (10) Path-connected: similar to (4).
- (11) Not path-connected: $\{(x, \sin(1/x)) \mid x \in \mathbb{R}_{>0}\}$ is not path connected. There is a homeomorphism $(x, \sin(1/x)) \mapsto (x^2, \sin(1/x))$, so it is not path-connected.

Problem 2 (20pts): True or false? If it is true, write the proof in complete sentences. If it is false, then give a counterexample.

(1) (5pts) If *X* is a Hausdorff space, then any quotient space of *X* is Hausdorff.

Solution: False. (8) in Problem 1 is a counterexample. \mathbb{R}^2 is Hausdorff, but the quotient is not.

(2) (5pts) Let $f: X \to Y$ be a continuous map between topological spaces. If a sequence (x_n) converges to x in X, then $(f(x_n))$ converges to f(x) in Y.

Solution: True. Let U be a neighborhood of f(x), then $f^{-1}(U)$ is a neighborhood of x, so there is N > 0 such that $x_n \in f^{-1}(U)$ for all n > N. Thus $f(x_n) \in U$ for all n > N. Thus $f(x_n)$ converges to f(x).

(3) (5pts) Let $f: X \to Y$ be a continuous and injective map. Suppose that X is compact and Y is Hausdorff. If A is a closed subspace of X, then the restriction map $f|_A: A \to f(A)$ is a homeomorphism.

Solution: True. Since A is a closed subspace of a compact space X, A is compact. Since f(A) is a subspace of a Hausdorff space Y, f(A) is Hausdorff. Since f is injective, $f|_A$: $A \to f(A)$ is bijective. Thus Theorem (9) implies $f|_A$ is a homeomorphism.

(4) (5pts) Let \mathcal{B} and \mathcal{B}' be bases of topologies \mathcal{T} and \mathcal{T}' . If \mathcal{T} is finer than \mathcal{T}' , then $\mathcal{B} \supset \mathcal{B}'$.

Solution: False. The standard topology \mathcal{T} of \mathbb{R} is finer than the finite complement topology \mathcal{T}' of \mathbb{R} . Let \mathcal{B} be the open ball basis of \mathcal{T} and $\mathcal{B} = \mathcal{T}$. $\mathcal{T} \supset \mathcal{T}'$ but $\mathcal{B} \not\supset \mathcal{B}'$, i.e. an open set in the finite complement topology is open in the standard topology but it is not an open ball.

Definitions:

- (1) A collection \mathcal{T} of subsets of a set X is a topology if $\emptyset, X \in \mathcal{T}$ and an arbitrary union and a finite intersection of subsets in \mathcal{T} are also in \mathcal{T} .
- (2) A collection \mathcal{B} of subsets of X is a basis of a topology if the members of \mathcal{B} covers X and for every $B_1, B_2 \in \mathcal{B}$ and every $x \in B_1 \cap B_2$, there is B_3 such that $x \in B_3 \subset B_1 \cap B_2$.
- (3) The topology $\mathcal{T}_{\mathcal{B}}$ consists of subsets U in X such that every $x \in U$, there is $B \in \mathcal{B}$ such that $x \in B \subset U$.
- (4) A subset A of a topological space X is closed if X A is open.
- (5) The closure of A is the intersection of all closed sets containing A.
- (6) Let A be a subset of a topological space X. $x \in X$ is a cluster point of A in X if $x \in A \{x\}$.
- (7) Let X, Y be topological space. A map $f: X \to Y$ is continuous if $f^{-1}(U)$ is open in X for all open set U in Y. A map $f: X \to Y$ is a homeomorphism if f is a continuous bijection and f^{-1} is also continuous.
- (8) A topological space X is Hausdorff if for every distinct points x, y, there are neighborhoods U_x and U_y such that $U_x \cap U_y = \emptyset$.
- (9) A topological space *X* is compact if every open covering has a finite subcovering.
- (10) A topological space *X* is connected if *X* is not a disjoint union of open sets.
- (11) A topological space X is path-connected if every two points can be connected by a path f: $[0,1] \rightarrow X$.
- (12) A quotient space of a topological space X is given by a space Y such that $f: X \to Y$ is a surjective continuous map and a subset U in Y is open if and only if $\pi^{-1}(U)$ is open in X.
- (13) A sequence (x_n) in a topological space X converges to $x \in X$ if for every neighborhood U_x of x, there is N such that $x_n \in U_x$ for all n > N.
- (14) A metric d on a set X is a map $d: X \times Y \to \mathbb{R}$ such that (i) $d(x, y) \ge 0$ and the equality holds iff x = y, (ii) d(x, y) = d(y, x), and (iii) $d(x, z) \le d(x, y) + d(y, z)$. The metric topology is then the topology generated by ϵ -balls.
- (15) For topological spaces X and Y, the product topology on $X \times Y$ is generated by $U \times V$ for all open sets U in X and Y in Y.

Theorems:

- (1) Let A be a subset of a topological space X. Then $x \in \overline{A}$ if and only if $U_x \cap A \neq \emptyset$ for all neighborhoods U_x of x.
- (2) A compact subspace of a Hausdorff space is closed.
- (3) A closed interval [a, b] in \mathbb{R} is compact.
- (4) A finite product of compact spaces is compact.
- (5) The image of a compact space under a continuous map is compact.
- (6) Every closed subspace of a compact space is compact.
- (7) A subspace A of \mathbb{R}^n is compact if and only if it is closed and bounded, i.e. the distance of any two points in A is bounded.
- (8) Let X be a metric space and Y a topological space. A map $f: X \to Y$ is continuous if and only if for every convergent sequence (x_n) to x in X, the sequence $(f(x_n))$ in Y converges to f(x).
- (9) If X is compact, Y is Hausdorff, and $f: X \to Y$ is a continuous bijection, then f is a homeomorphism.
- (10) The image of a connected space under a continuous map is connected.
- (11) A finite product of connected spaces is connected.
- (12) If A is a connected subspace of a topological space, then the closure \overline{A} is also a connected subspace.
- (13) If a topological space X is path-connected, then it is connected.