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1 Topological spaces
A topology is a geometric structure defined on a set. Basically it is given by declaring which subsets are “open” sets. Thus
the axioms are the abstraction of the properties that open sets have.

Definition 1.1 (§12 [Mun]). A topology on a set X is a collection T of subsets of X such that

(T1) φ and X are in T ;

(T2) Any union of subsets in T is in T ;

(T3) The finite intersection of subsets in T is in T .

A set X with a topology T is called a topological space. An element of T is called an open set.

Example 1.2. Example 1, 2, 3 on page 76,77 of [Mun]

Example 1.3. Let X be a set.

• (Discrete topology) The topology defined by T := P(X) is called the discrete topology on X.

• (Finite complement topology) Define T to be the collection of all subsets U of X such that X − U either
is finite or is all of X. Then T defines a topology on X, called finite complement topology of X.

1.1 Basis of a Topology
Once we define a structure on a set, often we try to understand what the minimum data you need to specify the structure. In
many cases, this minimum data is called a basis and we say that the basis generate the structure. The notion of a basis of the
structure will help us to describe examples more systematically.

Definition 1.4 (§13 [Mun]). Let X be a set. A basis of a topology on X is a collection B of subsets in X such
that

(B1) For every x ∈ X, there is an element B in B such that x ∈ U.

(B2) If x ∈ B1 ∩ B2 where B1, B2 are in B, then there is B3 in B such that x ∈ B3 ⊂ B1 ∩ B2.

Lemma 1.5 (Generating of a topology). Let B be a basis of a topology on X. Define TB to be the collection of
subsets U ⊂ X satisfting

(G1) For every x ∈ U, there is B ∈ B such that x ∈ B ⊂ U.

Then TB defines a topology on X. Here we assume that ∅ trivially satisfies the condition, so that ∅ ∈ TB.

Proof. We need to check the three axioms:

(T1) ∅ ∈ TB as we assumed. X ∈ TB by (B1).

(T2) Consider a collection of subsets Uα ∈ TB, α ∈ J. We need to show

U :=
⋃
α∈J

Uα ∈ TB.

By the definition of the union, for each x ∈ U, there is Uα such that x ∈ Uα. Since Uα ∈ TB, there is B ∈ B
such that x ∈ B ⊂ Uα. Since Uα ⊂ U, we found B ∈ B such that x ∈ B ⊂ U. Thus U ∈ TB.

(T3) Consider a finite number of subsets U1, · · · ,Un ∈ TB. We need to show that

U :=
n⋂

i=1

Ui ∈ TB.
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– Let’s just check for two subsets U1,U2 first. For each x ∈ U1 ∩ U2, there are B1, B2 ∈ B such that
x ∈ B1 ⊂ U1 and x ∈ B2 ⊂ U2. This is because U1,U2 ∈ TB and x ∈ U1, x ∈ U2. By (B2), there is
B3 ∈ B such that x ∈ B3 ⊂ B1 ∩ B2. Now we found B3 ∈ B such that x ∈ B3 ⊂ U.

– We can generalize the above proof to n subsets, but let’s use induction to prove it. This is going to
be the induction on the number of subsets.

∗ When n = 1, the claim is trivial.
∗ Suppose that the claim is true when we have n − 1 subsets, i.e. U1 ∩ · · · ∩ Un−1 ∈ TB. Since

U = U1 ∩ · · · ∩ Un = (U1 ∩ · · · ∩ Un−1) ∩ Un

and regarding U′ := U1 ∩ · · · ∩ Un−1, we have two subsets case U = U′ ∩ Un. By the first
arguments, U ∈ TB.

Definition 1.6. TB is called the topology generated by a basis B. On the other hand, if (X,T ) is a topological
space and B is a basis of a topology such that TB = T , then we say B is a basis of T . Note that T itself is a
basis of the topology T . So there is always a basis for a given topology.

Example 1.7.

• (Standard Topology of R) Let R be the set of all real numbers. Let B be the collection of all open
intervals:

(a, b) := {x ∈ R | a < x < b}.

Then B is a basis of a topology and the topology generated by B is called the standard topology of R.

• Let R2 be the set of all ordered pairs of real numbers, i.e. R2 := R × R (cartesian product). Let B be the
collection of cartesian product of open intervals, (a, b) × (c, d). Then B is a basis of a topology and the
topology generated by B is called the standard topology of R2.

• (Lower limit topology of R) Consider the collection B of subsets in R:

B :=
{

[a, b) := {x ∈ R | a ≤ x < b}
 a, b ∈ R

}
.

This is a basis for a topology on R. This topology is called the lower limit topology.

The following two lemmata are useful to determine whehter a collection B of open sets in T is a basis for T or
not.

Remark 1.8. Let T be a topology on X. If B ⊂ T and B satisfies (B1) and (B2), it is easy to see that TB ⊂ T .
This is just because of (G1). If U ∈ TB, (G1) is satisfied for U so that ∀x ∈ U,∃Bx ∈ B s.t. x ∈ Bx ⊂ U.
Therefore U = ∪x∈U Bx. By (T2), U ∈ T .

Lemma 1.9 (13.1 [Mun]). Let (X,T ) be a topological space. Let B ⊂ T . Then B is a basis and TB = T if and
only if T is the set of all unions of subsets in B.

Proof. • (⇒) Let T ′ be the set of all unions of open sets in B. If U ∈ T , then U satisfies (G1), i.e.
∀x ∈ U,∃Bx ∈ B s.t. x ∈ Bx ⊂ U. Thus U = ∪x∈U Bx. Therefore U ∈ T ′. We proved T ⊂ T ′. It follows
from (T2) that T ′ ⊂ T .

• (⇐) Since X ∈ T , X = ∪αBα some union of sets in B. Thus ∀x ∈ X,∃Bα s.t. x ∈ Bα. This proves (B1) for
B. If B1, B2 ∈ B, then B1 ∩ B2 ∈ T by (T2). Thus B1 ∩ B2 = ∪αBα, Bα ∈ B. So ∀x ∈ B1 ∩ B2,∃Bα ∈ B s.t.
x ∈ Bα. This Bα plays the role of B3 in (B2). Thus B is a basis. Now it makes sense to consider TB and
we need to show TB = T . By the remark, we already know that TB ⊂ T . On the other hand, if U ∈ T ,
then U = ∪αBα, Bα ∈ B. Hence, ∀x ∈ U, ∃Bα such that x ∈ Bα ⊂ U. Thus (G1) is satisfied for U. Thus
U ∈ TB. This proves TB ⊃ T .

�
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Lemma 1.10 (13.2 [Mun]). Let (X,T ) be a topological space. Let B ⊂ T . Then B is a basis and TB = T if and
if any U ∈ T satisfies (G1), i.e. ∀x ∈ U,∃Bx ∈ B s.t. x ∈ Bx ⊂ U.

Proof.

⇒ Trivial by the definition of TB.

⇐ X satisfies (G1) so B satisfies (B1). Let B1, B2 ∈ B ⊂ T . By (T3), B1 ∩ B2 ∈ T . Thus B1 ∩ B2 satisfies
(G1). This means (B2) holds for B. Thus B is a basis. Now the assumption can be rephrased as T ⊂ TB. By the
remark above, we already know T ⊃ TB. �

1.2 Comparing Topologies
Definition 1.11. Let T ,T ′ be two topologies for a set X. We say T ′ is finer than T or T is coarser than T ′ if
T ⊂ T ′. The intuition for this notion is “(X,T ′) has more open subsets to separate two points in X than (X,T )”.

Lemma 1.12 (13.3). Let B,B′ be bases of topologies T ,T ′ on X respectively. Then T ′ is finer than T ⇔
∀B ∈ B and ∀x ∈ B, ∃B′ ∈ B′ s.t. x ∈ B′ ⊂ B.

Proof. ⇒ Since B ⊂ T ⊂ T ′, all subsets in B satisfies (G1) for T ′, which is exactly the statement we wanted to
prove. ⇐ The LHS says B ⊂ T ′. We need to show that it implies that any U ∈ T satisfies (G1) for T ′ too.

∀U ∈ T ,∀x ∈ U,∃B ∈ B s.t. x ∈ B ⊂ U

But
∀B ∈ B,∀x ∈ B,∃B′ ∈ B′ s.t. x ∈ B′ ⊂ B.

Combining those two,
∀U ∈ T ,∀x ∈ U,∃B′ ∈ B′ s.t. x ∈ B′ ⊂ B ⊂ U.

�
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2 Product topology, Subspace topology, Closed sets, and Limit Points
This week, we explore various way to construct new topological spaces. And then we go on to study limit points.
For this end, it is convenient to introduce closed sets and closure of a subset in a given topology.

2.1 The Product Topology on X × Y

The cartesian product of two topological spaces has an induced topology called the product topology. There is also an
induced basis for it. Here is the example to keep in mind:

Example 2.1. Recall that the standard topology of R2 is given by the basis

B := {(a, b) × (c, d) ⊂ R2 | a < b, c < d}.

Check the axioms (B1) and (B2)!

Definition 2.2 (§15 [Mun]). If (X,TX) and (Y,TY ) are topological spaces, then the collection B of subsets of the
form U ×V ⊂ X×Y,U ∈ TX ,V ∈ TY forms a basis of a topology. The topology generated by B is called product
topology on X × Y .

Proof.

(B1) Let (x, y) ∈ X × Y be an arbitrary element. We need to find a subset in B containing (x, y), but since
X × Y ∈ B, it is obvious.

(B2) For any U1 × V1,U2 × V2 ∈ B, the intersection is (U1 × V1) ∩ (U2 × V2) = (U1 ∩U2) × (V1 ∩ V2) ∈ B. So
it is obvious again.

�

Example 2.3. The above definition gives a topology on R2. The following theorem identify this topology with
the standard one!

Theorem 2.4 (15.1). If BX is a basis of (X,TX) and BY is a basis of (Y,TY ), then

BX×Y := {B ×C | B ∈ BX ,C ∈ BY }

is a basis of the product topology on X × Y.

Proof. To check BX×Y , let’s use Lemma 1.10 which state that B is a basis for T iff for any U ∈ T and any x ∈ U,
there is B ∈ B such that x ∈ B ⊂ U. Let W ∈ T and (x, y) ∈ W. By the definition of product topology, there are
U ∈ TX and V ∈ TY such that (x, y) ∈ U × V ⊂ W. Since BX and BY are bases, there are B ∈ BX and C ∈ BY

such that x ∈ B ⊂ U and y ∈ C ⊂ V . Thus we found B ×C ∈ BX×Y such that (x, y) ∈ B ×C ⊂ W. �

Example 2.5. The standard topology ofR2 is the product topology of two copies ofRwith the standard topology.

Example 2.6. The standard topology of Rn is given by the basis

B := {(a1, b1) × · · · × (an, bn) ⊂ Rn | ai < bi}.

Example 2.7. For any p = (x0, y0) ∈ R2, let Bε,x be the open disk of radius ε > 0 centered at p. We can define a
topology of R2 by

BD := {Dε,x | x ∈ R2, ε ∈ R>0}.

The topology defined by B coincides with the standard topology on R2.
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2.2 The Subspace Topology
A subset of a topological space has a naturally induced topology, called the subspace topology. In geometry, the subspace
topology is the source of all funky topologies.

Definition 2.8. Let (X,T ) be a topological space. Let Y be a subset of X. The collection

TY := {Y ∩ U | U ∈ T }

is a topology on Y , called the subspace topology.

Lemma 2.9. If B is a basis for T , then
BY := {Y ∩ B | B ∈ B}

is a basis of the subspace topology TY for Y.

Proof. Use Lemma 1.9. Let V ∈ TY , i.e. V = Y ∩ U for some U ∈ T . For every x ∈ V , there is B ∈ B such that
x ∈ B ⊂ U since B is a basis of T (Lemma 1.9). Now we found Y ∩ B ∈ BY such that x ∈ Y ∩ B ⊂ V . � �

2.3 Closed Sets, Closure, Interior, and limit points
Closed sets are nothing but complement of open sets. On the other hand, we can also say that open sets are nothing but
complement of closed sets. Thus we can actually use closed sets to define topology, although mathematicians usually use
open sets to define topology.

Definition 2.10. Let A be a subset of a topological space (X,T ).

• A is a closed set of X if X − A is an open set.

• The closure Ā of A in X is the intersection of all closed sets of X, containing A.

Ā =
⋃
C⊃A

closed

C

• The interior Int A of A in X is the union of all open sets of X, contained in A.

Int A =
⋂
O⊂A
open

O

• x ∈ X is a limit point of A if x ∈ A − {x}.

Remark 2.11. It is not so difficult to see from the definition that

Ā = A⇔ A : closed, and Int A = A⇔ A : open.

Example 2.12.

• In the standard topology for R, a set of a single element (we say a point) is a closed set, because R− {a} is
an open set. Any finite set is also closed, since X − {a1, · · · , an} = ∩n

i=1(R − {ai}) is a finite intersection of
open sets.

• In the discrete topology of a set X, every point is a closed set but also an open set.

• In the lower limit topology, a point is a closed set.

• In the finite complement topology of any set X, a point is a closed set. But any infinite set is not closed
by definition of finite complement topology, except X itself. For example, Z is a closed set in R in the
standard topology but not in the finite complement topoloty.
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Lemma 2.13 (Interior in terms of closure).

Int A = X − (X − A).

Proof. We need to show that X − Int A = X − A. Let U denote open sets and C denote closed sets. By definition
Int A =

⋃
U⊂A U. Therefore we can do the set theoretic computation:

X − Int A = X −
⋃
U⊂A

U =
⋂
U⊂A

(X − U) =
⋂

C⊃(X−A)

C = X − A.

�

Remark 2.14 (Defining topology by closed sets). A topology on a set X is given by defining “open sets” of X.
Since closed sets are just exactly complement of open sets, it is possible to define topology by giving a collection
of closed sets. Let K be a collection of subsets of X satisfying

(C1) ∅, X ∈ P.

(C2) Any intersection of subsets in K is also in K .

(C3) Any finite union of subsets in K is also in K .

Then define T by
T := {X −C | C ∈ K}

is a topology, i.e. it satisfies (T1, 2, 3). On the other hand, if T is a topology, i.e. the collection of open sets, then

K := {X − U | U ∈ T }

satisfies (C1, 2, 3).

Exercise 2.15. Prove the above claims.

Theorem 2.16. Let A be a subset of the topological space (X,T ). Let B be a basis of T .

(a) x ∈ Ā if and only if every neighborhood U of x intersects with A non-trivially, i.e. U ∩ A , ∅.

(b) x ∈ Ā if and only if every neighborhood B ∈ B of x intersects with A non-trivially.

Terminology: U is a neighborhood of x if U ∈ T and x ∈ U.

Proof. It is easier to prove the contrapositive statements of the theorem. We will prove

x < Ā⇔a ∃U ∈ T , s.t. x ∈ U and U ∩ A = ∅⇔b ∃B ∈ B, s.t. x ∈ B and B ∩ A = ∅.

⇒a If x < Ā, then ∃C a closed set such that C ⊃ A and x < C. Then x < C implies that x is in X−C which is an
open set. C ⊃ A implies that (X −C) ∩ A = ∅. Let U = X −C and we are done for the middle statement.

⇒b For any U ∈ T such that x ∈ U and U ∩ A = ∅, by the definition of a basis, there exists B such that
x ∈ B ⊂ U (G1). This B clearly satisfies the last statement.

⇐b If there is B ∈ B such that x ∈ B and B ∩ A, then this B also plays the role of U in the middle statement.

⇐a If U satisfies the middle statement, then C := X − U is closed and x < C. Thus by definition of Ā, x < A.

�
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Remark 2.17.
If it is a bird, then it is an animal.

The contrapositive statement of the above statement is

If it is not an animal, then it is not a bird.

It is the theorem that those two statements are equivalent.

Example 2.18. The subset A := {1/n | n = 1, 2, 3, · · · } ⊂ R is not closed in the standard topology. To see this,
we can appy Theorem 2.16 and Remark 2.11. A is closed if and only if Ā = A. So we will show Ā , A. Observe
0 < A and let (a, b) be an arbitrary neighborhood of 0 where a < 0 < b. Then, no matter how small b is there is
n such that 1/n < b. Thus (a, b) intersects with A non-trivially. Therefore by the theorem, 0 ∈ Ā.

Exercise 2.19. The boundary ∂A of a subset A of a topological space X is defined by

∂A := A − Int A.

From this definition, it follows that Ā is the disjoint union of ∂A and Int A, i.e. Ā = ∂A ∪ Int A and ∂ ∩ Int A.

(a) Find the boundary, the closure and the interior of (0, 1] in R with the standard topology.

(b) Find the boundary, the closure and the interior of (0, 1] in R with the finite complement topology.

(c) Find the boundary, the closure and the interior of of Q in R with the standard topology.

(d) Prove that ∂A = A ∩ X − A.

Exercise 2.20. Consider standard topology Tst, finite complement topology T f .c. and the discrete topology Tdsct

on R. We have
T f .c. : Q̄ = R, Tst : Q̄ = R, Tdsct : Q̄ = Q.

T f .c. : Z̄ = R, Tst : Z̄ = Z, Tdsct : Z̄ = Z.

Observe that T f .c. ⊂ Tst ⊂ Tdsct. Now consider two topologies T ⊂ T ′ on X, i.e. T ′ is finer than T . Let A ⊂ X

a subset. Let A
T

and A
T ′

be the closures in the corresponding topologies. Prove that

A
T
⊃ A

T ′

.

2.4 Subspace topology and closed sets/closure
Theorem 2.21. Let (X,T ) be a topological space and let Y ⊂ X be a supspace of (X,T ), i.e. a subset with the
subspace topology. Then a subset A of Y is closed in Y if and only if A is an intersection of Y and a closed subset
in X.

Proof. Since an open set in Y is an intersection of Y and an open set in X by definition of subspace topology,
this theorem is rather trivial in the perspective of Remark 2.14. Here is another way to prove:

A : closed in Y ⇔ Y − A : open in Y by def of closed sets
⇔ Y − A = Y ∩ U U is some open set in X, by def of subspace
⇔ A = Y − (Y ∩ U) = Y ∩ (X − U)
⇔ A = Y −C C is a closed set in X

�

Exercise 2.22. Let Y be a subspace of a topological space (X,T ). Prove that, if A is a closed subset of Y and Y
is a closed subset in X, then A is a closed subset of X.
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Theorem 2.23. Let Y be a subspace of (X,T ) and let A be a subset of Y. The closure of A in Y is Ā ∩ Y where
Ā is the closure of A in X.

Proof. Let ĀX and ĀY be the closures of A in the corresponding spaces.

ĀY =1

⋂
CY⊃A

CY =2

⋂
(Y∩CX )⊃A

(Y ∩CX) =3

⋂
CX⊃A

(Y ∩CX) =4 Y ∩
⋂

CX⊃A

CX = Y ∩ ĀX .

=1 is by def of closures in Y . =2 is by the previous theorem. =3 follows since Y ⊃ A. =4 is just the set theoretic
computation. =5 is the definition of closures in X. �
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3 Hausdorff Spaces, Continuous Functions and Quotient Topology

3.1 Hausdorff Spaces
Definition 3.1. A topological space (X,T ) is called a Hausdorff space if

(H1) ∀x, y ∈ X such that x , y, ∃Ux,Uy ∈ T such that x ∈ Ux, y ∈ Uy, and Ux ∩ Uy = ∅

i.e. for every pair of distinct points x, y in X, there are disjoint neighborhoods Ux and Uy of x and y respectively.

Example 3.2.

(a) Rn with the standard topology is a Hausdorff space.

(b) R with the finite complement topology is NOT a Hausdoff space. Suppose that there are disjoint neigh-
borhoods Ux and Uy of distinct two points x and y. Observe that Ux must be an infinite set, since R − Ux

is finite and R is an infinite set (see the definition of finite complement topoloty). It is the same for Uy. By
the disjointness, Uy ⊂ X −Ux. Therefore it contradicts with the finiteness of X −Ux. Thus Ux and Uy can
not be disjoint. This proves that R with the finite complement topology is not Hausdorff.

(c) Any infinite set X with the finite complement topology is not a Hausdorff. This is because every non-empty
open sets intersect non-trivially. (b) is just a special case of (c).

Proof. Let U1 := X − F1 and U2 := X − F2 be open sets (Fi is finite). Then U1 ∩ U2 = X − (F1 ∪ F2).
Since X is infinite and F1 ∪ F2 is finite, this can not be empty. �

The following exercise is a nice one to relate the Hausdorff condision and the product topology.

Exercise 3.3. Show that X is a Hausdorff space if and only if the diagonal ∆ := {(x, x) | x ∈ X} ⊂ X×X is closed
with respect to the product topology.

Theorem 3.4. Every finite set in a Hausdorff space X is closed.

Proof. A point {x} ⊂ X is closed set because we can show that X − {x} is open: ∀y ∈ X − {x}, by the Hausdorff
condition, there is an open set Uy such that y ∈ Uy but x < Uy (we are not using the whole condition) so that
Uy ⊂ X − {x}. Now, since a finite set is a finite union of single points, it is closed. �

Remark 3.5. The opposite statement of Theorem 3.4 is not true. The counter example is Example 3.2 (b).

Definition 3.6. Let {xn | n ∈ N} be a sequence of points in a topological space. The sequence {xn | n ∈ N}
converges to a point x ∈ X if, for every neighborhood U of x, there is a positive integer N ∈ N such that xn ∈ U
for all n ≥ N. In other words, U contains all but finitely many points of {xn}.

Lemma 3.7. Let B be a basis of a Hausdorff space X. Then {xn} converges to x iff every B ∈ B containing x
contains all but finitely many points of {xn}.

Exercise 3.8. Find all points that the sequence {xn = 1/n | Z>0} converges to with respect to the following
topology of R. Justify your answer.

(a) Standard Topology

(b) Finite Complement Topology

(c) Discrete Topology

(d) Lower Limit Topology

Are (c) and (d) Hausdorff?

Theorem 3.9. If X is a Hausdorff space, then every sequence of points in X converges to at most one point of X.
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Proof. We prove by deriving a contradiction. Suppose that {xn} converges to x and y and that x , y. Then by
(H1), there are Ux and Uy in TX such that x ∈ Ux and y ∈ Uy and Ux ∩Uy = ∅. Since Ux contains all but finitely
many points of {xn}, it is not possible that Uy contains all but finitely many points of {xn}. Thus {xn} can not
converges to y. �

3.2 Continuous Maps
Definition 3.10 (ε-δ continuity). A function f : R → R is ε-δ continuous at x0 ∈ R when “ f (x) gets closer to
f (x0) as x gets closer to x0”.More precisely,

(ε-δ-cont at x0) ∀ε > 0, ∃δ > 0 such that f (x) ∈ ( f (x0) − ε, f (x0) + ε), ∀x ∈ (x0 − δ, x0 + δ).

In terms of the basis of topology B := {Bx,ε := (x − ε, x + ε) | x ∈ R, ε ∈ R>0},

(ε-δ-cont at x0)⇔ ∀B f (x0),ε ,∃Bx0,δ such that f (Bx0,δ) ⊂ B f (x0),δ.

⇔ (Cont at x0) ∀B f (x0),ε ,∃Bx0,δ such that Bx0,δ ⊂ f −1(B f (x0),δ)

A map f : R→ R is an ε-δ continuous function if f is ε-δ continuous at every x ∈ R.

⇔ (Cont) ∀B f (x),ε , f −1(B f (x),ε) is open .

Using (G1)
⇔ (Cont) for all open set U ⊂ R, f −1(U) is open.

Definition 3.11. Let (X,TX) and (Y,TY ) be topological spaces. Let BY be a basis of TY . A map f : X → Y is
continuous at x0 ∈ X if

(Cont at x0) ∀V f (x0): a nbhd of f (x0) in Y , ∃Ux0 a nbhd of x0 in X such that Ux0 ⊂ f −1(V f (x0)).

By using (G1),

⇔ (Cont at x0) ∀V f (x0) ∈ BY : a nbhd of f (x0) in Y , ∃Ux0 a nbhd of x0 in X such that Ux0 ⊂ f −1(V f (x0)).

A map f : X → Y is continuous if f is continuous at every point of X.

(Cont) ∀V ∈ TY , f −1(V) ∈ TX , i.e. the preimage of open sets are open.

By using (G1), we can just check the condition for open sets in the basis:

f : X → Y continuous ⇔ (Cont) ∀V ∈ BY , f −1(V) ∈ TX

By the way we get the definition of continuity of a map, we have

Theorem 3.12. A map f : R → R is continuous at x0 ∈ R relative to the standard topology if and only if f is
ε-δ continuous at x0 ∈ R.

Example 3.13. Here are some trivial example

• Let f : X → Y be a map of topological spaces. Show that f is always continuous, if X has the discrete
topology.

• LetRs andR f be the set of all real numbers with the standard topology and the finite complement topology.
If idR : R → R be the identity map, i.e. idR(x) = x. Then id : Rs → R f is continuous but id : R f → Rs is
not continuous. This is because the standard topology is strictly finer than the finite complement topology,
i.e. the standard topology has strictly more open sets than the finite complement topology. In general, we
have

If (X,T ) is finer than (X,T ′), then idX : (X,T )→ (X,T ′) is continuous.

12



• (Constant functions) If f : X → Y maps all points of X to a single point y0 ∈ Y , then f is a continuous
function.

Exercise 3.14. We can formulate the continuity by using closed sets: show that a map f : X → Y of topological
spaces is continuous if and only if for every closed set CY of Y , the preimage f −1(CY ) is closed in X.

Exercise 3.15. Prove that f : X → Y is continuous if and only if for every subset A of X, we have f (A) ⊂ f (A).

Exercise 3.16. Define a map f : R → R2 by x 7→ (cos x, sin x). Then f is continuous relative to the standard
topologies.

Exercise 3.17. Define a map f : R→ R by

x 7→

|x| if x is rational
−|x| if x is irrational.

Then f is continuous at x = 0 but not continuous at other points.

Lemma 3.18. Let f : X → Y be a continuous map and let {xn | n ∈ Z>0} ⊂ X be a sequence which converges to
x ∈ X. Then the sequence { f (xn)} ⊂ Y converges to f (x).

Proof. Let V be any neighborhood of f (x). Then f −1(V) is an open set containing x so it’s a neighborhood of x.
By the definition of convergence, there is N such that xn ∈ f −1(V) for all n > N. This N satisfies that f (xn) ∈ V
for all n > N so that { f (xn)} converges to f (x). �

3.3 Homeomorphisms
Definition 3.19. A map f : X → Y of topological spaces is a homeomorphism if f is bijective and both f and
f −1 are continuous.

Remark 3.20. f is a homeomorphism if f is bijective and

• for any open set U ⊂ X, f (U) is open in Y ,

• for any open set V ⊂ Y , f −1(V) is open in X.

Indeed, if we have bases for topologies for X and Y , we just need to see the conditions above for basis elements.

Example 3.21.

• The function f : R → R defined by f (x) = x3 is a homeomorphism. The inverse function f −1(y) = x
1
3 is

also continuous.

• f (x) = x2 is not a homeomorphism because it is not a bijection. But we restrict f to some subset, it is a
homeomorphism relative to the subspace topology. For example, f : [0,∞)→ [0,∞), then f is a bijective
continuous map and f −1(x) = x

1
2 is also continuous.

• Consider he function f : [0, 2π) → S 1 given by t 7→ (cos t, sin t) where S 1 is the unit circle in R2 with
the subspace topology. It is a bijective continuous map but f −1 is not continuous. This is because, for
example, the image of the open set [0, 1) under f is not open in S 1.

How to show f ([0, 1)) is not closed in S 1: Let Bball be the basis of standard topology of R2 given by
open disk. The basis of the subspace topology on S 1 is B := {S 1 ∩ B | B ∈ Bball}. Let B0 be an arbitrary
open disk centered at f (0). Then S 1 ∩ B0 can not be contained in f ([0, 1)), since there is always a small
ε such that f (−ε) < f ([0, 1)) and f (−ε) ∈ S 1 ∩ B0. This shows that f ([0, 1)) is not open in the subspace
topology S 1

Exercise 3.22. Show that the open interval (−π/2, π/2) of R with the subspace topology is homeomorphic to R.
Show that any open interval is homeomorphic to R.
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Definition 3.23. A map f : X → Y is a topological embedding if f is injective and f : X → f (X) is a
homeomorphism where f (X) has the subspace topology inherited from Y .

Exercise 3.24. Let X and Y be topological spaces and A ⊂ X a subspace. Let f : A → Y be a continuous
function and assume that Y is Hausdorff. Show that if f can be extend to a continuous function f̃ : Ā → Y , i.e.
if there is a continuous function f̃ : Ā→ Y such that f̃ |A = f , then it is unique.

3.4 Properties of continuous functions
Lemma 3.25. The composition g ◦ f of continuous functions f : X → Y and g : Y → Z is continuous.

Proof. Let U be an open set in Z. Then g−1(U) is open in Y since g is continuous. Then f −1(g−1(U)) =

(g ◦ f )−1(U) is open in X since f is continuous. �

Exercise 3.26. Suppose that X,Y,Z are topological spaces. Let f : X → Y and g : Y → Z be maps of sets. Prove
or disprove the following statement:

(a) If f : X → Y is continuous and the composition map g ◦ f : X → Z is continuous, then g : Y → Z is
continuous.

(b) If g : Y → Z is continuous and the composition map g ◦ f : X → Z is continuous, then f : X → Y is
continuous.

Lemma 3.27. Suppose that X is a union of open sets Ui, i ∈ I. Suppose we have continuous maps fi : Ui → Y
such that fi|Ui∩U j = f j|Ui∩U j , then there is a unique continuous map f : X → Y such that f |Ui = fi.

Proof. There is a map f : X → Y such that f |Ui = fi by saying for each x ∈ X, let f (x) := fi(Ui). This is
well-defined since the choice of Ui doesn’t change the map f . Furthermore, if f , g : X → Y are maps such that
f |Ui = fi. Then for any x ∈ X, there is Ui such that x ∈ Ui and f (x) = fi(x) = g(x) by the conditions. Thus f = g.
So it’s unique. To show that such f is continuous, let V be an open set in Y . Then

f −1(V) =
⋃

i

f −1(V) ∩ Ui =
⋃

i

f −1
i (V).

The first equality follows from the assumption that X is a union of Ui’s. Thus f −1(V) is an open set since it is a
union of open sets (each f −1

i (V) is an open set in Ui and it is an open in X since Ui is open in X.) �

Lemma 3.28. A map f : Z → X × Y is continuous if and only if π1 ◦ f : Z → X and π2 ◦ f : Z → Y are
continuous.

Proof. Let U1 × U2 be an open set in X × Y . Then f −1(U1 × U2) is an open set in Z. Let U2 = Y . Then

f −1(U1 × Y) = (π1 ◦ f )−1(U1) ∩ (π2 ◦ f )−1(Y) = (π1 ◦ f )−1(U1) ∩ Z = (π1 ◦ f )−1(U1)

Thus π1 ◦ f is continuous. Similarly for π2 ◦ f . On the other hand,

f −1(U1 × U2) = (π1 ◦ f )−1(U1) ∩ (π2 ◦ f )−1(U2)

implies that if U1 and U2 are open sets in X and Y respectively, then f −1(U1 × U2) is an open set since (π1 ◦

f )−1(U1) and (π2 ◦ f )−1(U2) are open in Z. Since every open set in X×Y is of the form U1×U2, we can conclude
that f is continuous. �

Theorem 3.29. If f : X → Y is an injective continuous map and Y is Hausdorff, then X must be Hausdorff.

Proof. Let x1, x2 ∈ X are distinct points. Then f (x1) and f (x2) are distinct points in Y since f is injective.
Therefore there are neighborhoods V1 and V2 of f (x1) and f (x2) respectively such that V1 ∩ V2 = ∅. Since f
is continuous, f −1(V1) and f −1(V2) are open sets and in particular neighborhoods of x1 and x2. Since f −1(V1) ∩
f −1(V2) = f −1(V1 ∩ V2) = f −1(∅) = ∅ (see HW1), we found the disjoint neighborhoods of x1 and x2, thus X is
Hausdorff. �
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3.5 Quotient Topology
Definition 3.30. Let π : X → Y be a surjective map of topological spaces. The map π is a quotient map if

a subset U in Y is open if and only if the preimage π−1(U) is open in X.

Note that “only if” part is the continuity of π, so this condition is stronger than π being continuous.

Exercise 3.31. A map f : X → Y of topological spaces is called a open (closed) map if the image of every open
(closed) set in X is again open (closed). Show that a continuous surjective map f : X → Y is a quotient map if it
is either an open or closed map.

Example 3.32. Define a map f : [0, 1] → S 1 by x 7→ (cos 2πx, sin 2πx) where S 1 is the unit circle in R2 with
the induced topology. It is a continuous surjective map. It is not an open map but it is a closed map. Observe the
images of (1/2, 1] and [1/2, 1]. Thus, it is a quotient map.

Definition 3.33. Let X be a topological space and A a set. Let f : X → A be a surjective map. There is a unique
topology on A which makes f to be a quotient map. It is called the quotient topology and the topological space
A is called the quotient space.

Proof. The definition of the quotient map actually determines the topology of A: TA must be the set of all subsets
U ⊂ A such that f −1(U) is open in X. The axiom (T1) is obvious. The axioms (T2,3) follows from the fact that
the preimage preserves the unions and the intersections. �

Remark 3.34. An equivalence relation on a set X defines a surjective map f : X → A where A is the set of all
equivalence classes (see [Set]). The typical construction of a quotient space is given by identifying equivalent
points. Let ∼ be an equivalence relation on X and then denote X/∼ the set obtained by identifying equivalent
points. Then we have the natural surjective map q : X → X/∼, x 7→ [x].

Example 3.35. Let X := [0, 1] and identify 0 and 1, i.e. the equivalence relation is given by a ∼ a for all
a ∈ [0, 1] and 0 ∼ 1. The map f in Example 3.32 factors through X/∼:

[0, 1]
f //

q
$$IIIIIIIII S 1

[0, 1]/∼

g

OO x
f //

q
&&MMMMMMMMMMMMM (cos 2πx, sin 2πx)

[x]

g

OO

Then we can show that g is a homeomorphism, using the following useful lemma:

Lemma 3.36. Consider the following commutative diagram, i.e. g ◦ f1 = f2:

X

f1����
��

��
�

f2 ��@
@@

@@
@@

Y g
// Z.

If f1 and f2 are quotient maps and g is a bijection, then g must be a homeomorphism.

Proof. It suffices to show that g is continuous, since then g−1 is also continuous (the claim holds if we replace
g by g−1). Let U be an open set in Z. We want to show that V := g−1(U) is an open set in Y , but a set V
in Y is an open set if and only if f −1

1 (V) is an open set in X by the definition of the quotient topology. Since
f −1
1 (V) = f −1

1 (g−1(U)) = f −1
2 (U) is an open set (the quotient topology of Z), V must be an open set. �

Example 3.37 (2-Sphere ver 1). Let D := {(x, y) ∈ R2 | x2 + y2 ≤ 1} be the unit disk in R2. Identify all points on
the boundary of the disk, i.e. p ∼ p for all Int X and p ∼ q if p, q ∈ ∂D. It can be shown to be homeomorphic to
the unit 2 sphere which is defined by

S 2 := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} in R3 with standard topology.
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Exercise 3.38 (2-sphere ver 2). Consider the disjoint union X := D1 t D2 of two unit disk D1 and D2. Identify
(x1, y1) ∼ (x2, y2) if x1 = x2 and y1 = y2 where (x1, y1) ∈ D1 and (x2, y2) ∈ D2. Then show that X/∼ is
homeomorphic to the unit 2-sphere S 2 in R3.

Example 3.39 (Torus). Consider the unit square X := [0, 1] × [0, 1] in R2. Identify (0, y) ∼ (1, y) and (x, 0) ∼
(x, 1) for all x, y ∈ [0, 1]. A torus T is defined by X/∼. Show that it is homeomorphic to S 1 × S 1.

Exercise 3.40. Prove the following:

(a) If f : X → Y and g : Y → Z are quotient maps, then g ◦ f : X → Z is a quotient map.

(b) Let f : X → Y and g : Y → Z be continuous maps. If f and g ◦ f are quotient maps, then g is a quotient
map.
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4 Compactness, Metric, and Universality

4.1 Definition of compactness and the compact subspaces of R
Definition 4.1. Let X be a topological space. A collection of open sets Ua, a ∈ A is an open covering of X if
X = ∪aUa.

X is compact if every open covering of X contains a finite subcollection that also covers X.

Example 4.2.

1. R is not compact: Consider the infinite covering (n, n + 2), n ∈ Z:

2. X = {0} ∪ {1, 1/2, 1/3, · · · } is compact: every neighborhood of 0 contains all but finitely many points of
X. Thus for any open covering of X, take one open set U containing 0 and choose other open sets that
correspond to each of the finite many points not in U.

3. (0, 1) is not compact since it is homeomorphic to R.

Remark 4.3. The set of real numbers satisfy the following properties:

(R1) If a non-empty subset A ⊂ R is bounded above, i.e. there exists b ∈ R such that a ≤ b for all a ∈ A, then
there is the least upper bound (or supremum) of A, i.e. there exists the smallest b ∈ R such that a ≤ b for
all a ∈ A. The least upper bound of A is denoted by sup A.

(R2) If x < y, then there is a number z ∈ R such that x < z < y.

An order relation on a set satisfying these two properties is called a linear continuum.

Theorem 4.4 (27.1 [Mun]). Closed intervals of R are compact.

Proof. Let Uα, α ∈ A be an open covering of [a, b] ⊂ R.

(1) Let x ∈ [a, b), then there is y ∈ (x, b] such that [x, y] is covered by one open set inA := {Uα}.

Each Uα is a union of open intervals. Let (h1, h2) be an open interval of Uα such that h1 < x < h2.
By (R2), there is y such that x < y < h2. Now it is clear that [x, y] is covered by (h1, h2) and so by
Uα.

(2) Let C be the set of all y ∈ (a, b] such that [a, y] is covered by finitely many open sets in A. Then C is not
empty because applying (1) for x = a, then there is y such that [a, y] is covered by one of Uα. Now C is
bounded above since C ⊂ (∞, b]. By (R1), the least upper bound c which should satisfy a < c ≤ b.

(3) c belongs to C, i.e. [a, c] is covered by finitely many open sets inA.

Suppose that c < C. Let (h1, h2) be one of open intervals of Uα, which contains c. Then there is
z ∈ C such that z ∈ (h1, c) because c is the smallest that bounds C. By the definition of C, [a, z]
is covered by finitely many open sets in A. Since [z, c] ⊂ Uα, [a, z] ∪ [z, c] = [a, c] is covered by
finitely many open sets. Contradiction.

(4) c is actually b.

Suppose that c < b. Apply (1) to x := c. Then there is y ∈ (c, b] such that [c, y] is covered by one
open set Uα. Since c ∈ C, [a, c] is covered by finitely many open sets as we proved in (3). Thus
[a, c] ∪ [c, y] = [a, y] is covered by finitely many open sets, i.e. y ∈ C. This contradict fact that c
bounds C. Thus c = b.

Thus [a, b] is covered by finitely open sets inA. �
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4.2 Useful Theorems about compactness
Theorem 4.5 (26.2 [Mun]). Every closed subspace C of a compact space X is compact.

Proof. Let {Uα}α∈A be an open covering of C. By the definition of subspace topology, each Uα = C ∩ Vα for
some open set Vα in X. Then {Vα} ∪ {X − C} is an open covering of X, therefore there is a finite subcollection
{Oi, i = 1, · · · , n} that covers X, and so certainly {Oi ∩C, i = 1, · · · , n} covers C. If X −C is in the subcollection,
(X −C) ∩C = ∅, so we can assume that {Oi ∩C, i = 1, · · · , n} is a finite subcollection of {Uα, α ∈ A}. Thus we
have a finite subcollection that covers C. �

Theorem 4.6 (26.7 [Mun]). The product of finitely many compact spaces is compact.

Proof. If we just prove it for product of two compact spaces, then the claim follows from induction. Let X and
Y be compact spaces. Let TX ,TY be topologies of X,Y and let TX×Y be the product topology of X × Y .

(1) ∀x ∈ X and ∀N ∈ TX×Y such that N ⊃ {x} × Y , ∃W ∈ TX such that x ∈ W and N ⊃ W × Y .

An opet set N in X × Y containing {x} × Y is called a tube about {x} × Y . This claim says, although
a tube may not be of the form W × Y , but for a given tube, we can find a smaller tube that is of the
form W × Y . To prove this, we need Y to be compact. The given N is of the form ∪αUα × Vα. Then
{(Uα ×Vα)∩ ({x} ×Vα)} is an open covering of {x} × Y since N ⊃ {x} × Y . Since {x} × Y � Y , {x} × Y
is compact and so there is a finite subcollection {Uα1 ×Vα1 , · · · ,Uαn ×Vαn } that covers {x} ×Y . Then
W := ∩n

i=1Uαi is an open set in X (since it is a finite intersection) and we can assume that x ∈ W
since if x < Uαi , we can get rid of Uαi × Vαi from the list. Now

N ⊃ ∪n
i=1Uαi × Vαi ⊃ W × Y ⊃ {x} × Y.

(2) Let {Nα} be an arbitrary open covering of X×Y . For each x ∈ X, we have a subcollection {Nα1,x, · · · ,Nαn,x}

that covers {x} × Y since {x} × Y is compact. Then Nx = ∪n
i=1Nαi,x ⊃ {x} × Y . By (1), there is Wx such

that Nx ⊃ Wx × Y ⊃ {x} × Y . Since X is compact and {Wx, x ∈ X} is an open covering of X, we have a
subcollection {Wx j , j = 1, · · · ,m}. Now {Nαi,x j , 1 ≥ i ≥ n, 1 ≥ j ≥ m} gives a finite subcollection of {Nα}

that covers X × Y:
∪i, jNαi,x j = ∪ jNxi ⊃ ∪ jWx j × Y ⊃ X × Y.

�

Theorem 4.7 (26.5 [Mun]). The image of a compact space under a continuous map is compact.

Theorem 4.8 (26.3 [Mun]). Every compact subspace Y of a Hausdorff space X is closed.

Proof. We will show that X − Y is open, i.e. for every x ∈ X − Y , there is a neighborhood of x contained in
X − Y . For every y ∈ Y , there are disjoint neighborhoods Ux,y of x and Uy of y (Hausdorff). By collecting
such Uy’s, we obtain an open covering of Y . Note that Ux,y may be different for every y. Nevertheless by the
compactness of Y , we can choose the finite subcollection {Uy1 , · · · ,Uyn } that covers Y . The finite intersection
Ux of Ux,yi , i = 1, · · · , n is again an open set and it is disjoint from Y . Therefore we found a neighborhood Ux

contained in X − Y . �

Theorem 4.9 (26.6 [Mun]). Let f : X → Y be a continuous bijection. If X is compact and Y is Hausdorff, then
f must be a homeomorphism.

Proof. It suffices to show that f is a closed map since f is bijective. If A is closed in X, then A is compact by
Theorem 4.5. Then by Theorem 4.7, f (A) is compact. Thus by Theorem 4.8, f (A) is closed. �

Example 4.10.

(1) The cartesian product of closed intervals (a box) in Rn is compact.
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(2) Every closed subset of Rn contained in a box is compact.

(3) The unit n-sphere and the closed n-ball are compact.

(4) Rwith the finite complement topology is not Hausdorff. The subspace Z is compact: for any open covering
of Z, take an open set containing 0. With the finite complement topology, this open set misses only finitely
many points. By choosing an open set for each missed point, we find the subcollection. Thus Z is compact.
However Z is not closed.

(5) A closed interval in R with the finite complement topology is compact.

Theorem 4.11 (27.3 [Mun]). A subspace A of Rn is compact if and only if it is closed and is bounded in the
euclidean metric d, i.e. there is M > 0 such that d(~x, ~y) < M for all ~x, ~y ∈ A.

Proof.

• (⇐) This direction is already hinted in the example above. We can show that it is bounded, then we can
put it in a box or a closed n-ball. Let’s fix a point ~p in A. Since A is bounded, so there is M > 0 such that
d(~p, ~x) < M for all ~x ∈ A. Hence A is a the closed subset of closed n-ball Bd(~p,M) which is compact. The
claim follows from Theorem 4.5.

• (⇒) This direction is new, but it’s easy. Let’s cover A by open balls, namely, A ⊂ ∪~x∈ABd(~x, εx). Since A
is compact, we can find a finite subcovering: A ⊂ ∪m

i=1Bd(~xi, εi). Now take arbitary ~p1, ~p2 ∈ A. There must
be some i1 and i2 such that ~p1 ∈ Bd(~xi1 , εi1 ) and ~p2 ∈ Bd(~xi2 , εi2 ). By the triangle inequality of the metric,
we have

d(~p1, ~p2) ≤ d(~p1, ~xi1 ) + d(~xi1 , ~xi2 ) + d(~xi2 , ~p2) ≤ d(~xi1 , ~xi2 ) + ε1 + ε2 ≤ M

where M =
∑m

i, j=1 d(~xi, ~x j) +
∑m

i=1 εi. Thus A is bounded. It is certainly closed since Rn is closed and by
Theorem 4.8.

�

Remark 4.12. We can not generalized the above theorem to arbitrary metric spaces. Here is a counter example.
Let R be the metric space with Euclidean metric. It is easy to see that R−{a} has induced metric whose topology
is the subspace topology of the standard topology. For a closed interval [b, c] containing a, is a compact space,
but [b, c] − {a} is not compact. [b, c] − {a} is closed in R − {a} and bounded in the induced metric. Thus the
theorem fails for the metric space R − {a}. This failure is related to the concept “completeness” of the metric.
R − {a} is not a complete metric space but R is. See §45[Mun] to see more.

Exercise 4.13. Prove that every subspace of R with the finite complement topology is compact.

4.3 Metric
Definition 4.14 (§20 [Mun]). A metric on a set X is a function d : X × X → R satisfing

1. d(x, y) > 0 for all x, y ∈ X and the equality holds iff x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

d(x, y) is often called the distance between x and y.

Definition 4.15. Let (X, d) be a set X with a metric d. For x ∈ X and ε > 0, the ε-ball Bd(x, ε) centered at x is
the subset of X given by

Bd(x, ε) := {y ∈ X | d(x, y) < ε}.

The collection Bd := {Bd(x, ε) | x ∈ X, ε ∈ R>0} is a basis of a topology called the metric topology. Check that
Bd satisfies the axiom (B1) and (B2) in Section 1. Call it the open ball basis. If (X,T ) is a topological space
and T can be realized as a metric topology, then (X,T ) is called metrizable.
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Remark 4.16. A metrizable topological space is certainly a Hausdorff space. If x , y, then d := d(x, y) > 0 and
so d/2 > 0. Now Bd(x, d/2) and Bd(y, d/2) separate x and y.

Definition 4.17 (The Euclidean metric on Rn). Let ~x, ~y ∈ Rn.

• The inner product 〈~x, ~y〉 := x1y1 + · · · + xnyn.

• The norm ||~x|| :=
√
〈~x, ~x〉.

• The Euclidean metric d(~x, ~y) := ||~x − ~y||.

Remark 4.18. The standard topology of Rn coincides with the metric topology given by the Euclidean metric.

Remark 4.19. There is another metric on Rn called the square metric ρ given by

ρ(~x, ~y) := max{|x1 − y1|, · · · , |xn − yn|}.

This is also a metric and its metric topology coincides with the standard topology.

Lemma 4.20. Let (X,T ) be a topological space and A ⊂ X a subset. Let x ∈ X. If there is a sequence {xn} ⊂ A
that converges to x, then x ∈ Ā. If X is metrizable, the converse holds, i.e. if x ∈ Ā, there is {xn} that converges
to x.

Proof. The first claim is trivial by the definition of convergence. Indeed, {xn} → x if and only if ∀Ux, {xn} − Ux

is finite. Thus Ux ∩ {xn} is infinite, therefore Ux ∩ A , ∅. For the second claim, choose a metric d so that T is
its metric topology. Let B := Bd be the open ball basis. Let Bx,ε := Bd(x, ε). First apply Theorem 2.16 (b). We
have

x ∈ Ā ⇔ ∀Bx,ε ∈ B, Bx,ε ∩ A , ∅ ⇔ ∀Bx,1/n, n ∈ Z>0, Bx,1/n ∩ A , ∅

where the second equivalence follows from the fact that ∀ε > 0, ∃n such that 1/n < ε. Now pick xn ∈ Bx,1/n ∩ A.
Then the sequence {xn} ⊂ A converges to x since Bx,1/n ⊂ Bx,1/m if n > m. �

Theorem 4.21. Let X,Y be topological spaces and f : X → Y a map. The continuity of f implies that

(S 1) for every convergent sequence {xn} → x in X, the sequence { f (xn)} converges to f (x).

On the other hand, if X is metrizable, (S 1) implies the continuity of f .

Proof. The first claim is Lemma 3.18. To prove the second claim, we will use Lemma 4.20 and HW3 (3):
f : X → Y continuous⇔ f (Ā) ⊂ f (A),∀A ⊂ X. Let A be a subset of X and let x ∈ Ā. By the second claim of
Lemma 4.20, x ∈ Ā implies that there is a sequence {xn} → x. By the assumption, { f (xn)} → f (x). Then by the
first claim of Lemma 4.20, f (x) ∈ f (A). Therefore f (Ā) ⊂ f (A). �

4.4 Limit Point Compactness and sequentially compact §28 [Mun]
Definition 4.22. Let X be a topological space and A a subset. Recall the following definitions:

• x ∈ X is a limit(accumulation, cluster) point of A if x ∈ A − {x}.

• A sequence {xn ∈ X | n ∈ Z>0} converges to x ∈ X if for every neighborhood Ux of x, there is N ∈ Z>0
such that xn ∈ Ux for all n > N.

Definition 4.23. Let X be a topological space.

• X is limit point compact if, for any infinite subset A of X, there is a cluster point of A in X.

• X is sequentially compact if every sequence {xn} in X contains a subsequence that converges to a point x
in X.
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Theorem 4.24 (28.1 [Mun]). Compactness implies limit point compactness. Converse is not true in general.

Proof. Let X be a compact space. Suppose that X is not limit point compact. Let A be an infinite subset such
that there is no cluster point of A in X, i.e. ∀x ∈ X, x < A − {x}. By Theorem 2.16, there is an open set Ux

of such that x ∈ Ux and Ux ∩ (A − {x}) = ∅. This implies that for every x ∈ X − A, there is Ux such that
x ∈ Ux ⊂ X − A so that A is closed. Now consider the following open covering of X: {Ua}a∈A ∪ {X − A} where
Ua satifies Ua ∩ (A − {a}) = ∅, i.e the element of A contained in Ua is only just a. Since X is compact, there is
a finite subcovering {Ua1 , · · · ,Uam , X − A}. However the union of these can contain only finitely many elements
of A which contradict to the assumption that A is an infinite subset. Thus there must be an cluster point of A in
X. �

Theorem 4.25 (28.2 [Mun]). If X is a metrizable topological space, then all three compactness of X are equiv-
alent.

Proof.

(i) Compact⇒ Limit point compact: the previous theorem.

(ii) Limit point compact⇒ Sequentially compact: Let xn, n ∈ Z>0 be a sequence of points in X. If A := {xn}

is a finite subset of X, then there are infinitely many xn’s that are the same point x ∈ X. Then the
subsequence {xn | x = xn} ⊂ {xn} trivially converges to x. If A is an infinite subset, there is a cluster point
x of A in X, i.e. x ∈ A − {x}. By Theorem 2.16, every neighborhood of x intersects with A − {x}. Now
consider the sequence of open balls around x, namely Bd(x, 1) ⊃ Bd(x, 1/2) ⊃ Bd(x, 1/3) ⊃ · · · . Each
open ball must contain an element of A− {x}, say xni . The subsequence {xni , i = 1, 2, · · · } ⊂ {xn} converges
to x apparently.

(iii) Sequentially compact⇒ Compact:

(1) Given ε > 0, there is a finite covering of X by ε-balls.

Proof by contradiction: suppose that there is ε > 0 such that there is no finite covering by ε-balls. We
will find a sequence that doesn’t have a convergent subsequence. Choose x1 ∈ X. Bd(x1, ε) doesn’t
cover X, so we can find x2 ∈ X − Bd(x1, ε). Then we can still find x3 ∈ X − Bd(x1, ε) − Bd(x2, ε),
and in general, we can find xn+1 ∈ X − (∪n

i=1Bd(xn, ε)), the finite collection {Bd(x1, ε), · · · , Bd(xn, ε)}
never covers X. Thus we have a sequence {xn, n ∈ Z>0}. This sequence doesn’t have a convergent
subsequence because any ε/2-ball can contain at most one of xn’s.

(2) LetA := {Uα} be an open covering of X. Then by the Lebesgue number theorem, there is δ > 0 such
that each open set of diameter less than δ is contained in one of open sets inA. Let ε := δ/3. By (1),
we can cover X by finitely many ε-balls B1, · · · , Bm. Each open ball Bi has diameter 2δ/3 so it is less
than δ, therefore there is an open set Ui inA. Thus the finite subcollection {U1, · · · ,Um} covers X.

�

Lemma 4.26 (§27 [Mun] Lebesgue number lemma). Let X is a sequentially compact metric space with metric
d. Then for any open coveringA := {Uα} of X, there is a positive number δ > 0 such that

? for each subset A of X with d(A) < δ, there is an open set Uα ∈ A such that A ⊂ U.

The diameter d(A) of a subset A is defined by the least upper bound of the set {d(a1, a2) | a1, a2 ∈ A} ⊂ A.

Proof. Proof by contradiction. Let {Uα} be an open covering of X such that there is no δ > 0 which satisfy ?. So
let Cn be a subset of diameter less than 1/n that is not contained in any of {Uα}. Let {xn, xn ∈ Cn} be a sequence.
Since X is sequentially compact, there is a subsequence {xni } which converges to a point a ∈ X. Since {Uα} is an
open cover, there is Uα containing a and there is Bd(a, ε) such that a ∈ Bd(a, ε) ⊂ Uα. Since {xni } converges to
a, we can find a large ni such that xni ∈ Cni ⊂ Bd(xni , ε/2) ⊂ Bd(a, ε) ⊂ Uα which contradict the assumption that
Cni is not in any of {Uα}. �
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4.5 Completeness of metric and Theorem 4.11
Definition 4.27. Let (X, d) be a metric space. A sequence (xn, n ∈ Z>0) is a Cauchy sequence in (X, d) if

(Cauchy) ∀ε > 0, ∃N ∈ Z>0 such that d(xn, xm) < ε, ∀n,m > N.

A metric space (X, d) is complete if every Cauchy sequence in X converges.
Note that in a metric space, every convergent sequence must be Cauchy because of the definition of a con-

vergent sequence (Definition 3.6).

Definition 4.28. A metric space (X, d) is totally bounded if ∀ε > 0, there is a finite covering of X by ε-balls.

Theorem 4.29 (45.1, [Mun]). A metric space (X, d) is compact if and only if it is complete and totally bounded.

Corollary 4.30. Let (X, d) be a complete metric space. A subset A is compact if and only if A is closed and A is
totally bounded.

Proof. If A is compact, then since X is Hausdoff, A is closed. It is bounded by the same argument as in the proof
of Theorem 4.11. On the other hand, if A is closed, then the induced metric is complete by Lemma 4.31. Thus
by Theorem 4.29. �

Lemma 4.31 (p.269 [Mun]). Let (X, d) be a complete metric space. The induced metric on a closed set A is
complete.

Example 4.32.

• Let A be a subset of Rn which is bounded w.r.t. the Euclidean metrix d. Then (A, d) is a metric space (with
the restriction of d) and it is totally bounded. Let M > 0 be the number which bounds A, i.e. d(x, y) < M
for all x, y ∈ A. Then there is a box [a, b]n where b − a = M that contains A. Take arbitrary ε > 0. We
can divide this box into a finite number of small boxes such that each can be contained in an epsilon ball.
Thus A can be covered by finitely many ε-balls.

• The standard metric on Rn is complete (Theorem 43.2 [Mun]).

4.6 Universal properties of maps and induced topologies
Theorem 4.33. The induced topologies have universal properties:

• Let j : A → X be an injective map of sets. For every map f : Z → X such that Im f ⊂ Im j, there is the
unique map g : Z → A such that j ◦ g = f :

Z
∀ f

��@
@@

@@
@@

∃!g
��

A � �

j
// X.

If X and Z are topological spaces and f is continuous, then the subspace topology on A makes g continu-
ous.

• For every pair of maps f1 : Z → X and f2 : Z → Y of sets, there exists the unique map g : Z → X ×Y such
that π1 ◦ g = f1 and π2 ◦ g = f2 where π1 and π2 are the projections to the first and the second factors:
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If X,Y,Z are topological spaces and f1, f2 continuous, then the product topology on X × Y makes g con-
tinuous.

• Let p : X → Y be a surjective map of sets. For every map f : X → Z that is constant on p−1(y) for each
y ∈ Y, there is the unique map g : Y → Z such that g ◦ p = f :

X

p
����

∀ f

��?
??

??
??

Y
∃!g

// Z

If X,Z are topological spaces and f is continuous, then the quotient topology on Y makes g contituous.
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5 Connected spaces

5.1 Connected spaces: the concept
Definition 5.1. A topological space X is connected if X is not a disjoint union of non-empty open sets.

Lemma 5.2. The following are equivalent

(0) X is not a disjoint union of non-empty open sets

(1) X is not a disjoint union of non-empty closed sets

(2) The only subsets of X that are both open and closed are ∅ and X.

Proof.

(0)⇒(2) If U1 is open and closed but not ∅ and not X, then U2 := X − U1 is open and closed and not ∅. Thus
we find the disjoint union X = U1 t U2 by open sets.

(0)⇐(2) If X = U1 t U2 with U1,U2 , ∅, i.e. not connected, then U1 = X − U2 is closed. Thus U1 is open and
closed which is not ∅ and not X since U2 , ∅.

(0)⇔(1) If X = U1 t U2 and U1 and U2 are non-empty and open, then U1 are U2 are nonempty and closed.
Similarly X = C1 tC2 and C1 and C2 are nonempty and closed, then C1 are C2 are nonempty open. �

Example 5.3.

1. A set X with more than one element is not connected if we put the discrete topology.

2. Q ⊂ R with the subspace topology induced from the standard topology is not connected as follows. Let
α ∈ R be an irrational number. Then (α,∞) and (−∞, α) are open sets of R and so U1 := Q ∩ (α,∞) and
U2 := Q ∩ (−∞, α) are open sets of Q. Since α < Q, Q = U1 t U2.

3. Z ⊂ R with the subspace topology induced from the finite complement topology is connected! We can
not have that Z = C1 t C2 where C1 and C2 are nonempty closed sets, since then C1 or C2 must be an
infinite set which can not be so (all closed sets are finite by definition). Likewise, Q ⊂ R with the subspace
topology induced from the finite complement topology is connected!

4. We can generalize 3 to an infinite set with f.c topology.

5.2 Connected spaces: basic propeties
Again, it is not so easy to show some space is connected, like compact spaces. We need to find basic facts and
theorems with which we can show a space is connected.

Theorem 5.4 (23.5 [Mun]). The image of a connected space under a continuous map is connected. In particular,
if X � Y and X is connected, then Y is also connected.

Proof. Let f : X → Y be a continuous map and X is connected. Since f : X → f (X) is cotinuous, we can assume
f is surjective without loss of generality. Suppose Y is not connected, i.e. Y = U1 t U2 and U1,U2 6 ∅. Then
X = f −1(Y) = f −1(U1) t f −1(U2). Since f is continuous, f −1(U1) and f −1(U2) are open and non-empty. �

Theorem 5.5 (23.2 [Mun]). If X = U1 t U2 for some non-empty open sets and Y is a connected subspace, then
Y ⊂ U1 or Y ⊂ U2.

Proof. If not, Y ∩ U1 and Y ∩ U2 are both non-empty. Thus Y = (Y ∩ U1) t (Y ∩ U2). Each Y ∩ Ui is open and
non-empty, so we have a contradiction to the fact that Y is connected. �

Theorem 5.6 (23.3 [Mun]). Arbitrary union of connected subspaces that have a common point of a topological
space X is connected.
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Proof. Let {Aα} is a collection of connected subspaces of X. Let a ∈
⋂
α Aα be a common point. Suppose

A :=
⋃
α Aα is not connected, i.e. A = U1 t U2 where U1,U2 are non-empty open in A. If a ∈ U1, Aα ⊂ U1 for

all α by Theorem 5.5. Thus A ⊂ U1 which contradict the assumption that U2 is non-empty. The case a ∈ U2 is
similar. So A must be connected. �

Theorem 5.7. A finite cartesian product of connected spaces is connected.

Proof. Let X and Y be connected and let (a, b) ∈ X × Y . We have X × {b} � X and {a} × Y � Y , so by Theorem
5.4, they are connected. Now consider, for each x ∈ X,

Cx := (X × {b}) ∪ ({x} × Y).

Cx is connected because it is a union of connected subspaces that have a common point x × b by Theorem 5.6.
Then X × Y = ∪xCx and (a, b) ∈ Cx for all x ∈ X. So again by Theorem 5.6, X × Y is connected. �

Theorem 5.8. If A is a connected subspace of a topological space X, then the closure Ā is also a connected
subspace. Moreover, any subset B such that A ⊂ B ⊂ Ā is a connected subsapce.

Proof. Suppose B is not connected, i.e. B = U1 t U2 for some non-empty open sets U1,U2. By Theorem 5.5,
A ⊂ U1 or A ⊂ U2. We can assume A ⊂ U1 without loss of generality. Since U2 is non-empty, ∃x ∈ U2 ⊂ Ā. By
Theorem 2.16, x ∈ Ā iff ∀Ux, Ux ∩ A = ∅. Since x ∈ U2 and U2 ∩ A = ∅, we have a contradiction. �

Exercise 5.9. Let p : X → Y be a quotient map. Show that, if p−1(y) is connected for each y ∈ Y and Y is
connected, then X is connected.

5.3 R is connected
Theorem 5.10. R is connected.

Proof. Suppose that R = A t B where A and B are non-empty open sets. Let a ∈ A and b ∈ B. Consider

[a, b] = ([a, b] ∩ A) t ([a, b] ∩ B) =: A0 t B0.

Since A0 is bounded by b, there is c := sup A0.

• Case c ∈ B0. Since B0 is open in [a, b], there is ε > 0 such that (c− ε, c + ε) ⊂ B0 if c < b or (c− ε, b] ⊂ B0
if c = b. In either case, since c bounds A0, (c − ε, b] ⊂ B0 which contradict that c is the smallest bounding
A0.

• Case c ∈ A0. Since A0 is open in [a, b], there is ε > 0 such that (c− ε, c + ε) ⊂ A0 if a < c or [a, c + ε) ⊂ A0
if a = c. This contradicts with c bounding A0.

�

Example 5.11. (a, b) ⊂ R is connected. [a, b], (a, b], [a, b) are all connected. Rn is connected. All open/closed
boxes are connected. S 1 is connected. A torus S 1 × S 1 is connected.

Proof. These follows directly from the same arguments in Theorem 5.10, but we can also derive them from the
basic properties of connected spaces. (a, b) is connected since it is homeomorphic to R. Then it follows from
Theorem 5.8 that (a, b), (a, b], [a, b) are all connected. Rn and all open/closed boxes are connected by Theorem
5.7. S 1 is connected since it is the image of a continuous map f : [0, 2π]→ S 1(x 7→ (cos x, sin x)). By Theorem
5.7, S 1 × S 1 is connected. �
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5.4 Path connected
Definition 5.12. A topological space X is path-connected if for each x, y ∈ X, there is a continuous map
f : [0, 1]→ X such that f (0) = x and f (1) = y. This map f is called a path from x to y.

Theorem 5.13. If a topological space X is path-connected, then it is connected.

Proof. Suppose that X is not connected, i.e. X = U1 t U2 for non-empty open sets U1,U2. Since [0, 1] is
connected by Example 5.11, if there is a path f : [0, 1] → X, then [0, 1] ⊂ C or [0, 1] ⊂ D. So if we take x ∈ C
and y ∈ D, then there is no path from x to y, i.e. X is not path-connected. �

Example 5.14 (disks). The unit n-disk Dn in Rn by the equation

Dn := {~x := (x1, · · · , xn) ∈ Rn | ||~x|| :=
√

x2
1 + · · · + x2

n ≤ 1}.

Then Dn is path-connected and so by Theorem 5.13.

Proof. For given ~x, ~y ∈ Dn, there is a path f : [0, 1]→ Rn defined by

f (t) := (1 − t)~x + t~y. (5.1)

We can show that this path stays inside of Dn:

|| f (t)|| = ||(1 − t)~x + t~y || ≤ ||(1 − t)~x || + || t~y || = (1 − t)|| ~x || + t|| ~y || ≤ (1 − t)1 + t · 1 = 1

The inequality follows from the triangle inequality of the standard metric Rn. �

Example 5.15 (open balls). The unit open n-balls Bn is given by

Bn := {~x := (x1, · · · , xn) ∈ Rn | ||~x|| :=
√

x2
1 + · · · + x2

n < 1}

It is path-connected and so it is connected. Since Bn = Dn, this also implies that Dn is connected.

Proof. The proof is similar as in the case of n-disks. Define a path from ~x to ~y by

f (t) := (1 − t)~x + t~y.

Then
|| f (t)|| = ||(1 − t)~x + t~y || ≤ ||(1 − t)~x || + || t~y || = (1 − t)|| ~x || + t|| ~y || < (1 − t)1 + t · 1 = 1.

�

Remark 5.16. The closure of a connected space is connected, but the closure of a path connected space may not
be path connected (Example 5.18). So showing open balls are path connected (Example 5.15) is not sufficient to
show n-disks are path connected.

Lemma 5.17 (Exercise). If f : X → Y is a continuous map and X is path-connected, then Im f is path-
connected.

Example 5.18 (Topologist’s sine curve). We give an example that is connected but not path-connected. Consider
the following subset of Rn:

S := {(s, sin(1/s)) ∈ R2 | 0 < s ≤ 1}.

It is connected because it is the image of the connected space (0, 1] under a continuous map. It is not so difficult
to show that the closure S̄ is the union of S and I := {0} × [−1, 1]. By Theorem 5.8, S̄ is connected. Below we
show that S̄ is not path-connected.
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• Assume that there is a path f : [0, 1] → S̄ which connects the origin o and some point p ∈ S . Since
f −1(I) is a closed set in [0, 1], we find b := sup f −1(I) ∈ f −1(I) by Lemma 5.19 and the restriction
f |[b,1] : [b, 1]→ S̄ is continuous and satisfies f (b) = o and f (t) ⊂ S for all t ∈ (b, 1]. Since [b, 1] � [0, 1],
we have a path g : [0, 1]→ S̄ such that g(0) = o and g(t) ⊂ S for t ∈ (0, 1].

• Denote g(t) = (x(t), y(t)) where y(t) = sin(1/x(t)). For a given n, we can find u such that 0 < u < x(1/n)
and sin(1/u) = (−1)n: Consider the sequence of points on S(

1
π
2 + nπ + 2mπ

, sin
(
π

2
+ nπ + 2mπ

))
=

(
1

π
2 + n + 2mπ

, (−1)n
)
, n,m ∈ Z>0

By taking m large enough, un := un,m = 1
π
2 +n+2mπ is less that x(1/n) since 0 < x(1/n) (use the fact that

un,m,m ∈ Z>0 converges to 0).

• By x : [0, 1] → R is continuous, the intermediate value theorem implies that there is tn such that 0 < tn <
1/n and x(tn) = un. Then tn converges to 0.

• However ( f (tn), sin(1/ f (tn))) = (un, sin(1/un)) = (un, (−1)n) does not converge to the origin. This contra-
dicts with the continuity of g by Lemma 3.18.

Lemma 5.19. Every closed set A of [0, 1] contains b := sup A, i.e. b ∈ A such that a ≤ b for all a ∈ A.

Proof. Since A is bounded above by 1, there is b := sup A. If b < A, then there is a small open interval
Ib := [b − ε, b + ε] such that A∩ Ib by the fact that A = Ā and Theorem 2.16. Then b − (ε/2) also bounds A, so it
contradict with that fact that b is the supremum of A. �

Example 5.20 (unit n-sphere). Define the unit n-sphere S n in Rn+1 by

S n := {~x ∈ Rn+1 | ||~x|| = 1}

If n ≥ 1, it is path-connected. To show the path-connectedness, consider the continuous surjective map

g : Rn+1 − {~0}, g(~x) :=
~x
||~x||

.

Observe that Rn+1 − {~0} is path connected: for every two points ~x, ~y ∈ Rn+1 − {0}, there is always a third point
~z ∈ Rn+1 − {0} such that the straight lines (defined by the equation (5.1)) from ~x to ~z and from ~z to ~y that don’t
go through the origin. Concatenating these lines, we have a path from ~x to ~y. Now the path-connectedness of S n

follows from 5.17.

5.5 Components, locally connected and locally path-connected
Definition 5.21. Let X be a topological space. A connected component of X is an equivalence class of the
equivalence relation ∼ given by

x ∼ y if there is a connected subspace containing x and y.

A path-connected component of X is an equivalence class of the equivalence relation ∼ given by

x ∼ y if there is a path connecting x and y.

Example 5.22. Let S be the topologist’s sine curve defined in Example 5.18. S̄ is connected but not path-
connected. So the connected component is all of S̄ but the path-connected components are {0} × [−1, 1] and
S .

Definition 5.23. Let X be a topological space.
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• X is locally connected if for every point x ∈ X and every neighborhood U of x, there is a connected
neighborhood V of x contained in U.

• X is locally path-connected if for every point x ∈ X and every neighborhood U of x, there is a path-
connected neighborhood V of x contained in U.

Example 5.24. Here are examples which show that (path-)connectedness and local (path-)connectedness don’t
imply each other.

(a) R − {0} is not connected but locally connected. It is not path-connected but locally path-connected.

(b) The topologists sine curve is connected but not locally connected. Take an open ball B of radius less than
1 centered at the origin. Every open set in B that contains the origin is not connected.

(c) Consider the subspace X := {(x, 1/n) ∈ R2 | x ∈ R, n ∈ Z>0} ∪ ({0} × R) ∪ (R × {0}) of R2. Then X is
path-connected but not locally path-connected. It is also connected but not locally connected.
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6 Topological manifolds and embedding into RN

6.1 Topological Manifolds §7, 30, 32, 33, 36 [Mun]
In this section, we introduce the nice topological spaces which underlies the most of the geometry, called the
topological manifolds. The algebraic topology we study has a well-developed theory on the topological mani-
folds. The main goal of this section is to prove that any topological manifold can be topologically embedded in
RN for some large N. In the proof, the partition of unity plays a key role.

Definition 6.1 (§7,30). A topological space X has a countable basis if there is a basis B for the topology that
has only countably many open sets, i.e. B = {Un | n ∈ Z>0}.

Definition 6.2 (§36). A topological m-manifold is a Hausdorff space X with a countable basis such that each
point x ∈ X has a neighborhood that is homeomorphic to an open subset of Rm.

Definition 6.3 (§36).

• For a function ϕ : X → R, the support of ϕ is defined by the closure of the preimage of R − {0}:

Supp(ϕ) := ϕ−1(R − {0}).

• Let {U1, · · · ,Un} be a finite open covering of a topological space X. Then the collection of functions

ϕi : X → [0, 1], i = 1, · · · , n

is a partition of unity associated to the covering {Ui} if

(i) Supp(ϕi) ⊂ Ui for all i = 1, · · · , n.

(ii)
∑n

i=1 ϕi(x) = 1 for each x ∈ X.

Lemma 6.4 (§32). A compact Hausdorff space X satisfies the following condition (normality):

For every disjoint closed subsets A and B, there are open sets UA ⊃ A and UB ⊃ B such that UA ∩ UB = ∅.

Proof. By Theorem 4.5, A and B are compact. For every a ∈ A, there are open sets Ua containing a and Va

containing B: for each b take disjoint open sets Ub containing a and Vb containing b, then {Vb} covers B so take
finite subcollection {Vbi }i=1,··· ,n. Then the union Va := ∪n

i=1Vbi containing B and the intersection Ua := ∩n
i=1Ubi

are the desired open sets. Now collect Ua’s to form an open covering of A. We can make it into a finite collection
{Uai }i=1,··· ,m. Then ∪m

i=1Uai is an open set containing A which is disjoint from the open set ∩m
i=1Vai which contains

B. �

Lemma 6.5 (Urysohn Lemma §33). Let X be a topological space that satisfies the normality. Let A and B are
disjoint closed subsets. Then there is a continuous function f : X → [0, 1] such that f (A) = {0} and f (B) = {1}.

Theorem 6.6. Let X be a compact Hausdorff space and {Ui}i=1,··· ,n a finite open covering. Then there is a
partition of unity associated to {Ui}.

Proof. (1) There is an open covering {Vi}i=1,··· ,n of X such that V̄i ⊂ Ui: first, apply the normality of X to the
disjoint closed subsets

A := X − (U2 ∪ · · · ∪ Un), B := X − U1.

Let UA and UB be the open sets separating A and B. Let V1 := UA. Then {V1,U2, · · · ,Un} covers X and
V̄1 ⊂ U2. The next, apply the normality again for

A := X − V1 − (U3 ∪ · · · ∪ Un), B := X − U2.
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Similary let V2 := UA. We have a cover {V1,V2,U3, · · · ,Un} such that V̄1 ⊂ U1 and V̄2 ⊂ U2. Similarly
for V3, apply the normality for

A := X − (V1 ∪ V2) − (U4 ∪ · · · ∪ Un), B := X − U3.

We can keep doing these steps to replace all Ui’s by desired Vi’s.

(2) Apply (1) to {Vi} again to obtain another open covering {Wi} such that W̄i ⊂ Vi. Using the Urysohn’s
lemma, we find functions

ψi : X → [0, 1] such that ψ(W̄i) = {1} and ψ(X − Vi) = {0}.

Observe that
Supp(ψi) ⊂ V̄i ⊂ Ui.

Since {Wi} is a covering, Ψ(x) :=
∑n

i=1 ψi(x) > 0 for all x ∈ X. Define

ϕi(x) :=
ψi(x)
Ψ(x)

.

Then
n∑

i=1

ϕi(x) =
1

Ψ(x)

n∑
i=1

ψi(x) = 1

and
Supp(ϕi) = Supp(ψi) ⊂ V̄i ⊂ Ui.

�

Theorem 6.7. If X is a compact topological m-manifold, then X can be topologically embedded in RN for some
positive integer N.

Proof.

• From the definition of manifolds and the compactness, we can find a finite open cover {Ui}
n
i=1 together

with imbeddings gi : Ui ↪→ R
m (homeomorphism to the image).

• Since X is compact and Hausdorff, it satisfies the normality condition and hence we find a partition of
unity {ϕi : X → [0, 1]} associted to {Ui}. Let Ai := Supp(ϕi).

• Define functions hi : X → Rm by

hi(x) =

ϕi(x) · gi(x) if x ∈ Ui

(0, · · · , 0) if x ∈ X − Ai.

It is well-defined continuous functions (See Lemma 3.27).

• The embedding of X into some RN is

F : X → R × · × R︸     ︷︷     ︸
n times

×Rm × · · · × Rm︸           ︷︷           ︸
n times

given by
F(x) := (ϕ1(x), · · · , ϕn(x), h1(x), · · · , hn(x)).

It is continuous by Lemma 3.28. If F is injective, then F : X → Im F is a continuous bijection. Therefore
by Theorem 4.9, it must be a homeomorphism.
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• Suppose F(x) = F(y) so that ϕi(x) = ϕi(y) and hi(x) = hi(y) for all i. Since
∑

i ϕi(x) = 1, ϕi(x) > 0 for
some i which also implies ϕi(y) > 0. Thus x, y ∈ Ui. Now dividing hi(x) = h j(y) by the positive number
ϕi(x) = ϕi(y), we get gi(x) = gi(y). Since gi is injective, we have x = y.

�

Remark 6.8. The claim still holds even if a manifold X is not compact (p.225 [Mun]). If a manifold X is not
compact, we can’t use Lemma 6.4. But to find the partition of unity, we need to show X is normal. We can
show that a manifold X satisfies the regularity, i.e. open sets can separate a point and a closed set. Then together
with the second-countability, i.e. there is countably basis, we can prove that X satisfies normality (Theorem 32.1
[Mun]). This explains why we include the second-countability condition in the definition of manifolds.
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7 Group theory
Groups are very simple algebraic objects. It is a set with binary operations with very symmetric structures. Well,
it is the algebraic structure to keep track of symmetry of some geometric spaces after all.

7.1 Definition of groups and homomorphisms
Definition 7.1. A group (G, · ) is a set G together with a map G×G→ G, (a, b) 7→ a·b, called the multiplication,
satisfying

• (Associativity) (a · b) · c = a · (b · c) for all a, b, c ∈ G.

• (Identity) There is an element e ∈ G such that a · e = e · a = a for all a ∈ G.

• (Inverses) For each a ∈ G, there an element a−1 ∈ G such that a · a−1 = e = a−1 · a.

A subgroup H of a group (G, · ) is a subset H of G such that the restriction H × H → H, (a, b) 7→ a · b makes H
a group. we write H ≤ G. A group G is called Abelian if the multiplication is commutative, i.e. a · b = b · a for
all a, b ∈ G.

Definition 7.2. A map φ : G→ H between groups is a group homomorphism if

φ(ab) = φ(a)φ(b).

If it is bijective, then the inverse map is automatically a group homomorphism (unlike the continuous maps!).
We need to show that φ−1(x)φ−1(y) = φ−1(xy):

φ(φ−1(x)φ−1(y)) = φ(φ−1(x))φ(φ−1(y)) = xy = φ(φ−1(xy)).

Since φ is injective, it follows that φ−1(x)φ−1(y) = φ−1(xy).

7.2 Examples
Example 7.3. (R,+) and (R× := R− {0},×) are groups. Then Z,Q ≤ (R,+) and Q× ≤ (R×,×). However, Z− {0}
is not a subgroup of R× because the only elements of Z − {0} that are invertible are ±1.

Example 7.4. Let X be a finite set. The set S X of all bijections X → X is a finite group where the multiplication
is given by the composition of maps. It is called a permutation group. If X := {1, · · · , n}, the permutation group
in this case is often denoted by S n. If the cardinality of X is n, then S X � S n.

Example 7.5. Let X be a topological space. Then the set Aut(X) of all homeomorphisms from X to X itself is a
group where the multiplication is given by compositions.

Example 7.6. Consider U(1) = {eiθ = cos θ + i sin θ ∈ C | 0 ≤ θ < 2π} ⊂ C. Then U(1) is a subgroup of
(C×,×) with respect to the multiplication. Indeed, eiθ1 · eiθ2 = ei(θ1+θ2). We can actaully see that there is a group
homomorphism

exp : (R,+)→ U(1), x 7→ eix.

This is surjective but not injective. Moreover, the subset {e2πi· kn | k = 0, 1, · · · , n− 1} is a finite subgroup of U(1).
It is called a cyclic group of order n.

Example 7.7. Let Mat(n,R) be the set of all n× n matrices. It is not a group with the matrix multiplication. But
inside of Mat(n,R), there are a bunch of groups:

GL(n,R) = {M | det M , 0}
SL(n,R) = {M | det M = 1}
O(n,R) = {M | M · Mt = In}

SO(n,R) = {M | M · Mt = In, det M = 1}
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Similarly Mat(n,C) is not a group but inside there are a bunch:

GL(n,C) = {M | det M , 0}
SL(n,C) = {M | det M = 1}

U(n) = {M | M · M
t
= In}

SU(n) = {M | M · M
t
= In, det M = 1}

Example 7.8. A vector space V is a group with respect to the sum. So we can say a vector space is a group with
more structures. The linear map V → W is a group homomorphism in this sense. Again, it has more structures.
The general linear group GL(n,R) is exactly the set of all invertible linear maps from Rn → Rn.

7.3 More definitions
The most basic concept is the concept of the normal subgroup. It is defined as the subgroups such that the
quotient is naturally a group again. It is the important fact that the pre-image of the identity, called the kernel
of a homomorphism, is normal.

Definition 7.9. Let H be a subgroup of a group G. Let G/H be the quotient of G be the following equivalence
relation: x ∼ y if y = xh for some h. For every x ∈ G, the equivalence class of x is xH := {xh | h ∈ H} and there
is a bijection H → xH sending h to xh.

Lemma 7.10. G/H has the induced group structure if xH ⊂ Hx for every x ∈ G.

Proof. The natural multiplication on G/H = {xH | x ∈ G} is

xH · yH = xyH.

However, since x′ ∈ xH implies that x′H = xH, we have to make sure that

xyH = x′y′H if x′ ∈ xH and y′ ∈ yH.

Since x′ = xh and y′ = yk for some h, k ∈ H, the right hand side is

x′y′H = xhykH = xhyH

since kH = H. Now if xH ⊂ Hx,∀x ∈ G, then for every h ∈ H, xh = h′x for some h′ ∈ H. So hy = yh′ for some
h′ ∈ H. Thus

xhyH = xyh′H = xyH.

This proves that the multiplication is well-defined. Now the identity is obviously 1H and the inverse of xH is
x−1H. Thus G/H is naturally a group. �

Definition 7.11. A normal subgroup of a group G is a subgroup N such that xN ⊂ Nx,∀x ∈ G. If N is a normal
subgroup, then G/N is a group and the quotient map G→ G/N is a group homomorphism.

Lemma 7.12. Let φ : G→ H be a group homomorphism. The subset φ−1(1H) ⊂ G is a normal subgroup of G.

Proof. It is a subgroup since φ(1G) = 1H and φ(g1g2) = φ(g1)φ(g2) = 1H1H = 1H for all g1, g2 ∈ φ
−1(1H). To

prove it is normal, we compute

φ(gφ−1(1H)g−1) = φ(g)φ(φ−1(1H))φ(g−1) = φ(g)φ(g−1) = 1H,∀g ∈ G.

This means that gφ−1(1H)g−1 ⊂ φ−1(1H) for all g ∈ G, which exactly means that gφ−1(1H) ⊂ φ−1(1H)g for all
g ∈ G. �
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Definition 7.13. The pre-image of a group homomorphism φ : G → H is called the kernel of φ, denoted by
ker φ := φ−1(1H).

Example 7.14. If G is an abelian group, then every subgroup is a normal subgroup.

• Z is a normal subgroup of R with respect to +. The quotient R/Z is isomorphic to U(1). To see that,
consider the diagram:

R
exp //

!!CC
CC

CC
CC

U(1)

R/Z

OO

The exponential map in Example 7.6 factors through R/Z and the resulting map f is a bijective homomor-
phism. So it is an isormophism as discussed in Definition 7.2.

• For a positive integer p ∈ Z>0, pZ := {pn | n ∈ Z} is a normal group of Z. The quotient Z/pZ = {i+ pZ | i =

0, 1, · · · , p− 1} is a well-defined group. It is isomorphic to the cyclic group of order p defined in Example
7.6. Namely there is an isomorphism

Z/pZ→ {e2πi k
p | k = 1, · · · , p − 1}, k + pZ 7→ e2πi k

p .

We can check that it is well-defined (i doesn’t depend of the choice of representative k) and it is a bijective
homomorphism.

Example 7.15. A vector space is an abelian group with respect to the sum. A linear map is then a group
homomorphism. Let φ : V → W be a linear map. Then ker V is a normal subgroup of V and V/ ker V is an
abelian group again. Of course!

In the group theory, it is easy to check the injectivity of a homomorphism by the next lemma.

Lemma 7.16. Let φ : G → H be a group homomorphism. Then φ is injective if and only if ker φ is trivial, i.e.
ker φ = {1G}.

Proof. If φ is injective, it is obvious that ker φ = {1G}. Suppose that ker φ = {1G}. Let g1, g2 ∈ G such that
φ(g1) = φ(g2). Then φ(g1g−1

2 ) = 1H, so g1g−1
2 = 1G, which implies g1 = g2 by multiplying g2 from both

sides. �

Corollary 7.17. If φ : G→ H is a surjective homomorphism, then G/ ker G is isomorphic to H.

Proof. The homomorphism φ : G → H naturally factors through G/ ker G → H. This induced map has trivial
kernel. Thus it is injective. Since φ is surjective, the induced map is a bijective homomorphism. Thus it is an
isomorphism. �

7.4 Groups given by generators and relations
Definition 7.18. Let {g1, · · · , gn} be a finite set. The free group 〈g1, · · · , gn〉 generated by {g1, · · · , gn} is the col-
lection of reduced finite words in {g1, · · · , gn, g−1

1 , · · · , g−1
n }, including the empty word denoted by 1. “reduced”

means no element in word sits next to it’s inverse.

Example 7.19. A free group generated by one element is isomorphic to Z.

Definition 7.20. Let G := 〈g1, · · · , gn〉 be a free group. The list of relations in the free group is just a list of
reduced words W:={w1, · · · ,wk} and we can form a normal subgroup by setting

N := the smallest normal subgroup containing W.

Then G/N is the group generated by {g1, · · · , gn} with the relations {w1, · · · ,wk}. We denote this group as

〈g1, · · · , gn | w1 = w2 = · · · = wk = 1〉.
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Example 7.21. The group
〈a, b | aba−1b−1 = 1〉

is isomorphic to Z2.

7.5 Topological groups
Definition 7.22. A topological group G is a group G together with a Hausdorff topology such that

(i) m : G × G→ G, (g, h) 7→ gh is continuous.

(ii) i : G→ G, g 7→ g−1 is continuous.

Remark 7.23 (p.145 p.146 [Mun]). It is actually enough to assume that {1G} is closed. We can prove from this
assumption that G is Hausdorff. See Proposition 5.7, 5.8 [P].

Example 7.24. Every group can be considered as a topological group with a discrete topology.

Example 7.25. (R,+), (C,+), (R>0,×), (R×,×), (C×,×) are topological groups with the topology induced from
the standard topology.

Example 7.26. GL(n,R) and GL(n,C) are topological groups with respect to the subspace topology induced
from the standard topologies of Rn2

and Cn2
. All the groups listed in Example 7.7 are topological groups with

respect to the subspace topologies, by the following lemma.

Lemma 7.27. Let G be a topological group. Every subgroup H ≤ G is a topological group with the subspace
topology.

Example 7.28. (Z,+), (Q,+) are topological groups with respect to the group structure restricted from (R,+)
and the subspace topologies. In particular, Z is a discrete group. U(1) is a subgroup of (C×,×) and so it is a
topological group with respect to the subspace topology (it is homeomorphic to S 1.)

7.6 Group actions on topological spaces
Definition 7.29 (Ex.31.8 [Mun]). A (continuous) action of a topological group G on a topological space X is a
continuous map ρ : G × X → X, denoted by ρ(g)x := g · x, such that

(i) 1G · x = x,∀x ∈ X.

(ii) (g1 · g2) · x = g1 · (g2 · x),∀g1, g1 ∈ G,∀x ∈ X.

An orbit of the G-action on X is a subset O := {g · x | g ∈ G} ⊂ X. The relation ∼ defined by

x ∼ y if g · x = y for some g ∈ G

is an equivalence relation and an equivalence class is nothing but an orbit. The quotient of X by the group
G-action is the quotient space X/G of X defined by this relation.

Definition 7.30. Let Homeo(X) be the set of all homeomorphism f : X → X. Then f ·g := f ◦g defines a group
structure on Homeo(X). Namely, the composition is a homeomorphism again. The identity is the identify map
and the inverse of f in this group is the inverse as a map. If there is an action of a topological group G on X,
then ρ(g) : X → X, x 7→ gx is a homeomorphism and G→ Homeo(X), g 7→ ρ(g) is a group homomorphism.

Example 7.31. If G is a topological group and H a subgroup. There are two actions of H on G defined by
(h, g) 7→ hg or (h, g) 7→ gh−1. The quotient spaces H\G and G/H are called a homogeneous spaces. If N is
a closed and normal subgroup, then G/N = N\G and it has an induced group structure which makes G/N a
topological group. See also Ex 5 p.146 [Mun].
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Example 7.32. Z acts on R by Z × R → R, (n, x) 7→ x + n. The quotient R/Z is homeomorphic to a circle S 1.
Z× Z acts on R×R by ((n,m), (x, y)) 7→ (x + n, y + m) and the quotient R×R/Z× Z is homeomorphic to a torus
S 1 × S 1.

Example 7.33. C× acts on Cn+1 − {~0} by λ · (z0, · · · , zn) := (λz0, · · · , λzn). The quotient Cn+1 − {~0}/C× is the
complex projective space denoted by CPn. Consider S 2n+1 ⊂ Cn+1 − {~0} which is the set of unit vectors in
Cn+1. Then the restriction of the quotient map to S 2n+1 is surjective. There is an induced action of the subgroup
U(1) ⊂ C× on S 2n+1 and the quotient S 2n+1/U(1) is exactly CPn.

Example 7.34. R× acts on Rn+1−{~0} by λ · (x0, · · · , xn) := (λx0, · · · , λxn). THe quotient Rn+1−{~0}/R× is the real
projective space denoted by RPn. Consider S n ⊂ Rn+1 − {~0} which is the set of unit vectors. Then the restriction
of the quotient map to S n is surjective. There is an induced action of the subgroup {1,−1} ⊂ R× on S n and its
quotient S n/{1,−1} is exactly RPn.

Example 7.35. There is an action of R× on R2 by λ · (x1, x2) := (x1, x2). The quotient R2/R× is not Hausdorff.

Example 7.36. Let G be GL(n,C). Let B be the closed subgroup of all upper triangular matrices in G. Consider
the action of B on G defined by the left multiplication. The quotient space G/B is called the flag manifolds.
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8 Homotopy of Paths §51 [Mun]
From this week, we venture into algebraic topology. “Algebraic topology is a branch of mathematics which
uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that
classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence” ∼
Wikipedia. The most fundamental algebraic object we extract from a space is a “group of loops”. Here is how
we should start: Let X be a path-connected space and fix a point x0 ∈ X. Let L(X, x0) be the set of all paths
f : [0, 1] → X from x0 to x0, i.e. loops based at x0. Define a multiplication in L(X, x0) as follows: for loops
f1, f2, define f1 · f2 to be

( f1 · f2)(x) :=

 f1(2x) x ∈ [0, 1/2]
f2(2x − 1) x ∈ [1/2, 1]

This operation doesn’t make L(X, x0) a group. For example, the associativity of the product fails. To produce a
reasonable algebraic object out of this operation, we must pass it to the (path-)homotopy class. We actually start
by defined this operation in the collection of all paths.

8.1 Homotopy and Path Homotopy equivalence
Definition 8.1 (p323 [Mun]). Let f , g : X → Y be continuous maps. f is homotopic to g, denoted by f � g, if
there is a continuous map F : X × [0, 1]→ Y such that

F(x, 0) = f (x) and F(x, 1) = g(x).

This map F is called a homotopy between f and g.

Definition 8.2 (p.323 [Mun]). Let f , g : I→ X be paths from x to y where I := [0, 1]. f is path-homotopic to g,
denoted by f �p g, if there is a homotopy F : I × [0, 1]→ X such that

F(0, s) = x and F(1, s) = y.

Remark 8.3. Let A ⊂ X be a subset. A homotopy F : X × [0, 1]→ Y between some maps is said to be relative
to A if F(a, t) is independent of t ∈ [0, 1] for each a ∈ A. A path-homotopy between paths f and g is nothing but
a homotopy relative to ∂I = {0, 1}.

Lemma 8.4 (51.1 [Mun]). � and �p are equivalence relations.

Proof. Let f , g, h : X → Y be continuous maps. Let’s use a temporary notation: F : f ⇒ g is a homotopy
F : X × [0, 1]→ Y from f to g, i.e. F(x, 0) = f (x) and F(x, 1) = g(x)

• (Reflexibity) The homotopy F(x, t) := f (x) makes F : f ⇒ f .

• (Symmetry) If F : f ⇒ g, then G(x, t) := F(x, 1 − t) makes G : g⇒ h.

• (Transitivity) If F1 : f ⇒ g and F2 : g⇒ h, then define

G(x, t) :=

F(x, 2t) t ∈ [0, 1/2]
F(x, 2t − 1) t ∈ [1/2, 1]

By the pasting lemma, this is a well-defined X×[0, 1]→ Y and such that G(x, 0) = f (x) and G(x, 1) = h(x),
so this makes G : f → h.

These construction of homotopies for the axioms of an equivalence relation works for path homotopies, i.e. the
construction preserves the relativeness of the homotopies. Thus �p is also an equivalence relation. �

Lemma 8.5 (Pasting lemma 18.3 [Mun]). Let A and B be closed subsets of X and let f : A→ Y and g : B→ Y
be continuous maps such that f |A∩B = g|A∩B. Then the map h : A ∪ B → Y defined by h(x) := f (x) if x ∈ A and
h(x) := g(x) if x ∈ B is a wel-defined continuous map.
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The following are basic facts about homotopy and path homotopy of maps and paths into Rn.

Lemma 8.6.

(1) Any two continuous maps f , g : X → Rn are homotopic.

(2) A subspace A ⊂ Rn is convex if the straight line segment between any ~a and ~b in A is contained in A. Any
two path f , g in A from ~x to ~y are path homotopic.

Proof.

(1) Define F : X × [0, 1]→ Rn by
F(x, t) := (1 − t) f (x) + tg(x).

This is a continuous map because it is a composition of the following maps.

X × [0, 1]
( f ,g,id)

// Rn × Rn × [0, 1]
(1−t)~x1+t~x2

// Rn.

Since F(x, 0) = f (x) and F(x, 1) = g(x), it is a homotopy from f to g.

(2) The same homotopy defined in (1) works as a path homotopy. Define F : I × [0, 1]→ Rn by

F(s, t) := (1 − t) f (s) + tg(s).

For each s = a, {F(a, t)|t ∈ [0, 1]} is a line segment from f (a) to g(a) so that F(s, t) ∈ A for all s, t ∈ I×[0, 1].
Thus F : I × [0, 1] → A is a homotopy from f to g. By definition F(s, 0) = ~x and F(s, 1) = ~y, it is indeed
a path homotopy from f to g.

�

8.2 Definition of a product among paths and the homotopy invariance
Definition 8.7 (p.326 [Mun]). Let f : I→ X be a path from x0 to x1 and g : I→ X a path from x1 to x2. Define
the product f ∗ g to be the path from x0 to x2 given by

( f ∗ g)(s) :=

 f (2s) for s ∈ [0, 1/2]
g(2s − 1) for s ∈ [1/2, 1]

.

By the pasting lemma, f ∗ g is a well-defined continuous function from [0, 1] to X such that ( f ∗ g)(0) = x0 and
( f ∗ g)(1) = x2. So it is a path from x0 to x2.

Theorem 8.8 (51.2 [Mun]). Let f , g, h be paths in X. Let [ f ], [g], [h] be path-homotopy classes.

(0) ∗ induces a well-defined product on path-homotopy classes of paths.

(1) (Associativity) [ f ] ∗ ([g] ∗ [h]) = ([ f ] ∗ [g]) ∗ [h].

(2) (Identities) Let ex : [0, 1]→ X be a constant path. Then for every path f : [0, 1]→ X from x to y, we have

[ f ] ∗ [ey] = [ f ] and [ex] ∗ [ f ] = [ f ].

(3) (Inverse) For every path f : [0, 1]→ X from x to y, let f̄ be a path given by f̄ (s) := f (1 − s). Then

[ f ] ∗ [ f̄ ] = [ex] and [ f̄ ] ∗ [ f ] = [ey].

Proof.
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(0) We need to show if f �p f ′ and g �p g′, then f ∗g �p f ′ ∗g′, i.e. [ f ] ∗ [g] = [ f ∗g] = [ f ′ ∗g′] = [ f ′] ∗ [g′]
so that the product doesn’t depend of the choice of the representatives.

For path-homotopies F : f ⇒p f ′ and G : g⇒p g′, define

H(s, t) :=

F(2s, t) s ∈ [0, 1/2]
G(2s − 1, t) s ∈ [1/2, 1]

Then H : I × [0, 1] → X is a well-defined continuous map by the pasting lemma and H(s, 0) = ( f ∗ g)(s)
and H(s, 1) = ( f ′ ∗ g′)(s). Thus H : f ∗ g⇒ f ′ ∗ g′.

(2) Consider paths in I: e0 : I→ I, e0(s) = 0 and i : I→ I, i(s) = s. Then i is path homotopic to e0 ∗ i since I is
convex (Lemma 8.6 (2)). By Lemma 8.9 (1), f ◦ i and f ◦ (e0 ∗ i) are path homotopic. Since,

f = f ◦ i, and ex ∗ f = ( f ◦ e0) ∗ ( f ◦ i) = f ◦ (e0 ∗ f ) by Lemma 8.9 (1),

We have f ∗ f̄ �p ex. It follows from the similar argument that f̄ ∗ f �p ey. we have f �p ex ∗ f . It follows
from the same argument that f �p f ∗ ey.

(3) We use the same paths e0, i in I. ī(s) = i(s). We have i ∗ ī �p e0 because I is convex (Lemma 8.6 (2)). Thus
by Lemma 8.9 (1), f ◦ (i ∗ ī) �p f ◦ (e0) are path homotopic. Since

f ◦ (i ∗ ī) = ( f ◦ i) ∗ ( f ◦ ī) = f ∗ f̄ by by Lemma 8.9 (1) , and f ◦ e0 = ex,

(1) For every a, b ∈ [0, 1] such that 0 < a < b < 1, we define a triple product ( f ∗ g ∗ h)a,b : I → X of paths
f , g, h : I→ X such that f (1) = g(0) and g(1) = h(0) as follows

( f ∗ g ∗ h)a,b(s) :=


f ( s

a ) s ∈ [0, a]
g( s−a

b−a ) s ∈ [a, b]
h( s−b

1−b ) s ∈ [b, 1]

This is a well-defined continuous map by the pasting lemma again. We can check ( f ∗g)∗h = ( f ∗g∗h) 1
4 ,

1
2

and f ∗ (g ∗ h) = ( f ∗ g ∗ h) 1
2 ,

3
4
. Thus we are done if we show ( f ∗ g ∗ h)a,b �p ( f ∗ g ∗ h)c,d for every pairs

a < b and c < d.

Consider a path p : I→ I whose graph is given by the three line segments (0, 0)−−(a, c), (a, c)−−(b, d),
(b, d)−−(1, 1). Then p is path-homotopic to i : I → I, s 7→ s since I is convex (Lemma 8.6 (2)). Let
F : I × [0, 1] → I be the path-homotopy from p to i. By Lemma 8.9 (1), ( f ∗ g ∗ h)c,d ◦ F is a
path-homotopy from ( f ∗ g ∗ h)c,d ◦ p to ( f ∗ g ∗ h)c,d ◦ i. Since ( f ∗ g ∗ h)c,d ◦ p = ( f ∗ g ∗ h)a,b and
( f ∗ g ∗ h)c,d ◦ i = ( f ∗ g ∗ h)c,d, we have ( f ∗ g ∗ h)a,b � ( f ∗ g ∗ h)c,d.

�

Lemma 8.9. Let f , g : I→ X be paths and let k : X → Y be a continuous map.

(1) If F : f ⇒p g is a path homotopy, then k ◦ F : k ◦ f ⇒p k ◦ g is a path homotopy.

(2) If f (1) = g(0), then k ◦ ( f ∗ g) = (k ◦ f ) ∗ (k ◦ g).
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9 Fundamental Group and Covering Spaces
Definition 9.1 (p.331 [Mun]). A loop bases at x0 ∈ X is a path from x0 to x0. Let π1(X, x0) be the set of path-
homotopy classes of loops based at x0. It is a group by Theorem 8.8. It is called the fundamental group of X
based at x0.

Since all the path defining a class in π1(X, x0) has x0 as the initial and terminal points, the product ∗
is defined for all pairs of classes. The associativity ([ f ] ∗ [g]) ∗ [h] = [ f ] ∗ ([g] ∗ [h]) follows from
Theorem 8.8 (1). The identity is [ex0 ] and for [ f ] ∈ π1(X, x0), the inverse [ f ]−1 is [ f̄ ].

Lemma 9.2. If a subspace A ⊂ Rn is convex, then π1(A, a0) is trivial for any a0 ∈ A.

Proof. By Lemma 8.6 (2), any loop f based at a0 is path-homotopic to the constant loop ea0 . �

9.1 Non-canonical uniqueness of the fundamental group of a path-connected space.
Theorem 9.3 (52.1 [Mun]). Let x0, x1 ∈ X and α : [0, 1]→ X a path from x0 to x1. Define a map

α̂ : π1(X, x0)→ π1(X, x1), [ f ] 7→ [ᾱ] ∗ [ f ] ∗ [α].

Then α̂ is a group isomorphism.

Proof. 1. α̂ is a group homomrphism:

α̂([ f ]) ∗ α̂([g]) = [ᾱ] ∗ [ f ] ∗ [α] ∗ [ᾱ] ∗ [g] ∗ [α] = [ᾱ] ∗ [ f ] ∗ [g] ∗ [α] = α̂([ f ] ∗ [g]).

The second equality follows from Theorem 8.8 (3).

2. To show that α̂ is an isomorphism, we show that there is an inverse homomorphism. Let β := ᾱ, then β̂ is
α̂−1:

β̂([ f ]) = [β̄] ∗ [ f ] ∗ [β] = [α] ∗ [ f ] ∗ [ᾱ].

α̂(β̂([ f ])) = [ᾱ] ∗ [α] ∗ [ f ] ∗ [ᾱ] ∗ [α] = [ f ].

Similarly β̂ ◦ α̂([ f ]) = [ f ].
�

Remark 9.4. If X is path-connected, then fundamental groups based at all points are isomorphic. But there is
no natural isomorphism between way. The isomorphism depends on the path-homotopy classes of the chosen
path from x0 to x1.

Definition 9.5. A space X is simply-connected if it is path-connected and π1(X, x0) is a trivial group {1}.

Example 9.6. Any convex set A ⊂ Rn is path-connected. Also π1(A, a0) is trivial by Lemma 8.6 which states
that all paths with the same initial and terminal points are path-homotopic (so any loop at a0 is path-homotopic
to the constant look at a0)

Lemma 9.7. If X is simply-connected, then for any x, y ∈ X, all paths from x to y are path-homotopic.

Proof. Let f and g be paths from x to y. Then f ∗ ḡ is a loop based at x. Thus by the assumption and by Theorem
9.3,

[ f ∗ ḡ] ∈ π(X, x) = {1}.

Thus [ex] = [ f ∗ ḡ] = [ f ] ∗ [ḡ]. Multiply [g] from right, we get [g] = [ f ] by Theorem 8.8 (2), (3). �
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9.2 Functoriality of fundamental groups
Theorem 9.8 (Functor from based spaces to groups). Let h : X → Y be a continuous map. Then there is a group
homomorphism

h∗ : π1(X, x0)→ π1(Y, h(x0))

defined by
h∗([ f ]) := [h ◦ f ].

Proof. 1. (Well-defined) If f �p f ′, then h ◦ f �p h ◦ f ′ by Lemma 8.9 (1).

2. (Group Homo) h∗([ f ]) ∗ h∗([g]) = [h ◦ f ] ∗ [h ◦ g] = [(h ◦ f ) ∗ (h ◦ g)] = [h ◦ ( f ∗ g)] = h∗([ f ] ∗ [g]) where
the third equality follows from Lemma 8.9 (2).

�

Remark 9.9. The group homomorphism h∗ induced from h : X → Y depends on the choice of base points
x0 ∈ X and f (x0) ∈ Y . To make this association clear, we should introduce a map beween pairs: for a subspace
A ⊂ X and B ⊂ Y , a map h : (X, A)→ (Y, B) is a continuous map h : X → Y such that h(A) ⊂ B. In this way, we
have an associate without ambiguity:

h : (X, x0)→ (Y, y0) ⇒ h∗ : π1(X, x0)→ π1(Y, y0).

Theorem 9.10 (Functoriality).

1. If h : (X, x0)→ (Y, y0) and k : (Y, y0)→ (Z, z0), we have (k ◦ h)∗ = k∗ ◦ h∗.

2. If idX : (X, x0) → (X, x0) is the identity map, then (idX)∗ : π1(X, x0) → π1(X, x0) is the identity homomor-
phism.

Proof.
(k ◦ h)∗([ f ]) = [k ◦ h ◦ f ] = k∗([h ◦ f ]) = k∗ ◦ h∗([ f ])

(idX)∗([ f ]) = [idX ◦ f ] = [ f ].

�

Corollary 9.11. If h : (X, x0)→ (Y, y0) is a homeomorphism, then h∗ : π1(X, x0)→ π1(Y, y0) is an isomorphism.

Proof. Let h−1 be the inverse of h. Then h ◦ h−1 = idY and h−1 ◦ h = idX imply that

h∗ ◦ (h−1)∗ = idπ1(Y,y0), (h−1)∗ ◦ h∗ = idπ1(X,x0).

Thus (h∗)−1 = (h−1)∗ and h∗ is an isomorphism. �

Definition 9.12. A category C consists of a collection Ob(C) of objects and, for each objects A, B, a collection
MorC(A, B) of morphisms from A to B. The following axioms must be satisfied:

1. (Composition of morphisms) For f ∈ MorC(A, B) and g ∈ MorC(B,C), there is a unique g ◦ f ∈
MorC(A,C).

2. (Associativity) k ◦ (g ◦ f ) = (k ◦ g) ◦ f .

3. (Identity) For every object A ∈ Ob(C), there is the identity morphism idA ∈ MorC(A, A) such that f ◦ idA =

f and idB ◦ f for every g ∈ MorC(A, B).

A (covariant) functor F from a category C toD is an association

1. F : Ob(C)→ Ob(D).

2. F : MorC(A, B)→ MorD(A, B) for all A, B ∈ Ob(C).
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satisfying F (g ◦ f ) = F (g) ◦ F ( f ) and F (idA) = idF (A).

Example 9.13. Let Topb be the category that consists of a topological space with a based point (X, x0) and
continuous maps f : (X.x0) → (Y, y0). Let Grp be the category that consists of groups and homomorphisms.
Then the association

1. (On Objects) (X, x0) to π1(X, x0)

2. (On Morphisms) f : (X, x0)→ (Y, y0) to f∗ : π1(X, x0)→ π1(Y, y0)

defines a functor Topb to Grp.

9.3 Covering spaces and the example
Definition 9.14. A surjective continuous map p : E → B is a covering map if it satisfies

For each b ∈ B, there is an open nbd Ub such that p−1(Ub) = tαVα where p|Vα : Vα � Ub

We say, Ub is evenly covered by p for the underlined condition. E is called a covering space of B.

Lemma 9.15 (p.336 [Mun]). If p : E → B is a covering map, then

1. For each b ∈ B, p−1(b) ⊂ E has the discrete topology.

2. p is an open map. In particular, it is a quotient map.

Proof. 1. Let Ub be a nbhd of b evenly covered by p, i.e. π−1(Ub) = tαVα and p : Vα � U. Then each Vα

contains exactly one element of p−1(b), thus it defines the discrete topology on p−1(b).

2. Let O be an open set in E. We need to show that p(O) is open. Let x ∈ p(O) and let Ux be a nbhd of
x evenly covered by p, π−1(Ux) = tVα. Since Vα ∩ O is open and p : Vα � Ux, p(Vα ∩ O) is open and
x ∈ p(Vα ∩ O) ⊂ p(O).

�

Theorem 9.16 (53.1 [Mun]). The map p : R→ S 1 defined by p(x) := (cos 2πx, sin 2πx) is a covering map.

Proof. 1. It is a continuous and surjective map.

2. Consider an open covering U1, · · · ,U4 where U1,U3 are right and left circles and U2,U4 are upper and
lower half circles. We show that each Ui is evenly covered by p. Then since Ui covered S 1, p is a covering
map.

We show it for U1. Other Ui’s are similarly proved. First

p−1(U1) =
⊔
n∈Z

(n −
1
4
, n +

1
4

).

Let Vn := (n − 1
4 , n + 1

4 ). p|Vn
: Vn → U1 is obviously injective and surjective. Since Vn is

compact and U1 is Hausdorff, p|Vn
is a homeomorphism by Theorem 4.9. Thus p|Vn : Vn → U1 is a

homeomorphism too.
�

Theorem 9.17 (53.3). If p : E → B and p : E′ → B′ are covering maps, then (p, p′) : E × E′ → B′ × B is a
covering map.

Proof. It is obvious that if U ⊂ B is evenly covered by p and U′ ⊂ B′ is evenly covered by p′, then U × U′ is
evenly covered by (p, p′). �
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Example 9.18. Consider the covering map p : R→ S 1 from Theorem 9.16. The above theorem says

p := (p, p) : R × R→ S 1 × S 1

is a covering map.

Theorem 9.19 (53.2 [Mun]). Let p : E → B be a covering map. Let B0 ⊂ B be a subspace, then let E0 :=
p−1(B0). Then p|E0 : E0 → B0 is a covering map.

Proof. If U ⊂ B is evenly covered by p, then U ∩ B0 ⊂ B0 is evenly covered by p|E0 . �

Remark 9.20. If you restrict p : E → B to a subspace E0 ⊂ E and define B0 := p(E0), then p|E0 : E0 → B0
may fail to be a covering map. For example, consider E0 := (0,∞) ⊂ R in Theorem 9.16. p|E0 : E0 → S 1 is a
surjective continuous map. However, for any open set U around (1, 0) ∈ S 1, p−1(U) = (0, ε)t (1− ε, 1 + ε)t · · ·
and p|(0,ε) : (0, ε)→ U can never be a homeomorphism.

Example 9.21. Consider p : R2 → S 1 × S 1 from Example 9.18 and let b0 := p(0) ∈ S 1. Let B0 := S 1 × {b0} ∪

{b0} × S 1. This B0 is called the figure-eight. By Theorem 9.19, if E0 := p−1(B0), then p|E0 : E0 → B0 is a
covering map. E0 is the “infinite grid” given by

E0 = (R × Z) ∪ (Z × R).

This is one covering space for the figure-eight and we will see others later.
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10 Fundamental Groups and Covering Spaces, §54 [Mun]
In this section, we study the crucial connection between the concepts of fundamental groups and covering spaces.
This connection allows us to compute the fundamental group of spaces. The key concept to connect those two
is a lifting of a map along another map. As a first application, we compute the fundamental group of S 1.

• Step 1. Let p : E → B be a covering. Let [ f ] ∈ π1(B, b0). The loop f at b0 is uniquely lifted
to a path f̃ in E once we choose where f̃ starts.

• Step 2. If [ f ] = [ f ′], the unique lifts f̃ , f̃ ′ starting from the same point have the same ending.
Thus there is a map [ f ] 7→ f̃ (1).

• Step 3. Apply it to p : R → S 1. We have a map π1(S 1, b0) → π−1(b0) � Z. The simple
connectedness R implies that this map is bijective. Moreover, we can show that this map is a
group homomorphism.

10.1 A lifting of a map along another map and liftings of paths along a covering map
Definition 10.1. Let p : E → B be a continuous map. A lifting of a continuous map f : X → B is a continuous
map f̃ : X → E such that p ◦ f̃ = f :

E

p

��
X

lifting f̃
??

f
// B

Example 10.2. Consider p : R → S 1, x 7→ (cos 2πx, sin 2πx). Let f : [0, 1] → S 1, s 7→ (cos πx, sin πx). Then
f̃ : [0, 1] → R, s 7→ s/2 is a lifting of f . Also f̃ : [0, 1] → R, s 7→ s/2 + 2π or in general s 7→ s/2 + 2πn
where n is a fixed integer, is a lifting. Observe that in this case, the lifting is determined by the initial point, i.e
by f̃ (0) ∈ 2πZ.

Lemma 10.3 (Unique Path Lifting for Covering 54.1 [Mun]). If p : E → B is a covering map and f : [0, 1]→ B
is a path with the initial point b0 := f (0), then for each e0 ∈ p−1(b0), there is a unique lifting f̃ : [0, 1]→ E such
that f̃ (0) = e0.

Remark 10.4. p−1(b0) is called the fiber of p at b0. The above lemma says, each path in B with initial point b0
can be lifted uniquely to a path in E once we choose a point e0 in the fiber of b0 where the lifted path should
start from.

Proof. 1. Cover the image f (I) of the path by ∪b∈ f (I)Ub where Ub is evenly covered by p. Since f is contin-
uous, { f −1(Ub)} is an open cover of I. By Lebesgue Measure Lemma (note I is compact), there is δ > 0
such that any subset with max distance less than δ is contained in one of f −1(Ub). Therefore if we devide
I into ∪n

i=1[si, si+1] in such a way that si+1 − si < δ, then each [si, si+1] is contained in one of f −1(Ub), i.e.
f ([si, si+1]) ⊂ Ub.

2. We construct f̃ by induction on i = 1, · · · , n:

(a) Lifting f |[0,s1]. Let f ([0, s1]) ⊂ Ub1 . Since Ub1 is evenly covered, let p−1(Ub1 ) = tVα. Let e0 ∈ Vα1 .
Since p|Vα1

: Vα1 → Ub1 is a homeomorphism, the inverse (p|Vα1
)−1 is continuous, therefore define

f̃ |[0,s1](s) := (p|Vα1
)−1 ◦ f (s).

It is easy to see f̃ |[0,s1](0) = (p|Vα1
)−1 ◦ f (0) = (p|Vα1

)−1(b0) = e0 and p ◦ f̃ |[0,s1] = f .
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(b) Suppose we have a desired lifting f̃ |[0,si] of f |[0,si]. Let f ([si, si+1]) ⊂ Ubi+1 . Let p−1(Ubi+1 ) = tVα.
Since f (si) = p ◦ f̃ |[0,si](si) ∈ Ubi+1 , there is Vαi such that f̃ |[0,si](si) ∈ Vαi . Define

f̃ |[0,si+1] :=

 f̃ |[0,si](s) s ∈ [0, si]
(p|Vαi

)−1( f (s)) s ∈ [si, si+1]

By the argument in (a), the second map is a well-defined continuous map and by the way we chose
Vα, those two functions agree at s = si. Thus by the pasting lemma, f̃ |[0,si+1] is a well-defined
continuous map. The conditions for lifting are obviously satisfied.

3. Uniqueness of lifting. Let f̃ ′ be another lifting. Induction on i.

(a) f̃ |[0,s1] = f̃ ′[0,s1]: Since f̃ (0) = f̃ ′(0) = e0, the images of both are in the same Vα1 since [0, s1] is
connected so that the images must lie entirely in the connected component containing e0. Thus

f̃ |[0,s1](s) = (p|Vα )−1 ◦ f (s) = f̃ ′|[0,s1](s).

(b) Suppose that f̃ |[0,si] = f̃ ′[0,si]
so that f̃ (si) = f̃ ′(si). Then the images of [si, si+1] under f̃ and f̃ ′ are

both in Vαi+1 because of the connectedness of [si, si+1] as in (a). Therefore similarly to (a), we have
f̃ |[si,si+1](s) = f̃ ′|[si,si+1](s). Thus together with the assumption, f̃ |[0,si+1] = f̃ ′|[0,si+1].

�

10.2 Lifting Path-Homotopy
Theorem 10.5 (Unique Homotopy Lifting, 54.2, 54.3 [Mun]).

• If p : E → B is a covering map and F : I × [0, 1] → B be a continuous map with F(0, 0) = b0. For each
e0 ∈ p−1(b0), there is a unique lifting F̃ : I × [0, 1]→ E such that F̃(0, 0) = e0.

• If F is a path-homotopy from f to g, then F̃ is a path-homotopy from the lifting f̃ of f at e0 to the lifting g̃
of g at e0. In particular, f̃ (1) = g̃(1).

Proof.

• The argument to show there is a unique lifting is essentially the same as Theorem 10.3.

1. We can divide I × [0, 1] into small rectangles [si, si+1] × [t j, t j+1], 1 ≤ i ≤ n, 1 ≤ j ≤ m , so that the
image of each under F is contained in an evenly covered open set.

2. Number those rectangles by k = 1, · · · , nm in such a way that consecutively numbered rectangles
share some points in the image under F. Then construct F̃ inductively on k.

3. Let F̃′ be another lifting such that F̃(0, 0) = F̃′(0, 0) = e0. Then show the uniqueness also by
induction on k.

• We have F(s, 0) = f (s), F(s, 1) = g(s), F(0, t) = f (0) = g(0) = b0 and F(1, t) = f (1) = g(1) = b1.

1. Regard F(0, t) as a constant path at b0. Then F̃(0, t) is a lifting at e0 which must be a constant path
at e0 by the uniqueness of path lifting. Similarly regarding F(1, t) as a constant path at b1, F̃(1, t) is
a constant path at some point in p−1(b1). Thus F̃ must be a path-homotopy.

2. Since F̃(s, 0) and F̃(s, 1) are liftings of f and g at e0, by the uniqueness, F̃ is a path-homotopy from
f̃ to g̃.

�
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Corollary 10.6. Let p : E → B be a covering. Fix b0 and e0 ∈ p−1(e0). Define the following map of sets

Φe0 : { loops f at b0 in B } → π−1(b0), f 7→ f̃ (1).

where f̃ is the unique lifting of f at e0. This map factors through

φe0 : π1(B, b0)→ π−1(b0), [ f ] 7→ f̃ (1)

since if f �p f ′, then f̃ (1) = f̃ ′(1) from the above theorem.

10.3 Surjectivity and bijectivity of φe0

Theorem 10.7. Let p : E → B be a covering map. Let e0 ∈ p−1(b0). (1) If E is path-connected, then φe0 is
surjective. (2) If E is simply connected, i.e. path-connected and π1 is trivial, then φe0 is bijective.

Proof. 1. Let e1 ∈ p−1(b0). Since E is path-connected, there is a path f̃ from e0 to e1. Composing with p,
we have a loop f := p ◦ f̃ at b0.

2. We need to show the map is injective if E is simply-connected. Let [ f ], [g] ∈ π1(B, b0) such that φe0 [ f ] =

φe0 [g], i.e. if f̃ , g̃ are lifts of f , g beginning at e0, then f̃ (1) = g̃(1). By Lemma 9.7, there is a path-
homotopy F̃ : f̃ ⇒p g̃. Then F := p ◦ F̃ is clearly a path-homotopy from f to g (check the conditions!)
so that [ f ] = [g].

�

10.4 π1(S 1, b0) � Z

Theorem 10.8. π1(S 1, b0) is isomorphic to Z.

Proof. Since R is simply-connected (Example 9.6), the map φe0 : π1(S 1, b0) � p−1(b0). Let b0 := (1, 0), then
p−1(b0) = Z ⊂ R. If we can show that φe0 is actually a group homomorphism, we are done. Let e0 := 0 ∈ R and
φ := φe0 . We need to show

φ([ f ] ∗ [g]) = φ([ f ]) + φ([g]).

Let f̃ , g̃ be the lifts of f , g at e0. Let f̃ (1) = n and g̃(1) = m so that φ([ f ]) = n and φ([g]) = m. Define a path
g̃′ : I→ R by

g̃′(s) := n + g̃.

Then g̃′ is the lift of g at n so that f̃ ∗ g̃′ is well-defined. Since p ◦ ( f̃ ∗ g̃′) = (p ◦ f̃ ) ∗ p ◦ g̃′ = f ∗ g by Lemma
8.9, we see that f̃ ∗ g̃′ is the lift of f ∗ g and ( f̃ ∗ g̃′)(1) = n + g̃(1) = n + m. Thus φ([ f ] ∗ [g]) = n + m. �

10.5 Retraction and fixed points theorem
Definition 10.9. Let A be a subspace of X. A continuous map r : X → A is a retraction of X to A if r(a) = a.

Lemma 10.10. Let i : A → X be an inclusion of a subspace A of X. If there is a retraction r : X → A, then
i∗ : π1(A, a0)→ π1(X, a0) is injective. Furthermore r∗ : π1(X, a0)→ π1(A, a0) is surjective.

Proof. Notice that r ◦ i = id(A,a0). By Theorem 9.10 (2), r∗ ◦ i∗ = idπ1(A,a0). This implies that i∗ is injective and r∗
is surjective.
Let f : X → Y and g : Y → X be maps of sets. If g ◦ f = idX , then f is injective and g is surjective.
Why? This is because, if f is not injective, then g ◦ f = idX can not be injective and if g is not
surjective, then g ◦ f = idX can not be surjective.

�

Theorem 10.11 (§55.2, [Mun]). There is no retraction of B2 to S 1 where B2 is the 2-dimensional disk.
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Proof. If there is a retraction, by Lemma , the inclusion j : S 1 → B2 induces an injective map j∗ : π1(S 1, x0)→
π1(B2, x0). Since B2 is simply-connected (Lemma 9.6) and π1(S 1, x0), we have a contraction. �

Theorem 10.12 (§55.6, [Mun]). If f : B2 → B2 is continuous, then there is x ∈ B2 such that f (x) = x.

Proof. Suppose that there is no such fixed point, i.e. f (x) , x for all x ∈ B2. Then for each x, consider the half
line from f (x) to x. This line intersects with S 1. Let this point be denoted by r(x) So define a map

r : B2 → S 1, x 7→ r(x).

This map is well-defined because there is no fixed point. This map is continuous.
It is intuitively obvious. Any rigorous proof is welcome!

This map r is a retraction from B2 to S 1 and it contradict with Theorem 10.11. �

10.6 Deformation retract §58
Lemma 10.13 (58.1). Let h, k : X → Y be continuous maps and suppose h(x0) = y0 and k(x0) = y0. If there is
a homotopy F : X × [0, 1] → Y from h to k such that F(x0, t) = y0 for all t ∈ [0, 1], then h∗ = k∗ : π1(X, x0) →
π1(Y, y0).

Definition 10.14 (p.361). Let A ⊂ X be a subspace and let j : A ↪→ X be the inclusion map. A homotopy
H : X × [0, 1]→ X is a deformation retraction of X onto A if

H(x, 0) = x, H(x, 1) ∈ A, ∀x ∈ X, and H(a, t) = a,∀a ∈ A.

If wefine r : X → A by r(x) := H(x, 1) ∈ A. Then r is a retraction. Furthermore, H is a homotopy from idX to
j ◦ r. In this case, A is called a deformation retract of X.

Theorem 10.15. If A is a deformation retract of X, then j∗ : π1(A, a)→ π1(X, a) is an isomorphism.

Proof. 1. By Lemma 10.5, j∗ is injective.

2. By Lemma 10.13 and definition of deformation retraction, ( j ◦ r)∗ : π1(X, a) → π1(X, a) is the identity
map. By ( j ◦ r)∗ = j∗ ◦ r∗, j∗ must be surjective.

�

Example 10.16. S n is a deformation retract of Rn+1 − ~0. Thus the inclusion j : S n → Rn+1 − ~0 induces an
isomorphism of the fundamental groups.

Let X := Rn+1 − ~0. Consider H : X × [0, 1]→ X defined by

H(x, t) := (1 − t)x + tx/||x||.

It is a continuous map. Thus it is a homotopy. H(x, 0) = x and H(x, 1) = x/||x||. So if we define
r : X → S n by r(x) := H(x, 1), then H is a homotopy from idX to j ◦ r. Since for all a ∈ S n,
H(a, t) = (1 − t)a + ta//||a|| = (1 − t)a + ta = a, H is a deformation retraction.
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11 Application and more computations of π1

11.1 Homotopy invariance of fundamental groups
Theorem 11.1 (Lemma 58.4). Let f : (X, x0) → (Y, y0) and g : (X, x0) → (Y, y1) be based continuous maps.
If h and k is homotopic, then there is a path α from y0 to y1 such that h∗ ◦ α̂ = k∗, i.e. the following diagram
commutes:

π1(X, x)
h∗

//

k∗ %%KKKKKKKKKK π1(Y, y0)

α̂

��
π1(Y, y1).

Proof. We will prove k∗([ f ]) = α̂ ◦ h∗([ f ]), i.e. [k ◦ f ] = [ᾱ ∗ (h ◦ f ) ∗ α], which is equivalent to [α ∗ (k ◦ f )] =

[(h ◦ f ) ∗ α]. Consider

I × [0, 1]
G

// [0, 1] × [0, 1]
F

// X × [0, 1]
H

// Y.

where

• G is a path-homotopy between (s, 0) ∗ (1, s) (go right and then up β0 ∗γ1) and (0, s) ∗ (s, 1) (go up and then
right γ0 ∗ β1).

• F(s, t) := ( f (s), t). In particular, F(0, t) = F(1, t) = (x0, t) =: c(t). Then c = F ◦ γ1 = F ◦ γ0.

• H is a homotopy from h to k.

Since H : X × [0, 1] → Y is a homotopy from h to k, H(x0, 0) = h(x0) = y0 and H(x0, 1) = k(x0) = y1. Thus
α := H|{x0}×[0,1] is a path from y0 to y1, i.e. α(t) := H(x0, t) = H ◦ c(t).

Then we show H ◦ F ◦G is a path-homotopy between (h ◦ f ) ∗ α and α ∗ (k ◦ f ).
G : β0 ∗ γ1 ⇒p γ0 ∗ β1 implies F ◦G : F ◦ (β0 ∗ γ1)⇒p F ◦ (γ0 ∗ β1) since F is a continuous map. Thus

F ◦G : (F ◦ β0) ∗ (F ◦ γ1)⇒p (F ◦ γ0) ∗ (F ◦ β1).

H ◦ F ◦G : (H ◦ F ◦ β0)︸         ︷︷         ︸
h◦ f

∗ (H ◦ F ◦ γ1)︸         ︷︷         ︸
α

⇒p (H ◦ F ◦ γ0)︸         ︷︷         ︸
α

∗ (H ◦ F ◦ β1)︸         ︷︷         ︸
k◦ f

�

Definition 11.2. X and Y have the same homotopy type if there are maps f : X → Y and g : Y → X such that
f ◦g � idY and g◦ f � idX . In this case, f : X → Y is called a homotopy equivalence and g is called a homotopy
inverse of f

Example 11.3. If A is a deformation retract of X, then the retraction map r : X → A and the inclusion map
j : A ↪→ X are homotopy equivalences and A and X have the same homotopy type. To see this, consider
r : X → A and j : A ↪→ X. Since r ◦ j = idA, obviously r ◦ j is homotopic to idA. The deformation retraction is
a homotopy from idX to j ◦ r.

Example 11.4. 1. The figure-eight is a deformation retract of R2 − p − q.

2. The theta figure S 1 ∪ (0 × [−1, 1]) is a deformation retract of R2 − p − q.

Theorem 11.5 (58.7). If f : X → Y is a homotopy equivalence and f (x) = y, then f∗ : π1(X, x)→ π1(Y, y) is an
isomorphism.
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Proof. Let g : Y → X be a homotopy inverse to f , i.e. there are homotopies f ◦ g � idY and g ◦ f � idX . Pick
some x0 ∈ X and consider the maps

(X, x0)
f

// (Y, y0) g
// (X, x1)

f
// (Y, y1),

where y0, x1, y1 are consecutively picked as y0 := f (x0), x1 := g(y0) and y1 := f (x1). They induces

π1(X, x0)
f∗

// π1(Y, y0) g∗
// π1(X, x1)

f∗
// π1(Y, y1).

By Theorem 11.1, f ◦ g � idY and g ◦ f � idX implies

f∗ ◦ g∗ = α̂ ◦ (idY )∗ = α̂, g∗ ◦ f∗ = β̂ ◦ (idX)∗ = β̂

for some paths α and β. Since α̂ is an isomorphism, g∗ is injective and f∗ is surjective. Since β̂ is an isomorphism,
g∗ is surjective and f∗ is injective. Therefore, f∗ and g∗ are isomorphisms. �

Corollary 11.6. If X and Y are path-connected and have the same homotopy type, then their fundamental groups
are isomorphic.

11.2 Fundamental group of S n

Theorem 11.7 (59.1). Let X = U ∪V where U,V are open sets and let i : U ↪→ X and j : V ↪→ X be inclusions.
Suppose that U ∩ V is path-connected. Let x0 ∈ U ∩ V. Then images of

i∗ : π1(U, x0)→ π1(X, x0) and j∗ : π1(V, x0)→ π1(X, x0)

generate π1(X, x0), i.e. any element is a product of elements in Im i∗ ∪ Im j∗.

Theorem 11.8 (59.3). If n ≥ 2, S n is simply-connected.

Proof. Let S n := {~x ∈ Rn+1, |~x| = 1} and ~p := (0, · · · , 0, 1), ~q := (0, · · · , 0,−1) ∈ S n. Let U := S n − {~p} and
V := S n − {~q}.

1. The stereographic projection is the map fp : U → Rn defined by

(x1, · · · , xn, xn+1) 7→
1

1 − xn+1
(x1, · · · , xn).

It is a homeomorphism because g : Rn → U defined by

~y = (y1, · · · , yn) 7→
(

2y1

1 + |~y|2
, · · · ,

2yn

1 + |~y|2
, 1 −

2
1 + |~y|2

)
is the inverse of f . Thus U is path-connected and π1(U, ~x0) is trivial. Similar for V .

2. The intersection U ∩ V = S n − {~p, ~q} is path-connected, since f |U∩V : S n − {~p, ~q} → Rn − ~0 is a homeo-
morphism and Rn − ~0 is path-connected from Example .

3. Applying Theorem 11.7, π1(S n, ~x0) is generated by the images of the fundamental groups of U and V . But
both of them are trivial, so π1(S n, ~x0) is trivial. Since S n is path-connected by Example , S n is simply-
connected.

�
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11.3 Fundamental theorem of algebra
Lemma 11.9. Let f : S 1 → S 1, z 7→ zn where S 1 := U(1) ⊂ C. Then f∗ : π1(S 1, 1) 7→ π1(S 1, 1) is given by
[ f ] 7→ [ f ]n = [ f ] ∗ · · · ∗ [ f ].

Proof. Under the isomorphism in Theorem 10.8, we must prove f (1) = n: Since Z is generated by 1, it is enough
to show f (1) = n, i.e. f (m) = f (1 + · · · + 1) = f (1) + · · · + f (1) = m f (1) = mn. 1 ∈ Z is given by g : I → S 1,
g(s) = cos 2πs + i sin 2πs = e2πis since the lift g̃ at 0 ∈ R is then given by g̃ : I → R, s 7→ s. Now f ◦ g(s) = e2πns

and the lift of f ◦ g is f̃ ◦ g(s) = ns. Therefore f∗([g]) = [ f ◦ g] = f̃ ◦ g(1) = n. �

Lemma 11.10 (55.3). For a continuous map h : S 1 → X, the following conditions are equivalent:

1. h is nullhomotopic, i.e. homotopic to a constant map.

2. h extends to a continuous map k : B2 → X, i.e. if j : S 1 → B2 is the natural inclusion, then h = k ◦ j.

3. h∗ is the trivial homomorphism, i.e. h∗([ f ]) = 1 for all [ f ] ∈ π1(S 1, b).

Proof. (1 ⇒ 2) Let H : S 1 × [0, 1] → X be a homotopy from h to a constant map. Define a continuous
map π : S 1 × [0, 1]→ B2 by π(b, t) := (1 − t)b. Since π is constant on S 1 × {1} and injective elsewhere, H
factors through π:

S 1 × [0, 1]

π
$$IIIIIIIII

H // X

B2

k

OO

Since π is a quotient map (*1), k must be a continuous map (*2). Since π|S 1×{0} is the natural inclusion of
S 1 into B2, k is an extension of h.

*1 Let π′ : S 1×[0, 1]→ S 1/ ∼ be the quotient map collapsing S 1×{1} to a point. Then π factors through
π′, inducing a bijection j : S 1/ ∼→ B2, which is continuous from ∗2. Since S 1/ ∼ is compact and
B2 is Hausdorff, j is a homeomorphism. Thus π must be a quotient map too.

*2 In general, if we have the diagram
X

f
//

g
��?

??
??

??
Y

Z

h

OO

where f is continuous and g is a quotient map. Then h is a continuous map. We need to show that if
U ⊂ Y is open, then h−1(U) is open. Since f −1(U) = (h ◦ g)−1(U) = g−1(h−1(U)) is open and g is a
quotient map h−1(U) must be open.

(2⇒ 3) h = k ◦ j implies that h∗ factors through

h∗ : π1(S 1, b)
j∗

// π1(B2, b)
k∗

// π1(X, h(b)).

Since B2 is convex, the middle term is trivial, so h∗ must be a trivial homomorphism.

(3 ⇒ 1). Let p : R → S 1 be the standard covering map used in Theorem 10.8. Then p|I : I → S 1 is a
loop and represent 1 ∈ Z � π1(S 1, b0). Since h∗ is trivial, h ◦ p|I is path-homotopic to a constant loop at
x0 := h(b0). Let F : I × [0, 1]→ X be the path-homotopy. F factors through p|I × id[0,1]:

I × [0, 1] F //

p|I×id %%JJJJJJJJJ X

S 1 × I

H

OO
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Since p|I is a quotient map, the induced map H is continuous (*2). H is a homotopy from h to a constant
map:

F(s, 0) = h ◦ p|I(s) = H|S 1×{0} ◦ p|I(s) ⇒ H|S 1×{0}(b, 1) = h(b).

x0 = F(s, 1) = H|S 1×{1} ◦ p|I(s) ⇒ H|S 1×{1}(b, 0) = x0.

�

Theorem 11.11. A polynomial of degree n with coefficients in C has n roots (counted with multiplicities).

Proof. Let f (z) ∈ C[z] be a polynomial. Suppose the theorem below, say a is a root. Divide f (z) by (z − a):

f (z)/(z − a) = g(z) + R/(z − a)

where g(z) is a polynomial of degree n − 1 and R ∈ C is the remainder. Multiply (z − a):

f (z) = g(z)(z − a) + R.

Since f (a) = 0, R = 0. Thus f (z) = g(z)(z− a). Keep this process n-times, we get f (z) = (z− a1) · · · (z− an). �

Theorem 11.12. A polynomial of degree n with coefficients in C has at least one root.

Proof.

1. Since S 1 is a deformation retract of C − 0, by applying Theorem 10.15 to j, we have j∗ : π1(S 1, 1) �
π1(C − ~0, 1). By Lemma 11.9, f : S 1 → S 1, z 7→ zn induces f∗ : π1(S 1, 1) 7→ π1(S 1, 1), [g] 7→ [g]n which
is injective. Therefore k := j ◦ f : S 1 → C − 0, z 7→ zn must induces an injective map k∗ : π1(S 1, 1) →
π1(C − 0, 1) must be injective. Since π1(S 1, 1) � Z, k∗ must be a non-trivial map. By Lemma 11.10, k is
not nullhomotopic.

2. We prove the claim in a special case: let g(z) = zn +an−1zn−1 + · · ·+a1z+a0 = 0 where |an−1|+ · · ·+ |a0| < 1.
Suppose that there is no root. Then regarding B2 as a disk in C, G : B2 → C− 0, r 7→ g(z) is well-defined.
Since G|S 1 : S 1 → B2 is a map extendable to B2, by Lemma 11.10, G|S 1 is nullhomotopic.

3. Define a homotopy F : S 1 × [0, 1]→ C− 0 by F(z, t) := zn + t(an−1zn−1 + · · ·+ a0). It is well-defined since
F(z, t) , 0:

|F(z, t)| ≥ |zn| − |t(an−1zn−1 + · · · + a0)| ≥ 1 − t|an−1zn−1 + · · · + a0|

≥ 1 − t(|an−1zn−1| + · · · + |a0|) ≥ 1 − t(|an−1| + · · · + |a0|) > 0

The first inequality uses Remark 11.13 and the last strict inequality uses the condition |an−1|+ · · ·+ |a0| < 1.
This F is a homotopy from k to G|S 1 . Since G|S 1 is homotopic to a constant map (nullhomotopic), k must
be homotopic to a constant map too. But this contradict to (1).

4. Consider the general equation zn + an−1zn−1 + · · · + a1z + a0 = 0. Let w = cz where c , 0. The equation
becomes

(cw)n + an−1(cw)n−1 + · · · + a1(cz) + a0 = 0⇔ wn +
an−1

c
wn−1 + · · · +

a1

cn−1 w +
a0

cn = 0

z = z0 is a root iff w = w0 is a root. By choosing a large c, the w-equation has a root by (3), therefore we
have a root for z-equation too.

�

Remark 11.13. For any complex numbers a, b, we have |a+b| ≥ |a|−|b|: apply triangle inequality to (a+b)+(−b).

|a| = |(a + b) + (−b)| ≤ |a + b| + | − b| = |a + b| + |b| ⇒ |a| − |b| ≤ |a + b|.
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11.4 Fundamental group of torus
Theorem 11.14 (60.1). π1(X × Y, (x, y)) is isomorphism to π1(X, x) × π1(Y, y).

Proof. Let p : X × Y → X and q : X × Y → Y be projection maps. Define a map

Φ : π1(X × Y, (x, y))→ π1(X, x) × π1(Y, y), [ f ] 7→ ([p ◦ f ], [q ◦ f ]).

Φ is a homomorphism:

Φ([ f ] ∗ [g]) = Φ([ f ∗ g]) = ([p ◦ ( f ∗ g)], [q ◦ ( f ∗ g)]) = ([p ◦ f ] ∗ [p ◦ g], [q ◦ f ] ∗ [q ◦ g])

= ([p ◦ f ], [q ◦ f ]) · ([p ◦ g], [q ◦ g]) = Φ([ f ]) · Φ([g]).

Note that for given groups G and H, the natural group multiplication in G × H is (g, h) · (g′, h′) := (gg′, hh′).

• (Φ Surjective) Let ([g], [h]) ∈ π1(X, x)×π1(Y, y). Defne [ f ] ∈ π1(X ×Y, (x, y)) by f (s) := (g(s), h(s)). Then
Φ([ f ]) = ([g], [h]).

• (Φ Injective) For a group homomorphism, if its kernel is trivial, then it is injective (Lemma 7.16). Let
[ f ] ∈ ker Φ, i.e. there are path-homotopies G : p ◦ f ⇒p ex and H : q ◦ g ⇒p ey. We need to show
F : f �p e(x,y). Define F : I × [0, 1] → X × Y by F(s, t) := (G(s, t),H(s, t)). Then F is a path homotopy
from f to the constant loop e(x,y):

F(s, 0) = (G(s, 0),H(s, 0)) = (g(s), h(s)), F(s, 1) = (G(s, 1),H(s, 1)) = (ex(s), ey(s)) = e(x,y)(s).

�

Corollary 11.15 (60.2). π1(T, b) � Z × Z where T is the torus S 1 × S 1.
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12 Fundamental groups of surfaces

12.1 Fundamental groups of a double torus
Theorem 12.1. The fundamental group of the eight figure is a free group generated by two elements.

Proof. The simply connected cover of the eight figure is given by “rose”.
http://en.wikipedia.org/wiki/Rose (topology).
It is an infinite tree graph, i.e. no loop in the graph. We want to show the rose is simple-connected. Since the
image of a path is compact so that it is contained in a finite graph, it is suffice to show that every finite tree graph
is contractible. Take a finite tree graph. First contract the edges that has a vertex with no other edges. Then keep
this process until there are no edges. By Theorem 10.7, there is a bijection between the fundamental group and
the fiber of the covering. Let f and g are loops for each circle. Then if you lift any two distinct words, the ending
points of them must be different. Thus there can not be a relation among the words in f and g. �

In general, the fundamental group of a wedge of circles are known to be a free group

Theorem 12.2 (71.1). Let X be a union of circles S 1, · · · , S n where p is the only common point of circles. Then
π1(X, p) is a free group generated by f1, · · · , fn where fi is a generator of π1(S i, p).

Definition 12.3. Let X1 and X2 be a topological surface. A connected sum X1]X2 is given by taking an open
disc from each Xi and pasting the remaining pieces along their edges. Note that here we have essentially two
choices of how we glue.

Corollary 12.4. Let T]T be a double torus. Then π1(T]T, b) contains a free group generated by two elements
as a subgroup. In particualr, it is non-abelian group.

Proof. There is a retraction from T]T to the eight figure (Figure 60.2 [Mun]). Thus by Lemma 10.5, the induced
map from the inclusion

j∗ : π1(∞, b)→ π1(T]T, b),

is an injective map. �

12.2 Constructing various surfaces by identifying edges of polytopes
Let ∆ be an 2m-gon polytope with edges e1, · · · , e2m (numbered counter clockwisely). Create m-pairs among
{ei}, each labeled by a1, · · · , am. Orient the boundary of ∆ counter clockwise. Assign εi := ±1 to each ei. Orient
ei compatibly with the orientation on ∂∆ if ε = +1. Orient oppositely if ε = −1. All these information is written
on the right hand side of

(e1, · · · , e2m) = (aε1
i1
, · · · , aε2m

i2m).

Now identify paired edges consistently with the orientation and obtain X := ∆/ ∼. We have

Theorem 12.5 (74.1). X = ∆/ ∼ is a compact topological surface.

12.2.1 Fundamental group of surfaces constructed from polytopes

Theorem 12.6 (72.1). Let X be a Hausdorff space and A a closed path-connected subspace of X (with inclusion
i : A ↪→ X). If there is a continuous map h : B2 → X such that h|Int B2 is a bijection onto X−A and h|∂B2 : S 1 → A
is a map into A. Then

i∗ : π1(A, a)→ π1(X, a)

is surjective and the kernel is the least normal subgroup containing (h|∂B2 )∗(γ) where γ is a generator of π1(S 1, b)
with h(b) = a.
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Remark 12.7 (Outline of how to compute the fundamental group of surface ∆/∼). Apply the theorem to
the construction in the previous section. Let X = ∆/∼ and since B2 � ∆, regard ∆ as B2 in the theorem. Thus
h : ∆ → X is the quotient map. Now ∂∆ � S 1 and let A := h(∂∆). Then A is the wedge of some circles with a
common point b. Let α1, · · · , αn be generators of each circle in A. Thus by Theorem 12.2, π1(A, b) is the free
group generated by α1, · · · , αn. Let [γ] be the generator of ∂∆ presented by a counter clockwise loop. If we
consider the edges are counter-clockwise paths on the boundary of ∆, then γ = e1 ∗ · · · ∗ e2m. We can regard aεk

ik
to be h ◦ ek. Thus h ◦ γ = aε1

i1
, · · · , aε2m

i2m. Then α1, · · · , αn are presented by compositions of h ◦ ek, so [h ◦ γ] = 1
gives a relation among α1, · · · , αn in the free group.

12.2.2 Torus, n-fold torus, RP2, Klein Bottle

Theorem 12.8 (73.1). A torus T is given by the identification date (α, β, α−1, β−1) for a 4-gon. We have

π1(T, a) � 〈α, β | αβα−1β−1 = 1〉

Theorem 12.9 (74.3). An n-fold torus X = T] · · · ]T is given by (α1, β1, α
−1
1 , β−1

1 , · · · , αn, βn, α
−1
n , β−1

n ) for 4n-
gon. We have

π1(T, a) � 〈α1, · · · , αn, β1, · · · , βn | [α1, β1] · · · [αn, βn] = 1〉

where [αi, βi] = αiβiα
−1
i β−1

i .

Theorem 12.10 (74.4). A n-fold projective space X = RP2] · · · ]RP2 is given by 2n-gon with

(α1, α1, · · · , αn, αn).

We have
π1(X, a) = 〈α1, · · · , αn | α

2
1 · · ·α

2
n = 1〉.

Exercise 12.11 (EX3, p.454). The klein bottle K is given by 4-gon with (α, β, α−1, β). We have

π1(K, a) = 〈α, β | αβα−1β = 1〉

12.3 Properly discontinuous actions, covering spaces, and fundamental groups
Definition 12.12 (p.490 [Mun]). Let G be a discrete group continuously acting on X. The action is properly
discontinuous if

(PdC) ∀x ∈ X, ∃Ux an open nbhd of x such that g(U) ∩ U = ∅,∀g ∈ G with g , 1G.

Theorem 12.13 (81.5 [Mun]). Let X be path-connected, locally path-connected. Let G be a discrete group
continuously acting on X. Then the G-action is properly discontinuous if and only if the quotient map π : X →
X/G is a covering map.

Proof.

• Suppose that the action is p.d. For x ∈ X, let Ux be the nbhd of x in (PdC). Then

π−1(π(Ux)) = {y ∈ X, y = gx′, x′ ∈ Ux, g ∈ G} = ∪g∈Gg(Ux) = tg∈Gg(Ux).

This implies (1) π(Ux) is an open nbhd of π(x) because π is a quotient map and the right hand side is
an open set, (2) π−1(π(Ux)) is a disjoint union of open sets. The restriction π|g(Ux) : g(Ux) → π(Ux) is a
homeomorphism: it is continuous. It is bijective since otherwise it contradicts to the disjointness. The
inverse is continuous because π is an open map: if U ⊂ X is open, then π−1(π(U)) = ∪g∈Gg(Ux) (not
necessarily disjoint), is a union open sets, so open.

• Suppose that q is a covering map. ........exercise.
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�

Example 12.14 (60.3-4). The antipodal quotient map S 2 → RP2 is a covering map and π1(RP2, b) � Z/2Z.

Proof. RP2 = S 2/Z2 where Z2 := {1,−1} acts on S 2 by −1 : x 7→ −x. This action is continuous because
R3 → R3, x 7→ −x is a homeomorphism. It is also a properly discontinuous action since the distance between x
and −x is 2 (consider the metric topology induced from R3 and use the ε-ball to separate x and −x). Thus the
quotient map §2 → RP2 is a covering map. Since S 2 is simply-connected and the cardinality of a fiber is 2, by
Theorem 10.7, π1(RP2, b0) has cardinality 2. The group of cardinality 2 must be Z/2Z. �

Example 12.15. Let S 3 := {(z,w) ∈ C2, |z|2 + |w|2 = 1}. Let Z3 = {e2πi k
3 , k = 0, 1, 2} ⊂ U(1). Define Z3-action

on S 3 by ω : (z,w) 7→ (ωz, ω2w). This action is properly discontinuous. Similarly to the argument in Theorem
12.14, π1(S 3/Z3) � Z3.

Example 12.16. Let S 5 := {(z,w, v) ∈ C2, |z|2 + |w|2 + |v|3 = 1}. Let Z4 = {e2πi k
4 , k = 0, 1, 2, 3} ⊂ U(1). Define Z4-

action on S 5 by ω : (z,w, v) 7→ (ωz, ω2w, ω3v). This action is properly discontinuous. As a set π1(S 3/Z3) � Z4.
But there are exactly two groups of cardinality 4. Z2 × Z2 has also cardinality 4. The following theorem can be
proved by studying classifying spaces and the covering transformation.

Theorem 12.17 (7.3, p.151, [Bredon]). If X is simple-connected and locally path-connected and a discrete
group G acts on X properly discontinuously, then π1(X/G, [x0]) � G.

Proof. (outline)

1. Define the group of transformation (Deck transformations) of a covering p : E → B: the group of
homeomorphisms f of E which satisfy p ◦ f = p.

2. We show that the group of transformation is isomorphic to the fundamental group of B if E is simply-
connected (Cor 81.4), [Mun].

3. We show that the group of transformation of X → X/G is isomorphic to G.

4. We show that the quotient space of E by the action of the group of transformations is homeomorphic to B.

�
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13 Cauchy Integral Formula, Jordan Curve Theorem and Winding Num-
ber Theorem

13.1 Cauchy Integral Formula §66 [Mun]
Definition 13.1. A complex analytic function is a complex valued function f (z) defined on an open set D in C
such that f is infinitely differentiable and the taylor series at z0 ∈ D converges to f (z) for z in the nbhd of z0.

A holomorphic function is a complex valued function f (z) defined on D which is differentiable by z ev-
erywhere in D. It is exactly a function f (x + iy) = u(x, y) + v(x, y) such that partial derivatives of u and v are
continuous and satisfies the Cauchy-Riemann equations ux − vy = 0, vx + uy = 0. A big theorem in complex
analysis is that complex analytic functions are exactly holomorphic functions.

There is some analogy between Green’s theorem and the following theorems (Cauchy-Riemann equations
seems saying the the divergence and the circulation density of the vector field 〈v, u〉 is zero.)

Theorem 13.2 (Theorem 5, p.92, § 1.2 [Ahlfors]). Let D be a simply connected open set in C.

(1) (Cauchy’s theorem) If h(z) is analytic in D then for any closed curve γ in D,∫
γ

h(z)dz = 0.

(2) If h(z) is analytic in D − {z0} and limz→z0 (z − z0)h(z) = 0, then for any closed curve γ in D − {z0},∫
γ

h(z)dz = 0.

Now we define so-called winding numbers. It is a mathematically rigorous definition of how many times a
loop γ in C goes around a point a ∈ C. This number is crucial when we compute a line integral of a complex
analytic function.

Definition 13.3. Let γ : I→ R2 be a loop in R2 and let a ∈ R2 such that a < γ(I). Define a loop g : I→ S 1 ⊂ R2

in S 1 by

g(s) :=
γ(s) − a
|γ(s) − a|

.

Consider the standard covering map p : R→ S 1, t → e2πit. Take any lift g̃, then g̃(1) − g̃(0) is always an integer.
Moreover it doesn’t depend on the choice of lifting, because if g̃ is a lifting, then the uniqueness of liftings
implies that other liftings are given by g̃(s) + m for some m ∈ Z. Define the winding number of γ around a ∈ R2

to be
n(γ, a) := g̃(1) − g̃(0).

The following lemma is a consequence of an easy computation, although it is quite essential computation we
can apply to more general integrals.

Theorem 13.4 (Lemma 66.3). Let γ : I → C be a piecewise differentiable loop in C. Let a ∈ C such that
a < γ(I). Then

n(γ, a) =
1

2πi

∫
γ

dz
z − a

.

Proof. Let g̃ be a lifting of g, so that, for t ∈ I,

e2πig̃(t) = g(t) =
γ(t) − a
|γ(t) − a|

.

Let r(t) := |γ(t) − a|, then

γ(t) = r(t) · e2πig̃(t) + a, γ′(t) = r′(t) · e2πig̃(t) + r(t) · 2πie2πig̃(t) · g̃′(s).
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1
2πi

∫
γ

dz
z − a

=
1

2πi

∫ 1

0

γ′(t)
γ(t) − a

dt =
1

2πi

∫ 1

0

(
r′(t)
r(t)

+ 2πig̃′(t)
)

dt

=
1

2πi

[
log r(t) + 2πig̃(t)

]1

0
=

1
2πi

[
2πig̃(t)

]1

0
= g̃(1) − g̃(0).

�

As a corollary of above two theorems, we obtain the Cauchy Integral Formula which seems a bit insufficient
because of the appearance of the winding number.

Theorem 13.5 (Theorem 6, § 2.2, p.95 [Ahlfors]). Let f (z) be a analytic function over an open disk D in C. Let
γ : I→ D ⊂ C be a piecewise-differentiable loop in D. For a ∈ D such that a < γ(I), we have

1
2πi

∫
γ

f (z)
z − a

dz = n(γ, a) · f (a).

Proof. The proof is basically the application of the previous theorem. Let

h(z) :=
f (z) − f (a)

z − a
.

Then h(z) is analytic on D − {a}. However

lim
z→a

(z − a)h(z) = lim
z→a

f (z) − f (a) = 0.

Thus for any closed curve γ in D − {a}, ∫
γ

f (z) − f (a)
z − a

dz = 0,

which, together with Theorem 13.4, implies the formula. �

When n(γ, α) = 1, we have the classicall Cauchy Integral Formula,

1
2πi

∫
γ

f (z)
z − a

dz = f (a).

The really topological problem is “when n(γ, a) = 1?” To formulate the Cauchy Integral Formula without the
winding number, we need the following theorems in topology that seems trivial but is not easy to prove at all.

Theorem 13.6 (Jordan Curve Theorem). Let γ : I → R2 be a loop such that γ(t) = γ(t′) iff t = t′ or t =

0, t′ = 1 (simple loop). Then R2 − Im γ has two connected component, one is bounded and the other is bounded.
Furthermore, the boundary of each component coincides with Im γ.

Theorem 13.7 (Winding number theorem). If γ is a simple loop and a is a point in the bounded component of
R2 − Im γ, then n(γ, a) = ±1. We say γ orient the loop counter clockwise with respect to a if n(γ, a) = 1.

With these theorems, we have

Theorem 13.8. Let f (z) be an analytic function on an open region D. Then∫
γ

f (z)
z − a

dz = 2πi

for all loops γ in D such that γ is counter clockwise around a and the bounded component of R2 − Im γ is
contained in D.
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13.1.1 Residue Theorem

Definition 13.9 (Wiki, Residues). The residue of an analytic function f at an isolated singularity a, denoted
Resz=a( f , a) is the unique value R such that f (z) − R

z−a has an analytic antiderivative in a small punctured disk
0 < |z−a| < δ. Alternatively, residues can be calculated by finding Laurent series expansions, and are sometimes
defined in terms of them.

Theorem 13.10 (Residue Theorem). Let f (z) be an analytic function on an open region D − {a}. Then∫
γ

f (z)dz = 2πi · n(γ, a) · Resz=a( f , a)

for all loops γ in D and the bounded component of R2 − Im γ is contained in D.

13.2 Jordan Curve Theorem
Jordan Curve Theorem states something we want to believe without proving it. It’s amazing how complicated to
prove such a statement. However, on the other hand, there is the following theorem we haven’t prove:

Theorem 13.11 (Peano Space Filling Curve, §44). There exists a continuous map f : [0, 1] → [0, 1] × [0, 1]
such that Im f = [0, 1] × [0, 1].

The point here is that the intuition is important to guide our investigation but it can not be trusted completely
unless it is proved.

Definition 13.12. A loop γ : I→ X is a simple loop if γ(t) = γ(t′) iff t = t′ or t = 0, t′ = 1. γ factors though the
standard map p : I→ S 1, t 7→ e2πit and the induced map h : S 1 → X must induces a homeomorphism S 1 � Im γ.

Theorem 13.13 (25.5 [Mun]). If X is locally-path connected, then its connected components and its path-
connected components are the same.

Lemma 13.14. If γ is a simple loop, then S 2 − Im γ is locally path-connected. Thus its connected components
and its path-connected components are the same.

Proof. S 2 is locally path connected. Any open set in a locally path connected space is locally path connected.
Thus the second clam follows from the theorem above. �

Lemma 13.15.

(1) (61.1) Let C be a compact subspace of S 2 and b ∈ S 2 − C. Let h : S 2 − {b} � R2 be a homeomorphism,
which also induces a homeomorphism h : S 2 − {b} − C � R2 − C. Consider a connected component
U ⊂ S 2 − C. Then h(U) is an unbounded connected component of R2 − h(C) iff b ∈ U. In particular, the
unbounded connected component of R2 − h(C) is unique.

(2) (61.2) Let A be a compact space and g : A → R2 − {~0} a continuous map. If ~0 lies in the unbounded
connected component of R2 − g(A), then g is homotopic to a constant map.

(3) (Borsuk Lemma 62.2) Let a, b ∈ S 2 and A a compact space. If there is a continuous injective map
f : A→ S 2 − {a, b} which is homotopic to a constant map, then a, b lie in the same connected component.

Proof.

(2) Consider a big ball B centered at ~0 inR2 so that g(A) is contained in B (it’s possible to take such a ball, since
g(A) is compact so the distance from g(A) is bounded). If ~p ∈ R2 − B, then ~p must lie in the unbounded
component of R2 − g(A). Thus ~p and ~0 lie in the same unbounded component. Let α : I→ R2 − g(A) be a
path from ~0 to ~p. Define

G : A × [0, 1]→ R2 − {~0}, G(x, t) := g(x) − α(t).
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G(x, t) , ~0 follows from the fact that α is a path in R2 − g(A). G is a homotopy from g to k : A →
R2 − {~0}, k(x) = g(x) − ~p. Now define

H : A × [0, 1]→ R2 − {~0, H(x, t) := tg(x) − ~p.

It is a homotopy from a constant map to k. Thus we have a homotopy from g to a constant map.

�

Theorem 13.16 (Jordan separation theorem). If γ : I→ S 2 is a simple loop, then S 2 − Im γ is not connected.

Proof. 1. By Lemma 13.14, it suffices to show that S 2 − Im γ is not path-connected. Assume that it is
path-connected.

2. Im γ = A∪B where A and B are image of some paths and A∩B = {a, b}. Let U := S 2−A and V := S 2−B,
then

U ∩ V = S 2 − Im γ.

Thus by the assumption, U ∩ V is path-connected, so we can apply the first van Kampen Theorem.

3. U ∪ V = S 2 − {a, b} which is homeomorphic to R2 − {~0}. So its fundamental group is isomorphic to
Z. On the other hand, we will prove that the inclusions U ↪→ U ∪ V and V ↪→ U ∪ V induce trivial
homomorphisms on fundamental groups so that, by the first van Kampen Theorem, U ∪ V has the trivial
fundamental group. This leads to a contradiction.

4. Let f : I → U = S 2 − A be a loop. It factors through the standard quotient map p : I → S 1, t 7→ e2πit. Let
h : S 1 → S 2 − A be the map such that h ◦ p = f . Let i : S 2 − A ↪→ S 2 − {a, b} and j : S 2 − A ↪→ S 2 be the
natural inclusions. Then since i ◦ h(S 1) doesn’t not intersect with A, we know that a and b are connected
by the path A so that they are in the same path-connected component of S 2 − j ◦ h(S 1). We can now show
that i ◦ h : S 1 → S 2 − {a, b} is null-homotopic (*), so that it induces a trivial homomorphism by Lemma
11.10. Therefore

i∗ ◦ h∗([p]) = i∗([h ◦ p]) = i∗([ f ]) = 1.

5. (*) is basically Lemma 13.15 (1) and (2).
�

Theorem 13.17 (A non-separation lemma). If γ : I → S 2 is a simple path, then S 2 − Im γ has exactly one
component.

Proof. Since Im γ is contractible (*), idIm γ : Im γ → Im γ is homotopic to a constant map. It implies that if
a, b ∈ S 2 − Im γ, then the inclusion g : Im γ ↪→ S 2 − {a, b} is homotopic to a constant map. By Lemma 13.15
(3), a and b are in the same component. Thus S 2 − Im γ has no more than one connected component.

• γ is simple if it is continuous injective map. Since I is compact and S 2 is Hausdorff, γ is a topological
embedding, i.e. I is homeomorphic to Im γ.

• We can show there is at least one component, i.e. S 2 , Im γ. We know that Im γ is not homeomorphic to
S 2 by taking one point out, one is connected but the other is not. If Im γ ↪→ S 2 is a continuous injective
and both spaces are compact and Hausdorff, if surjective, then it must be homeomorphism. Constradiction.

�

Theorem 13.18 (63.1, converse to the first Seifert-van Kampen). Let X = U ∪ V where U,V are open sets in X.
Suppose U ∩ V = A t B where A, B are open sets.

(1) Let a ∈ A and b ∈ B. If α is a path in U from a to b and β is a path in V from b to a, then the loop f := α∗β
at a generates an infinite cyclic subgroup of π1(X, a).
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(2) Let a, a′ ∈ A. If γ is a path in U from a to a′ and δ is a path in V from a′ to a, then the loop g := γ ∗ δ
generates a subgroup of π1(X, a) which intersect the subgroup generated by [ f ] trivially, i.e. 〈[g]〉∩〈[ f ]〉 =

{1}.

Theorem 13.19 (Jordan Curve Theorem). Let γ : I → S 2 be a simple loop. Then S 2 − Im γ has exactly two
connected components W1 and W2. Furthermore, the boundary of each component coincides with Im γ.

Proof. 1. By Separation theorem, there are at least two (path-)connected components. Decompose Im γ into
two simple paths C1 and C2 with C1 ∩ C2 = {x, y}. Let Ui := S 2 − Ci. By non-separation theorem, they
are connected. Then U1 ∩ U2 = S 2 − Im γ.

2. We assume that S 2−Im γ has more than two connected components and derive a contradiction. Say A1, A2
are two distinct components and B is the union of other components.

3. Let a ∈ A1, a′ ∈ A2 and b ∈ B. Let α be a path in U from a to a′ and γ in U from a to b. Let β be a path in
V from a′ to a and δ in V from b to a. Consider the loops in U ∪ V at a, f : α ∗ β at a and g = γ ∗ δ.

4. By Theorem 13.18 (1) applied to U ∩ V = (A1 ∪ A2) t B, g generates an infinite cyclic subgroup of
π1(S 2−{x, y}, a) and by Theorem 13.18 (1) applied to U ∩V = A1t (A2tB), f generates an infinite cyclic
subgroup of π1(S 2 − {x, y}, a).

5. Since π1(S 2 − {x, y}, a) � π1(R2 − {0}, p) � Z, if s is its generator, then [g] = sm and [ f ] = sn. Thus
[g]n = [ f ]m which contradict with Theorem 13.18 (2).

�

13.3 Winding Number Theorem
Lemma 13.20 (65.2, Winding number theorem). ] Let C be a simple closed curve (the image of a simple loop)
in S 2. If p, q ∈ S 2 lie in different components of S 2 − C, then the inclusion map j : C ↪→ S 2 − {p, q} induces an
isomorphism of fundamental groups. In other words, let C be a simple closed curve in R2. If p lie in the bounded
component of R2 −C, then the inclusion map j : S 2 ↪→ R2 − p induces an isomorphism of fundamental groups.

Theorem 13.21. If γ is a simple loop and a is a point in the bounded component of R2− Im γ, then n(γ, a) = ±1.
We say γ orient the loop counter clockwise with respect to a if n(γ, a) = 1.

Proof.

• Without loss of generality, we can assume a = ~0 because n(γ, a) = n(γ − a, ~0) and a is in the unbounded
component of R2 − γ(I) if and only if 0 is in the unbounded component of R2 − (γ − a)(I)).

• γ : I→ R2 − ~0 factors through the standard map p : I→ S 1 and induces a map h : S 1 → R2 − ~0 such that
h : S 1 → γ(I) is a homeomorphism. Since [p] is a generator of π1(S 1, 0), h∗[p] is a generator of π1(R2−~0)
if ~0 is in the bounded component of R2 − Im γ by Lemma 13.20. If ~0 is in the unbounded component of
R2 − Im γ, then h is nullhomotopic by Lemma 13.15 so that h∗[p] is trivial by Lemma 11.10.

• Consider the deformation retraction r : R2 − ~0 → S 1, x → x/|x|, then the induced map r∗ : π1(R2 − ~0) →
π1(S 1) is an isomorphism by Theorem 10.15. Then r∗[γ] = [r ◦ γ] is a generator in the bounded case
and is trivial in the unbounded case. Since r ◦ γ(s) = γ(s)/|γ(s)|, n(γ,~0) = ±1 in the bounded case and
n(γ,~0) = 0 in the unbounded case.

�
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14 Classification of compact topological surfaces.

14.1 Triangulation
Definition 14.1. Let X be a compact topological surface. A curved triangle in X is a subset A in X together with
a homeomophism h : T → A where T is a closed triangular region in R2. A triangulation of X is a collection
{A1, · · · , An} of curved triangles such that

(Tr1) ∪iAi = X

(Tr2) For i , j, Ai ∩ A j = ∅, a vertex or an edge of both.

(Tr3) If Ai ∩ A j is an edge, then h−1
j ◦ hi on the corresponding edge of Ti is linear.

Theorem 14.2 (c.f. [DM]). Every compact surface is triangulable.

Theorem 14.3 (78.1). If X is a compact triangulable surface, then X is homeomorphic to the quotient space
obtained from a collection of disjoint triangular regions in R2 by identifying their edges in pairs.

Proof. Let {A1, · · · , An} be a triangulation of X. Then consider the map π : T1 ∪ · · ·Tn → X where each Ti maps
to X via hi and which is automatically a quotient map (a surjective map from a compact space E to a Hausdorff
space X is a closed map and so a quotient map: a closed set A ⊂ E is compact since E is comact, the image of
a compact subspace is compact, a compact subspace in a Hausdorff space is closed.) There are following two
things to prove.

1. For each edge e of Ai, there is exactly one other A j such that Ai ∩ A j = e so that h−1
j ◦ hi will identify the

corresponding edges of Ti and T j in pairs.

2. There is no additional vertex identification, i.e. if Ai ∩ A j = v is a vertex, then there is a sequence
Ai = Ai1 , · · · , Air = A j of triangles having v as a vertex such that Aik ∩ A jk+1 is an edge containing v.

See the proofs for these claims at page 472 - 475 [Mun]. �

Theorem 14.4 (78.2). If X is a compact connected triangulable surface, then X is homeomorphic to a space
obtained from a polygonal region in R2 by identifying the edges in pairs.

Proof. By the preceding theorem, we have a collection of triangular regions T1, · · · ,Tn in R2, together with the
oriented labels on the edges. Start with two triangles having the same oriented label on edges. By identifying
them, we have n−1 regions. Next take two distinct regions having the same label and identify them. Continuing
this process n − 1 times, we have a single polygonal region with oriented labels on edges in pairs. �

14.2 Classification of polygon quotients
Recall how to construct a surface out of a polygonal region in R2.

Let ∆ be an 2m-gon polytope with edges e1, · · · , e2m (numbered counter clockwisely). Create m-
pairs among {ei}, each labeled by a1, · · · , am. Orient the boundary of ∆ counter clockwise. Assign
εi := ±1 to each ei. Orient ei compatibly with the orientation on ∂∆ if ε = +1. Orient oppositely if
ε = −1. All these information is written on the right hand side of

(e1, · · · , e2m) = (aε1
i1
, · · · , aε2m

i2m).

Now identify paired edges consistently with the orientation and obtain X := ∆/ ∼.
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Definition 14.5 (Cut and Paste). A convex polygonal region can be cut along a line connecting two vertices and
decomposed into two pieces, provided the there are at least four vertices. Now the quotient space is obtained
by glueing two polygonal regions, that is, by pasting the cutting section as they were before cutting. This new
presentation do not change the resulting quotient. We should generalize the above construction to a collection of
polygonal regions with labeling, i.e. let P1, · · · , Pr be polygonal regions with 2m edges in total.

(aε1
i1
, · · · ,︸   ︷︷   ︸

label on P1

| , · · · ,︸︷︷︸
labels on P2

| · · · | , · · · , aε2m
i2m︸     ︷︷     ︸

label on Pr

)

Call this a labeling scheme for X.

Definition 14.6. Define the following elementary operation on labeling schemes:

1. (Cut) (aε1
i1
, · · · , aε2m

i2m
), m > 1⇒ (aε1

i1
, · · · , c−1 | c, · · · , aε2m

i2m
)

2. (Paste) (aε1
i1
, · · · , c−1 | c, · · · , aε2m

i2m
)⇒ (aε1

i1
, · · · , aε2m

i2m
)

3. (Relabel) (aε1
i1
, · · · , aε2m

i2m
)⇒ replace a label αi by βi, or by α−1

i ( so that (α−1
i )−1 = αi).

4. (Permute) (aε1
i1
, · · · , aε2m

i2m
)⇒ (aε2m

i2m
, aε1

i1
, · · · , aε2m−1

i2m−1
)

5. (Flip) (aε1
i1
, · · · , aε2m

i2m
)⇒ (a−ε2m

i2m
, · · · , a−ε2

i2
, a−ε1

i1
)

6. (RelabelI) If ab and, ab or b−1a−1 appear, we can relabel ab by c and b−1a−1 by c−1 after combining two
edges to one.

Note that 3,4,5 can be applied to the labeling on each Pi.

Theorem 14.7. The elementary operations don’t affect the resulting quotient.

Proof. It might be just easy to picture them. �

Theorem 14.8. If X is obtained from a polygonal region in R2 by identifying edges in pairs, then X is home-
omorphic to one of the folloiwng: S 2, T] · · · ]T, RP2] · · · ]RP2. Furthermore, those spaces in the list are all
non-homeomorphic to each other (non-homotopic to each other).

Proof. A labeling scheme can be transformed, via elementary operations, to one of the following:

• (a, a−1, b, b−1) (S 2)

• (a, b, a, b) (RP2)

• (a1, a1, · · · , am, am),m > 1 (RP2] · · · ]RP2)

• (a1, a−1
1 , b1, b−1

1 , · · · , an, a−1
n , bn, b−1

n ) (T] · · · ]T )

The fundamental groups are given by the corresponding relations and they are all different (the number of
generators are different or the order of the generators are different). �
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14.3 Euler characteristic
Definition 14.9. The Euler characteristic of a triangulated surface X is defined by

χ(X) := V − E + F

where V is the number of vertices, E is the number of edges and F is the number of triangles (“faces”).

Theorem 14.10. The Euler characteristic is independent of the choice of the triangulation.

Theorem 14.11. The Euler characteristics of the spaces in the list of the classification are

• χ(S 2) = 3 − 3 + 2 = 2.

• χ(RP2) = 2 − 3 + 2 = 1.

• χ(RP2] · · · ]RP2︸           ︷︷           ︸
m

) = 2 − m.

• χ(T] · · · ]T︸    ︷︷    ︸
n

) = 2 − 2n.

Proof. In general, for two surfaces S 1 and S 2, we have

χ(S 1]S 2) = χ(S 1) + χ(S 2) −2︸︷︷︸
−one triangle

+3 − 3︸ ︷︷ ︸
glue 3 edges and 3 vertices

Thus, once we compute χ(S 2) = 2 and χ(RP2) = 1, we have

χ(RP2] · · · ]RP2︸           ︷︷           ︸
m

) = m − 2(m − 1) = 2 − m

χ(T] · · · ]T︸    ︷︷    ︸
n

) = χ(S 2]T] · · · ]T︸    ︷︷    ︸
n

) = 2 − 2n.

�

14.4 What happen to the Klein bottle?
The Klein bottle is given by the labeling scheme (a, b, a−1, b).

aba−1b cut
// abc|c−1a−1b perm.

// cab|c−1a−1b
f lip

// cab|b−1ac paste
// caac perm

// aacc

Thus the Klein bottle is RP2]RP2.

Exercise 14.12. What in the classification list corresponds to RP2]T? Note that RP2]T is given by the labeling
scheme

(a, b, a, b, c, d, c−1, d−1).
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