MATH4530: Vocabularies of Basic Set Theory

Tomoo Matsumura

August 20, 2010

1 Sets

"A *set* is a collection of *elements*". We can describe a set by $A = \{a, b, c, d, \dots\}$ or $A = \{x \mid x \text{ is blah blah blah}\}$.

- $x \in A$ if an element x belongs to a set A. ($x \notin A$ if an element x does not belong to a set A.)
- $A \subset B$ if a set A is a *subset* of a set B, i.e. all elements of A belong to B.
- $A \subsetneq B$ if A is a *proper subset* of B, i.e. $A \subset B$ and $A \neq B$.
- The *complement* A^c of a subset A of B is defined by $A^c := \{b \in B \mid b \notin A\}$.
- The *empty set* \emptyset is defined to be the set with no elements.
- The *power-set* P(A) of a set A is defined to be the set of all subsets of A: To clarify, please note that, if a ∈ A, then {a} ⊂ A and so {a} ∈ P(A). Writing {a} ∈ A is wrong.
- The *cartecian product* $A \times B$ of sets A and B is the set of all *ordered pairs* of elements of A and B:

$$A \times B := \{(a, b) \mid a \in A, b \in B\}.$$

The natural maps $\pi_1 : A \times B \to A, (a, b) \mapsto a$ and $\pi_2 : A \times B \to B, (a, b) \mapsto b$ are called the *projections (to the 1st and 2nd factors)*.

The *union*, the *intersection* and the *difference* of two sets A and B are the sets defined as follows:

- Union: $A \cup B := \{x \mid x \in A \text{ or } x \in B\}.$
- Intersection: $A \cap B := \{x \mid x \in A \text{ and } x \in B\}.$
- Difference: $A B := \{x \mid x \in A \text{ and } x \notin B\}.$

We will use the symbol := to *define* a set.

See page 11 of [Mun] and check the formulas there. We can also define *arbitrary unions and intersections* over *any set of sets*: let I be a set of sets, then

$$\bigcup_{A \in I} A := \{x \mid x \in A \text{ for at least one } A \in I\} \text{ and } \bigcap_{A \in I} A := \{x \mid x \in A \text{ for all } A \in I\}.$$

Caution: A collection of sets is not a set in general. For example, if we regard the collection of all sets as a set, we will get into theoretical troubles. In more general framework, such a collection is named a *proper class*. See for example "*Class (set theory*)" in wikipedia. As long as we consider collections of subsets of a set A, it's fine. They are sets, and indeed, subsets of the power-set $\mathcal{P}(A)$.

2 Maps (= Functions)

A map f from a set A to a set B is an assignment of an element of B to each element of A, denoted by

$$f: A \to B, a \mapsto f(a)$$
 where $a \in A$ and $b := f(a) \in B$

• The *composition* " $g \circ f : A \to C$ " of maps $f : A \to B$ and $g : B \to C$ is defined by

$$(g \circ f)(a) := g(f(a)).$$

• The *image* of a map $f : A \rightarrow B$ is the subset of B given by

Im
$$f := f(A) = \{b \in B \mid \exists a \in A \text{ such that } b = f(a)\}.$$

• Let $f : A \to B$ be a map. The *inverse image (or preimage)* $f^{-1}(B')$ of a subset $B' \subset B$ is the subset of A given by

$$f^{-1}(B') := \{ a \in A \mid f(a) \in B' \}.$$

• The *restriction* of a map $f : A \to B$ to a subset $A' \subset A$ is the map $f|_{A'} : A' \to B$ given by

$$f|_{A'}(a') := f(a')$$
 for all $a' \in A'$.

The *injectivity*, *surjectivity* and *bijectivity* of a map $f : A \rightarrow B$ is defined as follows:

- *f* is injective if no two distinct elements of *A* go to the same element in *B* under *f*, i.e. f(a) = f(a') implies a = a'
- *f* is surjective if the image of *f* coincides with *B*.
- f is bijective (a one to one correspondence) of f is injective and surjective.

If $f : A \to B$ is bijective, then there is a map $f^{-1} : B \to A$ called the *inverse* of f. This map f^{-1} sends $b \in B$ to the unique element $a \in A$ such that f(a) = b.

2.1 Compatibility between maps and set theoretical operations \subset, \cup, \cap of subsets

Let $f : X \to Y$ be a map and $A_1, A_2 \subset X$ and $B_1, B_2 \subset Y$ subsets. Then f^{-1} preserves unions, intersections, inclusions:

- (a) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.
- (b) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2).$
- (c) $B_1 \subset B_2$ implies $f^{-1}(B_1) \subset f^{-1}(B_2)$

f preserves unions and intersections only:

- (d) $f(A_1 \cup A_2) \supset f(A_1) \cup f(A_2)$.
- (e) $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$; the equality holds if f is injective.
- (f) $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$.

(a), (b), (d) and (e) hold for arbitrary unions and intersections.

3 Relations

A *relation* \sim_R on a set A is given by a subset $R \subset A \times A$. If $(x, y) \in R$, then $x \sim_R y$ (x *is related to* y).

- (I) An *equivalence relation* \sim on A is a relation such that
 - (1) (Reflexivity) $x \sim x$
 - (2) (Symmetry) $x \sim y$ implies $y \sim x$
 - (3) (Transitivity) $x \sim y$ and $y \sim z$ implies $x \sim z$
- For an equivalence relation ~ on A and an element x ∈ A, the *equivalence class* [x] is a subset of A given by

$$[x] := \{ y \in A \mid x \sim y \} \subset A.$$

By the reflexivity $x \sim x$, we have $x \in [x]$.

Lemma 3.1.

- (1) [x] = [y] if and only if $x \sim y$.
- (2) $[x] \cap [y] = \emptyset$ if and only if $x \neq y$.
- (3) Let E_1 and E_2 be equivalence classes, then either $E_1 = E_2$ or $E_1 \cap E_2 = \emptyset$.

Remark 3.2. An equivalence relation on A defines a surjection $\pi : A \to \mathcal{E}$ where \mathcal{E} is the set of all equivalence classes. On the other hand, if we have a surjection $\pi : A \to \mathcal{E}$ to some set \mathcal{E} , then we can define an equivalence relation on A by saying, for each $E_1 \in \mathcal{E}$, all points in $\pi^{-1}(E_1)$ are equivalent to each other. Thus there are one to one correspondence between surjective maps and equivalence classes.

- (II) An order relation (or a simple order, or a linear order) < on A is a relation such that
 - (1) (Comparability) If $x \neq y$, then x < y or y < x.
 - (2) (Non-reflexivity) If x < y, then $x \neq y$.
 - (3) (Transitivity) If x < y and y < z, then x < z.
 - If < is an order relation, $x \le y$ means that either x < y or x = y.

References

[Mun] Munkres, *Topology* Chapter 1.