MATH4530: Vocabularies of Basic Set Theory

Tomoo Matsumura

August 20, 2010

1 Sets

"A set is a collection of elements". We can describe a set by $A=\{a, b, c, d, \cdots\}$ or $A=\{x \mid x$ is blah blah blah $\}$.

- $x \in A$ if an element x belongs to a set A. $(x \notin A$ if an element x does not belong to a set A.)
- $A \subset B$ if a set A is a subset of a set B, i.e. all elements of A belong to B.
- $A \subsetneq B$ if A is a proper subset of B, i.e. $A \subset B$ and $A \neq B$.
- The complement A^{c} of a subset A of B is defined by $A^{c}:=\{b \in B \mid b \notin A\}$.
- The empty set \varnothing is defined to be the set with no elements.
- The power-set $\mathcal{P}(A)$ of a set A is defined to be the set of all subsets of A : To clarify, please note that, if $a \in A$, then $\{a\} \subset A$ and so $\{a\} \in \mathcal{P}(A)$. Writing $\{a\} \in A$ is wrong.
- The cartecian product $A \times B$ of sets A and B is the set of all ordered pairs of elements of A and B :

$$
A \times B:=\{(a, b) \mid a \in A, \quad b \in B\} .
$$

The natural maps $\pi_{1}: A \times B \rightarrow A,(a, b) \mapsto a$ and $\pi_{2}: A \times B \rightarrow B,(a, b) \mapsto b$ are called the projections (to the 1st and 2nd factors).

The union, the intersection and the difference of two sets A and B are the sets defined as follows:

- Union: $A \cup B:=\{x \mid x \in A$ or $x \in B\}$.
- Intersection: $A \cap B:=\{x \mid x \in A$ and $x \in B\}$.
- Difference: $A-B:=\{x \mid x \in A$ and $x \notin B\}$. We will use the symbol := to define a set.

See page 11 of [Mun] and check the formulas there. We can also define arbitrary unions and intersections over any set of sets: let I be a set of sets, then

$$
\bigcup_{A \in I} A:=\{x \mid x \in A \text { for at least one } A \in \mathcal{I}\} \quad \text { and } \quad \bigcap_{A \in I} A:=\{x \mid x \in A \text { for all } A \in \mathcal{I}\} .
$$

Caution: A collection of sets is not a set in general. For example, if we regard the collection of all sets as a set, we will get into theoretical troubles. In more general framework, such a collection is named a proper class. See for example "Class (set theory)" in wikipedia. As long as we consider collections of subsets of a set A, it's fine. They are sets, and indeed, subsets of the power-set $\mathcal{P}(A)$.

2 Maps (= Functions)

A map f from a set A to a set B is an assignment of an element of B to each element of A, denoted by

$$
f: A \rightarrow B, a \mapsto f(a) \quad \text { where } a \in A \text { and } b:=f(a) \in B
$$

- The composition " $g \circ f: A \rightarrow C$ " of maps $f: A \rightarrow B$ and $g: B \rightarrow C$ is defined by

$$
(g \circ f)(a):=g(f(a))
$$

- The image of a map $f: A \rightarrow B$ is the subset of B given by

$$
\operatorname{Im} f:=f(A)=\{b \in B \mid \exists a \in A \text { such that } b=f(a)\}
$$

- Let $f: A \rightarrow B$ be a map. The inverse image (or preimage) $f^{-1}\left(B^{\prime}\right)$ of a subset $B^{\prime} \subset B$ is the subset of A given by

$$
f^{-1}\left(B^{\prime}\right):=\left\{a \in A \mid f(a) \in B^{\prime}\right\}
$$

- The restriction of a map $f: A \rightarrow B$ to a subset $A^{\prime} \subset A$ is the map $\left.f\right|_{A^{\prime}}: A^{\prime} \rightarrow B$ given by

$$
\left.f\right|_{A^{\prime}}\left(a^{\prime}\right):=f\left(a^{\prime}\right) \quad \text { for all } a^{\prime} \in A^{\prime}
$$

The injectivity, surjectivity and bijectivity of a map $f: A \rightarrow B$ is defined as follows:

- f is injective if no two distinct elements of A go to the same element in B under f, i.e. $f(a)=f\left(a^{\prime}\right)$ implies $a=a^{\prime}$
- f is surjective if the image of f coincides with B.
- f is bijective (a one to one correspondence) of f is injective and surjective.

If $f: A \rightarrow B$ is bijective, then there is a map $f^{-1}: B \rightarrow A$ called the inverse of f. This map f^{-1} sends $b \in B$ to the unique element $a \in A$ such that $f(a)=b$.

2.1 Compatibility between maps and set theoretical operations \subset, \cup, \cap of subsets

Let $f: X \rightarrow Y$ be a map and $A_{1}, A_{2} \subset X$ and $B_{1}, B_{2} \subset Y$ subsets. Then f^{-1} preserves unions, intersections, inclusions:
(a) $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$.
(b) $f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$.
(c) $B_{1} \subset B_{2}$ implies $f^{-1}\left(B_{1}\right) \subset f^{-1}\left(B_{2}\right)$
f preserves unions and intersections only:
(d) $f\left(A_{1} \cup A_{2}\right) \supset f\left(A_{1}\right) \cup f\left(A_{2}\right)$.
(e) $f\left(A_{1} \cap A_{2}\right) \subset f\left(A_{1}\right) \cap f\left(A_{2}\right)$; the equality holds if f is injective.
(f) $A_{1} \subset A_{2} \Rightarrow f\left(A_{1}\right) \subset f\left(A_{2}\right)$.
(a), (b), (d) and (e) hold for arbitrary unions and intersections.

3 Relations

A relation \sim_{R} on a set A is given by a subset $R \subset A \times A$. If $(x, y) \in R$, then $x \sim_{R} y$ (x is related to y).
(I) An equivalence relation \sim on A is a relation such that
(1) (Reflexivity) $x \sim x$
(2) (Symmetry) $x \sim y$ implies $y \sim x$
(3) (Transitivity) $x \sim y$ and $y \sim z$ implies $x \sim z$

- For an equivalence relation \sim on A and an element $x \in A$, the equivalence class $[x]$ is a subset of A given by

$$
[x]:=\{y \in A \mid x \sim y\} \subset A
$$

By the reflexivity $x \sim x$, we have $x \in[x]$.

Lemma 3.1.

(1) $[x]=[y]$ if and only if $x \sim y$.
(2) $[x] \cap[y]=\varnothing$ if and only if $x \not x y$.
(3) Let E_{1} and E_{2} be equivalence classes, then either $E_{1}=E_{2}$ or $E_{1} \cap E_{2}=\varnothing$.

Remark 3.2. An equivalence relation on A defines a surjection $\pi: A \rightarrow \mathcal{E}$ where \mathcal{E} is the set of all equivalence classes. On the other hand, if we have a surjection $\pi: A \rightarrow \mathcal{E}$ to some set \mathcal{E}, then we can define an equivalence relation on A by saying, for each $E_{1} \in \mathcal{E}$, all points in $\pi^{-1}\left(E_{1}\right)$ are equivalent to each other. Thus there are one to one correspondence between surjective maps and equivalence classes.
(II) An order relation (or a simple order, or a linear order) $<$ on A is a relation such that
(1) (Comparability) If $x \neq y$, then $x<y$ or $y<x$.
(2) (Non-reflexivity) If $x<y$, then $x \neq y$.
(3) (Transitivity) If $x<y$ and $y<z$, then $x<z$.

- If $<$ is an order relation, $x \leq y$ means that either $x<y$ or $x=y$.

References

[Mun] Munkres, Topology Chapter 1.

