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0. Metaintroduction

This work is a very informal guide to the incompleteness theorem, typically for
high school students in the grade system on Planet Earth, or correspondingly any
creature at the Third Level Mathematics, according to Himesuku Fujuta’s Hand-
book of Mathematics in the Galaxy([1, Chapter 2]).

Please read the citations at the beginning of the sections. Please dis-
regard the citations at the end of the sections: they are there just
because Suzumiya Haruhi wants them to be there.
(Kyon’s comment on The Hitchhiker’s Guide to the Incompleteness
Theorem. )

Date: January 13, 2009.
This work is supported by NSF Grant DMS 0602193 from the MCTP component of EMSW21.
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1. Introduction

Incompleteness Theorem: It is also called “Gödel’s Incompleteness
Theorem” on Planet Earth, or “Nico’s Imperfectness Theorem” on
Planet Elvia, etc.. After creatures discovered that their versions are
virtually the same, they decided to simply call it the Incompleteness
Theorem. 99.99% of the sixth level civilizations of our Galaxy had
known the incompleteness theorem before they invented Automatic
Computing Machines (ACMs). The only exception is the Kumalians.
They developed ACMs 994 Kuma-years before they established logic
foundations for them. The key is a special plant named Hydrakuma
Lipsolis on Planet Kumala. Hydrakuma is known to display certain
patterns according to the patterns of other Hydrakumae within certain
range.
(Incompleteness Theorem, The Hitchhiker’s Guide to the Incomplete-
ness Theorem.)

You might have heard of this term, but the “Incompleteness Theorem” really
sounds weird: what is incomplete? Our very high-developed mathematics, or our
foundation logic? Now let’s first have a look at the first (informal) version of the
incompleteness theorem:

Incompleteness Theorem, First Version:
There is a true sentence that mathematics cannot prove.

All right, this is even worse: is it a theorem? It feels more like an assertion in
philosophy rather than a real theorem in mathematics. Maybe we should first look
at some normal theorems. Here are some examples of theorems, in our usual sense:

Theorem 1. 1+1=2.

Theorem 2. There is an even number which is not the sum of two prime numbers.

Theorem 3. Two triangles that have equal corresponding sides are congruent.

But this is not usually recognized as a (mathematical) theorem:

Theorem 4. There is a cow which is totally white.

Why? As in the first three examples, we exactly know what the theorems say, in
another words, we have clear definitions of the terminologies used in those theorems.
However, in the fourth one we might have questions defining a “cow”, or “white”.
What is a cow? Adult female bovine. Ok, but what is adult? 1 year old? 1.5 years
old? Bovine, what is that? A special kind of animal on Planet Earth? How about if
we raise some on Planet Mars? And what is white? Moreover, if I draw a white cow
on my paper, is it really a white cow?
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Let us stop jabbering and get back to our main topic. For the incompleteness
theorem we might also ask a lot of questions:

Question 1. What is a sentence?

Question 2. What is a true sentence?

Question 3. What is mathematics?

Question 4. What is a proof?

In some point of view we really have to define those terms before we do serious
discussions about the incompleteness theorem.

2. Sentences

Let us answer this question: What is a (mathematical) sentence? As we see in
the previous section, those terms in the sentence should be defined. But wait a
moment: what is “0”? The first natural number. Then what is “first”? What is a
“number” and what is “natural”?

That is bad. One question becomes three. And it is easy to see that we will
never stop this process, as we can always ask “what is” questions. So the very
first fundamental idea in logic, is that we need to leave something undefined, whose
meanings should be clear to most people and we can use them freely in any sentence.
So maybe we could say “Zero is Zero”. In another point of view, Zero is just a
symbol, and anyone can be Zero if we define it to be.

If we work with elementary arithmetic, “0” will be a natural constant symbol,
i.e. it stands for a certain element. Now let us have a look at our first theorem again:

Theorem 1. 1+1=2.

One can regard “1” and “2” as constant symbols at this time, but what are “+”
and “=”? + is a function symbol, which takes some input and gives an output; =
is a relation symbol, which also takes some input but will determine whether the
input has some relation or not, in this case, it evaluates whether the two parts in the
input are the same. Examples of functions are “−”, “×”, “÷”. Note that we can
define subtraction from addition, and define division from multiplication, so usually
we will omit subtraction and division, for simplicity. Another important relation
symbol is “<”, and it is easy to see that we can define all other inequality relations
from “<” and “=”.

We could regard “1” as a constant symbol, but then we need a lot of symbols for
all natural numbers. A classical method is to introduce another function “S”, the
successor operator. For example, S0 is 1, S1 = SS0 is 2, etc. But for convenience
we will still write numbers as usual, instead of the corresponding number of S’s plus
0.
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Now we can write a lot of sentences like 1+1 = 2, but still it is not powerful enough
to deal with everyday usage of mathematics. For example, what is the solution set
of the inequality x× x > 4? Well, either x > 2 or x < −2. So we need to introduce
connectives. There are several connectives used in logic:

∧: means “and”.
∨: means “or”.
¬: means “not”.
⇒: means “imply”.
⇔: means “if and only if”.

So the solution for x × x > 4 could be written as (x > 2) ∨ (x < −2), or ¬((x ≤
2) ∧ (x ≥ −2))

Now we are powerful enough to deal with elementary arithmetic, but still some-
thing is missing. Let us try to write out the following theorem as a formal sentence:

Theorem 2. There is an even number which is not the sum of two prime numbers.

What is a prime? A number which is no divisible by any number less than it,
except 1. I.e., a number p is prime, if for every x, y < p, x × y 6= p. Also, we need
to talk about “there is”, or “there exists” in the previous theorem. We call those
quantifiers, i.e., they quantify the objects with some property. In mathematics we
usually need the following two quantifiers:

∃: means “exist”.
∀: means “for all”.

For example, we can define a predicate for prime number:

Prime(p) := ∀a∀b((a < p ∧ b < p) ⇒ (a× b 6= p))

So whenever we have Prime(p) we replace that by the thing after :=. Then we can
write out the theorem in a formal sentence:

∃x(∃y(2× y = x) ∧ ∀p∀q((Prime(p) ∧Prime(q)) ⇒ (p + q 6= x)))

A formula is a reasonable sequence of constant symbols, function symbols, rela-
tion symbols, connectives, quantifiers and parentheses (parentheses are for readabil-
ity, instead of introducing complicated priority rules or the Polish notation1). Here
“reasonable” means that the combination of all those symbols must obey some ob-
vious rules (for example, you can only connect two formulae by connectives, but it
doesn’t work for variables).

Notice that when we try to quantify a variable x, we need to make sure that x
has not yet been quantified, i.e. ∀x∃x(x = 0) doesn’t make sense. We say a variable

1Some terms (in this font) might take time and space to explain but they are not crucial to our
main subject. See appendix for more information.
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free if it is not quantified. So whenever we want to quantify some variable x, we
want x to be free in the original formula.

A sentence is a formula without free variables. They do make a mathematical
assertion and all theorems in mathematics are sentences. From now on we will focus
on the formulae and sentences constructed by (+,×, =, <, S, 0) and (∧,∨,¬,⇒,⇔
,∃,∀), i.e. the language of arithmetic.

“A local noncorrosive and agglutinative countertime space was inde-
pendently created in a modus of some limited conditions.”
I waited for a moment, but she didn’t say anything. For this kind of
sentence constructed by randomly picking words in the dictionary, how
possible can I understand it without a dictionary in hand?
(Kyon’s reaction to a “sentence” of Nagato Yuki. The Boredom of
Suzumiya Haruhi.)

3. Truth and Worlds

Geometry on Planet Viso: Urpes, the sun of Viso is so huge that it
distorts the space around it. Visorians have experienced both positive
and negative curvatures from time to time and developed highly ad-
vanced geometry long before elementary calculus......In 478 A.D. when
Visorians historically first contacted with humans, dominating crea-
tures on Planet Earth, they strongly opposed the Parallel Postulate in
Euclid’s Elements and believed that those little creatures would never
evolve, especially in mathematics. As a result, they soon stopped their
intercelestial teleport station between High Temple on Planet Viso and
Delphi on Planet Earth. The next time when humans get in touch with
other creatures in the Galaxy is, unfortunately, 4094 earth years later.
(Geometry on Planet Viso, The Hitchhiker’s Guide to the Incomplete-
ness Theorem.)

The fundamental idea in Model Theory is that, the truth of a sentence really
depends on the world it is talking about. For example, consider the following
sentence:

∃x(Sx = 0)

which says that there is an element whose successor is 0. Of course it is false in our
usual set of natural numbers {0, 1, 2, 3, ...}, but if we add −1 to this universe, then
the previous sentence is true.

As another example, if we have the following set of numbers as a world:

{0, 1, 2, 3}
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and define arithmetic in the usual way, then 1 + 1 = 2 is true there. However, if we
have this set but define + in another way, for example we let 0+1 = 2 and 1+1 = 3,
then 1 + 1 = 2 is false there.

A world is a group of elements with the constant symbols, function symbols and
relation symbols defined. When we talk about the natural numbers, we are actually
talking about these elements, plus the constant (0), the functions (+,×,S) and the
relations (=,<) defined on these elements.

We say a sentence is true in a world if it holds in that world. In some sense, truth
is actually defined, or determined by these constants, functions and relations. I.e.
1 + 1 = 2 is true simply because we define it to be.

Of course we want our world to be logical, i.e. that obeys simple logical rules. For
example, if P , Q are true sentences in that world, then P ∧ Q is also true. Any
logically valid sentence can be regarded as a logic axiom. See appendix for details.

An interesting thing to note is that, there are nice interpretations about sentences
with worlds. As an example, if “P ⇒ Q” is always true in every world, then whenever
P is true, Q is also true. One might also regard those interpretations as definitions
of those connectives.

From now on, we will only focus on the truth of natural numbers. I.e., For a
sentence of arithmetic, we say it is true if it is a true sentence in the world of natural
numbers with those constants, functions and relations defined in the common way.

“Isn’t that created by the Big Bang long long time ago?”
“That is the common saying. However, there is another possibility for
us. This universe actually started three years ago.”
(Kyon and Koizumi Itsuki discussed the origin of the universe. The
Melancholy of Suzumiya Haruhi.)

4. Axioms of Mathematics

First Galaxy Assembly in Mathematics: the first Galaxy Assembly
in Mathematics was held on Planet Myau in 5 A.G.P.. For the first
time mathematicians from all over the Galaxy gathered together to
talk about their research, and more importantly, set up a concrete list
of Axioms and Semiaxioms for all creatures......Axioms are those sen-
tences which are universally true among all creatures; semiaxioms are
“locally true for some creatures, or independent from our knowledge
of our universe”([3]). For example, Axiom 1.2.1 says ∀x(x = x) and
Semiaxiom B.2.14 says “every set of reals is Lebesgue measurable2”.

2The pure logical version is too long to write down here, so we put a simplified version using
terms in Fourth Level Mathematics. Its negative form is commonly used on Planet Earth.
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(First Galaxy Assembly in Mathematics, The Hitchhiker’s Guide to
the Incompleteness Theorem.)

As we discussed in the previous section, the sentence “1 + 1 = 3” could be true in
some worlds. However, that is not true in our world of common sense, or in another
viewpoint, we really do not care about those worlds where 1 + 1 = 3.

We shall start writing down some basic sentences which are commonly accepted as
true sentences and only discuss the worlds where those sentences are true. To repeat,
we don’t mean that these sentences have to be true, but we do not care about the
worlds where those sentences are false. Those sentences are so-called axioms of
mathematics. One can choose axioms quite arbitrarily, and maybe that is why we
need fixed versions of axioms for convenience of communication. Nowadays Peano
Arithmetic (PA) is commonly accepted as a first order axiom system for natural
numbers. See appendix for a complete list.

When we say mathematics in the incompleteness theorem, it really means “ax-
ioms of mathematics”, and in terms of arithmetic, it stands for the Axioms of Peano
Arithmetic. As we are communicating with each other, we will accept that people
will follow those axioms, i.e., their worlds all contain PA as true sentences.

However, there are sentences in mathematics whose truthfulness is argued among
mathematicians. Sometimes it is shown that one sentence ϕ is independent from
other commonly accepted axioms, i.e., we can find two worlds, respectively, accepting
common axioms and having ϕ and its negation as true sentences. The most famous
example is the Axiom of Choice, which is equivalent to the negation of Semiaxiom
B.2.14 under the axiom system Zermelo-Fraenkel.

x− y = (D − 1)− z

x = ¤, y = ¤, z = ¤
I stared at that formula, and soon got a headache. Mathematics is of
course one of my headache-causing subjects.
(Kyon’s reaction to a puzzle appeared on a door. The Rashness of
Suzumiya Haruhi.)

5. Proof

What is a proof? Maybe we shall see a formal proof of “1 + 1 = 2”. First we list
the two axioms we need:

Axiom 1. ∀x(x + 0 = x)

Axiom 2. ∀x∀y(x + Sy = S(x + y))
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The first sentence says that for every x, x + 0 = x; the second one says that, for
any x and y, the sum of x and the successor of y, equals the successor of the sum of
x and y. Now we give a proof of 1 + 1 = 2, note that 1 = S0 and 2 = S1 = SS0.

1 + 1 = 1 + S0 by definition of 1(1)

1 + S0 = S(1 + 0) by Axiom 2(2)

1 + 0 = 1 by Axiom 1(3)

1 + S0 = S1 by (2) and (3)(4)

1 + 1 = S1 = 2 by (1) and (4)(5)

For simplicity we omit some steps of logic and axioms of equality, but one can get
some idea from this: it looks like that every step in the proof should be either from
an axiom, or from a definition, or from other steps one has obtained.

More formally, a proof is a sequence of sentences 〈P1, P2, P3, ..., Pn〉 where each
Pi is an axiom, or is a logical deduction from the previous sentences. Here logical
deduction can be explicitly written down as the Modus Ponens:

Modus Ponens:
Once one has P ⇒ Q and P , then one can have Q.

I.e., if there is Pi of form P ⇒ Q and Pj of form P , then one can add Q as a Pk,
(k > i, j) into the list.

We say PA proves some sentence P if there is a proof 〈P1, P2, ..., Pn〉 where axioms
are axioms of logic or axioms of PA and Pn = P . Also such sequence is called a
proof for P (in PA).

OK, now we have finished explaining terms in the incompleteness theorem, and
let’s have a look at the formal version of it:

Incompleteness Theorem, Second Version:
There is true sentence in arithmetic which cannot be proved by axioms of Peano
Arithmetic.

A first glance might give you a wrong vision: PA might be simply too weak to
prove everything true. Ironically, as you will see later, the incompleteness theorem
actually says that PA is too strong to be complete.

Schadenfreude is bad, but Haruhi looks so happy that she wants to
sing a song. That is to say, this person is such a low-life, end of proof.
(Kyon “proves” what Haruhi is. Boredom of Suzumiya Haruhi.)
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6. Coding Provability

Galaxy Universal Code: The first version of Galaxy Universal Code
(GUC), Galaxy Universal Code Standard 1.0 was published by Galaxy
Congress of Information in 2 A.G.P.. The aim of that was to “set
up universal binary codes for different languages” ([4, Introduction]).
Thereafter creatures in our galaxy have used GUC as a standard to
communicate with each other. The current version, GUC Standard
7.14, was published in 834 A.G.P., after the discovery of a new sixth
level civilization, Gezilians on Planet Gez.
(Galaxy Universal Code, The Hitchhiker’s Guide to the Incompleteness
Theorem.)

One of the fundamental idea in the proof of the incompleteness theorem is that,
PA is strong enough to “write out”, or to “code” the sentence “〈P1, P2, ..., Pn〉 is a
proof of Pn”.

Codes are usually for privacy or simplicity, but here, as well as in modern computer
science, we use codes for expressibility, i.e., we want to have a fixed way to use a
natural number to code a formal sentence in our language. Then we can talk about
sentences, truth and provability in terms of natural numbers (with plus, times and
inequalities).

First we try to code two numbers into one: let

f(x, y) =
1

2
(x2 + 2xy + y2 + 3x + y).

It is not difficult to prove that f(x, y) is a bijection, i.e., given any natural number
z, one can uniquely find an ordered pair (x, y) s.t. f(x, y) = z. We will write 〈x, y〉
for this function. In some sense, we can “talk” about pairs of natural numbers by
one single number. For example, we can write:

Code0(x, z) := ∃y(z =
1

2
(x2 + 2xy + y2 + 3x + y))

Code1(y, z) := ∃x(z =
1

2
(x2 + 2xy + y2 + 3x + y))

to mean that x, y are the first and second components of z = 〈x, y〉, respectively.
Now we can define triples, quadruples, quintuple and so on:

〈a, b, c〉 = 〈a, 〈b, c〉〉
〈a, b, c, d〉 = 〈a, 〈b, 〈c, d〉〉〉

〈a, b, c, d, e〉 = 〈a, 〈b, 〈c, 〈d, e〉〉〉〉
· · · · · ·
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Well, how about if we want to talk about all n-tuples? For example, we could use

g(x1, x2, ..., xn) = 〈n, 〈x1, x2, ..., xn〉〉
to code all of them, i.e. we first read the first bit of the code, then decode the
rest part accordingly. Now fix such a coding, indeed we can write out a sentence
Code(i, n, x) which says that “x is the i-th component of n”. The proof of this fact
is difficult, or we can have a much more complicated coding with an easier proof of
this fact. See appendix for details.

We can code a formula in a similar way: first we fix the list of variables v1, v2, v3, ...
and use the following table:

+ × S = < ∨ ∧ ¬ ⇒ ⇔ ∃ ∀ vi

3 5 7 9 11 13 15 17 19 21 23 25 2i
For example, if we write v1 = v2, we will code this formula as 〈9, 2, 4〉; if we write

∃v1P (v1) where P is a formula with code n, then we code this as 〈23, 2, n〉. As a
concrete example, let us look at:

Axiom 1.2.1: ∀x(x = x)

Variable does not matter the meaning, so it is the same to say ∀v1(v1 = v1). v1 = v1

is coded as 〈9, 2, 2〉 = 29649. And the whole axiom is coded as 〈25, 2, 〈9, 2, 2〉〉 =
〈25, 2, 29649〉, which is about 4.66835 × 1033. You might guess that long formulae
will have huge codes. That is true, but you don’t have to worry about it. Computers
can easily handle such coding and decoding process. In another point of view, this
coding is not designed for practical use so we really do not care about its efficiency.

In this way we can code every formula into a number, and we can write out a
sentence Fm(n) which says “n is (a code of) a formula” (we again omit the proof
here).

Even better we can write out sentences saying the following:

Ax(n): “n is an axiom (logic or PA)”.
MP(l, m, n): “l is of form P ⇒ Q, m is of form P and n is of form Q”.

Details of the proof is left to the reader, or see reference [7].
As you might guess, we now can actually code a proof in the similar way: a proof

is simply a sequence of formulae, each of which is coded into a number and each of
which is either an axiom or a consequence by Modus Ponens. Following this we
can write out:

Proof(p, n) := ∃i(∀j ≤ i(∃x(Code(j, p, x) ∧ (Ax(x)∨
∃u, v < j(Code(u, p, y) ∧Code(v, p, z) ∧MP(y, z, x)))))

∧Code(i, p, n))



THE HITCHHIKER’S GUIDE TO THE INCOMPLETENESS THEOREM 11

which says that the i-th component of p is n and for every component x before
that, either it is an axiom (Ax(x)), or is from Modus Ponens (MP(y, z, x)). So
actually this formula codes the definition “p is a proof of a sentence n”.

Finally we can write:

Pv(n) := ∃p(Proof(p, n))

i.e. sentence n is provable (in PA).

There are some puzzling geometric figures on one side of it. What the
hell is this? Sumerian language? I guess even if you try to decode that
in Enigma (a cypher machine mostly used during WWII), it won’t read
anything.
(Kyon’s comment on a piece of memo from Nagato Yuki. The Boredom
of Suzumiya Haruhi.)

7. Final Trick and Discussions

Incompleteness Theorem, continued: According to Mye Postula, Ar-
biter of the First Galaxy Assembly in Mathematics, “the main conse-
quence of the incompleteness theorem ... is to guarantee that mathe-
maticians will never lose their jobs”. In another point of view, math-
ematicians are obliged to study mathematics forever, to complete this
subject, although “the completion of mathematics” is simply an illu-
sion.
(Incompleteness Theorem, The Hitchhiker’s Guide to the Incomplete-
ness Theorem.)

The rest part of the proof is a bit tricky. First for any formula ϕ(x) with only one
free variable x, we can code ϕ as a number, which is usually denoted as pϕq. If we
plug this number into ϕ(x), then we get a sentence ϕ(pϕq). We usually confuse ϕ
with its code n, so we will write n(n) to simplify notation. Now we put:

G(n) := ¬Pv(n(n))

G(n) somehow says that, if we regard n as a code for a formula with one free
variable, and plug in n as a number “into itself” to get a sentence n(n), then this
sentence n(n) is not provable. All right, it is not difficult to see that G(n) is a formal
formula in our language. Wait, G(n) is a formal formula with one free variable!
That is to say, we can code G(n) into a number, say g, and plug in g into G(n).
In this process we get G(g), or g(g), a formal sentence, which says, by definition of
G(n), g(g) is not provable.

OK, we get a sentence P = g(g) which says that P itself is not provable. What
does it mean? First of all, P is true. If it were false, P would be provable, but then
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it would mean that P is true. Contradiction! Secondly, since P is true, P is then not
provable, by what P says! This finishes the proof of the incompleteness theorem.

Now let us look at the role of PA in the proof:
1. PA provides a coding method for formulae and proofs.
2. PA (with the axioms of logic) is an effective list of axioms, which can be described
using codes of formulae.

Therefore any axiom system which is stronger than PA and which is an effective
list of axioms can replace the role of PA in the proof above. I.e., we have a stronger
form:

Incompleteness Theorem, Third Version:
For any axiom system which is powerful enough to express arithmetic of natural num-
bers and consists of an effective list of axioms, it is either inconsistent (contradicts
with itself), or there is a true sentence which is not provable in that axiom system.

From the proof we get a sentence P = g(g) which says that P itself is not provable
(in PA). How about if we add P as an axiom into PA? Now in PA + P , P is surely
true and provable (since it is an axiom). But the process in our proof will generate
a new P ′ which says that P ′ is not provable in PA + P . And we can never end this
process if we try to add such new sentences into PA.

Also note that we really need the condition “effective” in the theorem. For ex-
ample, we can find all possible sentences true in the natural numbers, and define
them as “axioms”. Then it is easy to see that the conclusion of the incompleteness
theorem does not hold, simply because “all possible true sentences about natural
numbers” do not form an effective list, i.e. we do not have an effective way of telling
which sentences are true.

Finally, there is a so-called “Second Incompleteness Theorem”. We won’t go
through the details, but the proof of the incompleteness theorem can be written
as a formal proof as in our definition. As a consequence, if we could prove the con-
sistency of PA (i.e. it does not contradict itself) within PA, then for that P we
found, we would have proved, formally in PA, that P is true, which is an contra-
diction to the incompleteness theorem. So PA cannot prove the consistency of itself.
Furthermore we have a similar extension to theories stronger than PA:

Incompleteness Theorem, Fourth Version:
Any axiom system which is powerful enough to express the arithmetic of natural
numbers and consists of an effective list of axioms cannot prove its own consistency,
unless it is inconsistent.

“A consistent axiomatic set theory cannot prove its own consistency.”
(Nagato Yuki’s comment on Kyon’s confusion with a seeming contra-
diction in his own world line. The Boredom of Suzumiya Haruhi.)
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8. An Example: Goodstein’s Theorem

You might be somewhat unsatisfied: the true sentence we get in the previous proof
of the incompleteness theorem is really not that “mathematical” in the common
sense. In this section we will see a real mathematical example which is not provable
in PA. Both its proof and the proof that it is not provable in PA are far beyond our
discussion here.

First let us define a notion of base n representation of m: first write m as the sum
of powers of n. For example, if m = 70 and n = 2, then we write 70 = 26 + 22 + 2.

Next write each exponent as the sum of powers of n, repeat until the numbers are
either n or 1. So as in our example 70 = 222+2 + 22 + 2. This is called the base n
representation of m.

Now define a number Gn(m): if m = 0 let Gn(m) = 0. Otherwise write m as a
base n representation, and change every n by n + 1, then minus 1. So G2(70) =

333+3 + 33 + 3− 1 = 205891132094660.
Define the Goodstein sequence of m as follows:

m0 = m,m1 = G2(m0),m2 = G3(m1),m3 = G4(m2), ...

This sequence will increase dramatically. For example, the sequence {4k} will
reach a maximum 3× 2402653210 − 1, which is about 3.44754× 10121210694.

The Goodstein’s theorem says that, for every m, the sequence {mk} will eventually
reach 0. However, this theorem is not provable in PA. It turns out that the sequence
increases so fast that PA cannot “see” it.

That is to say, we can find a group of elements with (0, +,×, <, S) defined and
they “pretend” to be natural numbers in sense that they satisfy every sentence that
can be proved by PA, and Goodstein’s theorem is false in that world. As there
will be 0, 1, 2, 3, ... in that world (since they are defined in our language), there will
also be some elements which are greater than any “real” natural number. Those are
called “nonstandard” numbers. It is not too surprising that the Goodstein sequence
of a nonstandard number may not reach 0, although this result is not as trivial as
one might think.

Appendix

Polish Notation. Also called the prefix notation. Usually we write 5 + 4 where +
is recognized as a function taking two variables. So if we write +(5, 4), this looks
fine. Then we can omit the parentheses: +54. Now for example, if we want to write
5× (4 + 7), we will write, in Polish notation, ×5 + 4 7; if we want to write 5× 4 + 7,
we shall have + × 5 4 7. Similarly it works for logic connectives and quantifiers.
One can prove that any such formula in Polish notation has a unique way of parsing.
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However, Polish notation is not reader-friendly, so we usually write formulae in the
common notation with parentheses.

Curvature. Curvature describes how “curved” a space is. For example, the Eu-
clidean space (geometry) has curvature 0, while in other geometries the curvature
varies. Parallel Postulate is false in those geometries with nonzero curvature.

Model Theory. Model Theory is a branch of mathematics studying models, or in
our jargon, worlds. It has some strong connection with algebra.

Logic Axioms. Here is a list of logic axioms:
Group 1, axioms of connectives (one can define other connectives from ⇒ and ¬,

so we only need to take care of those two).

Axiom 1.1.1: P ⇒ (P ⇒ Q)
Axiom 1.1.2: (P ⇒ (Q ⇒ R)) ⇒ ((P ⇒ Q) ⇒ (P ⇒ R))
Axiom 1.1.3: (¬Q ⇒ ¬P ) ⇒ (P ⇒ Q)

Group 2, axioms of equality. Equality (=) is usually considered as a logic symbol
rather than a relation symbol, and we need equality in every world we care about.

Axiom 1.2.1: ∀x(x = x)
Axiom 1.2.2: ∀x∀y(x = y ⇒ y = x)
Axiom 1.2.3: ∀x∀y∀z((x = y ∧ y = z) ⇒ x = z)
Axiom 1.2.4: ∀x∀y((x = y ∧ P (x)) → P (y))

Group 3, axioms of quantifiers.

Axiom 1.3.1: ∀xP (x) ⇒ P (c)
Axiom 1.3.2: P (c) ⇒ ∃xP (x)

First Order vs. Second Order. First order theory only talks about elements in
a world. Second order theory also talks about sets of elements in a world. Usually
the second order theory is more powerful than the first order one. One can similarly
consider higher order theories but these two are the most common theories used in
practice.

Peano Arithmetic. The original version of Peano Axioms is in second order theory.
Commonly we adapt it to a first order version and call it Peano Arithmetic.

Axiom 2.1.1: ∀x(¬Sx = 0)
Axiom 2.1.2: ∀x∀y(Sx = Sy ⇒ x = y)
Axiom 2.1.3: ∀x(¬x < 0)
Axiom 2.1.4: ∀x∀y(x < Sy ⇔ (x < y ∨ x = y))
Axiom 2.1.5: ∀x(x + 0 = x)
Axiom 2.1.6: ∀x∀y(x + Sy = S(x + y))
Axiom 2.1.7: ∀x(x× 0 = 0)
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Axiom 2.1.8: ∀x∀y(x× Sy = x× y + x)
Axiom 2.1.9: ∀x∀y((x < y) ∨ (x = y) ∨ (y < x))
Axiom 2.1.10: (P (0) ∧ ∀x(P (x) ⇒ P (x + 1))) ⇒ (∀xP (x))

The last one is the induction axiom: if P (0) is true, and for all x, P (x) implies
P (x + 1), then actually P (x) holds for all x.

Zermelo-Fraenkel Axioms. Zermelo-Fraenkel Axiom system is a theory about
sets. It is much stronger than PA and it is now accepted as a common foundation
of mathematics.

Axiom of Choice. Axiom of Choice says that given a collection of nonempty sets
of elements, one can pick one element from each set. It really sounds intuitively true,
but it has a lot of results in mathematics which are not intuitive. It has been proved
that Axiom of Choice is independence from Zermelo-Fraenkel Axioms.

Some Coding Issue. Here we give another way of coding and define Code(i, n, x)
directly. See [7, Section 4.2] for proofs.

Given a sequence x1, x2, x3, ..., xk, we code them into a number:

Sq(x1, x2, x3, ..., xk) = 〈u, n!〉
where

qi = 〈xi, i〉, n = max{qi : i ≤ k}, u =
∏

i≤k

(1 + (qi × n!)).

Define

P (i, n, x) := ∃u < n∃v < n(n = 〈u, v〉 ∧ ∃y(1 + (〈x, i〉+ 1)× v)× y = u)

and finally put:

Code(i, n, x) := P (i, n, x) ∧ ∀y < x(¬P (i, n, x))
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