
GRAPH THEORY SOLUTIONS

1. Friends and Strangers

1. K3 has 3 edges. K4 has 6 edges. K5 has 10 edges. The most straight forward way to

do this is to just start adding edges in a systematic way. If you are makingKn you can draw

n edges from the first vertex, n − 1 for the second, and so on until you draw 1 edge for the

nth vertex. Thus there are
qn

i=1 i = n(n − 1)/2 edges. This formula might be familiar or

it might not. In case of the latter, the identity can be seen by thinking about taking an n−1

by n rectangle and putting stacks if height i inside this rectangle.

However this is a clever way to do this. Each edge in Kn represents a choice of 2 out

of n vertices, and since we want all possible edges to be present there must be C(n, 2) =

n(n + 1)/2 edges.

2. Here are examples of such colorings:
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2. Influence Model

1. Since p(v, u) is non-zero only if v has the same color as u so we have that pnet(v, R) =
q

u v p(u, v) = d(R)t and similarly pnet(v, B) = d(B)(1 − t). The vertex v should choose

to be red when pnet(v, R) ≥ pnet(v, B), and this happens when d(R)t ≥ (1 − t)d(B).

Solving for t we get that t ≥ d(B)/(d(R) + d(B) = d(B)/deg(v). Thus if t is at least as

large as the proportion of blue neighbors of v then v should become red.

2. For t < 0.5 nothing happens. Otherwise the red nodes spread. If we label the ver-

tices as the integers with the early adopter at zero we see the red vertices spread outwards,

alternating between even and odd vertices. If we start with 0 and 1 as early adopters then

the trend spreads without alternating between evens and odds.

3. A weighted graph which will always be taken over by red is a ray. Put down an early

adopter and send an edge from it to a new vertex v1. Each vertex vi then sends an edge to

vi+1.

For red to spread at the first step we need t ≥ (1 − t)w, so w ≤ t/(1 − t). After that the

same behavior as seen in the first part of 1. occurs.
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3. Finding Shortest Paths

1. Here is a version of the graph with the minimal spanning tree in blue and the distances

from the source labeled.

2. The only way it would be worse to take C would be if you knew it took longer than

B on average. Thus 12p + 20(1 − p) > 17. Solving for p shows that C should not be taken

in p < 3/8.
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4. Flows

1. The first graph needs 2 cuts. The edges leaving s or t suffice. The 2nd graph needs 3,

and the edges around s or t again suffice. The paths in this one will need to take advantage

of one of the double edges. The 3rd graph needs 3 cuts. This time the cuts need to be made

in the middle of the right hand side of the graph. The particular edges can be found by

drawing several paths from s to t and seeing where they all tend to intersect.

2. One possible labeling is shown below The flow out of s is equal to the flow into t,

which is 11.
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3. Below is a labeled version of the graph: S = {s , a , b , c , d , e , f , g}. The capacity

of the cut and the value of the flow is 15.

5. Random Walks

1. An easy example on which q(2n + 1) = 0 is the graph of Z used in thearticle. Such

graphs are generally called bipartite graphs. This means that you can split the vertices into

2 sets L and R and the edges in the graph only go between these two sets. If the walker
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starts in L then he will always be in R for odd times and in L for even times. If we want

q(2n + 1) > 0 for large enough n we can just take a bipartite graph and add some edges

between vertices in R. If we let the walker go long enough eventually he will be able to

cross this inter-R edge, and will then be able to be in R at even times with positive proba-

bility. Similarly if the walker can be in R for even times then he will also be able to be in

L at odd times. A simple example of such a graph is a triangle.

2. At each step the walker moves left with probability 1/2 and right with probability 1/2.

We can view the walker’s current position as an integer i. Steps to the left are like adding

-1 and steps to the right are like adding 1. Thus p(i, i − 1) = 1/2, p(i, i + 1) = 1/2, and

p(i, j) = 0 if |i − j| ”= 1.

3. To get back to 0 in 2n steps n of those steps must be to the right and n to the left.

There are C(2n, n) ways to arrange these left and right steps (You’ve got 2n steps, and

you chose which n of them should be to the left. The rest are rights). There are 22n total

walks with 2n steps, so q(2n) = C(2n, n)/22n. We then use Stirling’s Approximation

(after plugging in factorials for C(2n, n)) to get

q(2n) ≈ 2−2n

√
4πn(2n)2ne−2n

(
√

2πn(n)ne−n)2
(1)

=
1√
πn

.(2)
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4. Lets examine the possible values of (Y (n) + Z(n))/2. These are (1, 0), (−1, 0),

(0, 1) and (0, −1). Each of these occurs with probability 1/4. To see this we calculate one

example and note that an analogous calculation holds for the other values. With proba-

bility 1/2, Y (n) = (1, 1) and with probability 1/2, Z(n) = (1, −1). As these walks are

independent these events happen simultaneously with probability (1/2)(1/2) = 1/4, so

(Y (n) + Z(n))/2 = (1, 0) with probability 1/4.

5. We have n steps to assign our 3 directions into. First we place the Us. There are

C(n, i) ways to do this. For each placement of the Us we still need to place j Ns in the

remaining n − i places. There are C(n − i, j) to do this. The Es are put into the remaining

n − i − j spaces. Thus there are C(n, i)C(n − i, j) ways to place the Us, Ns, and Es.


