Remark. A number of students appeared confused about the universal property of free modules. It states:

Let F be the free module on basis S, and let M be any module and $\phi: S \to M$ be any set map. Then ϕ extends uniquely to a module homomorphism $F \to M$.

Note the difference between "set map" and "module homomorphism".

The extension is of course $\phi(\sum r_i s_i) = \sum r_i \phi(s_i)$.

In practice, one does not state explicitly that one is using this property. One simply defines the map ϕ by specifying $\phi(s_i)$: "Let $\phi: F \to M$ be given by $\phi(s_i) = x_i$ ". The reader is expected to understand how to extend this by linearity (indeed, I find it jarring to have my attention called to this justification.) One most definitely does not say "Let a homomorphism $\phi: F \to M$ be given by $\phi(s_i) = x_i$; ϕ extends to a map $\phi: F \to M$ by the universal property of free modules." (There is nothing incorrect about this statement, it merely makes it look like you don't know what you're talking about. Here, ϕ extends to F tautologically; it is well-defined by the universal property of free modules.)

Problem 1.

(a) Prove that the following are equivalent for a short exact sequence of R-modules:

$$0 \to M' \xrightarrow{g} M \xrightarrow{f} M'' \to 0$$

- (i) There is a homomorphism $\alpha: M'' \to M$ such that $f\alpha$ is the identity on M''.
- (ii) There is a homomorphism $\beta: M \to M'$ such that βg is the identity on M'.
- **(b)** Prove that $M = \operatorname{Im}(g) \oplus \operatorname{Im}(\alpha) \cong M' \oplus M''$.
- (c) Prove that α and β can be chosen so that $g\beta + \alpha f$ is the identity on M.

Solution.

- (a) Given α , set $\beta(m) = g^{-1}(m \alpha f(m))$. This is defined since $m \alpha f(m) \in \ker f = \operatorname{Im} g$. Given β , set $\alpha(m'') = m - g\beta(m)$, where m is any element of M such that f(m) = m''. This is well-defined because if f(m) = f(n), then $m - n \in \operatorname{Im} g$ and $m - n - g\beta(m) + g\beta(n) = g(g^{-1}(m - n) - \beta(m - n)) = g(g^{-1}(m - n) - \beta gg^{-1}(m - n)) = 0$.
- (b) The isomorphisms are $m \mapsto g\beta(m) + \alpha f(m)$, $g(m') + \alpha (m'') \mapsto m' + m''$, $m' + m'' \mapsto g(m') + \alpha (m'')$. \square
- (c) Given α , choose β as in part (a).

Problem 2. Prove that every R-module is projective if and only if every R-module is injective.

Solution. Both conditions are equivalent to the condition that every short exact sequence of R-modules splits.

Problem 3. e is idempotent if $e^2 = e$.

(a) If e is idempotent, so is 1 - e.

- (b) If I and J are left ideals of R, then $R = I \oplus J$ if and only if I = Re and J = R(1 e) for some idempotent e. In this case, a = ae for all $a \in I$.
- (c) If I is a left ideal, then R/I is projective if and only if I = Re for some idempotent e.
- (d) Let e be a central idempotent (i.e., er = re for all $r \in R$.) Show that Re and R(1 e) are two-sided ideals, that $R = Re \times R(1 e)$, and that e and 1 e are identities for the subrings Re and R(1 e), respectively.

Solution.

(a)
$$(1-e)^2 = 1-2e+e=1-e$$
.

- (b) Let I = Re and J = R(1 e). I is fixed by (right) multiplication by e and J by (1 e), so $I \cap J$ is fixed by multiplication by e(1 e) = 0. Since x = xe + x(1 e) for any $x \in R$, we have $R = I \oplus J$. Conversely, if $R = I \oplus J$, we have 1 = a + b, for some $a \in I$, $b = 1 a \in J$. Clearly I = Ra, J = Rb, so it suffices to show that a is an idempotent. We have $a = (a + b)a = a(a + b) = a^2 + ab = a^2 + ba$, so it suffices to show that ab = ba = 0. But $ba \in I$, $ab \in I$, so $ab \in I \cap J = 0$.
- (c) R/I is projective if and only if the sequence $0 \to I \to R \to R/I \to 0$ splits, i.e., if and only if there exists a submodule (hence, ideal) J of R such that $R = I \oplus J$.
- (d) Re = eR since e is central. Thus Re is a two-sided ideal. It is a subring with identity e since e(re) = (re)e = re for every $re \in Re$. $R = Re \oplus R(1 e) = Re \times R(1 e)$.

Problem 4. Show that the following are equivalent:

- (i) P is a projective R-module.
- (ii) There is a set $\{x_i\}$ of generators of P and a set $\{f_i: P \to R\}$ of homomorphisms, such that, for any $x \in P$, $x = \sum f_i(x)x_i$.
- (iii) Given any set $\{x_i\}$ of generators of P, there exists a set of homomorphisms $\{f_i\}$ such that $x = \sum f_i(x)x_i$ for all $x \in P$.

Solution. A set of generators $\{x_i\}_{\mathcal{I}}$ corresponds to an exact sequence $E: 0 \to K \to F \xrightarrow{g} P \to 0$, with $F = \bigoplus_{\mathcal{I}} R$ and the second map given by $g: e_i \mapsto x_i$. (This is also called a presentation of P.)

- (i) \Rightarrow (iii): E splits, so there is a map $f: P \to F$ such that gf is the identity on P. Let $f_i = \pi_i f$, where π_i is the canonical projection from F to the i^{th} copy of R.
- (iii) \Rightarrow (ii): There exists a set of generators of P. (For example, P generates itself.)
- (ii) \Rightarrow (i): $f = \sum f_i$ splits g, so P is a direct summand of the free module F.

Problem 5. Let R be a domain with quotient field F. An R-module M is called divisible if aM = M for all nonzero a, i.e., given $x \in M$ there exists $y \in M$ such that ay = x. M is called torsion-free if, for any $a \in R$, $x \in M$, the equation ax = 0 implies that a = 0 or x = 0.

(a) Prove that an injective R-module Q is divisible.

(b) Let M be divisible and torsion free. Prove that M is injective.

Solution.

- (a) Given any x, a, let $g:(a) \to Q$ be given by f(ra) = rx. Since Q is injective, g may be extended to a map $g: R \to Q$. Take y = g(1).
- (b) Observe first that, since M is torsion free, there is a unique $y=\frac{x}{a}$ satisfying ay=x. By Baer's criterion, it suffices to show that for any ideal I and any map $g:I\to M$, g may be extended to R. Let g be given and choose nonzero $a\in I$. We claim that g is multiplication by $\frac{g(a)}{a}$. Indeed, for any $b\in I$, we have $g(b)=\frac{g(ab)}{a}=\frac{bg(a)}{a}$. Thus g may be extended to R by $g(1)=\frac{g(a)}{a}$.

Problem 6. Let R be a domain with fraction field F. A fractional ideal of R is a sub-R-module $I \subset F$ such that $cI \subset R$ for some nonzero $c \in R$. Let I and J be fractional ideals of R.

- (a) Prove that I + J and IJ are fractional ideals of R.
- (b) Prove that $I \cong J$ as R-modules if and only if I = xJ for some $x \in F$.
- (c) The inverse of I is $I^{-1} = \{c \in F : cI \subset R\}$. Prove that I^{-1} is a fractional ideal of R, and give an isomorphism $I^{-1} \to \operatorname{Hom}_R(I, R)$.
- (d) I is invertible if $II^{-1} = R$. Prove that I is invertible if and only if I is projective.
- (e) Prove that if I is invertible, then I is finitely generated.

Solution.

- (a) Let c, d be such that $cI, dJ \subset R$. Then $cd(I+J) \subset R, cdIJ \subset R$.
- (b) If I=xJ, then multiplication by x is an isomorphism from J to I. Conversely, if $\phi:J\to I$ is an isomorphism, then set $x=\frac{\phi(a)}{a}$ for any nonzero $a\in J$. Then for $b\in J$, we have $\phi(b)=\frac{\phi(c^2ab)}{c^2a}=\frac{b\phi(a)}{a}$, so ϕ is multiplication by x and I=xJ.
- (c) $I^{-1} = \bigcap_{x \in I \setminus \{0\}} x^{-1}R$ is an R-module, with $xI^{-1} \subset R$ for any $x \in I$. Since F is injective as an R-module, any homomorphism $g: I^{-1} \to R \subset F$ extends to F and so must be multiplication by something. The map $c \mapsto m_c$, the "multiplication by c" homomorphism, is a (canonical) isomorphism from I^{-1} to $\operatorname{Hom}_R(I, R)$.
- (d) If I is invertible, there exist $x_i \in I$ and $f_i \in I^{-1}$ such that $1 = \sum f_i x_i$. Thus for any $x \in I$, we have $x = \sum f_i x_i$, so I satisfies the conditions of problem 4. Conversely, if I satisfies the conditions of problem 4, there exist $f_i \in \operatorname{Hom}_R(I,R) = I^{-1}$ such that $x = x \sum f_i x_i$ for all x, i.e., $1 = \sum f_i x_i \subset II^{-1}$.
- (e) If I is invertible, we may write 1 as a finite sum $1 = \sum f_i x_i$. Then, for any $x \in I$, we have $x = \sum (f_i x) x_i$; since $f_i x \in R$, we have $x \in (\{x_i\})$. Thus I is generated by the x_i .

Problem 7. Let $R = \mathbb{Z}[\sqrt{-5}]$, $I = (3, 2 + \sqrt{-5})$, $J = (3, 2 - \sqrt{-5})$.

- (a) Show that IJ = (3).
- (b) Prove that I is an invertible ideal, and find I^{-1} .
- (c) Prove that I is not principal.

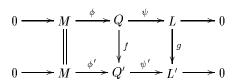
Solution.

(a)
$$IJ = (9, 6 \pm 3\sqrt{-5}, 9) \subset (3)$$
. Since $(6 + \sqrt{-5}) + (6 - \sqrt{-5}) - 9 = 3$, we have $IJ = (3)$.

- **(b)** We have $\frac{1}{3}IJ = (1)$, so $I^{-1} \supset \frac{1}{3}J = (1, \frac{2-\sqrt{-5}}{3})$. We may compute $I^{-1} = \frac{1}{3}J$.
- (c) Suppose that I=(a) were principal. Then we would have $f\in \frac{1}{3}J$ such that fa=1, and so $b\in J$ such that ab=3. But then $N_{F/\mathbb{Q}}(ab)=9$, (recall that $N_{F/\mathbb{Q}}(x+y\sqrt{-5})=x^2+5y^2$,) so, without loss of generality, $N_{F/\mathbb{Q}}(a)=1$ or 3. No element of R has norm 3, and if $N_{F/\mathbb{Q}}(a)=1$, then $a=\pm 1\notin I$. \square

Problem 8. Let $0 \to M \xrightarrow{\phi} Q \xrightarrow{\psi} L \to 0$ and $0 \to M \xrightarrow{\phi'} Q' \xrightarrow{\psi'} L' \to 0$ be exact, with Q and Q' injective. Show that $Q \oplus L' \cong Q' \oplus L$ as R-modules.

Solution. Since Q' is injective, there exists a homomorphism $f:Q\to Q'$ extending ϕ' . Since $\ker\psi=\phi(M)$ is in the kernel of $\psi'f$, the universal property of the quotient map ψ yields a homomorphism $g:L\to L'$ such that $g\psi=\psi'f$:



Let $\alpha: Q \to Q' \oplus L$ and $\beta: Q' \oplus L \to L'$ be given by $\alpha(q) = f(q) + \overline{q}$ and $\beta(q' + \overline{q}) = \overline{q'} - g(\overline{q})$. We claim that $\ker \beta = \operatorname{Im} \alpha$. Clearly $\operatorname{Im} \alpha \subset \ker \beta$, so it suffices to show that if $\beta(q' + \overline{q}) = 0$, then $q' + \overline{q} \in \operatorname{Im}(\alpha)$, i.e., q may be chosen so that f(q) = q'.

Choose any q above \overline{q} . Then we have $\overline{f(q)} = g(\overline{q}) = \overline{q'}$, i.e., there exists m such that $f(q) - q' = \phi'(m) = f\phi(m)$. Replacing q with $q - \phi(m)$ gives us the desired equality.

Thus the sequence $0 \to Q \xrightarrow{\alpha} Q' \oplus L \xrightarrow{\beta} L' \to 0$ is exact. Since Q is injective, it splits and $Q \oplus L' \cong Q' \oplus L$ as desired.

Remark. This problem can also be solved by showing that $Q \oplus L'$ and $Q' \oplus L$ are isomorphic to the pushout $Q \oplus Q' / \langle \phi(m) - \phi'(m) \rangle$, using the maps f and f'.