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Abstract. Mumford described a curve, y, in P3 that has obstructed infinitesimal

deformations (in fact the Hubert scheme of the curve is generically nonreduced).

This paper studies y's Hilbert scheme by studying deformations of y in P3 over

parameter spaces of the form Spec(k[t]/(t")), n = 2, 3,. .. . Given a deformation

of y over Spec(fc[f]/(f")) one attempts to extend it to a deformation of y over

Spec(k[t]/(tn+ ')). If it will not extend, this deformation is said to be obstructed at

the nth order,

I show that on a generic version of Mumford's curve, an infinitesimal deforma-

tion (i.e., a deformation over Spec(k[t]/(t2))) is either obstructed at the second

order, or at no order, in which case we say it is unobstructed.

Let F be a nonsingular cubic surface in P3, let E be one of the 27 lines on F, and

let H be the hyperplane divisor on F. Mumford [3] showed that any nonsingular

member y of the linear system \4H + 2E\ represents a point of the Hilbert scheme

H parametrizing curves of degree 14 and genus 24 at which H is not reduced. This

can be restated in the language of infinitesimal deformations. An infinitesimal

deformation of y is a flat family of projective space curves over Spec(k[t]/(t2)) with

y as special fiber. One attempts to lift such a deformation successively to deforma-

tions over Spec(k[t]/(t")), n = 3, 4.If there is an n such that the deformation

extends modulo t", but not modulo t"+i, we say the deformation is obstructed at

the nth order. The fact that the Hilbert scheme is nonreduced can be interpreted as

saying that y has infinitesimal deformations that are obstructed at some order.

More specifically, Mumford showed that the dimension of H at the point zy

representing y is 56 while the dimension of the tangent space to H at z is 57. This

guarantees the existence of infinitesimal deformations that are obstructed.

I will show that for a nonsingular element y of |477 + 2E\ any infinitesimal

deformation either is obstructed at the second order, or at no order (in which case

the deformation is said to be unobstructed).

In §1, the generators and relations of the ideal defining a member of \4H + 2E\

are given. From these come a free resolution of the ideal, and a resolution of the

structure sheaf of the nonsingular members. In §2, the deformations of y in P3 are

related to the homogeneous deformations of certain affine cones over y. In §3, the

unobstructed deformations of y are obtained from the 2x2 minors of a 2 X 4

matrix of polynomials. In §4 and §5, the obstructed deformations are identified
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84 D. J. CURTIN

and the cohomology classes representing the second order obstructions are found.

Finally (Theorem 2), these classes are seen to actually obstruct the deformations at

the second order, at least on a general y.

I thank Michael Schlessinger, my thesis advisor, for his help and encouragement.

Conventions, k is an algebraically closed field, P = k[xQ, . . . , xn], x =

x0,. . ., xn (usually n = 3 and we use x0 = x, xx = y, x2 = z, x3 = h>), Ps = forms

of degree í in P. P{i) is defined by P(i)s = Pi+S.

1. Mumford's curves. Let F be a nonsingular cubic surface in P3, H the

hyperplane divisor of F, E any one of the 27 lines on F. Mumford's curves, y, are

the nonsingular members of the linear system \AH + 2E\.

Wahl [7, §3.6] has proven the following:

Proposition 1.1. Any of Mumford's curves is defined by a homogeneous ideal

I = (F, S¡, S2, S3), where the S¡ are nonsingular sextic forms.

Actually the proof of the proposition shows that any member of \4H + 2E\ is

given by an ideal / = (F, S,, S2, S3) where the S¡ are sextic forms but not

necessarily nonsingular. We will give the 5, quite explicitly.

Let V(f, ...,/„) be the variety in P3 defined by the homogeneous polynomials

/„•..,/..

Assume E = V(x, y), changing co-ordinates if necessary. Then F = xA + yB, A

and B quadratic forms. Since F is nonsingular, A and B have no common

component modulo the ideal (x,y). In fact, if L\A and L\B (mod(x,y)), the

Jacobian criterion shows that V(x,y, L) are singular points of F.

Proposition 1.2. D e |4// + 2E\ if and only if D is defined by an ideal of the

form /(tj, £) = (F, x2^ + B2£, xyr¡ — AB£, y2^ + A2Q, tj a quartic form, £ a

quadratic form.

Proof. We will show that ideals of the form /(tj, £) define elements of \4H +

2E\, then show, by comparing dimensions, that divisors defined by such ideals are

all of |4// + 2E\.

For tj £ (/•"), it is clear that /(tj, 0) defines an element of |4// + 2E\.

If £ * 0, let g, - x, g2 - y, g} = A, g4 = B. Let W, = P3 ~ V(8i), and U, = Wi

n F. Let D be given by /(tj, £).

On I/,, the Cartier divisor D is defined by/, = Sx/x6; on U2 by f2 = S3/y6; on

U3 by/3 = S3/A3; on U4 by/4 = Sx/B\

We claim that D is linearly equivalent to D' defined by I(q, 0), q & (F). In fact,

D' is defined on t/, by /,' = S{/x6 = xq/x6; etc. It is easy to check that

fi/fi = $i/'S2, for all /'. For example, on Uv the quotient

52/5^ = (xyr, - ABÍ)/xyq = (x'yq - xAB^/x^q

= (*V? + yB^/x'yq = (Sjx6) ■ (x6/S{).

Thus, for all i,f/f = /,//,' in K, and D = D'. Hence D G |4// + 2£|.

Now we have a map PrqjX/^, © />2)^.|4// + 2E\ given by <í>([tj, |]) = (the di-

visor defined by /(tj, £)).  Dim|4// + 2£| = 37,  Dim^ © ^ = 35 + 10 = 45;
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DEFORMING A SPACE CURVE 85

thus Dim(Proj(/,4 © P2)) = 44. It is not hard to see that the kernel of <¡> is

7-dimensional, spanned by the 4-dimensional family (tj, 0), tj G (F), and the

3-dimensional family (0, £) - (aB2 - bAB + cA2, 0), where £ = ax2 + bxy + cy2.

Thus Dim(im $) = 44 — 7 = 37, so </> is onto.

Proposition   1.3.   The   relation   module   of  /(tj, £)   is   generated   by   r, =

(-B£,y, -x, 0), r2 = {At 0,y, -x), r3 = {-xi\, A, B, 0), r4 = (-yr,, 0, A, B).

Proof. We claim the following sequence is exact:

0^P(-9)%P(

where <j>, = (F, Sv S2, S3),

</>2 =

0-»¿»(-9)*P(-7)2e7>(-8)2*/»(-3)©7»(-6)3*/-»0,

B£      AÈ,       -XT]      -yr)

y 0 A 0
-x       y B A

0 -x        0 B

</>3 = (A, B,y, — x). The exactness follows easily from [1, Corollary 2]. Then we

observe that the relation module is generated by the columns of <b2.

Taking associated sheaves in the exact sequence above we obtain:

Proposition 1.4. 0y has a resolution

O^0(-9)->0(-7)2© 0(-8)2^0(-3)©0(-6)3^0 ^0?^O

as an 0 = &p3-module.

2. Deformations of cones. Consider the Hilbert scheme H parametrizing subvarie-

ties of P" having the same Hilbert polynomial as a given subvariety X. In this

section we will see that H is locally the same as the homogeneous deformations of

the cones over X defined by certain homogeneous ideals (Theorem 1).

As in [4], we let C be the category of Artinian local /f-algebras with residue field

k and C be the category of complete Noetherian local k-algebras A for which

A/m" is in C for all n. A functor on C is prorepresentable if it is represented by an

object of C.

Let X be a subscheme of P". Let / = (/,(x), . . . ,fm(xj), f(x) homogeneous of

degree «,, be an ideal defining X. Define K(/) c An+l to be the cone over X

defined by /. Note that V(I) is different for different / defining X.

Definition 1. Let iGCbe given, its maximal ideal MT. A deformation of the

cone V(I) over Spec T is a closed subscheme V of An+X XSpecA^ Spec T, that is flat

over Spec T, and is defined by m equations F¡ G T[x], homogeneous of degree n¡

in x, such that F¡ = f(x) mod(MTT[x}).

V is flat over Spec T if and only if it satisfies the lifting of relations condition:

every relation (/•,, . . . , rm) on (/,, . . . ,fm), i.e. S™-! rj¡ = 0, lifts to a relation

(Ä„ . . . , RJ on (F„ . . . , FJ, i.e. S R,F, = 0 and /?,. = r,(x) mod(MTT[x]).

Let F(T) be the set of deformations of the cone V(I) over Spec T, T G C.

Suppose we are given a map in C, <b: S -» T, and W G F(S). W is defined by

F¡ G S[x]. Now $ induces a natural map <;>: S[x] -^ T[x}. Let F(<¡>)(W) G F(T) be
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86 D. J. CURTIN

given by F¡ = <¡>(F¡). (Flatness is easy to check using the lifting of relations

RJ = <t>(Rj).) Thus F(-) is a covariant functor on C.

Proposition 2.1. F() is prorepresentable.

Proof. We will use Theorem 2.11 [4]. F(k) is a one point set, namely {V{I)}.

Given A' —> A and A" -^ A in C, it is easy to see that (A' XA A")[x] —> A'[x]

XAlx]A"[x\ is an isomorphism. It follows that F(A' XA A") -* F(A') XF(A) F(A")

is an isomorphism. This establishes (//,), (H2), and (H4). The tangent space

tF = F(k[e]) = Hom,,(/, P/I)Q is finite dimensional, so (H3) holds. Then F(-) is

prorepresentable.

Thus F(-) = hA(-), for some A G C.

Recall that tF is the Zariski tangent space to Spec A, the space of infinitesimal

deformations of V(I).

Consider the algebras k[t]/(t"), n = 2, 3, . . . . Given an element V of

F(k[t]/(t")) can it be extended to an element V of F(fc[i]/f"+1)? That is, does

there exist a V such that F(<f>)( V) = V, where <j> is the natural map k[t]/{tn+l) ->

k[t]/(t"). Thus we have equations f(x; t) mod(f") for V, so that for any relation

r,{x} t\ ~2f(x; t)r¡(x; t) = 0 mod(r"). To get V, we need Af and Ar,, homoge-

neous of the same degree in x_ asf and r¡, so that

S (/, + t"Af){r, + far,) = Omodíí^').

We have a presentation of / = (/,, . . . ,/m):

O^RÍ® P(-n¡)^ 1^0       (n¡ = deg/.),

where a and /5 are homomorphisms of degree 0. Then r,(x)i-» t"-coefficient of

S /(x; t)r¡(x; t) defines an obstruction map R —> P/I. V extends to a V if and only

if the obstruction map lifts to a homomorphism 8: 0 P( — n¡)—* P/I. Both the

obstruction map and its lifting Ô (if it exists) are homomorphisms of degree 0. The

obstruction map vanishes on R0, the submodule of R of trivial relations (i.e., those

of the form a(a)b — a(b)a).

Define T2(I) by

Hom(0 /'(-«,),/'//)0^Hom(Ä/Ä0>/'//)0^ T2(I)^0.

Then T2(I) contains the obstructions to lifting deformations from k[t]/(t") to

k[t)/(tn+i), for any«.

We now restrict our attention to certain ideals defining X. Fix an / maximal

among aH(homogeneous) ideals defining X in P". V(I) for any such / is called the

minimal cone of X and is characterized by (x) G Ass(/>//). Since / is homoge-

neous, / = © j*i0 L, Ij = forms of degree/ in /. Define /(n) = 0y°ln L. The /(n)

are also ideals defining X, while their cones contain V(I).

Define r„' = Homp(J(n), P/1)0. If n < m the natural inclusion /{m) —> /(n) induces

a map Txn -* Txm.

Proposition 2. // (x) G Ass /»//, then (x) G Ass(Hom(Af, P/I)) for any graded

P-module M.
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Proof. Suppose (x) G Ass(Hom(M, P/I)) for some /'-module M. Then there is

a <f> G Hom(M, P/I) such that (x) = ann(<£). In particular <j> ¥^ 0, so that <í>(w) ̂ 0

for some m G A/. Then (x) Ç ann(4>(m)) and, being maximal, (x) must equal

ann(<>(w)), so that (x) G Assi/*//).

Corollary 2.1. For n < m, 7^' —» 7^ « infective.

Proof. Suppose not. Then there is a <j> G r„" that goes to the zero map in T^.

Thus <í>(¿>) = 0 if deg b > m. Therefore (x)m$ = 0 in T„' so that (x) G

AssíHomí/^,, P/I)) which contradicts the proposition.

Corollary 2.2. If(x) G Ass(P/1), the usual map

a: Hom(M, P/I)0 -* /7°((Hom(M, P/I))~)

is injective (where M means the sheaf associated to M).

Proof. In [6, 67] Serre shows that the map M -^2 H°(M(n)) is injective if

(x) <£ Ass(M).

Thus, in particular, the following map is injective:

r„' -> //°((Hom(/, P/I))~) = H°(NX)    for any n.

We will use these results to compare the deformation theory of the cone to that

of X in P".

Let S„ be the representative of the functor of deformations of the cone V(I(n)).

Spec Sn is the parameter space for deformations of this cone.

Let S be the local ring of the Hilbert scheme H at the point corresponding to X.

Spec 5 parametrizes deformations of X over schemes Spec T, T G C.

Let / (resp. tn) denote the Zariski tangent space and O (resp. On) the obstruction

space (see, e.g., [5, p. 153]) of Spec S (resp. Spec Sn).

t = h°(nx),     tn = /;',

O^Hl(Nx),     On^T2.

Any deformation of the cone K(/(/I)) over Spec T, T G C, induces a deformation

of X over Spec T. This defines a map 4>: Spec Sn —> Spec S.

Theorem 1. Let X be a local complete intersection. It is well known that there is an

N such that for n > N, (P/I)n ^> H°(6x(n)). For n > N,<f>: Spec Sn -+ Spec S is an

isomorphism.

Proof. For any n we have a presentation

0 -+ R -» © /»(-«,)-> /(n) -t* 0,       «,. > n.

Apply Hom(-, P/I) to get

0 -* Hom(/(n), P/I) -± 0 P/I(n,) — Hom(Ä, P/I) exact.

Take associated sheaves; then

0 -+ Nx -> ©  0^«,) -* Hom(R, P/I)~ is exact.
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88 D. J. CURTIN

Call the cokernel Q. Thus

0->#,->© ex(n,)-+Q^0 (1)

is an exact sequence of 0X -modules.

Consider the exact sequence

0 -> Hom(/(„), P/I) -> © /»//(«,) -> Hom(Ä/Ä0, P//) -> S -» 0        (2)

whose degree zero part is

0 -> Txn -» ( © J»//(n))o -> Hom(/?/«<» P//)0 -* T„2 -> 0.

Passing to associated sheaves

0 -> A^ -» © ®x(n,) -» (Hom(Ä/Ä0, P/I)0)~^> S -+0 is exact.

Since A" is a local complete intersection, and locally S is T2, which is 0 [5, p. 150],

it follows that S is the zero sheaf. Therefore

0 -> Nx -» ©  0^«,) -> (Hom(Ä/Äo, />//))""-> 0 is exact. (3)

From (1) and (3) we have Q = (Hom(R/R0, P/I))~.

Taking cohomology in (1) for the top row and taking (2) as the bottom row we

have

0 -»  H°(NX) -»   © H°(6x(n¿) -» H°(Q) -» H\NX)

4>,î <Í>2Í <Í>3Í <f>4î (4)

0^       rj      -»       ©(P//)^     ^ Hom(Ä/Ä0,/>//)0 ^      r„2      - 0

The maps <j>,, <£2, and <j>3 are injective by Corollary 2.2. For n > N, <f>2 is an

isomorphism. It follows easily that <;>, is surjective (hence an isomorphism) and that

<j>4 is injective.

Thus we have tn —» t, and

0

f

so that 4> is injective. By the proposition on p. 153 of [5] </> is an isomorphism. (Note

that although the proposition is stated for local complex spaces the proof works

over any field.)

This theorem means that the study of the local structure of the Hilbert scheme H

is equivalent to the study of deformations of the cone F(/(n)) for large enough n.

3. The unobstructed deformations of Mumford's curves. For one of Mumford's

curves it is not hard to see that N = 6 (use Riemann-Roch). If y is defined by

/(tj, £) on F = xA + yB, then deformations of V(I) represent the case N = 3.

From diagram (4) we can compute that the cokernel of <¡>, is one-dimensional.

Since dim H°(Ny) = 57, the deformations of the cone V(I) represent a 56-dimen-

sional subfamily of the deformations of y in P\

The ideal / can be written in a determinantal form.

r
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Let

M    \   x      y     B£     -At
M = T> A

— B     A     XT)       yt\

Define MtJ = determinant of the 2x2 matrix formed by columns /' and/. For

convenience let M = (a¡f). The following two propositions are easily established.

Proposition 3.1. (a) / is generated by the M¡j.

,b) r\ = (-«13. «12. ~«n. °).     r2 = («14. 0, a12, -a,,),

F3 " i- «23. «22.   - «21' °).        r4 = (- «24. °> «22.   - «2l)-

Proposition 3.2. Let N = (a,-,) be a 2 X 4 matrix over any commutative ring.

Then

-al3Nl2 + a12JVl3 - auN23 = 0, auNl2 + «12^23 ~ «11^24 = °>

- «23^12 +  «22^13 -  «21^23 = °. ~ «24^12 +  «22^23 ~  «21^24 = °-

Perturb A, B, x, y, |, and tj in M as follows. Let

M(t) = [   X + tC       y + td     (B+tb)(£+te)     - (A + ta)(t + te)\

\-B - tb    A + ta     (x + tc)(r¡ + tf)       (y + td)(t] + tf)   }'

where a, b, c, d, e,f are homogeneous of the same degree as A, B, x, y, £, tj,

respectively. Let I(t) be the ideal generated by the M(t)¡j. 1(0) = /, and Proposition

2 gives the lifting of the relations r¡, r2, r3, r4. This gives a flat family of the cone

V(I) over k(t), and hence an unobstructed deformation of y in P3.

Any cubic form is in the ideal (x, y, A, B). This, together with Proposition 1.2,

guarantees that any element of |4// + 2E\ or any cubic is M(\) for some choice of

«,..-,/.

Thus the M(t) account for all deformations of V(I) and of y in P3 over the

parameter space Spec k(t).

4. Obstructed deformations. The dimension of Hilb at y is 56, while the dimen-

sion of its tangent space, H°(Ny), is 57. H°(Ny) represents infinitesimal deforma-

tions of y. There must be infinitesimal deformations that are obstructed.

Nx¡ y is the normal sheaf of X in Y. As in [3] define NF = N F, Np = NF^ p>\y ̂

6y(3h\ h = H • y. Let Ny = Ny>p3. The sequence 0 -h> NF -> Ny -» Np -» 0 is exact.

Thus 0 —* NF —» N —> 6y(3h) —>0 is exact. Taking cohomology; we get the exact

sequence

0 -* H°(NF) -» H°(Ny) -» H°(6y(3h)) -+ H l(NF) -» H \Ny) -» H '(0,(3/0) -► 0.

WF = 0y(y • y) s Gy(Ky + h), hence Hl(NF) = 0. Thus 0 -» i/°(AV) -» //°(iVY) -»

H°(6y(3h)) -» 0 and 0 -» //'(Afy) -* //'(6T(3A)) -» 0 are exact.

The sections of N coming from sections of NF correspond to infinitesimal

deformations of y in F, i.e., members of \4H + 2E\. These are unobstructed. Thus

the obstructed deformations of y must correspond to sections of N coming from

H°(Üy(3h)). Those sections of 6y(3h) that are given by one cubic polynomial on y
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(i.e., im(//°(0p3(3))^//°(0Y(3/i)))) are also unobstructed. Thus an obstructed

deformation must correspond to an element of H°(6y(3h)) not induced by an

element of//°(0p3(3)).

Since y is nonsingular, the ring 2"_0 H0(&y(nh)) is me integral closure of the

projective co-ordinate ring of y, P/I. Elements of H°(<Sy(nh)) may be thought of as

elements of the quotient field K of P/I, of degree n, and integral over P/I.

Let m = -B£/x. (| =?*= 0 or else y is singular.)

Deg u = 3 in K,       u2 = B2^2/x2 = -x2r¡Í/'x2 = -tj£

so u is integral over P/I, but not in P/I. Thus u should lead to an obstructed

deformation of y. Note that

u = -B£/x = Ai/y = -yv/A = xr,/B    in K.

Lemma 4.1.  (P//)„ —> H°(tQy(nh)) is an  isomorphism for n > 6, not for n =

3, 4, 5.

Proof. Using the Riemann-Roch theorem we have

dim H°(6y(3h)) = 20,       dim H°(Gy(nh)) = 14« - 23,       n > 3,

Dim(P/I)„ = dim />„ - dim /„ = (" + 3),

and the ideal / = (F, 5,, S2, S3), F cubic, 5, sextic. Thus

dim/Jis)' « = 3,4,5,
{\4n - 23,     n > 6.

Thus the map (P//)„ -» H°(6y(nh)), injective since (x) G Ass(P/I), is surjective if

n > 6, but not for « = 3, 4, 5.

Proposition 4.2. The deformation theories of y in P3 a«i/ o/ F(/(n)) are the same

for n > 6, different for n < 6.

Proof. The lemma and Theorem 1 of §2 give the results for n > 6. For « < 3,

I(n) = (F, S„ S2, S3). Take the resolution 0 -» /? -» F( - 3) © P( - 6)3 -» /(n) -» 0.

The map

<b2: P3 © />3 -» H°(Qy(3h)) © //^©.(ÓA))3

is not surjective by the lemma. Thus the map <}>,: T¡¡ -* H°(Ny) is not surjective.

Thus the deformation theories are different.

The cases n = 4, 5 are similar.

Let a = (x3, x^, . . . , w3) be the 20-tuple of cubic monomials in P. Then

7<6) = (F°> si> 52> ̂ 3)- 7(6) has the resolution 0 -> R -> P(-6)23 -^ /(6) ̂ 0.

/? is generated by two types of relations:

(i) relations among the cubics, i.e. r = (r; 0, 0, 0), r ■ a = 0;

(ii) relations induced by those on /.
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Let Bi = a ■ a, Ai = b ■ o, tj = co; then the latter are generated by

rt = (-a;y, -x, 0),     r2 = (b; 0,y, -x),

r3 = (-xc;A,B,0),     r4 = (-ye; 0, A, B).

A deformation of V(I) is given by A/ = (G, Tu T2, T3), G cubic, F, sextic. This

yields a deformation of /(6) defined by (Go; F,, T2, T3).

For any cubic H, Hu G P (since (x,y, A, B)u G P and H G (x,y, A, B)). By

abuse of notation we consider Hu G P/I. Thus uo G (P/I)20. We call wa any

choice of coset representatives of uo in P20. any two choices for uo differ by an

element of I20.

Write r¡ = ax + ßy + yA + 8B, deg a = deg ß = 3, deg y = deg 5 = 2.

Proposition 4.3. Let F, = (2/3x - 2yB)i, T2 = ( - ax + ßy + yA - 8B), T3 =

(28A — 2ay)i. For any choice of uo, A/ = (uo; T¡, T2, T3) defines an infinitesimal

deformation of F(/(6)), hence of y.

Proof. It is only necessary to check that A/- r G / for all r G R. E.g.,

A/- r4 = -yuo-c +AT2 + BT3 = -yur¡ + AT2 + BT3

= -y(-aBÍ + BAÍ - yyq + 8xy) + AT2 + BT3    mod /,

since xu = Bi mod /, etc. It is then easy to see A/ • r4 = 0 mod /. The rest are

similar.

Note that F,, T2, T3 depend only on tj and i, not on the choice of uo.

Any section of H°(<3y(3h)) is given by G + mu, G G P3, m G k. Thus any

infinitesimal deformation of y comes from a A/= ((G + mu)o, T[, T2, T3) where

the T[ are T¡ plus the corresponding sextic for G (see §3).

5. The order of obstruction. The obstructions to extending infinitesimal deforma-

tions of y lie in H\Ny)^> Hx(dy(3h)). It is convenient to observe that //'(0Y(3/i))

can be computed via a Koszul complex.

Define D(f) = P3 ~ V(f), f G P. Then Z)(x), D(y), D(A), D(B) is an affine

cover of y, so that the cohomology of y can be computed via the standard Cech

resolution for this cover.

L = 2 H°(By(n)) is the integral closure of P/I. Let M = L(3); thus the asso-

ciated sheaf M = Gy(3h).

The sequence (x,y, A, B) is regular on P. Let K = K.(x,y, A, B) be the graded

Koszul complex

0^ F(-6) -» F(-5)2 © F(-4)2 -* P(-2) © F(-3)4 © F(-4)

^F(-1)2©F(-2)2^F

with the usual maps (see, e.g., [2, p. 245]). Let Cm be the complex Hom(AT, M), and

(C^)0 the subcomplex of C„ of degree zero.

Proposition 5.1. //'((CJo)^.//'(0y(3/i)), i = 0, 1.
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Proof. We use the following notation:

Cm.O ->  M  ->   M(1)2©M(2)2   ->   A/(2) © A/(3)4 © M(4)   ->   A/(4)2 © M(5)2   -»   Af(6) -> 0

II II II II II
d do d¡ d2

C(:0^  M  ^ C0 -> C, -> C2 ->     C3    ->• 0

thus //'((C,)0) = (Ker ¿¿„/(im ¿,._ ,)0.

Taking associated sheaves we have the complex C„ :

~ d'    ~   dó   ~   d'\    ~   ¿i    ~
0 -» M^ C0-* C, -> C2 — C3 -^ 0.

This complex is exact since H'(C^) = FxF(0p3, A/), which is 0 for / > 0, and is M

for ; = 0.

Let Q = im d¿ = ker d[. Then 0->A/-»C0-»g-»0is exact. Taking cohomol-

ogy,

0-> H°(M) -» //°(C0) -» //°(ß) -» //'(M) -»0.

The final zero is // '(C0), zero since // '(0y(/j/z)) = 0 for n > 4 (nh is nonspecial).

The usual map/: M-»2 H°(M(n)) is an isomorphism. Thus in the following

diagram (where 5 = (ker ^,)0/(im dQ)0).

0     -»     //°(M)     ->     //°(C0)     -»      #°(ß)      -»     H\M)     ->    0

/Î /oT /,T /it

0     -*       (A/)o       -*       (C0)0        *      (kerrf,)0     ^5^0

/ and /0 are isomorphisms. We also have 0 —> Q -» C, —» C2 where

0     -»      tf°(ß)      -*     /F°(C,)     -»     //°(C2)

/it /St M

0        -»        (kCTí/Oo        -* (C.)o "> (C2)o

where /3 and /4 are isomorphisms, hence /, is also an isomorphism. Then S =

H\(C,)0)^H\ey(3h)).
The curve y is a local complete intersection, that is, there are g,, . . . , gn G P so

that on D(gt) = W„ the curve y is V(f¡, s,); with/, s¡ G P(&).

To find the element of H](Ny) that is the obstruction to lifting the deformation

given by A/, we change our point of view slightly. The curve y is defined by the

ideal (/, s¿) on Wi = D(gt). To extend the deformation of y it is enough to find

extensions of the deformation over each W¡ by functions of degree zero such that

the resulting perturbed ideals agree on the overlaps.

Let Wu = Wi n Wj. We have (u¡, v¡) such that

(/ + tu,, s, + to,) = (fj + tup s, + tvj)    mod(t2)    over Wiy

We seek (u\, v'¡) such that

(/ + tu, + t2u\, s, + to, + t2v¡) = (fj + tuj + t2u'j, Sj + tvj + t2vj)    mod(r3)
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on W,,. Thus we want («,', v'¡) such that there are a, b, c, etc. such that

fj + tuj + t2u!j = (a + ta' + t2a")(f + tut + t2u¡)

+ (b + tb' + rV)(j,. + to, + t2v'¡)   mod(/3)

= af¡ + bs¡ + t(au¡ + bv¡ + a'f¡ + b's¡)

+ t2(au¡ + bv¡ + a'u¡ + b's¡ + a"f¡ + b"s¡)    mod(í3)

and

Sj +  tVj +  t2Vj  = (C +  te' +  t2c")(fi +  ÍM, +  t2U¡)

+ (d + td' + í2í/")(í, + tv¡ + t2v'¡)   mod(í3)

or

Note that

Uj = au¡ + bv¡ + a'u¡ + b'v¡ + a"f¡ + b" s¡,

v'j = cu[ + dv'¡ + c'u¡ + d'v¡ + c"f + d"s¡.

Uj = au¡ + bv¡ + a'f + b's¡,

Vj = cu¡ + dv¡ + c'fi + d'Sj.

u'¡ = a'u: + b'v¡ + au'i + bv¡
J mod(/,í,).

Vj = c u¡ + d v¡ + cu¡ + dv¡

Now (ac bd) = Nj„ so that

S =
(a'Uj + b'v¡

c'u¡ + d'v¡
H\Ny)

(1)

(2)

(3)

(4)

must vanish if we are to solve for

(3) M3M2»
For Mumford's y we know the map H{(N ) —> //'(0 (3/i)) given by

ra í«u]>

where utJ is the restriction of «, to Wt,,, is an isomorphism, so we only need to

compute the utJ = a'u¡ + b'v¡ mod(/, s,).

It is not hard to exhibit an open cover of P3, such that y is defined by two

equations on each open set.

Proposition 5.2. On D(x), (F/x3, 5,/x6) defines y; on D(y), (F/y3, S3/y6); on

D(zA),    (F/zA, S3/(zA)2); D(wA),   (F/wA, S3/(wA)2);    on    D(zB),

(F/zB, Sx/(zB)2); on D(wB), (F/wB, Sj(wB)2).

Proof. The relation r{ gives — BÍF + ySx - xS2 = 0. Thus, on F>(x),

S2/x6 = (Bi/x4)(F/x3) + (>>/x)(Vx6)

so S2/x6 G (F/x3, 5,/x6). The rest follows similarly.
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Let A/21 be the transition matrix of the normal bundle on D(x) n D(y). N2i =

[ac % the solutions of

F/y3 = a{F/x3) + b{Sjx6),        S3/y6 = c(F/x3) + d(Sl/x6)    mod /.

Thus

x3/y3 0

2x2Ai/y6    x4/y4

#21   =

Consider A/= ((G + ww)a; F,, F2, F3), m # 0, as in §4. Under the map <f>,:

T¡^H°(Ny),f goes to

(:;)■
i = 1, . . . , 6,

where ux = -mBi/x4 + G/x3, u2 = mAi/y4 + G/y3. Note that the map H°(Ny)

-* H°(6y(3h)) is given by projection on the first factor.

Lemma 5.3. un = mAi2/xy5 + Gi/xy4, where un is the restriction of ux to rVl2.

Proof. From (2)

mAi/y4 + G/y3 = (x3/y3)(-mBi/x4 + G/x3)

+ a'(F/x3) + b'(SJx6).

So

a'{F/x3) + b'(Sl/x6) = (x2i/y4)(F/x3).

Take a' = x2Í/y4, b' = 0. From (4)

w,2 = a'ux + b'vx = mAi2/xy5 + Gi/xy4.

Theorem 2. If i G (x,y, A, B), then the cocycle [w,7] ¥= 0 in H\6y(3h)), hence the

infinitesimal deformation A/ does not extend to a deformation over k[t]/(t3).

Proof. Under the isomorphism f2: //'((C0)0) -* //'(0y(3/i)), [u:J] is the image of

[<y, where <¡>n = mAÍ2/y + GÍ = (u + G)|. If [<y = 0, then *12 = (u + G)i =

y<bt - x<j>2, where <bv <J>2 G //°(0y(4/i)). For C G F, Cm G F// if and only if

C G (x,>>, /I, B). Thus >><>, - x<?>2 G P/I, while «| G P/I. Thus [<*»,._,.] ^= 0, hence

[u,j] * 0.

Thus if the curve y is defined by the ideal (Ax + By, x2^ + B2i, xyx\ — ABÍ,

y\ + A2i), with i G (x,y, A, B), then the infinitesimal deformation given by A/

above does not extend to a deformation modulo t2, i.e., it is obstructed to the

second order.
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