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Abstract. We consider the question: “How bad can the deformation space
of an object be?” The answer seems to be: “Unless there is some a priori
reason otherwise, the deformation space may be as bad as possible.” We
show this for a number of important moduli spaces.

More precisely, every singularity of finite type over Z (up to smooth
parameters) appears on: the Hilbert scheme of curves in projective space;
and the moduli spaces of smooth projective general-type surfaces (or higher-
dimensional varieties), plane curves with nodes and cusps, stable sheaves,
isolated threefold singularities, and more. The objects themselves are not
pathological, and are in fact as nice as can be: the curves are smooth, the
surfaces are automorphism-free and have very ample canonical bundle, the
stable sheaves are torsion-free of rank 1, the singularities are normal and
Cohen-Macaulay, etc. This justifies Mumford’s philosophy that even moduli
spaces of well-behaved objects should be arbitrarily bad unless there is an
a priori reason otherwise.

Thus one can construct a smooth curve in projective space whose de-
formation space has any given number of components, each with any given
singularity type, with any given non-reduced behavior. Similarly one can
give a surface over Fp that lifts to Z/p7 but not Z/p8. (Of course the results
hold in the holomorphic category as well.)

It is usually difficult to compute deformation spaces directly from ob-
struction theories. We circumvent this by relating them to more tractable
deformation spaces via smooth morphisms. The essential starting point is
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Mnëv’s universality theorem.

The best-laid schemes o’ mice an’ men
Gang aft agley
An’ lea’e us nought but grief an’ pain
For promis’d joy!

— Robert Burns, “To a Mouse”, 1787

1. Introduction

Define an equivalence relation on pointed schemes generated by: If
(X, p) → (Y, q) is a smooth morphism, then (X, p) ∼ (Y, q). We call
the equivalence classes singularity types, and will call pointed schemes sin-
gularities (even if the point is regular). We say that Murphy’s law holds for
a moduli space if every singularity type of finite type over Z appears on that
moduli space. Although our methods are algebraic, our arguments all work
in the holomorphic category.

1.1. Main Theorem. The following moduli spaces satisfy Murphy’s law.

M1a. the Hilbert scheme of nonsingular curves in projective space
M1b. the moduli space of maps of smooth curves to projective space (and

hence Kontsevich’s moduli space of maps)
M1c. Gr

d [HM, p. 5], the space of curves with the data of a linear system of
degree d and projective dimension r

M2a. the versal deformation spaces of smooth n-folds (with very ample
canonical bundle, n ≥ 2)

M2b. the fine moduli stack of smooth n-folds with very ample canonical
bundle and reduced automorphism group (n ≥ 2)

M2c. the coarse moduli space of smooth n-folds with very ample canonical
bundle (n ≥ 2)
In M2 we may take the variety X to be simply connected (π1(X) = 0
or π

alg
1 (X) = 0 depending on the context), with bounded Picard

number (in fact Picard number 2), with hi(X,OX ) = 0 for 0 < i
< dim X, and with trivial automorphism group scheme.

M3. the Hilbert scheme of nonsingular surfaces in P5, and the Hilbert
scheme of surfaces in P4

M4. the Chow variety of nonsingular curves in projective space, and of
nonsingular surfaces in P5, allowing only seminormal singularities
in the definition of Murphy’s law (recall that the Chow variety is
seminormal [Kol2, Theorem 3.21])

M5a. branched covers of P2 with only simple branching (nodes and cusps),
in characteristic not 2 or 3

M5b. the “Severi variety” of plane curves with a fixed numbers of nodes
and cusps, in characteristic not 2 or 3
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M6. the moduli space of stable sheaves [Si]
M7. the versal deformation spaces of isolated normal Cohen-Macaulay

threefold singularities

The proof are given in the following sections.: M1 Sect. 5.7, M2
Sect. 5.8, M3 Sect. 5.2, M4–7 Sect. 6.

The meaning of Murphy’s law for versal deformation spaces is the ob-
vious one. We should say a few words on why certain moduli spaces exist.
1b: Although one usually discusses Kontsevich’s moduli space of stable
maps in characteristic 0, one may as well define the moduli space of maps
from nodal curves to projective space, with reduced automorphism group,
over SpecZ; this is a Deligne-Mumford stack, essentially by the same con-
struction as that of [FuP]. (It is not proper!) 2b: [A, p. 182–3] shows existence
for surfaces, and the argument applies verbatim in higher dimension. The
stack is Deligne-Mumford, locally of finite type. 2c: [Kol3, Theorem 1.8]
shows that there is an algebraic space coarsely representing these moduli
functors. (For surfaces, there is even a coarse moduli (algebraic) space of
canonical models of surfaces of general type [Kol3, Theorem 1.7].)

1.2. Philosophy. To be explicit about why these results may be surprising:
one can construct a smooth curve in projective space whose deformation
space has any given number of components, each with any given singularity
type, with any given non-reduced behavior along various subsets. Similarly,
one can give a smooth surface of general type in characteristic p that lifts
to Z/p7 but not to Z/p8.

We next give some philosophical comments, which motivated this result.
The history sketched in Sect. 2 also provided motivation.

The moral of Theorem 1.1 is as follows. We know that some mod-
uli spaces of interest are “well-behaved” (e.g. equidimensional, having at
worst finite quotient singularities, etc.), often because they are constructed
as Geometric Invariant Theory quotients of smooth spaces, e.g. the moduli
space of curves, the moduli space of vector bundles on a curve, the moduli
space of branched covers of P1 (the Hurwitz scheme, or the space of admis-
sible or twisted covers), the Picard variety, the Hilbert scheme of divisors
on projective space, the Severi variety of plane curves with a prescribed
number of nodes, the moduli space of abelian varieties (notably [NO]), etc.
In other cases, there has been some effort to try to bound how “bad” the
singularities can get. Theorem 1.1 in essence states that these spaces can
be arbitrarily singular, and gives a means of constructing an example where
any given behavior happens.

Murphy’s law suggests that unless there is some natural reason for the
space to be well-behaved, it will be arbitrarily badly behaved. For example,
arithmetically Cohen-Macaulay surfaces inP4 are always unobstructed [El];
but surfaces in general in P4 can have arbitrarily bad deformations (by M3).
Other examples are given in Table 1.

Furthermore, our experience and intuition tells us that pathologies of
moduli spaces occur on the boundary, and that moduli spaces of “good”
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Table 1.

Well-behaved moduli space Badly-behaved moduli space

curves surfaces (by M2b–c)
branched covers of P1 branched covers of P2 (by M5a)
(e.g. [HM, Theorem 1.53])

surfaces in P3 surfaces in P4 (by M3)
Picard variety over the its subscheme Gr

d (by M1c)
moduli space of curves

Severi variety of nodal plane curves Severi variety of nodal and
(e.g. [HM, Theorem 1.49]) cuspidal plane curves (by M5b)

objects are also “good”. Murphy’s law shows that this intuition is incorrect;
we should expect pathologies even where the objects being parameterized
seem harmless. Kodaira says “The theory of deformation was at first an
experimental science” [Kod, p. 259]. This result shows that our intuition is
flawed because it is based on experimental knowledge of a very small part
of the moduli spaces we are interested in; it supports Mumford’s philosophy
that pathologies are the rule rather than the exception. Alternatively, from
the point of view of A. Vershik, this result states that the “universality”
philosophy (e.g. [Ve, Sect. 7]) applies widely in algebraic geometry.

As a side comment, Theorem 1.1 indicates that one cannot hope to desin-
gularize the moduli space of surfaces, or any other moduli space satisfying
Murphy’s law, by adding additional structure; this would imply a resolution
of all singularities defined over Q. (Hence the program for desingulariza-
tion of the space of stable maps informally proposed by some authors seems
unlikely to succeed. However, see [VZ] for success in genus 1.)

1.3. Do complex manifolds “care aboutQ”? To obtain results over other
bases, such as algebraically closed fields such as C, note that the spaces
above behave well with respect to base change. Hence any singularity
obtained by base change from a finite type singularity over Z may appear.

In most of the above cases, no other singularity may appear. Indeed, any
moduli (pseudo-)functor admitting a smooth cover by a scheme locally of
finite type over Z necessarily only has singularities of this sort. For example,
the singularity

xy(y − x)(y − πx) = 0 (1)

in C2 may not appear as such a deformation space. Here is a quick sketch
of an argument. Consider those singularities consisting of four smooth
branches glued together along a divisorial subvariety V , no pair of branches
tangent. By considering the fourth-order formal neighborhood of the divisor
V in the union, we obtain a λ-invariant which lies in the function field of V .
(The kernel of the map Sym4(m/m2) → m4/m5 gives an element of
Sym4(m/m2), well-defined up to multiplication by a scalar. This quartic
has distinct roots, and hence gives an element λ of M0,4/S4

∼= A1.) This
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invariant is preserved by smooth pullback. Hence a singularity of type
xy(y − x)(y − mx) = 0 (m ∈ C) can appear on a scheme of finite type over
Q only if m ∈ Q.

Our motivating question was: how bad can a deformation space be? We
have thus answered this question completely in all cases but one. In the
case of M7, the versal deformation spaces of isolated singularities do not
obviously “come from” an Artin stack of finite type over Q.

As the deformation space of a compact complex manifold, with positive
canonical bundle, must be “defined over Q” (i.e. appears on a scheme of
finite type over Q), no matter how transcendental the defining equations of
the surface, we are led naturally to the following question.

1.4. Speculation. The deformation space of every compact complex mani-
fold is “defined over Q”, i.e. is of the same type as a singularity obtained
by base change from one of finite type over Q.

It would be remarkable if the speculation were true: somehow complex
geometry would “care” about Q. It would be also remarkable if the specula-
tion were false: then a compact complex manifold would be forced to have
this arithmetic property when its canonical bundle were positive, and it may
seem unreasonable that positivity might force this arithmetic property.

A vaguer speculation is that all “nice” holomorphic objects have defor-
mation spaces defined over Q. For example: does there exist an isolated
complex singularity whose deformation space is equivalent to (1)? What if
the singularity is required to be algebraic? Does there exist a compact com-
plex manifold whose deformation space has such singularity type? What if
the manifold is required to be projective? It would be very interesting to
have any example of a non-pathological object (e.g. isolated complex al-
gebraic singularity, complex projective manifold, or even non-algebraic
examples) with deformation space not equivalent to one of finite type
over Q.

Hence it would be very interesting to have a proof of the speculation,
or a single counterexample. We suspect that the speculation is false, as for
each of the moduli problems that are Artin stacks of finite type (overQ), the
construction requires some kind of boundedness argument, coming from
some positivity. (This is related in spirit to Belyi’s theorem.) Nonetheless,
it is not clear where one might find a counterexample.

1.5. Notation. Let Def denote the versal or Kuranishi deformation space
(not the space of first-order deformations). The object being deformed will
be clear from the context.

1.6. Acknowledgments. I am indebted to A.J. de Jong and S. Billey for
discussions that led to these ideas. I am grateful to the organizers and
participants in the 2004 Oberwolfach workshop on Classical Algebraic
Geometry for many comments. I thank B. Shapiro in particular for pointing
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out that Theorem 3.1 was first proved by Mnëv. This article relies heavily
on the work of F. Catanese, R. Pardini, B. Fantechi, and M. Manetti. I also
thank R. Thomas, J. Wahl, M. van Opstall, B. Conrad, B. Hassett, S. Kovács,
and E. Markman for sharing their expertise. Significant improvements to
this paper are due to them. I am also grateful to W. Fulton and A. Vershik.
I would like to acknowledge the hospitality of the Mazzeo Mathematical
Institute, where this research took place. Finally, I thank the referee for
several significant suggestions.

2. History, and further questions

2.1. Hilbert schemes. The motivation for both the equivalence relation ∼
and the terminology “Murphy’s law” comes from the folklore conjecture
that the Hilbert scheme “satisfies Murphy’s law”.

2.2. Law [HM, p. 18]. There is no geometric possibility so horrible that it
cannot be found generically on some component of some Hilbert scheme.

I am not sure of the origin of this philosophy, but it seems reasonable
to ascribe it to Mumford. This traditional statement of Murphy’s law is
admittedly informal and imprecise (see the MathReview [Lax]). Clearly not
every singularity appears on the Hilbert scheme of projective space. For
example, the only zero-dimensional Hilbert schemes (of projective space)
are reduced points. Allowing “smooth equivalence classes” of singularities
seems the mildest way of rescuing the law.

In his famous paper [Mu], Mumford described a component of the
Hilbert scheme of space curves that is everywhere nonreduced. Other ex-
amples of nonreduced components of the Hilbert scheme have since been
given [GP,Kl,E,M-DP]. Other pathologies relating to the number of com-
ponents of the Hilbert scheme of smooth space curves were given by Ellia,
Hirschowitz, and Mezzetti [EHM], and by Fantechi and Pardini [FP1]. (The
results of the latter will be essential to our argument.)

Raynaud’s example (see Sect. 2.3) gives a component of a Hilbert scheme
of smooth surfaces which exists in characteristic p, but does not lift to
characteristic 0 (by the standard methods of Lemma 5.1). Mohan Kumar,
Peterson, and Rao [MPR] give a component of the Hilbert scheme of smooth
surfaces in P4 which exists in characteristic 2 but does not lift. See [EHa,
Sect. 3] for more on problems of lifting curves out of characteristic p.

Although the Hilbert scheme of projective spaces was suspected to
behave badly, other moduli spaces were believed (or hoped) to be better-
behaved. We now discuss these.

2.3. Surfaces and higher-dimensional varieties. (See [Ca2] for an excel-
lent overview of the subject.) The first example of an obstructed smooth
variety was due to Mumford, obtained by blowing up his curve in P3 [Mu,
pp. 643–644]. The first example of an obstructed surface is due to Kas [Kas].
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Other examples were later given by Burns and Wahl [BW], and later many
others. Horikawa [Ho], Miranda [Mi], and Catanese [Ca3] gave examples of
generically nonreduced components of the moduli space of surfaces; in each
case the surfaces did not have ample canonical bundle, and this appeared
to be a common explanation of this pathology [Ca3, p. 294]. (Although the
examples of Catanese are surfaces of general type with nonreduced deforma-
tion spaces, their canonical models have smooth deformation spaces [Ca3,
Prop. 1.14].) Catanese conjectured that if S is a surface of general type
with q = 0 and KS ample, then the moduli space M(S) is smooth on an
open dense set ([Ca2, p. 34, 69], [Ca3, p. 294]). Theorem 1.1 M2b–c gives
a counterexample to this conjecture, and as Catanese pointed out, even to
the stronger conjecture where KS is very ample. Manetti gave an earlier
counterexample in his thesis [Man1, Corollary 3.4]; the added advantage of
M2 is that every (finite type) nonreduced structure is shown to occur.

V. Alexeev has recently suggested that the corrected hope should be that
the moduli space of surfaces is well-behaved when the canonical bundle of
the surfaces are “barely positive”. It would be very interesting to make this
statement precise.

Catanese showed that the moduli space of complex surfaces in a given
homeomorphism class can have arbitrarily many components of different
dimension [Ca1, Theorem A], and asked if this were still true for those in
a given diffeomorphism class [Ca1, p. 485]; Theorem 1.1 M2b–c answers
this in the affirmative. A prior answer was recently given by Catanese and
B. Wajnryb [CaW]. The added benefit of M2 is that all possibilities are
shown to occur.

Serre gave the first example of a projective variety that could not be
lifted to characteristic 0 [Ser]. Raynaud gave the first example of such
a surface [Ray]; W. Lang gave more [Lang]. R. Easton has used ideas related
to this paper to produce counterexamples to the Bogomolov–Miyaoka–Yau
inequality in positive characteristic [Ea].

2.4. Plane curves with nodes and cusps. If C is a reduced complex plane
curve, the classical question of “completeness of the characteristic linear
series” asks (in modern language) if an appropriate equisingular moduli
space is smooth. Severi proved this is true if C has only nodes ([Sev], see
also [Z, Sect. VIII.4]), and asserted this if C has nodes and cusps [W3].
(See [Z, pp. 116–117 and Sect. VIII] for motivation for the study of nodal
and cuspidal plane curves.) It was later realized that Severi’s assertion
was unjustified. Enriques tried repeatedly to show that such curves were
unobstructed [Ca2, p. 51]; Zariski also raised this question [Z, p. 221]. The
first counterexample was given by Wahl [W1, Sect. 3.6], and another was
given by Luengo [Lu]. Theorem 1.1 M5b shows that Severi was in some
sense “maximally wrong”.

2.5. Stable coherent sheaves. The moduli space of stable coherent sheaves
is due to Simpson [Si]. Our example is in fact a torsion-free sheaf on P5;
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the theory of the moduli of torsion-free sheaves was developed earlier by
Maruyama [Mar], building on Gieseker’s work in the surface case [Gi].

2.6. Singularities. The theory of deformations of singularities is too large
to summarize here. We point out however that it was already established by
Burns and Wahl [BW] that such deformation spaces can be bad, although
not this pathological.

2.7. Further questions. Theorem 1.1, and the philosophy and history
given above, beg further questions. Do deformations of surface singularities
(say isolated and Cohen-Macaulay) satisfy Murphy’s law? How about the
Hilbert scheme of curves in P3? The Hilbert scheme of points on a smooth
threefold? The moduli of vector bundles on smooth surfaces? Can the extra
dimensions allowed in the definition of type be excised, i.e. can “smooth” be
replaced by “étale” in the definition of type? (As observed above, this is not
possible for the Hilbert scheme.) Catanese asks if Murphy’s law for surfaces
is still true if we require not only that the surface has very ample canonical
bundle, but also that the canonical embedding is cut out by quadrics. Con-
jecture: for any given p, the surfaces whose canonical divisor induces an
embedding satisfying property Np satisfy Murphy’s law. The case p = 1 is
Catanese’s question. One might hope that for any nonsingular variety, a suf-
ficiently positive nonsingular divisor has this property; this would imply
that the conjecture is true, using the construction of Sect. 5.8.

3. The starting point: Mnëv’s universality theorem

We will prove Theorem 1.1 by drawing connections among various moduli
spaces, taking as a starting point a remarkable result of Mnëv. Define an
incidence scheme of points and lines in P2, a locally closed subscheme of
(P2)m × (P2∗)n = {p1, . . . , pm , l1, . . . , ln} parameterizing m ≥ 4 marked
points and n marked lines, as follows.

• p1 = [1; 0; 0], p2 = [0; 1; 0], p3 = [0; 0; 1], p4 = [1; 1; 1].
• We are given some specified incidences: For each pair (pi, l j), either pi

is required to lie on l j , or pi is required not to lie on l j .
• The marked points are required to be distinct, and the marked lines are

required to be distinct.
• Given any two marked lines, there a marked point required to be on both

of them.
• Each marked line contains at least three marked points.

3.1. Theorem (Mnëv). Every singularity type of finite type over Z appears
on some incidence scheme.

This is a special case of Mnëv’s Universality Theorem [Mn1,Mn2].
A short proof is given by Lafforgue in [Laf, Théorème 1.14]. Lafforgue’s
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construction does not necessarily satisfy the first, fourth and fifth require-
ments of an incidence scheme, but they can be satisfied by adding more
points. (The only subtlety in adding these extra points is verifying that in
the configuration constructed by Lafforgue, no three lines pass through the
same point unless required to by the construction.) Caution: Other exposi-
tions of Mnëv’s theorem do not prove the result scheme-theoretically, only
“variety-theoretically,” as this is all that is needed for most purposes.

For the rest of the paper fix a singularity type of finite type over Z. Our
goal will be to find this singularity type on each of the spaces given in The-
orem 1.1. By Mnëv’s Theorem 3.1, there is an incidence scheme exhibit-
ing this singularity type at a certain configuration {p1, . . . , pm, l1, . . . , ln}.
Consider the surface S that is the blow-up of P2 at the points pi . Let C be
the proper transform of the union of the l j , so C is a smooth curve (a union
of P1’s). This induces a morphism from the incidence scheme to the moduli
space of surfaces with marked smooth divisors.

3.2. Proposition. This morphism is étale at (P2, {pi}, {l j}) �→ (S, C).

Thus the singularity at (P2, {pi}, {l j}) has the same type as the moduli
space of surfaces with marked smooth divisor at (S, C).

Proof. We will produce an étale-local inverse near (S, C). Consider a defor-
mation of (S, C):

(S, C)

��

�
�

�� (S,C)

��
pt �

�

�� B.

(2)

Pull back to an étale neighborhood of pt so that the components of C are
labeled. The Hilbert scheme of (−1)-curves is étale over the base [GrFGA,
Sect. 5].

Let Ei be the (−1)-curve corresponding to pi . Pull back to an étale
neighborhood so that the points of the Hilbert scheme corresponding to
Ei extend to sections (so there are divisors Ei on the total space of the
family that are (−1)-curves on the fibers). By abuse of notation, we use
the same notation (2) for the resulting family. By Castelnuovo’s criterion,
S can be blown down along the Ei so that the resulting surface is smooth,
with marked sections extending {pi}. (Castelnuovo’s criterion over an Artin
local scheme follows from general results of J. Wahl. Suppose we have
a smooth surface X̃ over Artin local scheme Spec A with closed point
Spec k, such that X := X̃ ×A k contains a (−1)-curve E, and π : X → Y
is the blow-down. We seek a smooth Ỹ → Spec A, and X̃ → Ỹ extending
X → Y . By shrinking Y if necessary, we may assume Y is affine and π(E)
is cut out by 2 equations in H0(Y,OY ). [W2, Thm. 1.4(b)] states that the
desired X̃ → Ỹ → Spec A exists if H2(X,OX ) = 0 and H1(X̃,OX̃) is
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A-flat. But H2(X,OX ) = 0 as X may be covered by 2 affine open sets, and
H1(X,OX ) = H0(Y, R1π∗OX ) = H0(Y, 0) = 0, and by [W2, Cor. 0.4.2]
or direct induction, H1(X,OX ) = 0 implies H1(X̃,OX̃) = 0, as desired.
We note that Wahl’s results are independent of char k. The flat morphism
Ỹ → Spec A is then smooth because Y is smooth over k. For arguments in
the holomorphic category, see [Ho] and [KolM, Proposition 11.4.2].)

The central fiber is then P2, so (as P2 is rigid) the family is locally triv-
ial. The marked points p1, . . . , p4 give a canonical isomorphism with P2.
(We may need to restrict to a smaller neighborhood to ensure that these
points are in general position.) As the components {Cj} of C necessar-
ily meet various Ei , their images {lj} necessarily pass through the neces-
sary pi . ��

4. From abelian covers to Murphy’s law for surfaces

We use this intermediate moduli space of surfaces with marked divisors to
prove M2, by connecting such marked surfaces to abelian covers. We use
the theory of abelian covers developed by Catanese, Pardini, Fantechi, and
Manetti [Ca1,P,FP1,Man2]. (Bidouble covers were introduced by Catanese.
Pardini developed the general theory of abelian covers. Key deformation-
theoretic results were established by Fantechi-Pardini and Manetti.) Let
G = (Z/p)3, where p = 2 or 3 is prime to the characteristic of the residue
field of the singularity. Let G∨ be the dual group, or equivalently the group
of characters. Let 〈·, ·〉 : G × G∨ → Z/p be the pairing (after choice of
root of unity ζ), which we extend to 〈·, ·〉 : G × G∨ → Z by requiring
〈σ, χ〉 ∈ {0, . . . , p − 1}. Suppose we have two maps D : G → Div(S),
L : G∨ → Pic(S). We say (D, L) satisfies the cover condition [P, Propos-
ition 2.1] if (D, L) satisfies D0 = 0 and

pLχ =
∑

σ

〈σ, χ〉Dσ

for all σ , χ. (Equality is taken in Pic(S).)

4.1. Proposition (Pardini). Suppose (D, L) satisfies the cover condition,
and suppose the Dσ are nonsingular curves, no three meeting in a point,
such that if Dσ and Dσ ′ meet then they are transverse and σ and σ ′ are
linearly independent in G. Then:

(i) There is a corresponding G-cover π : S̃ → S with branch divisor
D = ∪Dσ .

(ii) S̃ is nonsingular.
(iii) π∗OS̃ = ⊕χOS(−Lχ).
(iv) π∗KS̃

∼= ⊕χKS(Lχ). The Galois group G acts on the left side in the
obvious way; it acts on the χ-summand on the right by the charac-
ter χ.
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Note for future reference that the branch divisor Dσ corresponds to the
subgroup of G generated by σ . (Note also that (iii) and (iv) are consistent
with Serre duality on S̃.)

Proof. (i) is [P, Proposition 2.1], (ii) is [P, Proposition 3.1], and (iii) is
a consequence of Pardini’s construction [P, (1.1)]. Pardini points out that
(iv) is a special case of duality for finite flat morphisms, see [Ha] Exer-
cises III.6.10 and Ex. III.7.2. (It also follows by a straightforward local
calculation. See [Ca1, p. 495] for the analogous proof for bidouble covers.
The generalization to abelian covers is analogous to Pardini’s proof of (iii).)

��
The next two examples apply to (S, C) produced at the end of Sect. 3. If

the character of the residue field is 2 (respectively 3), then only Example 4.3
(respectively 4.2) applies; otherwise both apply.

4.2. Key example: p = 2. Fix σ0 �= 0 in G. Let A be a sufficiently ample
bundle such that A ≡ C (mod 2). Let Dσ0 = C, D0 = 0, and let Dσ

be a general section of A otherwise, such that Dσ ′ meets Dσ ′′ transversely
for all σ ′ �= σ ′′. Let L0 = 0, Lχ = 2A if 〈σ0, χ〉 = 0 and χ �= 0, and
Lχ = (3A + C)/2 if 〈σ0, χ〉 = 1. (As Pic S is torsion-free, there is no
ambiguity in the phrase (3A + C)/2.) It is straightforward to verify that
(D, L) satisfies the hypotheses of Proposition 4.1.

4.3. Key example: p = 3. Fix σ0 �= 0 in G, and χ0 ∈ G∨ such that
〈σ0, χ0〉 = 1. Let A be a sufficiently ample bundle such that A ≡ C
(mod 3). Let Dσ0 = C, Dσ be a general section of A if 〈σ, χ0〉 = 1 and
σ �= σ0, and Dσ = 0 otherwise. Let

• Lχ = (8A + C)/3 if 〈σ0, χ〉 = 1
• L0 = 0
• Lχ = 3A if 〈σ0, χ〉 = 0 and χ �= 0
• L−χ0 = (16A + 2C)/3
• Lχ = (7A + 2C)/3 if 〈σ0, χ〉 = 2 and χ �= −χ0

It is straightforward to verify that (D, L) satisfies the hypotheses of Propos-
ition 4.1 (note that if σ �= 0, then at most one of {Dσ , D−σ } is nonzero).

4.4. Theorem. In Examples 4.2 and 4.3, if A is sufficiently ample, then:

(a) KS̃ is ample. In particular, S̃ is of general type, and is its own canonical
model.

(b) S̃ is regular: q(S̃) := h1(S̃,OS̃) = 0.
(c) The deformations of S̃ are the same as the deformations of (S, {Dσ}).

In particular, the deformations of G-covers are also G-covers.
(d) The deformation space of S̃ has the same type as the deformation space

of (S, C).
(e) S̃ has no infinitesimal automorphisms.



580 R. Vakil

Part (d) implies that the fine moduli stack of surfaces of general type
satisfies Murphy’s law. Of course (e) is immediate in characteristic 0, as
S̃ has ample canonical bundle, hence h0(S̃, TS̃) = h2(S̃,ΩS̃(KS̃)) = 0 by
Kodaira vanishing and Serre duality.

We will not need this fact, but it is true that by choosing A sufficiently
positive, one may show that KS̃ is very ample. I am grateful to F. Catanese
for pointing this out. The argument (directly generalizing Catanese’s argu-
ment [Ca1, p. 502] for bidouble covers) is given in an earlier version of this
paper [V, Theorem 4.4].

Proof. (a)

2KS̃ = π∗
(

2KS +
∑

Dσ

)
= π∗(2KS + C + qA)

where q = 6 if p = 2 and q = 8 if p = 3. If A is sufficiently ample, then
2KS + ∑

Dσ is ample, hence (as π is finite) KS̃ is ample.
(b) By the Leray spectral sequence,

h1(S̃,OS̃) = h1(S, π∗OS̃) =
∑

χ

h1(S, L−1
χ

) = 0

using Serre vanishing (for χ �= 0) and the regularity of any blow-up of
P

2 (for χ = 0).
(c) For example 4.2 (p = 2), the result follows from [Man2, Corol-

lary 3.23]; we restate the three hypotheses of Manetti’s result for the read-
er’s convenience. (i) S is smooth of dimension ≥ 2, and H0(S, TS) = 0.
(The latter is true because S has no non-trivial infinitesimal automor-
phism. Reason: any such would descend to an infinitesimal automorphism
of P2 fixing the pi , in particular p1 = [1; 0; 0], . . . , p4 = [1; 1; 1].)
(ii) H0(S, TS(−Lχ)) = Ext1

OS
(Ω1

S, L−1
χ ) = H1(S, L−1

χ ) = 0 (true by Serre
vanishing, and sufficient ampleness of A). (iii) H0(S, Dσ − Lχ) = 0 for
all χ �= 0, 〈σ, χ〉 = 0 (true by Serre vanishing). Hence (c) holds for Ex-
ample 4.2.

The paper [Man2] deals with (Z/2)r covers. However, [Man2, Corol-
lary 3.23] applies without change for (Z/p)r-covers. The only change in
the proof arises in the proof of the prior result [Man2, Proposition 3.16]; the
statement of this Proposition remains the same, and the proof is changed in
the obvious way. In particular, the fourth equation display should read

Ω1
X/Y =

⊕

σ

OX(−(p − 1)Rσ )

wσOX(−pRσ )
=

⊕

σ

ORσ
(−(p − 1)Rσ ).

Then the hypotheses of [Man2, Corollary 3.23] follow as in the case p = 2,
and we have proved (c) for Example 4.3 (p = 3) as well.

(d) Choose A = C + n pKS̃ for n � 0, so that its higher cohomology
vanishes. Then Def(S, {Dσ}) → Def(S, C) is a smooth morphism: in any
deformation of S the divisor class [Dσ ] extends (as C and KS̃ extend), and
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extends uniquely (by h1(S,OS) = 0), and the choice of divisor in the divisor
class is a smooth choice.

(e) Note that

h0 (
S̃, TS̃

) = h0 (
S, π∗TS̃

) =
∑

χ

h0 (
S, π∗TS̃

)χ

where the sum is the character decomposition. By [P, Proposition 4.1(a)],

h0
(
S, π∗TS̃

)χ = h0
(

S, TS
(

− log
∑

σ :〈σ,χ〉�=p−1

Dσ

)
⊗ L−1

χ

)

which is 0 by sufficient ampleness of A. (The case χ = 0 should be
considered slightly differently.) ��

At this point we have already proved M2a and M2b for surfaces, except
that our surfaces have automorphisms, are not obviously simply connected,
and have high Picard number. If we are willing to ignore these require-
ments, then we can prove M2c for surfaces as well, by showing that the
automorphism group scheme of S̃ is precisely G (so the isotropy group of
the moduli functor is constant near [S̃]), as follows. By Theorem 4.4(e),
S̃ has no nontrivial infinitesimal automorphisms. Then Fantechi and Par-
dini’s [FP1, Theorem 4.6] shows that S̃ has only |G| (noninfinitesimal)
automorphisms.

By taking the product of S̃ with general curves of sufficiently high genus,
we obtain an n-fold with deformation space of the same singularity type;
this argument is described in an earlier version of this paper [V, Sect. 5].
This proves M2, minus the requirements of simple connectedness etc.

5. Relating deformation spaces

We now describe three techniques that will relate deformation spaces
smoothly.

5.1. Lemma. Let X be a regular variety (h1(X,OX ) = 0) with a map
X → P

n, such that h1(X,OX(1)) = 0. Suppose either (i) h2(X,OX ) = 0,
or (ii) OX(1) is a Q-multiple of KX. Then Def(X → P

n) → Def X is
smooth.

Proof. Choose a basis for h0(Pn,O(1)), and let s0, . . . , sn be the restric-
tion of the basis to X. Then Def(X,OX(1); s0, . . . , sn ∈ H0(X,OX(1)))
→ Def(X → P

n) is smooth (of relative dimension 1). Furthermore,
Def(X,OX(1); s0, . . . , sn ∈ H0(X,OX(1))) → Def(X,OX(1)) is smooth
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by comparing the deformation-obstruction theories of the two functors:

−→ H0(X,OX(1)
)⊕n+1 −→ def

(
X,OX(1); s0, . . . , sn ∈ H0(X,OX(1))

)

−→ def
(
X,OX(1)

)

−→ H1
(
X,OX(1)

)⊕n+1 −→ ob
(
X,OX(1); s0, . . . , sn ∈ H0(X,OX(1))

)

−→ ob(X,OX(1)).

Here def denotes first-order deformations, and ob denotes obstructions.
Finally, to show that Def(X,OX(1)) → Def(X) is an isomorphism, note
that over any infinitesimal deformation of X, OX(1) deforms by (i) or (ii),
and deforms uniquely as h1(X,OX ) = 0. ��
5.2. Application: Proof of M3. By applying Lemma 5.1 to an embed-
ding S̃ → P

n = P5 by a sufficiently positive multiple of KS̃ (using The-
orem 4.4(b)), we see that the Hilbert scheme of nonsingular surfaces in P5

satisfies Murphy’s law. Using n = 4 instead yields a surface in P4 with
singularities in codimension 2; each consists of two nonsingular branches
meeting transversely. The deformations of such a singularity preserve the
singularity. (This can be checked formally locally; the calculation can then
be done using two transverse co-ordinate planes in A4, which is [Ha, Ex-
ercise 9.9].) Hence deformations of the singular surface in P4 correspond
to deformations of the nonsingular surface S̃ along with the map to P4,
concluding the proof of M3.

5.3. Deformations of blow-ups of projective space.

5.4. Theorem. Let f : X = BlZ P
N → P

N be the blow-up of PN along
a nonsingular subvariety Z, over a field. Then Def( f : X → P

N ) → Def X
is an isomorphism.

The definition of Def( f : X → Y ) is the obvious one, see for ex-
ample [Ran, Definition 1.1]. This result, in much more generality, is cer-
tainly known, but we were unable to find a precise statement in the literature,
so we have contented ourselves with the straightforward special case we
will use. In the smooth holomorphic case, the result is very similar to
Horikawa’s [Ho, Theorem 8.2].

Note that [Ran, Theorem 3.3] states that if f : X → Y is a morphism
with f∗OX = OY and R1 f∗OX = R2 f∗OX = 0, then Def( f : X → Y )
→ Def(X) is smooth. The proof seems to not need R2 f∗OX = 0, and
seems to give the stronger conclusion that Def( f : X → Y ) → Def(X) is
an isomorphism (see the e-print version of this paper). Thus Theorem 5.4
would follow. However, the referee notes that the proof in [Ran] is not
complete, since for Example [Ran, (6)] is not justified, as unless f is flat,
the hypotheses for the Grothendieck spectral sequence are not satisfied.
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Proof. Suppose X̃ is a deformation of X, i.e. we have a flat morphism
π : X̃ → Spec A to a local Artinian scheme with closed point Spec k,
and an isomorphism X̃ ×A k ∼= X. As h1(X,OX ) = h2(X,OX ) = 0, the
invertible sheaf OX(1) := f ∗OPN (1) extends uniquely to an invertible sheaf
L on X̃. As R1 f∗OX = 0 and the natural morphism OPN → f∗OX is an
isomorphism, we have that R1 f∗OX(1) = 0 and OPN (1) → f∗OX(1) is
an isomorphism. Then the Leray spectral sequence for f implies that (i)
h1(X,OX(1)) = 0 and (ii) the map H0(PN ,OPN (1)) → H0(X,OX(1)) is an
isomorphism. Thus R1π∗L = 0, so as π is flat, π∗L is locally free (= free),
of rank h0(X,OX(1)) = N + 1. (Here we are using cohomology and base
change, see for example [W2] Theorem 0.4 and corollaries.) Thus for each
deformation X̃, we get a unique f : X̃ → P

N
A , up to automorphisms of PN

A
fixing PN

k . ��
5.5. Fantechi and Pardini’s slicing trick. Our third smoothness criterion
is due to Fantechi and Pardini. If X ⊂ Pn is a subscheme, let Hilb(X) be
the (connected component of the) Hilbert scheme containing [X].
5.6. Theorem. (a) (Fantechi-Pardini [FP2, Proposition 4.2]) Let V ⊂ Pn

be a smooth, regular, projectively normal variety. Let H be a smooth hy-
persurface of degree l in Pn meeting V transversely along W, and let
U ⊂ Hilb(V ) × Hilb(H) be the open set of pairs (V ′, H ′) such that V ′ and
H ′ are smooth and transverse and V ′ is projectively normal. If l � 0, then
the morphism U → Hilb(W ) (induced by the intersection) is smooth.

(b) Furthermore, W is embedded by a complete linear system.

Fantechi and Pardini’s proof of (a) invokes Kodaira vanishing to show
that if F is a hypersurface of degree l then H1(F, NF/Pn ) = 0, but this may
be easily checked directly, so their result is not characteristic-dependent.

Proof of (b). If �W/V is the ideal sheaf of W in V , we have the exact sequence

0 −→ �W/V (1) −→ OV (1) −→ OW (1) −→ 0.

As �W/V
∼= OV (−l), h1(V,�W/V (1)) = 0 by Serre vanishing (as l � 0).

Thus H0(V,OV (1)) → H0(W,OW (1)) is surjective. As H0(Pn,OPn (1))
→ H0(V,OV (1)) is also surjective (V is embedded by a complete linear
system), the result follows. ��

5.7. Application: Proof of M1. By Lemma 5.1, embed S̃ in Pn by the com-
plete linear system of a sufficiently large multiple of KS̃, so Def(S̃ ↪→ P

n)

→ Def(S̃) is smooth. Theorem 5.6(a) (with V = S̃) then gives M1a: the
curve in question is the intersection of S̃ with a general hypersurface of
sufficiently high degree. Deformations of a smooth curve in Pn are the same
as deformations of the corresponding immersion, yielding M1b. Theo-
rem 5.6(b) gives M1c.
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5.8. Proof of M2. We now prove M2 for d-folds (d > 1). Our strategy
is a variation of Horikawa’s, and a similar strategy was used in Manetti’s
thesis [Man1, Sect. V.3]. Fix a singularity type, and choose a surface S̃ as
produced in Sect. 4 whose deformation space has that singularity type. Use
a sufficiently positive multiple of KS̃ to embed S̃ in PN (N ≥ d + 2). By
Theorem 5.4, Def(BlS̃ P

N ) has the same type as Def(S̃ ↪→ P
N ), which by

Lemma 5.1 has the same type as Def S̃. Note that BlS̃ P
N is

(*) simply connected, with Picard number 2, and with hi(O) = 0 for
0 < i < dim.

Use a sufficiently positive bundle to embed BlS̃ P
N in PN′

, and slice with
a hypersurface of sufficiently large degree to obtain W ↪→ P

N′
(dim W > d,

h1(W,OW (1)) = 0). By the Lefschetz hyperplane theorem, W satisfies
(*) as well. By Theorem 5.6, Def(W ↪→ P

N′
) has the same type as

Def(BlS̃ P
N ↪→ P

N′
), which in turn has the same type as Def(BlS̃ P

N )

(by Lemma 5.1) and hence Def S̃. Also by Lemma 5.1, Def W has the
same type as Def(W ↪→ P

N′
) and hence Def S̃. Furthermore, W has ample

canonical bundle. Use a complete linear system for a sufficiently positive
multiple of KW to embed W in PN′′

(so that h1(W,OW (1)) = 0).
Repeatedly slice W with hypersurfaces of sufficiently large degree, to

obtain a (d + 1)-fold X ′ ↪→ P
N′′

. (We will use X ′ in the proof of Propos-
ition 5.9 below.) Slice once more to obtain a d-fold X ↪→ P

N′′
. By the

Lefschetz hyperplane theorem, X also satisfies (*), and (by a short induc-
tion, using d > 1) h1(X,OX(1)) = 0. By repeatedly using Theorem 5.6,
Def(X ↪→ P

N′′
) has the same type as Def(W ↪→ P

N′′
), hence Def W

(Lemma 5.1), and hence Def S̃. By Lemma 5.1 again, Def X has the same
type as Def(X ↪→ P

N′′
). (We use the fact that W is pluricanonically embed-

ded in Lemma 5.1 in the case d = 2.) We have thus proved M2a. The proof
of M2b–c is now completed by the following result.

5.9. Proposition. X has trivial automorphism group scheme.

Proof. We first show that X has no infinitesimal automorphisms. (In char-
acteristic 0, this is clear, as KX is very ample; see the remark after the
statement of Theorem 4.4.) We have shown that S̃ has no infinitesimal au-
tomorphisms (Theorem 4.4(e)), and we construct X from S̃ by repeatedly
using three constructions, so we show that the desired property behaves well
with respect to these constructions. Let aut denote the space of infinitesi-
mal automorphisms. As aut S̃ = 0 and S̃ is embedded non-degenerately in
projective space PN , we have aut(S̃ ↪→ P

N ) = 0. As aut(S̃ ↪→ P
N ) = 0,

aut(BlS̃ P
N ) = 0 as well: any tangent field of the blow-up descends to a tan-

gent field on PN , which fixes S̃. If Z is a sufficiently positive nonsingular
divisor on a nonsingular Y , then aut Y = 0 implies aut Z = 0, from the
long exact sequence for 0 → TY (−Z) → TY (− log Z) → TZ → 0, using
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h1(Y, TY (−Z)) = 0 and h0(Y, TY (− log Z)) ≤ h0(Y, TY ) = 0. Hence we
have shown the rigidity of the following objects, in order:

S̃ �⇒ S̃ ↪→ P
N �⇒ BlS̃ P

N �⇒ W �⇒ X ′ �⇒ X.

We now show that X has no noninfinitesimal automorphisms. As X ′
has ample canonical bundle and no infinitesimal automorphisms, it has
finite automorphism group. Recall that X is the intersection of X ′ with
a hypersurface of sufficiently high degree. As X is embeddedQ-canonically
in PN′′

by a complete linear system, and Pic X ∼= Z2 is torsion-free, the
automorphisms of X are in bijection with automorphisms of PN′′

fixing X
(as a set). We will show that the only (N ′ ′+1)×(N ′′+1) matrices fixing X (as
a set) are multiples of the identity. Over the space M of (N ′′ +1)× (N ′′ +1)

matrices not fixing X ′, consider the intersection X ′ ∩ φ(X ′) ⊂ M × PN′′

(where φ is the universal matrix over M). The fibers of X ′ ∩ φ(X ′) → M
each have dimension at most d = dim X ′ − 1. Choose the degree of X to
be bigger than the degree of any d-dimensional fiber of X ′ ∩ φ(X ′) → M
(which is a semicontinuous function on M). Then X cannot be fixed by any
matrix in M.

Hence any automorphism of X arises from one of the (finite number of)
automorphisms of X ′. Choose a point of X ′ on which Aut X ′ acts faithfully;
any hypersurface vanishing at only one point of the orbit is necessarily fixed
only by the identity automorphism of X ′. Thus a general hypersurface X on
X ′ inherits only the trivial automorphism from X ′. ��

6. From surfaces to the rest of Theorem 1.1

6.1. Proof of M4. Near a seminormal point of the Hilbert scheme, there
is a morphism from the Hilbert scheme to the Chow variety [Kol2, Theo-
rem 6.3]. If the point of the Hilbert scheme parametrizes an object that is
geometrically reduced, normal, and of pure dimension, then this morphism
is a local isomorphism [Kol2, Corollary 6.6.1]. Hence M4 follows from
M1a and M3.

6.2. Proof of M5. M5a follows from Lemma 5.1, by taking three sections
of a sufficiently positive multiple of KS̃ on S̃. J. Wahl provides the connection
to M5b:

6.3. Theorem (Wahl [W1, p. 530]). Let Y → P
2 be a finite surjective

morphism, Y a nonsingular surface, whose branch curve C is reduced with
only nodes and cusps as singularities. Then via taking branch curves, there
is a one-to-one correspondence between infinitesimal deformations of the
morphism Y → P

2 and infinitesimal deformations of C in P2 which preserve
the formal nature of the singularities.
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Wahl’s paper assumes that the characteristic is 0, but his proof of this
result uses only that the characteristic is not 2 or 3. To reassure the reader,
we point out the places where characteristic 0 is used before Wahl’s proof of
Theorem 6.3 concludes on p. 558. Proposition 1.3.1 and equation (1.5.3) are
not used in the proof. Theorem 2.2.8 and its rephrasing (Theorem 2.2.11)
give a normal form for stable singularities, and use only that the character-
istic is not 2 or 3. (One might conjecture that an appropriate formulation is
true in characteristic 2 and 3, but I have not attempted to prove this.) Part
M5b then follows from the next result.

6.4. Proposition. If S̃ is any smooth projective surface over an infinite
base field of characteristic not 2 or 3, and L′ is an ample invertible sheaf,
then for n � 0, three general sections of L′⊗n give a morphism to P2 with
reduced branch curve with only nodes and cusps as singularities.

The result is tedious and relatively straightforward to prove, and the
proof is omitted. (However, it is given in the first e-print version of this paper
[V, Proposition 6.2].) In characteristic 0 the result is classical (presumably
nineteenth century); the proof is by taking n large enough that L′⊗n is very
ample, and then taking a generic projection. Because we need the result
in positive characteristic as well, a slightly different approach is necessary,
although as usual we show the result by showing that “nothing worse can
happen,” by excluding possibilities on a case-by-case basis.

6.5. Proof of M6. (I am grateful to E. Markman and R. Thomas for dis-
cussions.) The sheaf in question will be the ideal sheaf � of the image of S̃
in P4 (from M3). The next result implies M6.

6.6. Proposition. If Y is a nonsingular variety with h1(Y,OY ) = 0, and
X ↪→ Y is a subscheme of codimension at least 2, then the deformation
space of X ↪→ Y is canonically isomorphic to the deformation space of the
ideal sheaf � of X (as a torsion-free sheaf).

Proof. (The central observation here is due to Kollár.) We have the obvious
morphism Def(X ↪→ Y ) → Def � . We describe the morphism in the other
direction. Let J be the universal torsion-free sheaf over Def � (a sheaf
on Y × Def � ). The reflexive hull J∗∗ is an invertible sheaf by [Kol1,
Lemma 6.13], and thus a deformation of the structure sheaf over the central
fiber. As h1(Y,OY ) = 0, there are no nontrivial deformations of the structure
sheaf, so J∗∗ ∼= OY×Def � . The canonical morphism J → J∗∗ ∼= OY×Def � is
an inclusion, as J is torsion-free (by flatness, and torsion-freeness over the
central fiber). Thus J is an ideal sheaf. Let Q be the quotient OY×Def �/J.
As the restriction � of J to the central fiber is torsion-free, the restriction
of J → OY×Def � to the central fiber remains injective, hence Q is flat
over Def � . (We use here the local criterion for flatness [Ei, Theorem 6.8,
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Exercise 6.5]. Let (R,m) be the complete local ring such that Spf R =
Def � . We check R-flatness of Q by verifying that TorR

1 (R/m,Q) = 0.
As OY×Def � is R-flat, this is equivalent to showing that the restriction of
J → OY×Def � to the central fiber remains injective.) Thus we have described
a morphism Def � → Def(X ↪→ Y ). By following the universal families
under both morphisms, we see that the two morphisms are inverse to each
other. ��

6.7. Proof of M7. We obtain the threefold singularity by embedding S̃ in
projective space by a complete linear system arising from a sufficiently
positive multiple of KS̃ (Lemma 5.1 again). The deformations of the cone
over the surface are the same as the deformations of the surface in projective
space, by the following theorem of Schlessinger.

6.8. Theorem (Schlessinger [Sch, Theorem 2]). Let S̃ ⊂ Pn be a projec-
tively normal variety (over a field) of dimension ≥ 2, such that

h1 (
S̃,OS̃(v)

) = h1 (
S̃, TS̃(v)

) = 0

for v > 0. Then the versal deformation spaces of S̃ in Pn and the singularity
CS̃ (the cone over S̃) are isomorphic.

(Although Schlessinger works in the complex analytic category, his
proof is purely algebraic, and characteristic-independent.) This singularity
is Cohen-Macaulay by the following result, concluding the proof of M7.

6.9. Proposition. Suppose S̃ is a Cohen-Macaulay scheme (over a field),
hi(S̃,OS̃) = 0 for i = 1, . . . , dim S̃ − 1 and h0(S̃,OS̃) = 1. Then the
embedding of S̃ by a sufficiently ample line bundle is arithmetically Cohen-
Macaulay.

This result follows from a statement of Hartshorne and Ogus [HaO,
p. 429 #3]. See [GW, pp. 207–208] or [CuH, Lemma 1.1(2)] for a proof.
The hypotheses follow from the regularity of S̃, Theorem 4.4(b). (It turns
out that in characteristic 0, 2KS̃ is ample enough, using Kodaira vanishing.)
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