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ABSTRACT
We present a comprehensive overview of automata tech-
niques for deciding first order logical theories. These tech-
niques are useful in Integer Linear Programming and Mixed
Integer Linear Programming, which in turn have wide appli-
cations in diverse areas of computer science and engineering.

We have several goals in this paper. The first is to solidify
the theory underpinning the automata techniques. Since
much of the previous literature in this subject was published
only in the form of Extended Abstracts, many of the proofs
to key theorems were missing. We fill in these gaps.

Another objective is to explore extending the automata ap-
proach to address questions beyond satisfiability. A key
problem for the (M)ILP community has been the enumera-
tion of solutions to systems. We present a way of addressing
this question within the automata framework.

Finally, we consider alternate approaches to (M)ILP and
discuss their relative advantages and disadvantages as com-
pared to the automata formulation.
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1. INTRODUCTION
Examples abound of applications requiring solutions to sys-
tems of constraint equations. One usual formulation of such
systems is by Integer Linear Programming (ILP). ILP has
been used in discrete optimization problems and control the-
ory, in modern compilers for such tasks as dependence anal-
ysis for loop transformation [22], and for verification of hard-
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ware design [10], [13]. Moreover, extending our attention to
Mixed Integer Linear Programming (MILP), where variables
may range over either real numbers or the integers, leads to
applications in hybrid systems and timed systems.

(M)ILP solvers must be able to answer several questions.
The first is: given a system of linear equations and inequal-
ities, is there a solution to the system? If so, it must be
possible to exhibit such a solution. And finally, it is often
desirable (especially in compiler applications) to enumerate
all possible solutions, or give bounds on their range.

(M)ILP may be represented as a fragment of particular first
order logical theories. Hence, a decision procedure for the
satisfiability question of these theories satisfies to answer
the first question above. Moreover, if this decision proce-
dure is constructive (i.e. yields an example if the formula is
satisfiable) then the second question is answered as well. An
advantage to treating the subject of ILP via logic techniques
is that it is likely that the resulting decision procedure will
be extendible to more complicated systems.

2. ILP AND PRESBURGER ARITHMETIC
Presburger arithmetic is the first order theory of

(Z,+,6, 0, 1).

The atomic formulae are linear equations and inequalities of
the form

a1x1 + · · ·+ anxn = c

or

a1x1 + · · ·+ anxn 6 c

where (a1, . . . , an) ∈ Zn and c ∈ Z. Note that scalar multi-
plication is allowed since, for example, a1x1 is a notational
abbreviation for x1 + · · · + x1 (a1 times). Moreover, note
that by negation, multiplication by −1, or subtraction from
c by 1, any formula of the form a1x1+ · · ·+anxnRc, for R ∈
{=,6,>, <,>} is representable in Presburger arithmtetic.

Observe that Presburger Arithmetic is a stronger system
than that needed to represent ILP. In fact, ILP formulations
consist exactly of disjunctions of conjunctions of atomic for-
mulae and their negations. Hence, we need only focus on
the quantifier free fragment of Presburger Arithmetic to im-
plement an ILP solver. In 1927, Presburger gave a decision
procedure for the full theory [21], which was improved by
Cooper [14] and by Reddy and Loveland in 1978 [23]. Each



of these is based on the standard logic technique of quan-
tifier elimination for formulae in prenex normal form. This
approach can be made fairly efficient for deciding the satis-
faction of single formulas. However, it neither gives a sample
vector satisfying the formula, nor enumerates the solutions.
Moreover, while the procedure is elegant mathematically, it
does not readily lend itself to implementation and automa-
tion. Hence, to use Presburger arithmetic as the domain of
the ILP satisfaction problem, we will need a different deci-
sion procedure.

2.1 An Automata Theoretic Formulation
The main idea is the following: Given a formula ϕ(x1, . . . , xn)
in Presburger Arithmetic, generate a finite automaton Aϕ
accepting the set {(x1, . . . , xn) ∈ Zn : (x1, . . . , xn) � ϕ}.
Then, use automata techniques to ask questions about the
satisifiability of the formula and its solutions. We include
definitions of the basic terminology of finite automata to
introduce the notation used hereafter.

Definition 1. A Finite Automaton on finite words (FA)
is a tuple (S,Σ, δ, I, F ) such that S is a finite set of states,
Σ is a finite set of symbols (the alphabet), δ ⊂ (S×Σ)×S is
the transition relation, I ⊂ S is the non-empty set of initial
states, and F ⊂ S is the set of accepting states. For A a
FA, a run of A on input w = σ0 . . . σn ∈ Σ∗ is a sequence
of states s0 . . . sn+1 such that s0 ∈ I and for each 0 6 i 6 n,
(si, σi, si+1) ∈ δ. A run of A is successful if the last state of
the run is in F . A word w ∈ Σ∗ is accepted by A if there
is some run of A on w which is successful. L(A) ⊂ Σ∗ is the
set of words accepted by A. A FA is called deterministic
if I is a singleton set and δ is a (possibly partial) function
S × Σ → S.

2.1.1 Translation
The following algorithm is that of [25, 26], extending that
of [9]. The translation is performed inductively, correspond-
ing to the recursive definition of formulae. Hence, we first
describe the automata corresponding to atomic formulae,
and then those for conjuctions, disjunctions, negations, and
quanitified formulae.

First, some technical points. Given ϕ(x1, . . . , xn) a formula
in Presburger arithmetic with free variables x1, . . . , xn, vec-
tors satisfying ϕ must lie in Zn. Hence, the language of Aϕ,
must be a subset of Zn. For implementation purposes, vec-
tors of integers are represented as vectors of binary encod-
ings where each component has the same encoding length.
Hence, the alphabet of Aϕ is Σ = {0, 1}n, so that each unit
of input gives one more bit to the encoding of each com-
ponent in the vector. The encodings have the MSB first
and use 2’s complement for negative numbers. Finally, we
require that any automaton accepting some encoding of a
vector accepts all valid encodings of the vector (i.e., that we
allow for arbitrarily many repetitions of the sign bit). Note
that the translation described below is easily generalizable
to base r.

2.1.2 Automata for Equations
Let ϕ be a1x1 + · · · + anxn = c for a = (a1, . . . , an) ∈ Zn
and c ∈ Z. Abbreviating the scalar product as a · x, ϕ may
be written as a · x = c.

The intuition behind the definition for Aϕ is that each state
will represent the (integer value of the) computation a · x
for the currently known value of x. Transitions between
states will then reflect the contribution of the most recently
“learned”bit of x to the computation.

Therefore, we define A1
ϕ = (Z ∪ {si}, {0, 1}n, δ1, {si}, {c}),

where

δ1(s,b) =

(
−a · b if s = si

2s+ a · b if s ∈ Z

The transition function corresponds to a 2’s complement
interpretation of the first bit1, and corresponds to shifting
the current value of the computation to the left and adding
the newest contribution for non-sign bits.

Observe that Aϕ is deterministic. Hence, there is exactly
one run of Aϕ for any input w ∈ Σ∗.

Theorem 1. 2 For any word w ∈ Σ∗, w ∈ L(A1
ϕ) iff w

encodes a solution x to ϕ ≡ a · x = c.

Proof. We prove the stronger statement: for any word
w ∈ Σ∗ and any s ∈ S, there is a run of A1

ϕ on w ending
at state s iff w encodes a solution x to a · x = s. The
proof is by induction on the length of words. Suppose w =
σ0, encoding the vector x = (−σ0,1, . . . ,−σ0,n). Then the
run of A1

ϕ is sis1 where s1 = −a · σ0. Thus, s1 = −a ·
(−σ0,1, . . . ,−σ0,n) = a · x, as required.

For the inductive step, suppose that for any encoding σ0 . . . σm

of y, y satisfies a · y = s iff the run of A1
ϕ on the encoding

ends at s. Let w = σ0 . . . σmσm+1. Then w encodes the
vector x = 2y + σm+1. The run of A1

ϕ on w is the result
of appending s → s′ to the run on σ0 . . . σm, where by the
definition of the transition function,

s′ = 2s+a·σm+1 = 2(a·y)+a·σm+1 = a·(2y+σm+1) = a·x

as required.

An immediate problem with this definition is the infinite
state space. However, we may observe that once the au-
tomaton is in a state whose aboslute value is sufficiently
large, the accepting state is not reachable. Formally, let
||a||1 =

Pn
i=1 |ai| and suppose |s| > max (|c|, ||a||1). Then

note that for any b ∈ Σ,

|2s+ a · b| 6 2|s|+ |a · b| 6 2|s|+ ||a||1.

Therefore, any transition from state s satisfying the above
conditions leads to a state s′ such that |s′| > |c|. In turn,
s′ satisfies the same magnitude conditions as s and hence
transitions from it also move away (in absolute value) from
c. Thus, for any state s such that |s| > max (|c|, ||a||1), there

1Recall that a word b1 . . . bn in 2’s complement encodes the
value

−b12n−1 + b22
n−2 + · · ·+ bn−12

1 + bn.

2This is one of the cases in which the correctness proof was
missing from the literature.



is no path from s to c. In light of this, define

A2
ϕ =((Z ∩ {s : |s| 6 max (|c|, ||a||1)}) ∪ {si, s+, s−},

{0, 1}n, δ2, {si}, {c})

where,

δ2(s,b) =

8>>><>>>:
−a · b if s = si,

s′ if s′ = 2s+ a · b, s′ 6 max (|c|, ||a||1) ,
s+ if 2s+ a · b > max (|c|, ||a||1) ,
s− if 2s+ a · b < −max (|c|, ||a||1) .

Note that the result of Theorem 1 still holds for L(A2
ϕ) since

modifying the transition function as above does not affect
which words are accepted.

The automatonA2
ϕ is deterministic and gives a correct trans-

lation but is not minimal. To eliminate those states from
which the accepting state is not reachable, we construct the
automaton backwards and only include the necessary states.
The algorithm is

1. Create a table H for the set of states and a

list L for the active states. Initialize H to

{si, c, s+, s−} and L to {c}.

2. Repeat until L = ∅: Remove a state s from L.
For every b ∈ {0, 1}n,

• If s0 = s−a·b
2

∈ Z, then if s0 is not already

in H, add s0 to H and L, and add a

transition labelled by b from s0 to s.

• If s = −a·b then add a transition labelled

by b from si to s.

3. Put I = {si} and F = {c}.

4. Complete the automaton by directing all missing

transitions to either s+ or s−.

Observe that the automaton resulting from this construc-
tion, which we call Aϕ, is a subset of A2

ϕ and hence, is
deterministic. Moreover, L(Aϕ) = L(A2

ϕ).

2.1.3 Automata for Inequalities
The algorithms described in this section are based on [26].

Let ϕ be a1x1 + · · · + anxn 6 c for a = (a1, . . . , an) ∈ Zn
and c ∈ Z As before, ϕ may be written as a · x = c.

We apply the same intuition for representing inequalities as
automata as we did in the equation case. Moreover, we may
use the same reasoning for pruning the state space. Hence,
define

Ain1
ϕ =((Z ∩ {s : |s| 6 max (|c|, ||a||1)}) ∪ {si, s+, s−},

{0, 1}n, δin1 , {si}, {c})

However, the transition function and/ or the set of accepting
states must be defined a little differently. One possibility is
to leave the transition function as is but to define F = {s ∈
S : s ∈ Z and s 6 c}. However, as we will see later, it will

be helpful to have only one accepting state. To that end, we
might define

δin1 =δ2 ∪ {(s,b, s′) :

there is some s′′ 6 s such that δ2(s,b) = s′′}.

Thus, Ain1
ϕ has the same states, set of initial states, and set

of accepting states as the FA for the equation with the same
coefficients, but has more transitions.3

It is possible to prune the FA as we did in the case of au-
tomata representing equations. The algorithm in this case
is:

1. Create a table H for the set of states and a

list L for the active states. Initialize H to

{si, c, s+, s−} and L to {c}.

2. Repeat until L = ∅: Remove a state s from L.
For every b ∈ {0, 1}n:

• Let s0 = b s−a·b
2

c. If s0 is not already in

H, add s0 to H and L, and add a

transition labelled by b from s0 to s.

• If s = −a·b then add a transition labelled

by b from si to s.

3. Put S = H, δin
′
the transitions defined in step

2, I = {si} and F = {s ∈ S : s 6 c} ∪ {s−}.

4. Complete the automaton by adding, for each state

s ∈ H, input b ∈ {0, 1}n

δin(s,b) = δin
′
(s,b) ∪min{s′ ∈ S : s′ > 2s+ a · b}4.

Note that Ainϕ =
`
S, {0, 1}n, δin, I, F

´
is not deterministic.

However, deterministic automata are much easier to imple-
ment and manipulate. In general, determinizing a FA comes
at an exponential cost in the size of the state space (since
the subset construction is used). However, the automata
corresponding to linear inequalities are of a particular kind.

Definition 2. [26] Given a non-deterministic FA
A = (S,Σ, δ, {s0}, F ), for each s ∈ S letAs = (S,Σ, δ, {s}, F ).
Then A is said to be ordered if there is a constant-time de-
cidable strict total order ≺ on S (or S \ {si} ) such that for
any pair of states s1 ≺ s2, L(As1) ( L(As2).

Theorem 2. [26] A non-deterministic ordered FA can be
determinized in linear time and with no penalty in the num-
ber of states.

Proof. (Sketch of proof in [26]) Without loss of gener-
ality, we can remove transitions from a state on a given
input to all but the ≺-greatest one, since the set of words
accepted from all other states is a subset of those accepted

3This version of the forward construction is not included in
[26].
4Note that we consider s+ as greater than all other states,
and s− as less than all other states. There is little discussion
of s+, s− in [26].



from it. Since this algorithm merely removes transitions at
each state, it takes linear time in the size of the automaton,
and produces a deterministic FA with the same set of states
as the original non-deterministic FA.

Theorem 3. [26] The FA Ainϕ defined above is ordered
under the total order on the states which is the inverse of
the arithmetic ordering on the integers.

Proof. (Sketch of proof in [26]) This follows from the
interpretation of the states as labels for the right hand side
of an inequality whose left hand side is a · x and analysing
the relationship of words starting at p, q for p < q.

Hence, following the proof in [26], let

δindet(s,b) = min{δin(s,b)}.

The FAAinϕ,det where δin is replaced by δindet is a deterministic
FA satisfying the property that its language is exactly binary
encodings of vectors in Zn satisfying ϕ.

2.1.4 Automata for General Formulas
We recall the standard procedures for Boolean operations
on (complete) deterministic FA. Given A accepting L(A),
an automaton ¬A accepting Σ∗\L(A) is that resulting from
flipping the accepting/ nonaccepting status of each state (i.e.
by putting F ′ = S \ F ).

Given A1,A2 deterministic FA whose languages are respec-
tively L(A1), L(A2). The automaton A1 ∩ A2 accepting
L(A1)∩L(A2) is defined via the product construction (which
preserves the deterministic nature), putting

F∩ = {(s1, s2) ∈ S1 × S2 : s1 ∈ F1 and s2 ∈ F2}.

Similarly, the automaton A1 ∪A2 accepting L(A1)∪L(A2)
is defined via the product construction with

F∪ = {(s1, s2) ∈ S1 × S2 : s1 ∈ F1 or s2 ∈ F2}.

Now suppose ϕ ≡ ¬ψ where ψ is a formula for which we
have an equivalent FA, Aψ. The set of free variables in ϕ is
the same as the set of free variables in ψ. Assume without
loss of generality there are n free variables. Then,

{x ∈ Zn :x satisfies ψ} =

Zn \ {x ∈ Zn : x does not satisfy ψ}.

Similarly:

{w ∈ ({0, 1}n)∗ : w encodes a vector satisfying ψ} =

({0, 1}n)∗ \ {w ∈ ({0, 1}n)∗ :

w does not encode a vector satisfyingψ}

since any word over {0, 1}n encodes some vector of integers.
Hence, putting Aϕ = ¬Aψ gives an automaton accepting
any and all encodings of vectors satisfying ϕ.

Following similar arguments, we conclude that if ϕ ≡ ψ1 ∧
ψ2, we put Aϕ = Aψ1 ∩Aψ2 . If ϕ ≡ ψ1 ∨ψ2, then we define
Aϕ = Aψ1 ∪ Aψ2 .

In the above, we have defined FA corresponding to any quan-
tifier free formula of Presburger arithmetic, and hence have
a translation for any formula representing an ILP system.
To demonstrate the natural extendibility of the translation
scheme, we examine automata for quantified formulae.

Let ϕ ≡ ∃xiψ, let Aψ be the FA corresponding to ψ, and
assume that ψ has n free variables (including xi). Then,

L(Aψ) = {w ∈ ({0, 1}n)∗ : w encodes a vector satisfyingψ}.

We would like to define an automaton over {0, 1}(n−1) whose
language is

{w ∈
“
{0, 1}(n−1)

”∗
: for each 0 6 j 6, length(w)

there is σj ∈ {0, 1} such that w′ defined by inserting these

bits in the ith positions of each component is inL(Aψ)}

But, this is (almost) exactly the projection operation applied
to finite automata5. The slight modification we must make
is that the FA resulting from projection may no longer ac-
cept all encodings of vectors satisfying ϕ. To illustrate this,
consider the case where (10, 2) is encoded in the language
of Aψ, i.e. as (0m01010, 0m00010). After projecting out the
first variable, only encodings of 2 with at least three lead-
ing zeroes are included in the language. To ensure that the
automata conforms to our specifications, we can apply the
following modification:

For each b ∈ {0, 1}(n−1), add to δ(si,b) any states which

are reachable from si by bk for some finite k.

Note that the resulting FA is non-deterministic. Hence, in
order for the induction to go through (since our algorithm
for complementation requires that the FA be deterministic),
we must determinize the resulting FA (this time possibly
incurring the exponential growth in the size of the set of
states).

For universally quantified formulas, we first convert to the
equivalent existential formula (∀x(ϕ) ≡ ¬∃x(¬ϕ)) and then
apply automata transformations as above.

This translation mechanism has been implemented in [7].6

2.1.5 Satisfiability and Solutions
Now that we have a translation procedure yielding for each
formula ϕ a FA Aϕ which accepts exactly the encodings of
vectors satisfying ϕ, we can hope that we will be able to
exploit automata techniques to easily look for a solution to
the satisfiability question.

In fact, this is the case. Recall that a formula is satisfiable
if and only if there is some vector which gives a true inter-
pretation to the formula. Hence, ϕ is satisfiable if and only
if there is some word accepted by Aϕ. We have therefore
reduced satisfiability in Presburger arithmetic to the empti-
ness question for FA.

5For more on FA operations, see e.g. [17].
6In fact, a modification of this algorithm is used where input
is read in sequentialized rather than n bits at a time. The
algorithm is very much in the same spirit, but with a few
details changed.



Moreover, the emptiness question is efficiently decidable. To
see this, recall that we can abstract away most of the struc-
ture of any FA and obtain a directed graph (digraph). The
question can then be stated as “Is there a path from some
state in I to some state in F?”. A linear time (in the size
of the digraph) algorithm to answer this question is given in
[4] and included below:

• function accepting-path(state s)

var (s1, a, s2);

if s ∈ F do return True;

for each (s1, a, s2) ∈ δ such that s1 = s do

if accepting-path(s2) then return True;

return False;

• function isEmpty()

for each s ∈ I do

if accepting-path(s) then return False;

return True;

An advantage of this approach to satisfiability is that if
L(Aϕ) is not empty, the algorithm for determining this gives
an example of a word accepted Aϕ. Then, simple transla-
tions from binary notation give a vector of integers satisfying
ϕ. This is helpful for debugging when ILP is used to formu-
late model checking problems.

However, an even more useful property would be to enumer-
ate the set of vectors satisfying ϕ. The main application of
enumeration is in generating loop bounds for loop nests un-
der affine loop transformations. Given Ai 6 b, a description
of the original loop bounds, and an invertible linear trans-
formation u = T i on the indices of the loops, we get the
system: AT−1u 6 b. This is a system of linear inequalities.
If we could enumerate the solutions to this system, i.e. give
bounds on the values of the components of U , we would have
the bounds for the transformed loop nest.

Note that if this question is definable in the first order theory
of Presburger arithmetic, then it is decidable by the tech-
niques we have discussed above. Consider7, only those cases
where

ϕ(x1, . . . , xn) ≡(a1,1x1 + · · ·+ a1,nxn 6 b1) ∧ · · · ∧
(am,1x1 + · · ·+ am,nxn 6 bm).

We abbreviate this as Ax 6 b and apply the following pro-
cedure: To get bounds on x1, we define the following two
formulae

ψ1(x1) ≡ ∃x2 . . . xn(ϕ(x1, . . . , xn)∧
∀y(ϕ(y, x2, . . . , xn) → x1 6 y))

ψ′1(x1) ≡ ∃x2 . . . xn(ϕ(x1, . . . , xn)∧
∀y(ϕ(y, x2, . . . , xn) → y 6 x1)).

7We make this simplication since it corresponds to the ap-
plication in which we are interested.

These are first order formulae in Presburger arithmetic with
one free variable, whose semantics are that the value satis-
fying them is the minimum (resp. maximum) value for x1

which might satisfy ϕ. By the translation to automata dis-
cussed above, we can build Aψ1 , Aψ′

1
and check for satis-

fiability. If they are satisfied, then we explicitly get (from
the accepting path through the automaton) bounds for the
first variable. Let m1,M1 be these bounds. For any sub-
sequent variable, we define similar formulae ψk, ψ

′
k which

incorporate the bounds on previously considered variables:

ψk(xk) ≡∃xk+1 . . . xn∀x1 . . . xk−1(

[m1 6 x1 6 M1 ∧ · · · ∧mk−1 6 xk−1 6 Mk−1] →
[ϕ(x1, . . . , xn)∧

∀y(ϕ(x1, . . . , xk−1, y, xk+1, . . . , xn) → xk 6 y)])

ψ′k(xk) ≡∃xk+1 . . . xn∀x1 . . . xk−1(

[m1 6 x1 6 M1 ∧ · · · ∧mk−1 6 xk−1 6 Mk−1] →
[ϕ(x1, . . . , xn)∧

∀y(ϕ(x1, . . . , xk−1, y, xk+1, . . . , xn) → y 6 xk)])

Again, we get formulae in one free variable that represent
the bounds on the current variable. Once these formulae
are converted to equivalent automata, we can quickly find
an encoding for this bound, and hence its value. Thus, the
ease with which the automata formulation handles quan-
tified statements allows it to generate bounds for vectors
satisfying constraint equations.

2.2 Other Approaches to the ILP Problem
As already mentioned, it is not necessary to formulate the
ILP question as satisfaction of formulas in Presburger arith-
metic. In fact, the two current standards for solving ILP
are not implemented as decision procedures to particular
logic theories. These are the Simplex Method, and Fourier-
Motzkin Elimination (aka the Omega Test).

2.2.1 Simplex Method
The Simplex method for ILP refers to an approach which
recognizes that each linear inequality characterizes a half-
space and hence the feasibility region is a convex region in
Zn. Then, solutions must exist within this convex region,
and optimal solutions exist at vertices. This was one of the
first methods for solving ILP problems and yields helpful ge-
ometric intuitions. It has the nice feature that optimal (with
respect to some linear objective function) solutions are rel-
atively easy to find if they exist. However, the enumeration
problem is not handled well by the Simplex method.

2.2.2 Omega
The Omega test [22] is an extension of Fourier-Motzkin elim-
ination of variables. Given a system of linear equalities
and inequalities over integer variables, the method first uses
Gaussian elimination and the gcd test to get solutions for the
equations (if they exist). If there are no solutions, then we
know the whole system is unsatisfiable and are done. How-
ever, if there are solutions to the equations in the system,
the variables in the inequalities are parametrized by these,
and then Fourier-Motzkin elimination is used to project each
variable out of the remaining inequalities. The projected



variable is expressed in terms of maxima and minima in-
volving expressions in the still-free variables. At the end,
we remain with inequalities involving a single variable and
integers. This is easy to simplify, and then ripple the effect
to all the variables.

An advantage of the Omega approach to the ILP problem
is that it provides a method to enumerate the solutions of a
system of inequalities (which may represent the loop bounds
of a loop nest)[1]. This is done, again, by projecting out
variables one at a time and hence getting bounds for each
variable in terms of other variables. The resulting formula-
tions corresponds exactly to loop bounds for nested loops.

Note that a central disadvantage in implementations of both
these methods is that they are conservative. In other words,
it is possible that they will have false positives in that they
claim a solution exists when none does. Moreover, by the
nature of both the Omega method and the Simplex method,
eliminating this conservativity is hard. On the other hand,
false positives never happen with the automata approach
since the decision procedure for non-emptiness is construc-
tive.

2.3 Results and Evaluation
The automata approach to ILP via Presburger arithmetic
may be evaluated by various metrics. We might ask how
large the automaton need to be for an arbitrary formula.
Since the emptiness problem for automata may be solved
in time linear in the size of the automata, the space com-
plexity plays a significant role in the potential performance
of this approach. More concretely, experimental results for
standard test questions in the area give an idea about the av-
erage case performance of this scheme as compared to other
techniques.

2.3.1 Complexity Results
In the paper introducing the automata algorithm [26], Wolper
and Boigelot argue that there is a nonelementary upper
bound on the size of the FA generated by a Presburger for-
mula, and hence a nonelementary upper bound on the time
for solving the satisfiability question.

More recently, [18] presents the worst case complexity for
any minimal deterministic FA of Presburger arithmetic for-
mulae. In this paper, Klaedtke proposes some optimizations
to the translation algorithm in [26] and proves that the tight
worst case upper bound on the size of such FA for Presburger
formulae is triply exponential.

However, we comment here is that the results above pay
no heed to the time required to construct the FA. Indeed,
the complexity bounds here reflect the size of the automata
alone. Hence, these results are most important if the FA are
used as many times as possible so that the size of the FA
has the highest bearing on the performance of the algorithm,
rather than the time required to construct it.

2.3.2 Experimental Results
As a result of considerations like the above, experimental
study in addition to theoretical analysis is helpful in deter-
mining the efficacy of the automata approach.

A preliminary study is presented in [16]. It is interesting
to note that in this study, the authors take the opposite
approach to ours and consider ILP as a possible approach
to deciding satisifiability of quantifier-free Presburger for-
mulae. Since this decision problem is NP-complete, the au-
thors of the study focussed on how the performance of the
tools varied for different classes of formulae. The authors
compare the performance of Boigelot’s automata-based tool
[7] and another automata based tool (SMV, introduced in
[16]) with LP SOLVE (a simplex-based open source tool),
CPLEX (a commercial simplex-based linear programming
tool) and OMEGA (a tool based on the Fourier-Motzkin
alogirthm, [22]). Tests were run on randomly generated rel-
atively small quantifier-free Presburger formulae. The pa-
rameters in the tests were the number of variables in the
formulae, the number of atomic formulae, and the maxi-
mum value of the coefficients. The results are summarized
below.

• ILP 8 tools were able to successfully complete runs for
formulae with up to 20 atomic formulae. In general, no
increase in run-time was noticed when the number of
atomic formulae or the number of variables increased.
However, once the coefficients became larger than ap-
proximately 107, many failures and overflows occurred.

• OMEGA exhibited similar performance to the ILP meth-
ods but incurred more segmentation faults when the
values of the coefficients approached the limits of inte-
ger or float representation in the computer used.

• Automata techniques successfully completed runs for
formulae with up to 20 atomic formulae9. However,
they exhibited an exponential increase in run-time with
an increase in the number of variables. Formulae with
coefficients up to 230 were handled successfully with
little change in run-time10.

An important observation of this study is that the automata
techniques outperform both the ILP tools and OMEGA for
formulae which have real vector solutions but whose integer
vector solutions are either non-existent or sparse. A statis-
tical analysis of ILP problems used in practice could shed
light on which class of problems ILP toolsets should opti-
mize for. An alternate approach would be to use some of the
highly-tuned classes of test problems instead of randomly
generating cases. A source for such problems is [3].

However, the run-time results of this study do not necessar-
ily paint a full picture. OMEGA and the ILP tools use the
native computer arithmetic for their calculations. Hence,
their algorithm can run much more quickly but may have
significant round-off errors or overflows. These sorts of er-
rors may be hard to detect. Hence, systems which run ILP

8LP SOLVE and CPLEX had similar performance records
and hence are included under a single heading.
9LASH could handle formulae with 20 atomic formulae,
whereas SMV could not complete runs with fewer atomic
formulae.

10SMV performed much better than LASH in this case, per-
haps due to differences in implementing the transition rela-
tions.



problems and are safety critical may not be willing to risk
such faults.

3. MILP
Mixed integer linear programming is a framework in which
we have constraint equations with variables that may vary
over the real numbers or over the integers. As mentioned
earlier, these types of systems are used to represent hybrid
systems (in which a continuous system is interacting with
a discrete program, inducing both continuous and logical
constraints).

Analogous to the role Presburger arithmetic played in ex-
pressing ILP systems, the quantifier-free fragment of the first
order theory of the real numbers with integers as a distin-
guished subset and with addition and order (hereafter de-
noted as (R,Z,+,6, 0, 1)) suffices to formulate MILP ques-
tions. It has been shown that this theory is decidable (via
model theoretic techniques by Zakon and Robinson, and
by quantifier elimination by Weispfenning[24]). Note that
atomic formulae in this theory are of the form

a1x1 + · · ·+ anxn = c

or

a1x1 + · · ·+ anxn 6 c

where (a1, . . . , an) ∈ Zn and c ∈ Z. Other inequality re-
lations may be expressed as complements of these atomic
formulae, perhaps after multiplying each of the constants
by −1.

3.1 Automata Techniques for MILP
There are several challenges to be tackled when extend-
ing the automata techniques to the first order theory of
(R,Z,+,6, 0, 1). We must formulate a tractable encoding
scheme to allow for representation of real vectors. Then, we
must describe the automata which will be capable of recog-
nizing infinite words. Finally, we define the translation for
formulas in the mixed linear arithmetic theory to automata
and explore the graph theoretic algorithm for emptiness.
The following algorithm follows closely the one presented in
[5], [8].

3.1.1 Binary Encodings of Real Vectors
Real vectors with n components are encoded via their infi-
nite binary representation such that

w = wI ∗wF

where wI ∈ ({0, 1}n)∗ and wF ∈ ({0, 1}n)ω. Note that the
integer part length of the encodings of each component of the
vector must be the same. Negative numbers are represented
with 2’s complement notation.

Observe that there are infinitely many such encodings for
each vector. One cause for the multiple representations is
the possibility of repeating the sign bit arbitrarily many
times. Another is the fact that any fraction which may be
represented with finitely many bits has two encodings: one
which has infinitely many zeroes as its tail, and one which
has infinitely many ones as its tail. As in the finite words
case, this algorithm generalizes easily to base r.
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3.1.2 Automata on Infinite Words
Since we encode real vectors as infinite words, the automata
which serve as translations for arithmetic formulae must be
able to accept or reject infinite strings.

Definition 3. A Büchi automaton (BA) [11], [12] is a
tuple

(S,Σ, δ, I, F )

where S is a finite set of states, Σ a finite alphabet, δ ⊂
S × Σ × S the transition relation, I ⊂ S the initial states,
F ⊂ S the accepting states. ForA a BA, a run ofA on input
w ∈ Σω is a sequence of states s0, s1, s2 . . . such that s0 ∈ I
and for each i, (si, σi, si+1) ∈ δ. A run of A is successful run
visits F infinitely many times. A word w ∈ Σω is accepted
by A if there is some run of A on w which is successful.
L(A) ⊂ Σω is the set of words accepted by A. A BA is called
deterministic if I is a singleton set and δ is a (possibly
partial) function S × Σ → S.

A well-known fact [11], [12] is that the set of Büchi automata
recognizable languages is closed under union, intersection,
projection, and complementation. However, unlike in the
case of automata on finite words, this set of languages does
not coincide with the languages recognizable by determinis-
tic Büchi automata. Fortunately, we will see later that our
construction stays within a class of automata which can be
determinized.

However, since we would like these automata to “concen-
trate”on encodings of real vectors, we must restrict our at-
tention to a particular class of Büchi automata.

Definition 4. A Real Vector Automaton (RVA) [5] for
vectors in Rn is a Büchi automaton over Σ = ({0, 1} ∪ {∗})n
such that

1. Every word w accepted by the automaton is of the
form wI∗wF where wI ∈ ({0, 1}n)∗ and wF ∈ ({0, 1}n)ω.

2. For every vector x ∈ Rn, either all encodings of x in
binary are accepted, or none are.

An example of a RVA is included as Figure 1.

An interesting feature of the definition is that it is easy to
construct a RVA for Zn. We include the RV A representing
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Z as an example. This is helpful since instead of worrying
about a two-sorted system where variables range over either
the reals or the integers, we can assume all variables are
real-valued, and then use the RVA recognizing integers to
constrain certain variables to be integers.

3.1.3 Translation
The goal of our translation algorithm is: given a formula in
the first order theory of (R,Z,+,6, 0, 1), construct a RVA
representing the set of all vectors in Rn satisfying the for-
mula.

As in the Presburger arithmetic case, we will proceed in-
ductively. Our main goal will be to build the RVA in two
parts: one accepting the integer parts of solutions, and one
accepting the fractional parts.

3.1.4 RVA for Equations
Suppose ϕ ≡ a ·x = c for a, c as before. Write x = xI + xF.
Then for any encoding w of x, w = wI ∗ wF and wI ∗ 0ω

is an encoding for xI, 0 ∗wF is an encoding for xF. Define
α = Σai<0ai, α

′ = Σai>0ai. Then since each component of
the vector xF is in the interval [0, 1],

a · xI + a · xF = c

α 6 a · xF 6 α′

c− α′ 6 a · xI 6 c− α

Moreover, by the gcd test for Diophantine equations,

gcd(a1, . . . , an)|a · xI

Hence, the language of all encodings of all elements of the
set of vectors satisfying ϕ may be written as

L =
[

β:χ(β)

({wI ∈ Σ∗ : a · [wI ∗ 0ω]2 = β}·

{∗n} · {wF ∈ Σω : a · [0 ∗wF]2 = c− β})

where

χ(β) ≡(
ˆ
c− α′ 6 β 6 c− α

˜
∧

(∃m ∈ Z)(β = m gcd(a1, . . . , an))).

Hence, the RVA representing the set of vectors satisfying ϕ
can be decomposed as at most (α′ + α) RVA, each of which
consists of

* si
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Figure 3: The decomposition of RVA.

• An automaton on finite words over Σ = {0, 1}n accept-
ing all wI ∈ Σ∗ such that a · [wI ∗ 0ω]2 is a solution to
a given linear equation.

• A transition between the two parts corresponding to
reading the words containing the vector of fractional
separator symbols.

• A Büchi automaton over Σ = {0, 1}n accepting all
wF ∈ Σω such that a · [0∗wF]2 is a solution to a given
linear equation.

For the integer part automaton, the techniques presented in
the ILP section suffice. So, it remains to consider the frac-
tional part automaton recognizing all solutions x ∈ [0, 1]n to
a ·x = c−β for some β. For convenience, we write γ = c−β.
The intuition behind the automaton we construct will be
that each state represents some integer,s, with the property
that any vector, x ∈ [0, 1]n, encoded by a path starting at
that state and continuing infinitely long, satisfies a · x = s.

Formally: since we are looking for fractional solutions only,
the only states necessary are those labelled by integers in
S = [α, α′]. Also, according to our intended interpretation of
the labels for the state, the initial state will be that labelled
by γ. To completely specify the RVA, it remains only to
define the transition relation. For s ∈ S,d ∈ {0, 1}n, define
s′ = 2s− a · d and put

δ(s,d) =

(
s′ if s′ ∈ S
∅ otherwise.

Theorem 4. 11 Aϕ = (S,Σ, δ, I = {γ}, F = S) is a
Büchi automaton representing the set of solutions to ϕ in
[0, 1]n.

Proof. We will show that any encoding of a vector of
fractional numbers satisfying ϕ is accepted by Aϕ, and that
any accepting run of Aϕ corresponds to a solution of ϕ.

For the forward direction, suppose that w ∈ ([0, 1]n)ω is an
encoding of a solution x ∈ [0, 1]n to ϕ. Then, we will show
that there is an infinite run of Aϕ on w. Observe that it
suffices to prove that at each state of the run (where the
current state is s and the current input is wi), 2s− a ·wi ∈
[α, α′]. This is enough since it is exactly in this case that
the transition function is defined. The proof is by (strong)
induction and we prove the stronger statement that

1. At each state of the run, there is a transition out of
this state via the current input,

11This theorem is mentioned in neither [5] not [8] but as
it is very important for the soundness of this translation
algorithm, we work it through and include it here.



2. and at each state s of the run, if s′ is the next state
we transition to (by above) and if y, z are encoded by
paths labelled by bits in w starting from s, s′ (resp.),
then if a · y = s, a · z = s′.

In the base case, the current state is γ and the current input
is the MSB, w0, of an encoding of a solution to a · x = γ.
So,

1

2
a ·w0 + a · [0 ∗ 0wtail]2 = γ.

Note that the maximum value of the scalar product of a and
the vector containing all bits other than the MSB of w (i.e.
the tail) occurs when the the components corresponding to
positive elements in a have maximum value, and components
corresponding to non-positive elements in a have zero value.
Similarly, the minimum value of the scalar product occurs
when components of the tail corresponding to negative ele-
ments in a have maximum value, and all other components
have zero value. And, the maximum value of a binary frac-
tion with zero MSB is 1

2
. Hence,

2γ − a ·w0 = 2a · [0 ∗ 0wtail]2

α 6 2γ − a ·w0 6 α′.

Therefore, there is a transition out of the initial state on the
MSB of w.

Let s1 = δ(γ,w0). We observe that any path from s1 is
labelled by a word u such that if v labels a path starting at γ
and going to s1, v = w0u. Then if we treat v,u as fractional
binary representations of y, z respectively, y = 1

2
(w0 + z).

If a · y = γ,

a · z = 2a · y − a ·w0 = 2γ − a ·w0 = s1.

Thus, if y is encoded by a path starting at γ and is a solution
to a·y = γ and if z is encoded by the same path but starting
at s1 (i.e. truncating its first bit), then z satisfies a · z = s1.

For the inductive step, we suppose that the current state of
Aϕ is some sm and the current input bit is wm. Then we
assume that at each previous state there was a transition
out of the state on the input bit. Hence we have a sequence
γ, s1, s2, . . . , sm where the path through this sequence is la-
belled by the first m bits of w. Moreover, at each previous
state, we assume (for the induction) that there is a relation-
ship between words starting at those paths and satisfiability
of a linear equation whose left hand side is a ·x. The current
input is the (m+1)-st bit, wm, of an encoding of a solution
to a ·x = γ. By the inductive hypothesis, it is also the MSB
of an encoding of a solution to a · x = sm. Once this is
realized, the same reasoning as in the base case show that
α 6 2sm − a · wm 6 α′ and therefore there is a transition
out of sm allowed by δ. Let sm+1 = δ(s,wm). Again, we
apply analogous reasoning to the argument in the base case
to get the second part of the inductive claim.

Hence, the induction holds and we have shown that if w is
an encoding of a solution to a · x = γ then there is a run of
Aϕ on w which is successful.

Conversely, suppose r = γ, s1, s2, . . . is a run of Aϕ on w ∈
({0, 1}n)ω which is successful. We would like to prove that

w encodes a solution to a · x = γ. By definition of success
of a run on a Büchi automaton and since the set accepting
states is finite, there is some state which is visited infinitely
many times during r.

A lemma will be helpful here: If there is a path labelled by
d0, . . . ,dm between states s, s′, then if d,d′ are words la-
belling paths starting at s, s′ (resp.) such that d = d0 . . .dnd

′

and if y, z are the vectors represented by d,d′ (resp.) then

(a · y − s) =
a · z− s′

2,+1
.

Again, we prove the lemma by induction. For m = 0, then
y = 1

2
(z + d0) so a · y = 1

2
(a · z + a · d0). Moreover, by

definition of the transition relation, s′ = 2s− a · d0. Hence,
a · y − s = 1

2
(a · z − s′). For the inductive step, suppose

that for all k 6 m, if d0, . . . ,dk is a path between states
s′′, s′ and if d′′,d′ are words labelling paths starting at s′′, s′

(resp.) such that d′′ = d0 . . .dkd
′ and if y, t are the vectors

represented by d′′,d′ (resp.) then

(a · y − s′′) =
a · t− s′

2k+1
.

Then consider a path labelled by d0, . . . ,dm+1 between
states s, s′. Let d, d′ be words labelling paths starting at
s, s′ (resp.) such that d = d0 . . .dn+1d

′ and let y, z be the
vectors represented by d, d′ (resp.). Let d′′ = dm+1d

′ be
a path starting at state s′′ and let t be the vector repre-
sented by d′′. Then t = 1

2
(dm+1 + z). The definition of the

transition relation gives that a · dm+1 = 2s′′ − s′. Hence,
a · t− s′′ = 1

2
(a · z− s′). Since s′′ lies on a path of length m

from s, we apply the inductive hypothesis to get

a · z− s′ = 2(a · t− s′′) = 2(2m+1(a · y − s))

as required.

Why did we prove this lemma? Well, let s′ be the state in S
which is visited infinitely many times during r. Then there
are infinitely many indices mi for which s′ = smi . But, by
the lemma, for each such mi, if we let y, z be the vectors
represented by the path of the run starting at γ, smi (resp.)

(a · y − γ) =
a · z− s′

2mi+1
.

Since mi gets arbitrarily large and

|a · z− s′| 6 |a · z|+ |s′| 6 2α′

it must be the case that a ·y− γ = 0, i.e. that y, the vector
encoded by the run r is a solution to ϕ, as required.

So, we conclude that the algorithm presented in [5] cor-
rectly yields Büchi automata corresponding to linear equa-
tions with real variables.

There are some design details involved in implementing this
RVA. Since the body of the automaton (the set of states and
the transition relation) depends only on the left hand side of
ϕ and hence is independent of β, the states and relations for
each of the integer and fractional parts of the automaton cor-
responding to different values of β can be shared. Then, the
transition on the fractional separator connects those parts of
the automaton that correspond to β being the integer part
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Figure 4: Shared states for automata corresponding
to different values of the right hand side.

and c − β being the fractional part. The following figure is
a picture of how the sharing of states works.

A final note about efficiently implementing the above algo-
rithm: since the gcd algorithm can be quite time-expensive,
it may not be wise to compute it. Hence, we could define

χ(β) ≡
`
c− α′ 6 β 6 c− α

´
and have perhaps more transitions between the integer and
fractional part. The benefit of such an optimization would
depend on the size of the coefficients a1, . . . , an, c.

3.1.5 RVA for Inequalities
The construction in this case is very similar to what we saw
above for equalities. Let ϕ ≡ a1x1 + · · ·+ anxn 6 c, which
we abbreviate as a · x 6 c. We decompose the set of all
encodings of solutions in the same way:

L =
[

β:χ(β)

({wI ∈ Σ∗ : a · [wI ∗ 0ω]2 6 β}·

{∗n} · {wF ∈ Σω : a · [0 ∗wF]2 6 c− β})

where

χ(β) ≡
`
c− α′ 6 β 6 c− α

´
.

Again, we can construct the RVA by computing finite au-
tomata on finite words accepting encodings of integer so-
lutions to some linear inequality, and concatenating with
Büchi automata representing sets of vectors in [0, 1]n which
satisfy some linear inequality. The finite automata on finite
words were discussed in an earlier section. It suffices to mod-
ify the construction of Büchi automata for linear equalities
to get the Büchi automata accepting the fractional parts.
Define Aϕ as the Büchi automaton representing solutions to
a · x = γ in [0, 1]n by

Aϕ = (S = [α, α′] ∩ Z, {0, 1}n, δ, {γ}, S)

where for each s ∈ S,d ∈ {0, 1}n, put s′ = 2s− a · d and

δ(s,d) =

(
s′ if s′ ∈ S or s′ > α′

∅ otherwise.

A partial proof of the correctness of this automaton is be-
low:12 Given s, s′ ∈ S connected by transition on d, let
w,w′ be words labelling paths starting at s, s′ (resp.) and

12Again, the authors in [5] did not provide any discussion of
correctness.

x,x′ the vectors encoded by w,w′ (resp.). Then w = dw′

and hence x = 1
2
(d + x′). So if a · x 6 s,

1

2
(d + x′) =a · x 6 s

1

2
(2s− s′ + x′) 6 s

a · x′ 6 s′.

This supports the intuition that for each s ∈ S, the vectors
encoded by infinite paths starting from s satisfy a·x 6 s. For
s′ > α′, note that since for x ∈ [0, 1]n, the set of solutions
to a · x 6 s′ is the same as the set of solutions to a · x 6 α′.
A full proof of correctness is similar to that for equations
given above. Hence, it is not included here.

Once we have defined the integer and fractional part of the
RVA for inequalities, we form the full RVA by concatenating
the two part (with a transition labelled by the fractional sep-
arator), and allowing multiple use of states and transitions
as before.

3.1.6 Weak B̈uchi Automata and RVA
Before we generalize the constructions above to arbitrary
formulae in (R,Z,+,6, 0, 1), let us examine the structure of
the RVA so far.

Definition 5. A Büchi automaton is weak if there is a
partition of its state set S into disjoint subsets Q1, . . . , Qm
such that

1. for each Qi either Qi ⊂ F or Qi ∩ F = ∅, and

2. there is a partial order on {Q1, . . . , Qm} such that
Qj 6 Qi if Qj is reachable from Qi (i.e. if there is a
path in the underlying digraph of the Büchi automaton
from some state in Qi to some state in Qj).

Theorem 5. [6]13 The RVA constructed for equalities and
inequalities with real-valued free variables are weak Büchi
automata.

Proof. Partition the states S into strongly connected
components14. Note that each strongly connected compo-
nent will be either entirely within the integer part of the
RVA or entirely within the fractional part of the RVA. By
definition, all nodes in the integer part are non-accepting
and all nodes in the accepting part are accepting. Hence,
the first requirement is met. To fulfill the second condition,
consider the reachability relation on the strongly connected
components. By definition of strongly connected, this rela-
tion is reflexive, anti-symmetric, and transitive. Hence, it is
a partial order and respects reachability.

Therefore, we may now exploit beneficial features of weak
Büchi automata.

13This theorem was stated but not proved in [6].
14Strongly connected components are maximal subgraphs in
which each node is reachable from any other node. We allow
reachability if paths are of zero length, and hence all nodes
are in some strongly connected component.



Definition 6. A co-Büchi automaton is a finite state
automaton on infinite strings whose runs are successful if
they infinitely often avoid the set of accepting states.

Fact: A weak Büchi automaton can be represented as an
equivalent (i.e. accepting the same set of words) weak co-
Büchi automaton. This is done by flipping the accepting/
non-accepting status of each state.

Theorem 6. Weak Büchi automata can be determined by
a “breakpoint”construction. ([20], [19])

Proof. Let A = (S,Σ, δ, I, F ) be a weak Büchi automa-
ton and let A′ = (S,Σ, δ, I, F ′ = S \ F ) be the equivalent
weak co-Büchi automaton. Define A′′ = (S′′,Σ, δ′′, I ′′, F ′′)
to be

• S′′ = 2S × 2S , I ′′ = {(I, ∅)}, F ′′ = 2S × {∅}

• For (Q, ∅) ∈ S′′, a ∈ Σ: δ′′((Q, ∅), a) = (T, T \ F ′).
For (Q,R) ∈ S′′ with R 6= ∅, a ∈ Σ: δ′′((Q,R), a) =
(T,U \ F ′). Where,

T = {p ∈ S : ∃q ∈ Q (p ∈ δ(q, a))}

U = {p ∈ S : ∃r ∈ R (p ∈ δ(r, a))}.

Note that this is a deterministic automaton. Also, when
A′′ is in state (Q,R), R is the set of states of A which
are reachable in A′ by a run whose corresponding run of A′′

hasn’t passed through a state in F ′ since the last breakpoint
(a state of the form (Q, ∅) ) .

It now follows readily (by tracing runs of corresponding au-
tomata and recalling definitions) that L(A′′) = L(A′) =
L(A).

Unfortunately, the procedure illustrated in the theorem above
does not in general yield a weak automaton. However, we
have the following theorem from [6]:

Theorem 7. Every deterministic RVA representing a set
definable in (R,Z,+,6, 0, 1) is inherently weak, i.e. has no
reachable strongly connected components of its transition graph
which have both accepting and non-accepting cycles.

Proof. (Sketch of proof in [6]) Given a deterministic au-
tomaton representing a set definable in the theory above,
call the set it represents S. Then S ∈ Fσ ∩ Gδ in the Eu-
clidean topology. It follows that the set of all words encoding
S, (L)(S) is in the same topological class over the ω-word
topology. Finally, since the automaton is deterministic and
its language is in this particular topological class, it is in-
herently weak.

Recall that our goal is to give automata representing sets
of vectors satisfying first order formulae in (R,Z,+,6, 0, 1).
Hence, the theorem above applies for all the automata we

construct. Moreover, given a deterministic inherently weak
Büchi automaton, it is easy to transform it to a weak Büchi
automaton: for each state, if it is in a strongly connected
component with at least one accepting state, add it to the
set of accepting states.

3.1.7 RVA for General Formulae
Equipped with the theoretical tools of the previous section,
we can generalize our construction of RVA to arbitrary for-
mulae [8]. For atomic formulae, we use the explicit construc-
tions discussed earlier to get weak RVA. For the Boolean op-
erations, we assume by induction that we have constructed
the RVA accepting the sets of vectors satisfying the subfor-
mulae and hence need only worry about how to combine
these RVA to represent the main connective. For conjunc-
tions and disjunctions, we need RVA recognizing the inter-
section and union (resp.) of sets of real vectors. Note that it
suffices to define RVA recognizing the intersection and union
of the sets of encodings of real vectors. This may be done by
the product construction15, which preserves the weak nature
of the automata.

For formulae whose main connective is negation, we need
a RVA recognizing the complement of a set of real vectors.
The first step is to determinize the given RVA using the
“breakpoint construction”. By the topological theorem in
the previous section, the resulting automaton is inherently
weak and hence can easily be made weak. Then we comple-
ment the deterministic weak automaton by switching the ac-
cepting / non-accepting status of each state16. This ensures
that no encodings of vectors which were earlier accepted are
now accepted. However, the automaton may accept words
which do note encode any vector. Hence, to yield a RVA we
intersect the automaton with the RVA for Rn.

Last, we consider formulas whose main operation is quan-
tification. As in the Presburger arithmetic case, if the quan-
tifier is universal, we replace the formula with its equivalent
negated existential form. For an existential formula, we first
remove from each transition label the symbol corresponding
to the variable to be projected out. This may (and proba-
bly will) destroy any determinism the automaton has, but
will not affect its weak nature. Then (again, as in the finite
words case), we modify the resulting automaton to ensure
that it accepts all encodings of any vector it accepts. Recall
that this amounts to adding transitions from the initial state
to some of the states already reachable from it. Hence, the
resulting RVA remains weak.

[7] also includes a (sequentialized) implementation of the
algorithm translation formulae of (R,Z,+,6, 0, 1) to RVA.

3.1.8 Satisfiability and Solutions
Given a RVA representing a set of real vectors, we can use
techniques for checking emptiness of the language of the
RVA to check if there are any vectors in the set. Since the

15The simple product construction does not work in general
for Büchi automata, but since weak automata are very sim-
ilar to finite automata on finite words, it is correct in this
case.

16Again, this mirrors the complementation algorithm for de-
terministic automata on finite words.
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Figure 5: A lasso in a Büchi automaton.

RVA is a Büchi automaton, we can use Büchi’s characteri-
zation theorem [12] which says that the language of a Büchi
automaton is not empty if and only if there is an (I, F )lasso
in the underlying digraph.

Definition 7. For a directed graph G = (V,E) and for
A,B ⊂ V , an (A,B) lasso is a path from some node a ∈ A
to a node b ∈ B and then a loop from b to itself.

In the context of automata, an (I, F ) lasso means that there
is an infinite path allowed by the transition relation and
starting from some initial state which visits an element in
the accepting set infinitely often.

Checking for the existence of an (I, F ) lasso can be done
efficiently. An algorithm is:

• function accepting-path(state s)

var (s1, a, s2);

var list = null;

if s ∈ F do return s;

for each (s1, a, s2) ∈ δ such that s1 = s do

if (accepting-path(s2)!= null)

then do add (accepting-path(s2), list);

return list;

• function accepting-loop(state s)

var (s1, a, s2);

if s /∈ F do return False;

for each (s1, a, s2) ∈ δ such that s1 = s do

if (s1 ∈ accepting-path(s2))

then do return True);

return False;

• function hasLasso()

for each s ∈ I do

if (accepting-path(s)!=null) then {
for each s′ ∈ accepting-path(s) do

if accepting-loop(s′) return True;

}
return False;

Moreover, the algorithm to check for such a lasso gives an
example of an infinite word accepted by the automaton, if
one exists. In fact, this infinite word encodes a rational
solution to the formula17.

The enumeration problem which was so important in the
integer case has a different flavour for MILP. Regardless,
bounds on feasible values of the variables can still be found
using similar techniques to what we did earlier.

3.2 Other Approaches to MILP
The projection and elimination method has recently been
extended to the mixed-integer case [2]. This approach uses a
predicate to indicate whether a variable ranges over integers
only and then combines the Fourier-Motzkin and Omega
tests to project variables out one-by-one. One implemen-
tation of this algorithm is integrated into the Cooperating
Validity Checker [15]. This particular implementation in-
cludes the feature of proof-production: if the checker claims
there is no solution to a particular system, it gives a proof of
this claim which can be externally verified. Such proofs help
in identifying false positive replies of the decision procedure,
but still do not give an example of a solution.

3.3 Results and Evaluation
The compact representation that RVA give to the set of
solutions of MILP formulae is attractive. However, there
have been no comparative studies of the automata approach
to other MILP solvers (partially because not many have been
implemented). Such a study could go a long way towards
understanding the strengths and weaknesses to the various
approaches in solving the question of satisfiability of MILP
problems. Barring large scale performance differences, the
automata approach seems to have the upper hand in being
constructive.

4. CONCLUSIONS
We have presented an automata solution to problems aris-
ing in Integer (and Mixed-Integer) Linear Programming. In
fact, we worked in greater generality and saw that there is an
algorithm for translating any formula in Presburger arith-
metic (resp. mixed real-integer linear arithmetic) into an
automaton accepting all and only encodings of vectors sat-
isfying the formula. We proved that the algorithm is correct
and discussed some optimizations for its implementation.

Moreover, we saw that the nature of automata easily leads to
constructive solutions for the satisfiability question. In the
integer case, we used this to address the problem of enumer-
ating the set of solutions to a formula. This algorithm had
not been presented before, so it would be intereting to im-
plement it and compare its performance with, for instance,
the Omega system.

Finally, we considered other approaches to (M)ILP. It seems
that different methodologies perform better for different classes
of formulae. In particular, the automata approach appears
to win out for sparse feasibility regions. However, these re-
sults are preliminary and further study should be done.

17A linear formula with integer coefficients always has some
rational solution so long as the free variables are allowed to
take values in a superset of the integers.
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Figure 6: A RVA representing the set of solutions
to x+ y = 3.
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APPENDIX
We include (in Figure 6) a fully worked example of a RVA
representing the equation x+y = 3. Note the decomposition
into integer and fractional parts, and the reuse of states and
transitions.


