Model Theoretic Complexity of Automatic
Structures (Extended Abstract)

Bakhadyr Khoussainov! and Mia Minnes?

! Department of Computer Science
University of Auckland
Auckland, New Zealand
bmkQcs.auckland.ac.nz

2 Mathematics Department
Cornell University
Ithaca, New York 14853
minnes@math.cornell.edu

Abstract. We study the complexity of automatic structures via well-
established concepts from both logic and model theory, including ordinal
heights (of well-founded relations), Scott ranks of structures, and Cantor-
Bendixson ranks (of trees). We prove the following results: 1) The ordi-
nal height of any automatic well-founded partial order is bounded by w*;
2) The ordinal heights of automatic well-founded relations are unbounded
below wX; 3) For any infinite computable ordinal «, there is an auto-
matic structure of Scott rank at least a. Moreover, there are automatic
structures of Scott rank w{*, WFE + 1; 4) For any ordinal a < wiE,

there is an automatic successor tree of Cantor-Bendixson rank c.

1 Introduction

In recent years, there has been increasing interest in the study of structures that
can be presented by automata. The underlying idea is to apply techniques of
automata theory to decision problems that arise in logic and applications such
as databases and verification. A typical decision problem is the model checking
problem: for a structure A (e.g. a graph), design an algorithm that, given a for-
mula ¢(Z) in a formal system and a tuple @ from the structure, decides if ¢(a)
is true in A. In particular, when the formal system is the first order predicate
logic or the monadic second order logic, we would like to know if the theory of
the structure is decidable. Fundamental early results in this direction by Biichi
([4], [5]) and Rabin ([20]) proved the decidability of the monadic second order
theories of the successor on the natural numbers and of the binary tree. There
have been numerous applications and extensions of these results in logic, alge-
bra, verification, model checking, and databases (see, for example, [9] [23] [24]
and [25]). Moreover, automatic structures provide a theoretical framework for
constraint databases over discrete domains such as strings and trees [1].

A structure A = (A4; Ry, ..., R,,) is automatic if the domain A and all the
relations Ry, ..., R, of the structure are recognised by finite automata (pre-
cise definitions are in the next section). Independently, Hodgson [13] and later

Khoussainov and Nerode [14] proved that for any given automatic structure
there is an algorithm that solves the model checking problem for the first order
logic. In particular, the first order theory of the structure is decidable. There is a
body of work devoted to the study of resource-bounded complexity of the model
checking problem for automatic structures. Most current results demonstrate
that automatic structures are not complex in various concrete senses. However,
in this paper we use well-established concepts from both logic and model theory
to prove results in the opposite direction. We now briefly describe the measures
of complexity we use (ordinal heights of well-founded relations, Scott ranks of
structures, and Cantor-Bendixson ranks of trees) and connect them with the
results of this paper.

A relation R is called well-founded if there is no infinite sequence x1, 2, x3, . . .
such that (z;41,2;) € R for i € w. In computer science, well-founded relations
are of interest due to a natural connection between well-founded sets and termi-
nating programs. We say that a program is terminating if every computation
from an initial state is finite. This is equivalent to well-foundedness of the collec-
tion of states reachable from the initial state, under the reachability relation [3].
The ordinal height is a measure of the depth of well-founded relations. Since
all automatic structures are computable, the obvious bound for ordinal heights
of automatic well-founded relations is w{'® (the first non-computable ordinal).
Sections 3 and 4 study the sharpness of this bound. Theorem 1 characterizes
automatic well-founded partial orders in terms of their ordinal heights, whereas
Theorem 2 shows that w{'X is the sharp bound in the general case.

Theorem 1. For each ordinal c, « is the ordinal height of an automatic well-
founded partial order if and only if a < w®.

Theorem 2. For each (computable) ordinal o < w$'¥, there is an automatic
well-founded relation A whose ordinal height is greater than «.

Section 5 is devoted to building automatic structures with high Scott ranks.
The concept of Scott rank comes from a well-known theorem of Scott stating
that for every countable structure A there exists a sentence ¢ in L, .-logic
which characterizes A up to isomorphism [22]. The minimal quantifier rank of
such a formula is called the Scott rank of A. A known upper bound on the Scott
rank of computable structures implies that the Scott rank of automatic struc-
tures is at most wlc K 4+ 1. But, until now, all the known examples of automatic
structures had low Scott ranks. Results in [19], [7], [17] suggest that the Scott
ranks of automatic structures could be bounded by small ordinals. This intuition
is falsified in Section 5 with the theorem:

Theorem 3. For each infinite computable ordinal o there is an automatic struc-
ture of Scott rank at least .

In the last section, we investigate the Cantor-Bendixson ranks of automatic
trees. A partial order tree is a partially ordered set (T, <) such that there
is a <-minimal element of T', and each subset {z € T : < y} is finite and

is linearly ordered under <. A successor tree is a pair (7,.5) such that the
reflexive and transitive closure <g of S produces a partial order tree (T, <g).
The derivative of a tree 7 is obtained by removing all the nonbranching paths
of the tree. One applies the derivative operation to 7 successively until a fixed
point is reached. The minimal ordinal that is needed to reach the fixed point is
called the Cantor-Bendixson (CB) rank of the tree. The CB rank plays an
important role in logic, algebra, and topology. Informally, the CB rank tells us
how far the structure is from algorithmically (or algebraically) simple structures.
Again, the obvious bound on C'B ranks of automatic successor trees is w{'%. In
[16], it is proved that the CB rank of any automatic partial order tree is finite
and can be computed from the automaton for the < relation on the tree. It has
been an open question whether the CB ranks of automatic successor trees can
be bounded by small ordinals. We answer this question in the following theorem.

Theorem 4. For a < wSX there is an automatic successor tree of CB rank .

The main tool we use to prove results about high ranks is the configura-
tion spaces of Turing machines, considered as automatic graphs. It is important
to note that graphs which arise as configuration spaces have very low model-
theoretic complexity: their Scott ranks are at most 3, and if they are well-founded
then their ordinal heights are at most w (see Propositions 1 and 2). Hence, the
configuration spaces serve merely as building blocks in the construction of au-
tomatic structures with high complexity, rather than contributing materially to
the high complexity themselves.

2 Preliminaries

A (relational) vocabulary is a finite sequence (P{",..., P;" c1,...,¢s), where
each P;nj is a predicate symbol of arity m; > 0, and each ¢y, is a constant symbol.
A structure with this vocabulary is a tuple A = (A; PA, ..., PA c¢f, ..., cA),

where Pf‘ and ckA are interpretations of the symbols of the vocabulary. When
convenient, we may omit the superscripts 4. We only consider infinite structures.

A finite automaton M over an alphabet X' is a tuple (S, ¢, A, F'), where
S is a finite set of states, ¢ € S is the initial state, A C S x X x S is the
transition table, and F' C S is the set of final states. A computation of A
on a word o109...0, (0; € X) is a sequence of states, say qo,q1,- - -, qn, such
that go = ¢ and (g, 0i41,¢i+1) € Afor alli € {0,...,n—1}. If g, € F, then the
computation is successful and we say that automaton M accepts the word
0103 . ..0,. The language accepted by the automaton M is the set of all words
accepted by M. In general, D C X* is finite automaton recognisable, or
regular, if D is the language accepted by some finite automaton M.

To define automaton recognisable relations, we use n-variable (or n-tape) au-
tomata. An n—tape automaton can be thought of as a one-way Turing machine
with n input tapes [8]. Each tape is regarded as semi-infinite, having written on it
a word over the alphabet X followed by an infinite succession of blanks (denoted
by ¢ symbols). The automaton starts in the initial state, reads simultaneously

the first symbol of each tape, changes state, reads simultaneously the second
symbol of each tape, changes state, etc., until it reads a blank on each tape. The
automaton then stops and accepts the n—tuple of words if it is in a final state.
The set of all n—tuples accepted by the automaton is the relation recognised by
the automaton. For a formal definition see, for example, [14].

Definition 1. A structure A = (A; Ry, Ry, ..., Ry,) is automatic over X if its
domain A and all relations Ry, Ry, ..., Ry, are regular over Y.

The configuration graph of any Turing machine is an example of an auto-
matic structure. The graph is defined by letting the configurations of the Turing
machine be the vertices, and putting an edge from configuration ¢; to configu-
ration ¢y if the machine can make an instantaneous move from ¢y to c;. Many
examples of automatic structures can be formed using the w-fold disjoint union
of a structure A (the disjoint union of w many copies of A).

Lemma 1. [21] If A is automatic then its w-fold disjoint union is isomorphic
to an automatic structure. O

The class of automatic structures is a proper subclass of the computable
structures. In this paper, we will be coding computable structures into automatic
ones. Good references for the theory of computable structures include [11], [15].

Definition 2. A computable structure is a structure A = (A; Rq,...,Ry)
whose domain and relations are all computable.

The domains of computable structures can always be identified with the set w
of natural numbers. Under this assumption, we introduce new constant symbols
¢, for each n € w and interpret ¢, as n. In this context, A is computable iff the
atomic diagram of A (the set of Godel numbers of all quantifier-free sentences
in the extended vocabulary that are true in A) is computable.

3 Ranks of automatic well-founded partial orders

In this section we consider structures A = (A; R) with a single binary relation.
An element x is said to be R-minimal for a set X if foreachy € X, (y,z) ¢ R.
The relation R is said to be well-founded if every non-empty subset of A has
an R-minimal element. This is equivalent to saying that (A; R) has no infinite
chains 21, g, 3, ... where (z;41,2;) € R for all i.

A ranking function for A is an ordinal-valued function f such that f(y) <
f(z) whenever (y,x) € R. For f aranking function on A, let ord(f) = sup{f(z) :
x € A}. The structure A is well-founded if and only if A admits a ranking
function. The ordinal height of A, denoted r(.A), is the least ordinal o which
is ord(g) for some ranking function g on A. For B C A, we write r(B) for the
ordinal height of the structure obtained by restricting R to B. Recall that if
a < wfE then a is a computable ordinal.

Lemma 2. If a < w$E | there is a computable well-founded relation of ordinal
height o.

Lemma 2 amounts to taking a computable copy of any linear order of type
a. The next lemma follows easily from well-foundedness of ordinals and of R.

Lemma 3. For a structure A = (A; R) where R is well-founded, if r(A) = «
and B < « then there is an x € A such that ro(z) = . O

For the remainder of this section, we assume further that R is a partial
order. For convenience, we write < instead of R. Thus, we consider automatic
well-founded partial orders A = (A, <). We will use the notion of natural
sum of ordinals. The natural sum of ordinals «, 3 (denoted o +' 3) is defined
recursively: « +' (8 is the least ordinal strictly greater than v+’ 8 for all v < «
and strictly greater than o +' v for all v < 3.

Lemma 4. Let Ay and As be disjoint subsets of A such that A = A} U As.
Consider the partially ordered sets Ay = (A1,<1) and Az = (Aa, <) obtained by
restricting < to Ay and Ag respectively. Then, r(A) < a1+ aq, where a; = 1(A;).

Proof. We will show that there is a ranking function on A whose range is
contained in the ordinal a; +' ap. For each x € A consider the partially or-
dered sets Ay , and Ay, obtained by restricting < to {z € A; | z < z} and
{2z € Ay | 2 < x}, respectively. Define f(x) = r(Ay) +' 7(Asz). It is not hard
to see that f is the desired ranking function. a

Corollary 1. If r(A) = w™ and A = Ay U As, where Ay N Ay = 0, then either
(A1) =" orr(Ay) = w™. O

Khoussainov and Nerode [14] show that, for each n, there is an automatic
presentation of the ordinal w™. It is clear that such a presentation has ordinal
height w™. The next theorem shows that w* is the sharp bound on ranks of
all automatic well-founded partial orders. Now that Corollary 1 has been estab-
lished, the proof of Theorem 1 follows Delhommé [7] and Rubin [21].

Theorem 1. For each ordinal o, « is the ordinal height of an automatic well-
founded partial order if and only if a < w®.

Proof. One direction of the proof is clear. For the other, assume for a contra-
diction that there is an automatic well-founded partial order A = (A, <) with
r(A) = a > w*. Let (Sa,ta,A4,Fa) and (S<, i<, A<, F<) be finite automata
over X' recognizing A and < (respectively). By Lemma 3, for each n > 0 there
is u, € A such that r4(u,) = w™. For each u € A we define the set

ul={x e Az <u}.

Note that if 74(u) is a limit ordinal then r4(u) = r(u |). We define a finite
partition of u | in order to apply Corollary 1. To do so, for u,v € X*, define

Xy ={vw e A:w e X* & vw < u}. Each set of the form w | can then be
partitioned based on the prefixes of words as follows:

ul={rxeA:|z|<|ul &z <u}U U Xy

ves*:[v]=|ul

(All the unions above are finite and disjoint.) Hence, applying Corollary 1, for
each u, there exists a v, such that |u,| = |v,| and r(X}") = r(u, |) = ™.

On the other hand, we use the automata to define the following equivalence
relation on pairs of words of equal lengths:

(10~ () = Aalia) = Aalont) & Acos (1)) = Actos (1))

There are at most |S4| X |S<| equivalence classes. Thus, the infinite sequence
(u1,v1), (u2,vs), ... contains m, n such that m # n and (U, Vim) ~ (Un, V).

’

Lemma 5. For any u,v,v,v" € X*, if (u,v) ~ (v,) then r(X}) = r(X3).
To prove the lemma, consider g : X* — X% defined as g(vw) = v'w. From
the equivalence relation, we see that ¢ is well-defined, bijective, and order pre-
serving. Hence X = X% (as partial orders). Therefore, r(X*) = r(X%).
By Lemma 5, w™ = r(X}'™) = r(X}") = w", a contradiction with the
assumption that m # n. Therefore, there is no automatic well-founded partial
order of ordinal height greater than or equal to w®. a

4 Ranks of automatic well-founded relations

4.1 Configuration spaces of Turing machines

In the following, we embed computable structures into automatic ones via con-
figuration spaces of Turing machines. Let M be an n-tape deterministic Turing
machine. The configuration space of M, denoted by Conf(M), is a directed
graph whose nodes are configurations of M. The nodes are n-tuples, each of
whose coordinates represents the contents of a tape. Each tape is encoded as
(w ¢ w'), where w,w’ € X* are the symbols on the tape before and after the
location of the read/write head, and ¢ is one of the states of M. The edges of
the graph are all the pairs of the form (¢1,ce) such that there is an instruction
of M that transforms c; to ca. The configuration space is an automatic graph.
The out-degree of every vertex in Conf(M) is 1; the in-degree need not be 1.

Definition 3. A deterministic Turing machine M is reversible if Conf(M)
consists only of finite chains and chains of type w.

Lemma 6. [2] For any deterministic 1-tape Turing machine there is a reversible
3-tape Turing machine which accepts the same language.

Proof. (Sketch) Given a deterministic Turing machine, define a 3-tape Turing
machine with a modified set of instructions. The modified instructions have the
property that neither the domains nor the ranges overlap. The first tape performs
the computation exactly as the original machine would have done. As the new
machine executes each instruction, it stores the index of the instruction on the
second tape, forming a history. Once the machine enters a state which would
have been halting for the original machine, the output of the computation is
copied onto the third tape. Then, the machine runs the computation backwards
and erases the history tape. The halting configuration contains the input on the
first tape, blanks on the second tape, and the output on the third tape. a

We establish the following notation for a 3-tape reversible Turing machine
M given by the construction in this lemma. A valid initial configuration of
M is of the form (A ¢ z, A, A), where x in the domain, A is the empty string, and
¢ is the initial state of M. From the proof above, observe that a final (halting)
configuration is of the form (z, A\, A g5 y), with ¢y a halting state of M. Also,
because of the reversibility assumption, all the chains in Conf(M) are either
finite or w-chains (the order type of the natural numbers). In particular, this
means that Conf(M) is well-founded. We call an element of in-degree 0 a base
(of a chain). The set of valid initial or final configurations is regular. We classify
the components (chains) of Conf(M) as follows:

— Terminating computation chains: finite chains whose base is a valid
initial configuration; that is, one of the form (A ¢ x, \, A), for z € X*.

— Non-terminating computation chains: infinite chains whose base is a
valid initial configuration.

— Unproductive chains: chains whose base is not a valid initial configuration.

Configuration spaces of reversible Turing machines are locally finite graphs
(graphs of finite degree) and well-founded. Hence, the following proposition guar-
antees that their ordinal heights are small. The proof is left to the reader.

Proposition 1. If G = (A, E) is a locally finite graph then E is well-founded
and the ordinal height of E is not above w, or E has an infinite chain. a

4.2 Automatic well-founded relations of high rank

Theorem 2. For each computable ordinal o < WS, there is an automatic

well-founded relation A whose ordinal height is greater than «

Proof. The proof of the theorem uses properties of Turing machines and their
configuration spaces. We take a computable well-founded relation whose ordinal
height is «, and “embed” it into an automatic well-founded relation with similar
ordinal height.

By Lemma 2, let C = (C,L,) be a computable well-founded relation of
ordinal height ov. We assume without loss of generality that C = X* for some
finite alphabet . Let M be the Turing machine computing the relation L,,.

On each pair (z,y) from the domain, M halts and outputs “yes” or “no” . By
Lemma 6, we can assume that M is reversible. Recall that Conf(M) = (D, E)
is an automatic graph. We define the domain of our automatic structure to be
A = X*UD. The binary relation of the automatic structure is:

R=EU{(z,(At(z,y),\,N) :x,y € D HU{(((z,y), \, A g “yes”),y) : x,y € ¥}

Intuitively, the structure (A;R) is a stretched out version of (C,L,) with in-
finitely many finite pieces extending from elements of C', and with disjoint pieces
which are either finite chains or chains of type w. The structure (4; R) is auto-
matic because its domain is a regular set of words and the relation R is recognis-
able by a 2-tape automaton. We should verify, however, that R is well-founded.
Let Y C A. T Y NC # 0 then since (C, L) is well-founded, there is z € Y N C
which is L,-minimal. The only possible elements u in Y for which (u,z) € R
are those which lie on computation chains connecting some z € C' with z. Since
each such computation chain is finite, there is an R-minimal u below x on each
chain. Any such v is R-minimal for Y. On the other hand, if Y N C = (), then
Y consists of disjoint finite chains and chains of type w. Any such chain has a
minimal element, and any of these elements are R-minimal for Y. Therefore,
(A; R) is an automatic well-founded structure.

We now consider the ordinal height of (A4; R). For each element z € C, an
easy induction on r¢(z), shows that re(x) < ra(z) < w+ re(z). We denote by
£(a,b) the (finite) length of the computation chain of M with input (a, b). For any
element a, , in the computation chain which represents the computation of M
determining whether (z,y) € R, we have r4(z) < ra(agy) < ra(z) + £z, y).
For any element u in an unproductive chain of the configuration space, 0 <
ra(u) < w. Therefore, since C C A, r(C) <r(A) <w+r(C). 0

5 Automatic Structures and Scott Rank

The Scott rank of a structure is introduced in the proof of Scott’s Isomorphism
Theorem [22]. Here we follow the definition of Scott rank from [6].

Definition 4. For structure A and tuples a,b € A™ (of equal length), define

—a=Ybifa,b satisfy the same quantifier-free formulas in the language of A;
— For a >0, a =% b if for all B < «, for each ¢ (of arbitrary length) there is
d such that a,¢ =P b,d; and for each d (of arbitrary length) there is ¢ such

that a,¢ =P b, d.

Then, the Scott rank of the tuple a, denoted by SR(a), is the least B such that
for allb € A", @ =P b implies that (A,a) = (A,b). Finally, the Scott rank of A,
denoted by SR(A), is the least o greater than the Scott ranks of all tuples of A.

Ezample 1. SR(Q, <) =1, SR(w,<) =2, and SR(n-w,<) =n+ 1.

Configuration spaces of reversible Turing machines are locally finite graphs.
By the Proposition below, they all have low Scott Rank.

Proposition 2. Let G = (V, E) be a locally finite graph, then SR(G) < 3.

Proof. The neighbourhood of diameter n of a subset U, denoted B,,(U), is de-
fined as follows: By(U) = U and B,,(U) is the set of v € V' which can be reached
from U by n or fewer edges. The proof of the proposition relies on two lemmas
whose proofs are left to the reader.

Lemma 7. Let a,b € V be such that @ =2p. Then for all n, there is a bijection
of the n-neighbourhoods around a,b which sends a to b and which respects E.

Lemma 8. Let G = (V,E) be a graph. Suppose a,b € V are such that for
all n, (By(a), E,a) = (B,(b), E,b). Then there is an isomorphism between the
component of G containing a and that containing b which sends a to b.

To prove the proposition, we note that for any @,b in V such that a =2 b,
Lemmas 7 and 8 yield an isomorphism from the component of @ to the component
of b that maps a to b. Hence, if @ =2 b, there is an automorphism of G that maps
a to b. Therefore, for each a € V, SR(a) < 2, so SR(G) < 3. O

Let C = (C;Ry,...,Rmy) be a computable structure. We construct an au-
tomatic structure A whose Scott rank is (close to) the Scott rank of C. Since
the domain of C is computable, we assume that C' = X* for some finite Y. The
construction of A involves connecting the configuration spaces of Turing ma-
chines computing relations Ry, ..., R,,. Note that Proposition 2 suggests that
the high Scott rank of the resulting automatic structure is the main part of the
construction because it is not provided by the configuration spaces themselves.
We detail the construction for R;. Let M; be a Turing machine for R;. By a
simple modification of the machine we assume that M, halts if and only if its
output is “yes” . By Lemma 6, we can also assume that M, is reversible. We
now modify the configuration space Con f(M;) so as to respect the isomorphism
type of C. This will ensure that the construction (almost) preserves the Scott
rank of C. We use the terminology from Subsection 4.1.

Smoothing out unproductive parts. The length and number of unpro-
ductive chains is determined by the machine M; and hence may differ even for
Turing machines computing the same set. In this stage, we standardize the for-
mat of this unproductive part of the configuration space. We add w-many chains
of length n (for each n) and w-many copies of w. This ensures that the (smoothed)
unproductive section of the configuration space of any Turing machine will be
isomorphic and preserves automaticity.

Smoothing out lengths of computation chains. We turn our attention
to the chains which have valid initial configurations at their base. The length of
each finite chain denotes the length of computation required to return a “yes” an-
swer. We will smooth out these chains by adding “fans” to each base. For this,
we connect to each base of a computation chain a structure which consists of w
many chains of each finite length. To do so we follow Rubin [21]: consider the
structure whose domain is 0*01* and whose relation is given by xEy if and only
if |z| = |y| and y is the least lexicographic successor of z. This structure has a

10

finite chain of every finite length. As in Lemma 1, we take the w-fold disjoint
union of the structure and identify the bases of all the finite chains. We get a
“fan” with infinitely many chains of each finite size whose base can be identified
with a valid initial computation state. Also, the fan has an infinite component if
and only if R; does not hold of the input tuple corresponding to the base. The
result is an automatic graph, Smooth(R;) = (D;, E;), which extends Con f(M,).

Connecting domain symbols to the computations of the relation.
We apply the construction above to each R; in the signature of C. Taking the
union of the resulting automatic graphs and adding vertices for the domain, we
have the structure (X* U U;D;, Eq, ..., E,) (where we assume that the D; are
disjoint). Assume that each M; has a different initial state, and denote it by ¢;.
We add n predicates F; to the signature of the automatic structure connecting
the elements of the domain of C with the computations of the relations R;:

F; = {(1’0,. R P ()\ L; (iCo, . ,.’Emifl),)\,)\)) | Loy oy Tm;—1 € E*}

Note that for z € X*, R;(Z) if and only if F;(Z, (X ¢; Z, A\, \)) holds and all
E; chains emanating from (A ¢; Z, A\, \) are finite. We have built the automatic
structure

A=(Z"UU;Di, Eq, ..., En, Fy, ... Fp).

Two technical lemmas are used to show that the Scott rank of A is close to a:
Lemma 9. ForZ,y in the domain of C and for ordinal o, if T =& y thenx =% ¥.
Lemma 10. Ifz € X*UU;D;, there is § € X* with SR4(Z&'a) < 24+ SRe ().

Putting these together, we conclude that SR(C) < SR(A) <2+ SR(C). Apply-
ing the above construction to the computable structures of Scott rank w{'¥ and
w8 4+ 1 built by Harrison [12] and Knight and Millar [18], we get automatic
structures of Scott rank w$ WK 4 1. We also apply the construction to [10],
where it is proved that there are computable structures with Scott ranks above

each computable ordinal. In this case, we get the following theorem.

Theorem 3. For each infinite computable ordinal «, there is an automatic struc-
ture of Scott rank at least .

6 Cantor-Bendixson Rank of Automatic Successor Trees

In this section we show that there are automatic successor trees of high Cantor-
Bendixson (CB) rank. Recall the definitions of partial order trees and successor
trees from Section 1. Note that if (T, <) is an automatic partial order tree then
the successor tree (T,.5), where the relation S is defined by S(z,y) <— (z <
y) & =3z(z < z < y), is automatic.

Definition 5. The derivative of a tree T, d(T), is the subtree of T whose
domain is {x € T : x lies on at least two infinite paths in T'}. By induction,
d(T) =T, d**tY(T) = d(d*(T)), and for v a limit ordinal, d"(T) = Ng<d®*(T).
The CB rank of the tree, CB(T), is the least o such that d*(T) = d*T(T).

11

The CB ranks of automatic partial order trees are finite [16]. This is not
true of automatic successor trees. The main theorem of this section provides a
general technique for building trees of given CB ranks. It uses the fact that for
each a < w{'¥ there is a computable successor tree of CB rank «. This fact can
be proven by recursively coding up computable trees of increasing CB rank.

Theorem 4. For a < w{'X there is an automatic successor tree of CB rank c.

Proof. Suppose we are given a < w{'¥. Take a computable tree R, of CB rank
. We use the same construction as in the case of well-founded relations (see
the proof of Theorem 2). The result is a stretched out version of the tree Ry,
where between each two elements of the original tree we have a coding of their
computation. In addition, extending from each x € X* we have infinitely many
finite computation chains. Those chains which correspond to output “no” are
not connected to any other part of the automatic structure. Finally, there is a
disjoint part of the structure consisting of chains whose bases are not valid initial
configurations. By the reversibility assumption, each unproductive component
of the configuration space is isomorphic either to a finite chain or to an w-chain.
Moreover, the set of invalid initial configurations which are the base of such an
unproductive chain is regular. We connect all such bases of unproductive chains
to the root and get an automatic successor tree, Ty,.

We now consider the CB rank of T;,. Note that the first derivative removes
all the subtrees whose roots are at distance 1 from the root and are invalid initial
computations. This occurs because each of the invalid computation chains has
no branching and is not connected to any other element of the tree. Next, if we
consider the subtree of T, rooted at some x € X* we see that all the paths
which correspond to computations whose output is “no” vanish after the first
derivative. Moreover, x € d(T,) if and only if € d(R,,) because the construction
did not add any new infinite paths. Therefore, after one derivative, the structure
is exactly a stretched out version of d(R,). Likewise, for all 8 < a, d°(T,) is a
stretched out version of d?(R,,). Hence, CB(T,) = CB(R,) = a. O

Acknowledgement

We thank Moshe Vardi who posed the question about ranks of automatic well-
founded relations. We also thank Anil Nerode and Frank Stephan with whom
we discussed Scott and Cantor-Bendixson ranks of automatic structures.

References

1. Benedikt, M. and L. Libkin. Tree extension algebras: logics, automata, and query
languages. Proceedings of LICS 02, 203-212, 2002.

2. Bennett, C.H. Logical Reversibility of Computation. IBM Journal of Research and
Development, 525-532, 1973.

3. Blaas, A. and Y. Gurevich. Program Termination and Well Partial Orderings. ACM
Transactions on Computational Logic, 1-25, 2006.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Biichi, J.R. Weak second-order arithmetic and finite automata. Zeitschrift Math.

Logik und Grundlagen det Mathematik, 66-92, 1960.

. Biichi, J.R. On a decision method in restricted second-order arithmetic. Proc.

International Congress on Logic, Methodology and Philosophy of Science, 1960
(E. Nagel, P. Suppes, A. Tarski, Eds.), 1-12, Stanford University Press, 1962.

. Calvert, W., S.S. Goncharov, and J.F. Knight. Computable structures of Scott

rank w{¥ in familiar classes. Advances in Logic (Proceedings of the North Tezxas
Logic Conference) Contemporary Mathematics 425, 49-66, American Mathemati-
cal Society, 2007.

. Delhommé, C. Automaticité des ordinaux et des graphes homogenes. C.R.

Académie des sciences Paris, Ser. I 339, 5-10, 2004.

. Eilenberg, S. Automata, Languages, and Machines (Vol. A), Academic Press (New

York), 1974.

. Epstein, D.B.A., et al. Word Processing in Groups, A.K. Peters Ltd. (Natick, Mas-

sachusetts), 1992.

Goncharov, S.S. and J.F. Knight. Computable structure and non-structure theo-
rems. Algebra and Logic 41, 351-373, 2002.

Harizanov, V.S. Pure Computable Model Theory. Handbook of Recursive Math-
ematics (Yu. Ershov, S. Goncharov, A. Nerode, J. Remmel, eds.), 3-114, North-
Holland (Amsterdam), 1998.

Harrison, J. Recursive Pseudo Well-Orderings. Transactions of the American Math-
ematical Society 131: 2, 526-543, 1968.

Hodgson, B.R. On Direct Products of Automaton Decidable Theories. Theoretical
Computer Science 19, 331-335, North-Holland, 1982.

Khoussainov, B. and A. Nerode. Automatic presentations of structures. Lecture
Notes in Computer Science 960, 367-392, 1995.

Khoussainov, B. and R.A. Shore. Effective Model Theory: The Number of Models
and Their Complexity. Models and Computability, Invited Papers from LC 1997
(S.B. Cooper and J.K. Truss, eds.) LMSLNS 259, 193-240, Cambridge University
Press (Cambridge, England), 1999.

Khoussainov, B., S. Rubin, and F. Stephan. On automatic partial orders. Proceed-
ings of 18th LICS, 168-177, 2003.

Khoussainov, B., S. Rubin, and F. Stephan. Automatic linear orders and trees.
ACM Transactions on Computational Logic 6 Number 4, 675-700, 2005.

Knight, J.F. and J. Millar. Computable Structures of Rank w{X. Submitted to
Journal of Mathematical Logic; posted on arXiv 25 Aug 2005.

Lohrey, M. Automatic structures of bounded degree. Proceedings of LPAR 03 LNAI
2850, 344-358, 2003.

Rabin, M.O. Decidability of Second-Order Theories and Automata on Infinite
Trees. Transactions of the American Mathematical Society 141, 1-35, 1969.
Rubin, S. Automatic Structures, PhD Thesis, University of Auckland, 2004.
Scott, D. Logic with Denumerably Long Formulas and Finite Strings of Quantifiers.
The Theory of Models (J. Addison, L. Henkin, A. Tarski, eds.), 329-341, North-
Holland, 1965.

Vardi, M.Y. and P. Wolper. Automata-Theoretic Techniques for Modal Logics of
Programs. Proceedings of 16th STOC, 446-456, 1984.

Vardi, M.Y. An Automata-Theoretic Approach to Linear Temporal Logic. Logics
for Concurrency: Structure versus Automata Lecture Notes in Computer Science
1043, 238-266, Springer-Verlag, 1996.

Vardi, M.Y. Model Checking for Database Theoreticians. Proceedings of ICDL 5,
2005.

