
AUTOMATIC STRUCTURES AND THEIR COMPLEXITY

BAKHADYR KHOUSSAINOV AND MIA MINNES

1. Introduction

In recent years there has been increasing interest in the study of structures that can be
presented by automata. The underlying idea in this line of research consists of applying
properties of automata and techniques of automata theory to decision problems that arise
in logic and applications. A typical example of a decision problem is the model checking
problem, stated as follows. For a structure A (e.g. a graph, a fragment of the arithmetic,
the real numbers with addition) design an algorithm that, given a formula φ(x̄) in a formal
logical system and a tuple ā from the structure, decides if φ(ā) is true in A. In particular,
when the formal system is the first order predicate logic or the monadic second order logic,
we would like to know if the theory of the structure, that is the collection of all sentences
of the logic true in the structure, is decidable. Büchi used automata to prove that the
monadic second order theory of the successor function on ω is decidable ([?], [?]). Rabin,
in [?], extended this by proving decidability of the monadic second order theory of the
binary tree. There have been numerous applications and extensions of these results in
logic, algebra, verification, model checking, and databases ([?] is an algebra application; [?],
[?] treat logics and verifications; [?], and [?] give applications to databases). Using simple
closure properties and the decidability of the emptiness problem for finite and tree automata,
one can easily prove that the first order (and monadic second order) theories of some well-
known structures are decidable. Examples of such structures are Presburger arithmetic and
some of its extensions, the term algebra, real numbers under addition, finitely generated
abelian groups, and the atomless Boolean algebra. Direct proofs of these results, without
the use of automata, require non-trivial technical work.

A structure A = (A; R0, . . . , Rm) is automatic if the domain A and all the relations
R0, . . . , Rm of the structure are recognized by finite automata (precise definitions are in
the next section). For instance, an automatic graph is one whose set of vertices and set of
edges can be recognized by finite automata. There are several motivating results that are
foundational for the development of the theory of automatic structures. Khoussainov and
Nerode proved that for any given automatic structure there is an algorithm that solves the
model checking problem in the first order logic (see [?]). In particular, the first order theory
of the structure is decidable. This result is extended by adding the ∃∞ (there are infinitely
many) and ∃n,m (there are m many mod n) quantifiers to the first order logic (see [?], [?]).
Blumensath and Grädel proved a logical characterization theorem stating that automatic
structures are exactly those definable in the fragment of arithmetic (ω; +, |2,≤, 0), where
+ and ≤ have their usual meanings and |2 is a weak divisibility predicate for which x|2y

Date: July 24, 2007.

1

2 BAKHADYR KHOUSSAINOV AND MIA MINNES

iff x is a power of 2 and divides y (see [?]). In addition, for some classes of automatic
structures there are characterization theorems that have direct algorithmic implications.
For example, in [?], Delhommé proved that automatic well-ordered sets are all strictly less
than ωω. Using this characterization, [?] gives an algorithm which decides the isomorphism
problem for automatic well-ordered sets. The algorithm is based on extracting the Cantor
normal form for the ordinal isomorphic to the given automatic well-ordered set . Another
characterization theorem of this ilk gives that automatic Boolean algebras are exactly those
that are finite products of the Boolean algebra of finite and co-finite subsets of ω [?]. Again,
this result can be used to show that the isomorphism problem for automatic Boolean algebras
is decidable.

There is also a body of work devoted to the study of resource-bounded complexity of the
model checking problem for automatic structures. One example is the following dichotomy.
On the one hand, Grädel and Blumensath ([?]) constructed examples of automatic structures
whose first order theories are non-elementary. On the other hand, Lohrey in [?] proved
that the first order theory of any automatic graph of bounded degree is elementary. It is
noteworthy that when both a first order formula φ and an automatic structure A are fixed,
determining if a tuple ā from A satisfies φ(x̄) can be done in linear time. There are also
feasible time bounds on deciding the first order theories of automatic structures over the
unary alphabet ([?], [?]).

Most of the current results about automatic structures, including the ones mentioned
above, demonstrate that in various concrete senses automatic structures are not complex
from a logical point of view. In this paper we probe the question of measuring the complexity
of automatic structures. We use well-established concepts from both logic and model theory
including ordinal heights (of well-founded relations), Scott ranks of structures, and Cantor-
Bendixson ranks (of trees). We briefly describe these measures of complexity and state the
results of this paper with respect to each of them.

A relation R is well-founded if there is no infinite sequence x1, x2, x3, . . . such that
(xi+1, xi) ∈ R for i ∈ ω. In practice, well-foundedness can be established by providing a
ranking function f that associates ordinals with the elements in the set and satisfies the
postulate that f(y) < f(x) whenever (y, x) ∈ R. In computer science, well-founded rela-
tions are of interest due to a natural connection between well-founded sets and terminating
programs (see [?]). Given a program P , we say that the program is terminating if every
computation of P from an initial state is finite. If there is a computation from a state
x to y then we say that y is reachable from x. Thus, the program is terminating if the
collection of all states reachable from the initial state is a well-founded set (see [?] for more
details). Since all automatic structures are computable, the obvious bound for the ranks
of automatic well-founded relations is ωCK

1 (the first non-computable ordinal). Sections 3
to 5 study whether or not the ωCK

1 bound is sharp. The theorem below shows that when
automatic well-founded relations are in fact partial orders then their ranks are strictly below
ωω.

Theorem 3.5. For each ordinal α, α is the rank an automatic well-founded partial order if
and only if α < ωω.

AUTOMATIC STRUCTURES AND THEIR COMPLEXITY 3

In contrast, the next theorem shows that in the general case of automatic well-founded
relations, the ordinal ωCK

1 is indeed the sharp bound.

Theorem 5.1. For each infinite computable ordinal, α < ωCK
1 , there is an automatic well-

founded relation A such that α ≤ r(A) ≤ ω + r(A).

Section 6 is devoted to building automatic structures of high Scott ranks. The concept
of Scott rank comes from the well-known theorem of Scott stating that for every countable
structure A there exists a sentence φ in Lω1,ω-logic that characterizes A up to isomorphism
[?]. The minimal ordinal rank of such a formula is called the Scott rank of A. Informally, for
those familiar with Ehrenfeucht-Fräıssé games, the Scott rank is the minimal ordinal length
of a game in which Duplicator can show that two given structures A and B are isomorphic
in the Ehrenfeucht-Fräıssé game between Spoiler and Duplicator [?]. A known upper bound
on the Scott rank of computable structures gives that the upper bound for the Scott rank of
automatic structures is ωCK

1 + 1. However, until now, all the known examples of automatic
structures have had small Scott ranks. Results in [?], [?], [?], and [?] have also suggested
that the Scott ranks of automatic structures could be bounded by small ordinals. Section 6
defies this intuition and leads to the following.

Corollary 6.9. For each infinite ordinal α such that α ≤ ωCK
1 + 1, there is an automatic

structure of Scott rank α.

In particular, the proof of this theorem implies that the isomorphism problem for auto-
matic structures is Σ1

1-complete.

In the last two sections we investigate Cantor-Bendixson ranks of automatic trees. A
tree is a partially ordered set (T,≤) such that there is a ≤-minimal element of T , and each
subset {x ∈ T : x ≤ y} is finite and is linearly ordered under ≤. A successor tree is a
pair (T, S) such that the reflexive and transitive closure ≤S of S produces the tree (T,≤S).
The derivative of a tree T is obtained by removing all the isolated paths of the tree. One
applies the derivative operation to T until a fixed point is reached. The minimal ordinal
that is needed to reach the fixed point is called the Cantor-Bendixson (CB) rank of the
tree. Again, the obvious bound on CB ranks of automatic successor trees is ωCK

1 . The CB
ranks play an important role in logic, algebra, and topology. Informally, the CB rank tells us
how far the structure is from algorithmically (or algebraically) simple structures. In [?], it
is proved that the CB rank of any automatic partially ordered tree is finite; moreover, there
is an algorithm that computes the CB rank of the tree from the automata for the ≤ relation
on the tree. It has been an open question whether the CB ranks of automatic successor
trees can also be bounded. We answer this question in full in the following theorem.

Theorem 8.2. For any computable ordinal α < ωCK
1 there is an automatic successor tree

of CB rank α.

We thank Moshe Vardi who posed the question about ranks of automatic well-founded
relations. We also thank Anil Nerode and Frank Stephan with whom we discussed Scott
and Cantor-Bendixson ranks of automatic structures.

4 BAKHADYR KHOUSSAINOV AND MIA MINNES

2. Preliminaries

A vocabulary V is a sequence ({F ni

i }i∈ω, {P
mj

j }j∈ω, {ck}k∈ω). Here, each F ni

i is called a

function symbol of arity ni > 0, each P
mj

j is a predicate symbol of arity mj > 0, and each
ck is a constant symbol. We put effectiveness condition on the vocabulary by assuming that
the functions i → ni, and j → mj are computable. If σ contains no function symbols then
we say that it is a relational vocabulary.

A structure of the vocabulary V is a tuple A = (A; {FA
i }i∈ω, {PA

j }∈ω, {cAk }k∈ω), where

FA
i , PA

j , and cAk are interpretations of the symbols of the vocabulary. As such, FA
i and PA

j

are functions and predicates (respectively) of appropriate arities, and cAk are distinguished
elements. When convenient, we may omit the superscripts A. One can replace the functions
of a structure with their graphs, thus turning the structure into a purely relational structure
(of a new relational vocabulary). This transformation preserves important model theoretic
and effective properties. Therefore, from now on, we always deal with purely relational
vocabularies and structures. In this paper, all the structures we consider are infinite.

To establish notation, we briefly recall some definitions associated with finite automata.
A finite automaton M over an alphabet Σ is a tuple (S, ι, ∆, F), where S is a finite set of
states, ι ∈ S is the initial state, ∆ ⊂ S×Σ×S is the transition table, and F ⊂ S is the
set of final states. A computation of A on a word σ1σ2 . . . σn (σi ∈ Σ) is a sequence of
states, say q0, q1, . . . , qn, such that q0 = ι and (qi, σi+1, qi+1) ∈ ∆ for all i ∈ {0, 1, . . . , n− 1}.
If qn ∈ F , then the computation is successful and we say that automaton M accepts
the word σ1σ2 . . . σn. The language accepted by the automaton M is the set of all words
accepted by M. In general, D ⊂ Σ⋆ is finite automaton recognisable, or regular, if D
is the language accepted by a finite automaton M.

We now define the concept of n–tape automata for the purpose of defining automata
recognisable relations. An n–tape automaton can be thought of as a one-way Turing
machine with n input tapes [?]. Each tape is regarded as semi-infinite, having written
on it a word in the alphabet Σ followed by an infinite succession of blanks, denoted by ⋄
symbols. The automaton starts in the initial state, reads simultaneously the first symbol
of each tape, changes state, reads simultaneously the second symbol of each tape, changes
state, etc., until it reads a blank on each tape. The automaton then stops and accepts the
n–tuple of words if it is in a final state. The set of all n–tuples accepted by the automaton
is the relation recognised by the automaton. Therefore, an n–tape automaton on Σ is a
finite automaton over the alphabet (Σ⋄)

n.

Definition 2.1. Define Σ⋄ = Σ ∪ {⋄} where ⋄ 6∈ Σ. The convolution of a tuple
(w1, · · · , wn) ∈ Σ⋆n is the string c(w1, · · · , wn) of length maxi |wi| over the alphabet (Σ⋄)

n

which is defined as follows. Its k’th symbol is (σ1, . . . , σn) where σi is the k’th symbol of wi

if k ≤ |wi| and ⋄ otherwise.

The convolution of a relation R ⊂ Σ⋆n is the language c(R) ⊂ (Σ⋄)
n⋆ formed as the

set of convolutions of all the tuples in R.

Definition 2.2. An n–ary relation R ⊂ Σ⋆n is finite automaton recognisable, or reg-
ular, if its convolution c(R) is recognisable by an n–tape automaton.

AUTOMATIC STRUCTURES AND THEIR COMPLEXITY 5

We now relate n–tape automata to structures.

Definition 2.3. A structure A = (A; R0, R1, . . .) is automatic over Σ if its domain A ⊂ Σ⋆

is finite automata recognisable, and there is an algorithm that for each i produces a finite
automaton recognising the relation RA

i ⊂ (Σ⋆)ni. A structure is called automatic if it is
automatic over some finite alphabet. If B is isomorphic to an automatic structure A then we
call A an automatic presentation of B and say that B is automatically presentable.

An example of an automatic structure is the word structure ({0, 1}⋆, L, R, E,�), where
for all x, y ∈ {0, 1}⋆, L(x) = x0, R(x) = x1, E(x, y) iff |x| = |y|, and � is the lexico-
graphical order. The configuration graph of any Turing machine is another example of an
automatic structure. In this example, configurations of the Turing machine are the vertices
of the graph; and an edge is put from configuration c1 to c2 if the machine can make an
instantaneous move from c1 to c2. Examples of automatically presentable structures are
(N, +), (N,≤), (N, S), the group (Z, +), the order on the rationals (Q,≤), and the Boolean
algebra of finite or co-finite subsets of N.

It can be shown that each automatic structure has an automatic presentation over a
binary alphabet. Further, we use the following important theorem without reference. For
this theorem let (FO + ∃∞ + ∃n,m) denote the logic that extends the first order logic with
the quantifiers ∃∞ (there are infinitely many) and ∃n,m (there are m many mod n).

Theorem 2.4. [?] If A is automatic then there exists an algorithm that applied to a (FO +
∃∞ + ∃n,m)-definition of any relation R produces an automaton that recognizes the relation.
In particular, the (FO + ∃∞ + ∃n,m)-theory of A is decidable.

As an example we provide a construction that preserves automaticity. For a given struc-
ture A, its ω-fold disjoint union is obtained by taking ω many disjoint copies of A.

Lemma 2.5. [?] If A is automatic then its ω-fold disjoint union is automatically presentable.

Proof. Let A = (A; R1, R2, . . .) be automatic. Define A′ = (A × 1⋆; R′
1, R

′
2, . . .) by

〈(x, i), (y, j)〉 ∈ R′
m ⇐⇒ i = j & 〈x, y〉 ∈ Rm, m = 1, 2,

It is clear that A′ is automatic and is isomorphic to the ω-fold disjoint union of A. �

The class of automatic structures is a proper subclass of the computable structures.
The theory of computable structures is an active area of research in modern computability
and model theory (see [?], [?]). In this paper, we will be coding computable structures
into automatic ones. Therefore, we briefly mention some basic definitions and facts about
computable structures.

Definition 2.6. A computable structure is a structure A = (A; R1, R2, . . .) whose do-
main and relations are all uniformly computable.

Here, uniformity means that there is an effective procedure that, given an i and a tuple
(n1, . . . , nmi

) from the domain A, decides if the tuple is in Ri. In this paper we mostly use
finite vocabularies, and hence the uniformity condition can be omitted. The domains of
infinite computable structures can always be identified with the set ω of natural numbers.
Under this assumption, we introduce a new constant symbol cn for each n ∈ ω and interpret

6 BAKHADYR KHOUSSAINOV AND MIA MINNES

cn as the number n. We expand the vocabulary of each structure to include these new
constants cn. In this context, A being computable is equivalent to the atomic diagram
of A (all quantifier free sentences in the extended vocabulary that are true in A) being a
computable set. If A is computable and B is isomorphic to A then we say that A is a
computable presentation of B. Note that if B has a computable presentation then B has
ω many computable presentations.

Many of the results in this paper assume some familiarity with ordinal arithmetic and
computable (recursive) ordinals (see, for example, [?] for an introduction). The least non-
computable ordinal is denoted by ωCK

1 .

3. Ranks of automatic well-founded partial orders

In this section, we consider structures A = (A; R) with a single binary relation. An
element x is said to be R-minimal for a set X if for each y ∈ X, (y, x) /∈ R. The
relation R is said to be well-founded if every non-empty subset of A has an R-minimal
element. This is equivalent to saying that (A; R) has no infinite chains x1, x2, x3, . . . where
(xi+1, xi) ∈ R for all i.

A ranking function for A is an ordinal-valued function f such that f(y) < f(x) when-
ever (y, x) ∈ R. In this case, let ord(f) be the smallest ordinal larger than or equal to
all values of f . The structure A is well-founded if and only if A has a ranking function.
The ordinal height of A (or, the rank of A), denoted r(A), is the least ordinal α which
is ord(g) for some ranking function g. We now give an equivalent definition for the rank
of A. Define the function rA by induction as follows. For the R-minimal elements x, set
rA(x) = 0. Put rA(z) = sup{r(y) + 1 : (y, z) ∈ R}. Then rA is a ranking function admitted
by A and r(A) = sup{rA(x) : x ∈ A}. For B ⊆ A, we write r(B) for the ordinal height of
the structure obtained by restricting R to B. The following is well-known:

Lemma 3.1. For any computable ordinal α there is a computable well-founded relation of
rank α. �

We also use the following lemma about well-founded relations and rank. The proof follows
from by induction using the well-foundedness of ordinals and of R.

Lemma 3.2. For a structure A = (A; R) where R is well-founded, if r(A) = α and β < α
then there is an x ∈ A such that rA(x) = β. �

For the remainder of this section, we impose one additional condition on R, and assume
that R is a partial order. For convenience, we write ≤ instead of R. Thus, from now on
we consider automatic well-founded partial orders A = (A,≤). We will see that in this
restricted setting, the ranges of ranking height functions are strictly below ωω. We will
use the notion of natural sum of ordinals. The natural sum of ordinals α, β (denoted
α +′ β) is defined recursively by putting α +′ β as the least ordinal strictly greater than
γ +′ β for all γ < α and strictly greater than α +′ γ for all γ < β. Let A1 and A2 be disjoint
subsets of A such that A = A1 ∪A2. Consider the partially ordered sets A1 = (A1,≤1) and
A2 = (A2,≤2) obtained by restricting ≤ to A1 and A2 respectively.

Lemma 3.3. Under the assumptions above, r(A) ≤ α1 +′ α2, where αi = r(Ai), i = 1, 2.

AUTOMATIC STRUCTURES AND THEIR COMPLEXITY 7

Proof. It suffices to show that there is a ranking function on A whose range is contained in
the ordinal α1 +′ α2. The desired function f is defined as follows. For each x ∈ A consider
the partially ordered sets A1,x and A2,x obtained by restricting ≤ to {z ∈ A1 | z < x} and
{z ∈ A2 | z < x}, respectively. Define f(x) = r(A1,x) +′ r(A2,x).

We claim that f is a ranking function. Indeed, assume that x < y. Then, since ≤ is
transitive, it must be the case that A1,x ⊆ A1,y and A2,x ⊆ A2,y. Therefore, r(A1,x) ≤ r(A1,y)
and r(A2,x) ≤ r(A2,y). At least one of these inequalities must be strict. To see this,
assume that x ∈ A1 (the case x ∈ A2 is similar). Then since x ∈ A1,y, it is the case that
r(A1,x) + 1 ≤ r(A1,y) by the definition of ranks. By strict monotonicity of natural sum in
both arguments, we have that f(x) < f(y). �

Corollary 3.4. If r(A) = ωn and A = A1 ∪A2, where A1 ∩A2 = ∅, then either r(A1) = ωn

or r(A2) = ωn. �

It is clear that automatic partially ordered sets isomorphic to ωn have rank ωn. The next
theorem shows that ωω is the sharp bound on ranks of all automatic well-founded partial
orders. Having the corollary above, our proof follows Delhommé [?] and Rubin [?].

Theorem 3.5. For each ordinal α, α is the rank an automatic well-founded partial order if
and only if α < ωω.

Proof. We assume for a contradiction that there is an automatic well-founded partial order
A = (A,≤) with r(A) = α ≥ ωω. Let (SA, ιA, ∆A, FA) and (S≤, ι≤, ∆≤, F≤) be finite
automata over Σ recognizing A and ≤ (respectively).

By Lemma 3.2, for each natural number n there exists an element un ∈ A such that
rA(un) = ωn. For each u ∈ A we define the set

u ↓= {x ∈ A : x < u}.

Note that if rA(u) is a limit ordinal then rA(u) = r(u ↓). We introduce another piece of
notation in order to give a finite partition of each set un ↓. For u, v ∈ Σ⋆, we denote the set
of extensions of v which are ≤-below u in A by Xu

v . Thus,

Xu
v = {vw ∈ A : w ∈ Σ⋆ & vw < u}.

Each set of the form u ↓ can be partitioned based on the prefixes of words as follows:

u ↓= {x ∈ A : |x| < |u| & x < u} ∪ ∪v∈Σ⋆:|v|=|u|X
u
v .

(All the unions above are finite and disjoint.) Hence, applying Corollary 3.4, for each un

there exists a vn such that |un| = |vn| and r(Xun
vn

) = r(un ↓) = ωn.

We define the following equivalence relations on pairs of finite words of equal lengths:

(u, v) ∼ (u′, v′) ⇐⇒ ∆A(ιA, v) = ∆A(ιA, v′) & ∆≤(ι≤,

(

v

u

)

) = ∆≤(ι≤,

(

v′

u′

)

)

There are at most |SA|×|S≤| equivalence classes. Therefore, in the infinite sequence (u1, v1),
(u2, v2), . . ., (ui, vi), . . . there are m, n such that m 6= n and (um, vm) ∼ (un, vn).

Lemma 3.6. For any u, v, u′, v′ ∈ Σ⋆, if (u, v) ∼ (u′, v′) then r(Xu
v) = r(Xu′

v′).

8 BAKHADYR KHOUSSAINOV AND MIA MINNES

To prove the lemma, we define the function f : Xu
v → Xu′

v′ by f(vw) = v′w. From
the definition of the equivalence relation f is well-defined, bijective, and order preserving.
Hence Xu

v is isomorphic to Xu′

v′ as partial orders. Therefore, r(Xu
v) = r(Xu′

v′). This proves
the lemma.

By Lemma 3.6, ωm = r(Xum
vm

) = r(Xun
vn

) = ωn, a contradiction with the assumption that
m 6= n. Therefore, there is no automatic well-founded partial order of rank greater than or
equal to ωn. �

4. Configuration Spaces of Turing Machines

In all the forthcoming constructions, we embed computable structures into automatic
structures via configuration spaces of underlying Turing machines. This section serves as an
auxiliary technical section in which we recall relevant definitions and establish terminology
to be used in later sections. Let M be an n-tape deterministic Turing machine. The
configuration space of M is a directed graph whose nodes are configurations of M.
Thus, the nodes are n-tuples, each of whose coordinates represents the contents of a tape.
Each tape is encoded as (w q w′), where w, w′ ∈ Σ⋆ are the symbols on the tape before and
after the location of the read/write head, and q is one of the internal states of M. The
edges of the graph are all the pairs of the form (c1, c2) such that there is an instruction
of the machine that transforms the configuration c1 to c2. Since each Turing machine has
finitely many states and finitely many instructions, the configuration space is an automatic
graph. We denote the configuration space of M by Conf(M). Note that the out-degree of
every vertex in Conf(M) is one; the in-degree may be greater than 1 and is bounded by
the size of the alphabet and the number of instructions of M.

Definition 4.1. A deterministic Turing machine M is reversible if the in-degree of each
vertex in Conf(M) is at most 1.

The configuration space of all reversible Turing machines consist of either chains of finite
size, chains of type ω (the order type of the natural numbers), chains of type ω⋆ + ω (the
order type of the integers), or finite cycles. The following result is well-known but we sketch
its proof for the completeness of the presentation:

Lemma 4.2. [?] Any deterministic 1-tape Turing machine may be simulated by a reversible
3-tape Turing machine.

Proof. (Sketch) Given a deterministic Turing machine, define a 3-tape Turing machine with
a modified set of instructions. The instructions are of the form ā → b̄, where ā is referred
to as the domain and b̄ as the range of the instruction. The modified instructions have the
property that neither the domains nor the ranges overlap. On the first tape, the Turing
machine performs the computation as the original one would have. However, as it executes
each instruction, the machine stores the index of the instruction on the second tape, forming
a history. Once the machine enters a state which would have been halting for the original
machine, the output of the computation is copied onto the third tape. Finally, the machine
runs the computation backwards (which is possible, because of the modification on the
instructions) and erases the history tape. The halting (final) configuration of this machine

AUTOMATIC STRUCTURES AND THEIR COMPLEXITY 9

contains the input on the first tape, blanks on the second tape, and the output on the third
tape. �

We establish the following notation for a 3-tape reversible Turing machine M given by
the construction in this lemma. A valid initial configuration of the M is of the form
(λ ι x, λ, λ), for some x in the domain and where λ is the empty string, ι is the initial
internal state of M. From the proof above, we observe that a final (halting) configuration
is of the form (x, λ, λ qf y), with qf a halting internal state of M. The set of valid initial or
final configurations is regular. It is clear from the proof of the lemma that the configuration
space of M contains neither finite cycles nor chains of type ω⋆ +ω. Thus, all the chains are
either finite or ω-chains. We call elements of in-degree 0 bases (of chains they belong to).
We classify the components of the configuration space as chains of the following types.

• Terminating computation chains: finite chains whose base is a valid initial
configuration, that is, one of the form (λ ι x, λ, λ), for x ∈ Σ⋆ and ι the distinguished
initial state of the Turing machine.

• Non-terminating computation chains: infinite chains whose base is a valid
initial configuration.

• Unproductive chains: chains whose base is not a valid initial configuration.

The following fact says that, no matter how complicated the set described by the Turing
machine, the configuration space does not have a very large ordinal height.

Proposition 4.3. If G = (A, E) is a locally finite graph then either E is well-founded and
the rank of E is not above ω or E has an infinite chain.

Proof. Suppose G is a locally finite graph and E is well-founded. For a contradiction,
suppose r(G) > ω. Then there is v ∈ A with r(v) = ω. By definition, r(v) = sup{r(u) :
uEv}. But, this implies that there are infinitely many elements E-below v, a contradiction
with local finiteness of G. �

5. Ranks of well-founded automatic relations

We return to automatic well-founded relations, and prove the following theorem:

Theorem 5.1. For each computable ordinal, α < ωCK
1 , there is an automatic well-founded

relation A whose rank r(A) is such that α ≤ r(A) ≤ ω + α.

Proof. The proof of the theorem uses properties of Turing machines and their configuration
spaces. The idea is to take a computable well-founded relation whose rank is α, and “embed”
the relation into an automatic well-founded relation whose rank is close to α.

By Lemma 3.1, let C = (C, Lα) be a computable well-founded relation of rank α. The
construction involves the configuration space of a Turing machine computing the relation
Lα. We assume without loss of generality that C = Σ⋆ for some finite alphabet Σ. Let M
be the Turing machine computing the relation Lα. On each pair (x, y) from the domain,
M halts and outputs “yes” or “no” . By Lemma 4.2, we can assume that M is reversible.
Recall that the configuration space of M is an automatic graph, Conf(M) = (D, E).

10 BAKHADYR KHOUSSAINOV AND MIA MINNES

We define the domain of our automatic structure to be A = Σ⋆ ∪D. The binary relation
of the automatic structure is defined to be the following:

R = E ∪ {(x, (λ ι (x, y), λ, λ)) : x, y ∈ Σ⋆} ∪ {(((x, y), λ, λ qf “yes”), y) : x, y ∈ Σ⋆}.

Intuitively, the structure (A; R) is a stretched out version of (C, Lα) with infinitely many
finite pieces extending from elements of C and with disjoint pieces which are either finite
chains or chains of type ω. The structure (A; R) is easily seen to be automatic. We should
verify, however, that R is well-founded. Let Y ⊂ A. If Y ∩ C 6= ∅ then since (C, Lα) is
well-founded, there is x ∈ Y ∩ C which is Lα-minimal. Then the only possible elements
u in Y for which (u, x) ∈ R are those which lie on computation chains connecting some
z ∈ C with x. Since each such computation chain is finite, there is an R-minimal u below
x on each chain. Any such u is R-minimal for Y . On the other hand, if Y ∩ C = ∅, then
Y consists of disjoint finite chains and chains of type ω. Any such chain has a minimal
element, and any of these elements are R-minimal for Y . Therefore, (A; R) is an automatic
well-founded structure.

We now consider the well-founded rank of (A; R). For each element x ∈ C, an easy
induction on rC(x), shows that

rC(x) ≤ rA(x) ≤ rC(x) + ω.

We denote by ℓ(a, b) the (finite) length of the computation chain of M with input (a, b).
For any element ax,y in the computation chain which represents the computation of M
determining whether (x, y) ∈ R,

rA(x) ≤ rA(ax,y) ≤ rA(x) + ℓ(x, y).

For any element u in an unproductive chain of the configuration space, 0 ≤ rA(u) ≤ ω.
Therefore, since C ⊂ A,

r(A) = sup{rA(x) : x ∈ A} ≥ sup{rA(x) : x ∈ C} ≥ sup{rC(x) : x ∈ C} = r(C),

and

r(A) = sup{rA(x) : x ∈ A} ≤ sup{rC(x) + ω, ω : x ∈ C} ≤ r(C) + ω.

�

6. Automatic Structures and Scott Rank

In this section, we consider automatic signatures of any signature. We use similar em-
bedding techniques with configuration spaces to show that for each computable structure
C there is an automatic structure A whose Scott rank is close to the Scott rank of C. The
Scott rank of a structure, introduced in the proof of Scott’s Isomorphism Theorem [?], is a
measure of complexity of the structure. There are several definitions of the Scott rank that
are all essentially equivalent. Here we follow the definition from [?].

Definition 6.1. For structure A and tuples ā, b̄ ∈ An, define

• ā ≡0 b̄ if ā, b̄ satisfy the same quantifier free formulas in the language of A;
• For α > 0, ā ≡α b̄ if for all β < α, for each c̄ there is d̄ such that ā, c̄ ≡β b̄, d̄; and for

each d̄ there is c̄ such that ā, c̄ ≡β b̄, d̄.

AUTOMATIC STRUCTURES AND THEIR COMPLEXITY 11

Then, the Scott rank of the tuple ā, denoted by SR(ā), is the least β such that for all
b̄ ∈ An, ā ≡β b̄ implies that (A, ā) ∼= (A, b̄). Finally, the Scott rank of A, denoted by
SR(A), is the least α greater than the Scott ranks of all tuples of A.

Example 6.2. SR(ω,≤) = 2, SR(n · ω,≤) = n + 1 and SR(Q,≤) = 1.

Since the following construction uses configuration spaces of (reversible) Turing machines,
we comment that these graphs are locally finite and do not have high Scott rank.

Proposition 6.3. Let G = (V, E) be a locally finite graph, then SR(G) ≤ 3.

The neighbourhood of diameter n of a subset U , denoted Bn(U), is defined inductively
as follows. First, B0(U) = U . Then,

Bn(U) =
⋃

i=0,...,n−1

Bi ∪ {v ∈ V : ∃a ∈ U, b1, . . . , bn−1(aEb1E · · ·Ebn−1Ev or vEb1E · · ·Ebn−1Ea)}

Lemma 6.4. Let ā, b̄ ∈ V be such that ā ≡2 b̄. Then for all n, (Bn(ā), E, ā) ∼= (Bn(b̄), E, b̄)
(in other words, there is bijection of the neighbourhoods which sends ā to b̄ and which respects
E).

Proof. For a given n, let c̄ = Bn(ā) \ ā. Note that c̄ is a finite tuple because of the local
finiteness condition. Since ā ≡2 b̄, there is d̄ such that āc̄ ≡1 b̄d̄. If Bn(b̄) = b̄d̄, we are
done. Two set inclusions are needed. First, we show that di ∈ Bn(b̄). By definition, we
have that ci ∈ Bn(ā), and let aj , u1, . . . , un−1 witness this. Then since āc̄ ≡1 b̄d̄, there are
v1, . . . , vn−1 such that āc̄ū ≡0 b̄d̄v̄. In particular, we have that if ciEuiE · · ·Eun−1Eaj , then
also diEviE · · ·Evn−1Ebj (and likewise if the E relation is in the other direction). Hence,
di ∈ Bn(b̄). Conversely, suppose v ∈ Bn(b̄) \ d̄. Let v1, . . . , vn be witnesses and this will let
us find a new element of Bn(ā) which is not in c̄, a contradiction. �

Lemma 6.5. Let G = (V, E) be agraph. Suppose ā, b̄ ∈ V are such that for all n,
(Bn(ā), E, ā) ∼= (Bn(b̄), E, b̄). Then there is an isomorphism between the component of
G containing ā and that containing b̄ which sends ā to b̄.

Proof. We consider a tree of partial isomorphisms of G. The nodes of the tree are bijections
from Bn(ā) to Bn(b̄) which respect the relation E and map ā to b̄. Node f is the child of
node g in the tree if dom(f) = Bn(ā), dom(g) = Bn+1(ā) and f ⊃ g. Note that the root
of this tree is the map which sends ā to b̄. Moreover, the tree is finitely branching and is
infinite by Lemma 1. Therefore, König’s Lemma gives an infinite path through this tree.
The union of all partial isomorphisms along this path is the required isomorphism. �

Proof of Proposition 6.3. To prove the proposition, we note that for any ā, b̄ in V such that
ā ≡2 b̄, Lemmas 1 and 2 yield an isomorphism from the component of ā to the component
of b̄, and under this isomorphism ā gets mapped to b̄. Hence, if ā ≡2 b̄, there is an automor-
phism of G that maps ā to b̄. Therefore, for each ā ∈ V , SR(ā) ≤ 2, and SR(G) ≤ 3. �

Let C be a computable structure. Our goal is to construct an automatic structure whose
Scott rank is (close to) the Scott rank of C. The construction in some sense expands C into
an automatic structure. We comment that expansions do not necessarily preserve the Scott

12 BAKHADYR KHOUSSAINOV AND MIA MINNES

rank. For example, any computable structure, C, has an expansion with Scott rank 2. The
expansion is obtained by adding the successor relation into the signature.

For computable structure C, we assume without loss of generality that C has finite signa-

ture (R
(m1)
1 , . . . , R

(mn)
n). Moreover, since the domain of C is computable, there is a one-to-one

map of it onto ω. Therefore we assume that the domain is encoded as Σ⋆ for some finite
alphabet Σ. The construction of the automatic structure involves connecting the configu-
ration spaces of Turing machines computing each relation in the signature to elements in
the domain. We detail the construction for each relation in the signature. Consider Ri, of
arity mi. Let Mi be a Turing machine for Ri. As before (see Lemma 4.2), we can assume
that Mi is reversible. Moreover, a simple modification of the machine means that we can
assume that Mi halts if and only if its output is “yes” (and otherwise enters an infinite
loop). For the automatic structure, we again begin with the configuration space Conf(Mi).
Recall that the set of valid initial configurations is regular. We now modify the configuration
space so as to respect the isomorphism type of the structure C. This will ensure that the
construction (almost) preserves the Scott rank of the structure.

6.1. Smoothing out unproductive parts. The unproductive parts of the configuration
space represent features of the Turing machine computing Ri, as opposed to intrinsic prop-
erties of Ri itself. The length and number of unproductive chains is determined by the
number of states of Mi and hence may differ even for Turing machines computing the same
set. Since the unproductive part of the configuration space should play no role in deter-
mining the isomorphism type of the structure under consideration, we wish to eliminate the
possible differences arising from it. To do so, we add a ω⋆-chain (the successor relation on
the negative integers) below each base of an unproductive chain. This procedure retains the
automaticity of the structure since bases of unproductive chains can be recognized by a finite
automaton and ω⋆-chains are automatically presentable (e.g. with domain 1⋆). Whereas the
addition of these ω⋆ tails allows us to distinguish between the unproductive and productive
parts of the configuration space, we must still smooth out the structure to ensure that the
unproductive section of the structure does not form a barrier to isomorphism. In other
words, we wish to add enough redundant information in the unproductive section of the
structure so that if two given computable structures are isomorphic, the unproductive parts
of the automatic representations will also be isomorphic . Thus, to the structure we are
building we add ω-many copies of ω⋆ and ω-many copies of ω⋆ + ω. This ensures that the
(smoothed) unproductive section of the configuration space of any Turing machine will be
isomorphic. It is important to note that adding this redundancy preserves automaticity
since the operation is a disjoint union between automatic structures.

6.2. Smoothing out lengths of computation chains. We now turn our attention to the
part of the configuration space which corresponds to actual computations of the machine.
These are chains (both finite and infinite) whose base is a valid initial configuration. The
length of each finite chain denotes the length of computation required to return a “yes” an-
swer. However, this detail of the computation is not relevant to the question of whether the
input tuple represented in the initial configuration is in Ri. Therefore, we will smooth out
these chains by adding “fans” to each base. More specifically, we connect to each base of a

AUTOMATIC STRUCTURES AND THEIR COMPLEXITY 13

computation chain a structure which consists of infinitely many chains of each finite length.
To guarantee that automaticity is preserved, we note that the set of bases of computations
chains is recognized by a finite automaton. Also, we need to ensure that the structure we are
adjoining to these bases is automatic. To do so we follow Rubin [?]: consider the structure
whose domain is 0⋆01⋆ and whose transition relation is given by xEy if and only if |x| = |y|
and y is the least lexicographic successor of x in the domain. This structure has chains 0,
00 — 01, 000 — 001 — 011, 0000 — 0001 — 0011 — 0111, etc. Thus, it has a finite chain
of every finite length. Moreover, it is an automatic structure. Next, as in Lemma 2.5, we
take the ω-fold disjoint union of the structure and then identify the bases of all the finite
chains. The resulting structure is a “fan” with infinitely many chains of each finite size.

At the end of this stage of this construction, we have that each valid initial computation
state is the base for a fan. Moreover, the fan has an infinite component if and only if Ri

does not hold of the input tuple corresponding to the base of the fan.

The result is a graph which extends the configuration space Conf(Mi) and is clearly an
automatic graph. We call this graph Smooth(Ri) = (Di, Ei).

6.3. Connecting domain symbols to the computations of the relation. We apply
the construction above to each of the relations Ri in the signature of the computable struc-
ture C. Taking the union of the resulting automatic graphs and adding vertices for the
domain, we have the structure (Σ⋆ ∪∪iDi, E1, . . . , En). We assume without loss of general-
ity that each Mi has a different initial state, and denote it by ιi. We add n partial functions
F1, . . ., Fn to the signature of the automatic structure we are building. These functions will
connect the elements of the domain of the computable structure with the computations of
the relations Ri. For each 1 ≤ i ≤ n, the graph of Fi is defined as follows:

Fi = {(x0, . . . , xmi−1, (λ ιi (x0, . . . , xmi−1), λ, λ)) | x0, . . . , xmi−1 ∈ Σ⋆}

These functions are automatic because the set of initial configurations is recognisable by
finite automaton. An important property of the construction is that for x̄ ∈ Σ⋆,

Ri(x̄) ⇐⇒ Fi(x̄, (λ ιi x̄, λ, λ)) & all Ei chains

emanating from (λ ιi x̄, λ, λ) are finite;

Thus, we have built the automatic structure A = (Σ⋆ ∪ ∪iDi, E1, . . . , En, F1, . . . , Fn). It
remains to show that SR(A) is close to SR(C). To prove this, we will need the following
two lemmas.

Lemma 6.6. For x̄, ȳ ∈ Σ⋆ (hence from the domain of C), and for any ordinal α, x̄ ≡α
C ȳ

implies that x̄ ≡α
A ȳ.

Proof. Let X = domA\Σ⋆. We prove the stronger result that for any ordinal α, and for all
x̄, ȳ ∈ Σ⋆ and x̄′, ȳ′ ∈ X, if the following assumptions hold

(1) x̄ ≡α
C ȳ;

(2) 〈x̄′, Ei : i = 1 . . . n〉A ∼=f 〈ȳ′, Ei, : i = 1 . . . n〉A (hence the substructures in A are
isomorphic) with f(x̄′) = ȳ′; and

14 BAKHADYR KHOUSSAINOV AND MIA MINNES

(3) for each x′
k ∈ x̄′, each i = 1, . . . , n and each subsequence of indices of length mi,

x′
k = (λ ιi x̄j , λ, λ) ⇐⇒ y′

k = (λ ιi ȳj, λ, λ)

then x̄x̄′ ≡α
A ȳȳ′. The lemma follows if we take x̄′ = ȳ′ = λ (the empty string).

We show the stronger result by induction on α. If α = 0, we need to show that for each
i, k, k′, k0, . . . , kmi−1, Ei(x

′
k, x

′
k′) if and only if Ei(y

′
k, y

′
k′), and that Fi(xk0

, . . . , xkmi−1
, x′

k′) if
and only if Fi(yk0

, . . . , ykmi−1
, y′

k′). The first statement follows by assumption 2, since the
isomorphism must preserve the Ei relations and maps x̄′ to ȳ′. The second statement follows
by assumption 3.

Assume now that α > 0 and that the result holds for all β < α. Let x̄, ȳ ∈ Σ⋆ and x̄′, ȳ′ ∈ A
be such that the assumptions of the lemma hold. We will show that x̄x̄′ ≡α

A ȳȳ′. Let β < α

and suppose ū ∈ Σ⋆, ū′ ∈ A. By assumption 1, there is v̄ ∈ Σ⋆ such that x̄ū ≡β
C ȳv̄. By the

construction (in particular, the smoothing steps), we can find a corresponding v̄′ ∈ A such

that assumptions 2, 3 hold. Applying the inductive hypothesis, we get that x̄ūx̄′ū′ ≡β
A ȳv̄ȳ′v̄′.

Analogously, given v̄, v̄′ we can find the necessary ū, ū′. Therefore, x̄x̄′ ≡α
A ȳȳ′. �

In the next lemma, we use the notation XP to mean the subset of X = A \ Σ⋆ which
corresponds to elements on fans associated with productive chains of the configuration space.
We write XU to mean the subset of X which corresponds to the unproductive chains of the
configuration space. Therefore, A = Σ⋆ ∪ XP ∪ XU , a disjoint union.

Lemma 6.7. For each x̄ ∈ Σ⋆, x̄′ ∈ XP , ū ∈ XU there is ȳ ∈ Σ⋆ such that SRA(x̄x̄′ū) ≤
2 + SRC(ȳ).

Proof. Given x̄, x̄′, ū, let ȳ ∈ Σ⋆ be a minimal element satisfying that x̄ ⊂ ȳ and that
x̄′ ⊂ 〈ȳ, Ei, Fi : i = 1 . . . n〉A. Then we will show that ȳ is the desired witness. First, we
observe that since the unproductive part of the structure is disconnected from the productive
elements we can consider the two independently. Moreover, because the structure of the
unproductive part is predetermined and simple, for ū, v̄ ∈ XU , if ū ≡1

A v̄ then (A, ū) ∼=
(A, v̄). It remains to consider the productive part of the structure.

Consider any z̄ ∈ Σ⋆, z̄′ ∈ XP satisfying z̄′ ⊂ 〈z̄, Ei, Fi : i = 1 . . . n〉A. We claim that
SRA(z̄z̄′) ≤ 2 + SRC(z̄). It suffices to show that for all α, for all w̄ ∈ Σ⋆, w̄′ ∈ XP ,

z̄z̄′ ≡2+α
A w̄w̄′ =⇒ z̄ ≡α

C w̄.

This is sufficient for the following reason. If z̄z̄′ ≡
2+SRC(z̄)
A w̄w̄′ then z̄ ≡

SRC(z̄)
C w̄ and hence

(C, z̄) ∼= (C, w̄). From this automorphism, we can define an automorphism of A mapping
z̄z̄′ to w̄w̄′ because z̄z̄′ ≡2

A w̄w̄′ and hence for each i, the relative positions of z̄′ and w̄′ in
the fans above z̄ and w̄ are isomorphic. Therefore, 2 + SRC(z̄) ≥ SRA(z̄z̄′).

So, we now show that for all α, for all w̄ ∈ Σ⋆, w̄′ ∈ XP , z̄z̄′ ≡2+α
A w̄w̄′ implies that

z̄ ≡α
C w̄. We proceed by induction on α. For α = 0, suppose that z̄z̄′ ≡2

A w̄w̄′. This implies
that for each i and for each subsequence of length mi of the indices, the Ei-fan above z̄j has
an infinite chain if and only if the Ei-fan above w̄j does. Therefore, Ri(z̄j) if and only if
Ri(w̄j). Hence, z̄ ≡0

C w̄, as required. For the inductive step, we assume the result holds for
all β < α. Suppose that z̄z̄′ ≡2+α

A w̄w̄′. Let β < α and c̄ ∈ Σ⋆. Then 2 + β < 2 + α so by

definition there is d̄ ∈ Σ⋆, d̄′ ∈ XP such that z̄z̄′c̄ ≡2+β
A w̄w̄′d̄d̄′. However, since 2 + β > 1,

AUTOMATIC STRUCTURES AND THEIR COMPLEXITY 15

d̄′ must be empty (elements in Σ⋆ cannot be 1-equivalent to elements in XP). Then by the

induction hypothesis, z̄c̄ ≡β
C w̄d̄. The argument works symmetrically if we are given d̄ and

want to find c̄. Thus, z̄ ≡α
C w̄, as required. �

We can now prove the main theorem of this section.

Theorem 6.8. Let C be a computable structure and construct the automatic structure A
from it as above. Then SR(C) ≤ SR(A) ≤ 2 + SR(C).

Proof. Let x̄ be a tuple in the domain of C. Then, by the definition of Scott rank, SRA(x̄)
is the least ordinal α such that for all ȳ ∈ dom(A), x̄ ≡α

A ȳ implies that (A, x̄) ∼= (A, ȳ); and
similarly for SRC(x̄). We first show that SRA(x̄) ≥ SRC(x̄). Suppose SRC(x̄) = β. We
assume for a contradiction that SRA(x̄) = γ < β. Consider an arbitrary z̄ ∈ Σ⋆ (the domain
of C) such that x̄ ≡γ

C z̄. By Lemma 6.6, x̄ ≡γ
A z̄. But, the definition of γ as the Scott rank

of x̄ in A implies that (A, x̄) ∼= (A, z̄). Now, C is Lω1,ω definable in A and therefore inherits
the isomorphism. Hence, (C, x̄) ∼= (C, z̄). But, this implies that SRC(x̄) ≤ γ < β = SRC(x̄),
a contradiction.

So far, we have that for each x̄ ∈ Σ⋆, SRA(x̄) ≥ SRC(x̄). Hence, since dom(C) ⊂ dom(A),

SR(A) = sup{SRA(x̄) + 1 : x̄ ∈ dom(A)}

≥ sup{SRA(x̄) + 1 : x̄ ∈ dom(C)}

≥ sup{SRC(x̄) + 1 : x̄ ∈ dom(C)} = SR(C).

In the other direction, we wish to show that SR(A) ≤ 2 + SR(C). Suppose this is not
the case. Then there is x̄x̄′ū ∈ A such that SRA(x̄x̄′ū) ≥ 2+SR(C). By Lemma 6.7, there
is ȳ ∈ Σ⋆ such that 2 + SRC(ȳ) ≥ 2 + SR(C), a contradiction. �

Recent work in the theory of computable structures has focussed on finding computable
structures of high Scott rank. Nadel [?] proved that any computable structure has Scott
rank at most ωCK

1 + 1. Early on, Harrison ([?]) showed that there is a computable ordering
of type ωCK

1 (1 + η) (where η is the order type of the rational numbers). This ordering
has Scott rank ωCK

1 + 1, witnessed by any element outside the initial ωCK
1 set. However,

it was not until much more recently that a computable structure of Scott rank ωCK
1 was

produced (see Knight and Millar [?]). Theorem 6.8 allows us to transfer all of these results
to automatic structures. Hence, we get the following corollary.

Corollary 6.9. For any infinite computable ordinal α there is an automatic structure of
Scott rank α. �

7. Automatic Successor Trees and Cantor-Bendixson Rank

In this section, we show that there are automatic successor trees of high Cantor-Bendixson
(CB) rank. This result is in contrast to one proved in [?] which states that automatic partial
order trees all have finite CB rank.

Definition 7.1. A partial order tree is a pair (T,≤) such that ≤ is a partial order on T ,
there is a ≤-minimal element of T , and each subset {x ∈ T : x ≤ y} is finite and linearly
ordered under ≤. A successor tree is a pair (T, S) such that S ⊂ T × T and if ≺S is the
reflexive and transitive closure of S then (T,≺S) is a partial order tree.

16 BAKHADYR KHOUSSAINOV AND MIA MINNES

Let (T,≤) be automatic partial order tree. The successor relation S on T is defined by the
formula (x ≤ y) & ∀z(x ≤ z → y ≤ z)). Therefore (T, S) is an automatic successor tree. In
this section, we will build examples of automatic successor trees (T, S) whose corresponding
partial order trees (T,≺S) have no automatic presentations. We will see later that the
opposite is true for computable trees.

Definition 7.2. Given a (partial order or successor) tree T , its derivative d(T) is the
subtree of T whose domain is

{x ∈ T : x lies on at least two infinite paths in T}.

By transfinite induction, we define d0(T) = T , dα+1(T) = d(dα(T)), and for γ a limit ordinal,
dγ(T) = ∩β<γd

β(T). The CB rank of the tree, denoted by CB(T), is the least ordinal α
such that dα(T) = dα+1(T).

As mentioned above, the CB ranks of automatic partial order trees are finite (as proved
in [?]). Below we provide simple examples of automatic successor trees whose ranks are
small ordinals.

Example 7.3. There is an automatic partial order tree (hence a successor tree) whose CB
rank is n for each n ∈ ω.

Proof. The tree Tn is defined over the n letter alphabet {a1, . . . , an} as follows. The domain
of the tree is a⋆

1 · · ·a
⋆
n. The order ≤n is the prefix partial order. Therefore, the successor

relation is given as follows:

S(aℓ1
1 · · ·aℓi

i) =

{

{aℓ1
1 · · ·aℓi+1

i , aℓ1
1 · · ·aℓi

i ai+1} if 1 ≤ i < n

{aℓ0
1 · · ·aℓi+1

i } if i = n

Note that if n = 0 then the tree is empty, which is consistent with it having CB rank 0.
It is obvious that Tn is an automatic partial order (hence successor) tree. The rank of Tn

can be shown, by induction, to be equal to n. �

The following examples code the finite rank successor trees uniformly into one automaton
in order to push the rank higher. The next example provides an automatic successor tree
Tω+1 of rank ω+1. We note that the CB ranks of all trees with at most countably many paths
are successor ordinals. Thus, Tω+1 will have countably many paths. Later, we construct a
tree of rank ω which must embed the perfect tree because its CB rank is a limit ordinal.

Example 7.4. There is an automatic successor tree Tω+1 whose CB rank is ω + 1.

Proof. Informally, this tree is a chain of trees of increasing finite CB ranks. Let Tω+1 =
({0, 1}⋆, S) with S defined as follows:

S(1n) = {1n0, 1n+1} for all n

S(0u) = 0u0 for all u ∈ {0, 1}⋆

S(1n0u) = {1n0u0, 1n−10u1} for n ≥ 1 and u ∈ {0, 1}⋆

Intuitively, the subtree of rank n is coded by the set Xn of nodes which contain exactly
n 1s. By induction on the length of strings, we can show that range(S) = {0, 1}⋆ and hence

AUTOMATIC STRUCTURES AND THEIR COMPLEXITY 17

the domain of the tree is also {0, 1}⋆. It is also not hard to show that the transitive closure
of the relation S is a tree partial order. To see that Tω+1 is automatic we note that the
domain of the tree is trivially automatic and that the successor relation is a finite union of
relations, the convolution of each of which can be expressed as a regular expression.

Finally, we compute the rank of Tω+1. We note that in successive derivatives, each of the
finite rank sub-trees Xn is reduced in rank by 1. Therefore

dω(T) = 1⋆.

But, since each point in 1⋆ is on exactly one infinite path, dω+1(T) = ∅, and this is a
fixed-point. Thus, CB(Tω+1) = ω + 1, as required. �

We finish this section by providing an example of the tree Tω of rank ω. The idea is to
code the trees Tn provided above into the leftmost path of the full binary tree.

Example 7.5. There is an automatic successor tree Tω whose CB rank is ω.

Proof. The tree is the full binary tree, where at each node on the leftmost branch we append
trees of increasing finite CB rank. Thus, define Tω = ({0, 1}⋆ ∪ {0, a}⋆, S) where S is given
as follows:

S(u1v) = {u1v0, u1v1} for all u, v ∈ {0, 1}⋆

S(0n) = {0n+1, 0n1, 0na} for all n

S(au) = aua for all u ∈ {0, a}⋆

S(0nau) = {0naua, 0n−1au0} for n ≥ 1 and u ∈ {0, a}⋆

Proving that Tω is an automatic successor tree is a routine check. So, we need only
compute its rank. Each derivative leaves the right part of the tree (the full binary tree)
fixed. However, the trees appended to the leftmost path of the tree are affected by taking
derivatives. Successive derivatives decrease the rank of the protruding finite rank trees by
1. Therefore, dω(Tω) = {0, 1}⋆, a fixed point. Thus, CB(Tω) = ω. �

To extend these examples to higher ordinals, we consider the product operation on trees
defined as follows. Let (T1, S1) and (T2, S2) be successor trees. The product of these trees
is the tree (T, S) with domain T = T1 × T2 and successor relations given by:

S((x, y), (u, v)) ⇐⇒

{

y is the root of T2 and (u = x, S2(y, v)) or (S1(x, u), y = v)

y is not the root of T2 and u = x, S2(y, v).

The following is an easy proposition.

Proposition 7.6. Assume that T1 and T2 are successor trees of CB ranks α and β, re-
spectively, each having at most countably many paths. Then T1 × T2 has CB rank α + β.
Moreover, if T1 and T2 are automatic successor trees then so is the product. �

The examples and the proposition above yield tools for building automatic successor
trees of CB ranks up to ω2. However, it is not clear these methods can be applied to obtain
automatic successor trees of higher CB ranks.

18 BAKHADYR KHOUSSAINOV AND MIA MINNES

8. Automatic successor trees of high CB ranks

In this section we provide new methods of coding of computable successor trees into
automatic successor trees. We note that every computable successor tree (T, S) is also a
computable partial order tree. Indeed, in order to compute if x ≺S y, we effectively find the
distances of y and x from the root. If y is closer to the root or is at the same distance as x
then ¬(x ≺S y); otherwise, we start computing the trees above all z at the same distance
from the root as x is. Then y must appear in one of these trees. This computes if x ≺S y.
We point out that not every computable partial order tree is a computable successor tree.

In the proof of the main theorem of this section we use the following lemma whose proof
is left to the reader.

Lemma 8.1. For any computable ordinal α there exists a computable successor tree whose
CB rank is α. �

Theorem 8.2. For any computable ordinal α < ωCK
1 there is an automatic successor tree

of CB rank α.

Proof. Suppose we are given α < ωCK
1 . By the lemma above, take a computable tree Rα

of CB rank α. We will embed this tree into an automatic successor tree by using the
configuration space for the Turing machine computing the successor relation for Rα.

We assume that the domain of Rα is Σ⋆ for some finite alphabet Σ and r ∈ Σ⋆ is the root
of the tree Rα. Let M be a deterministic Turing machine which computes the successor
relation of Rα. On input (x, y), M halts and answers either “yes” or “no” . By Lemma 4.2,
we can assume without loss of generality that M is reversible. Recall that for the reversible
Turing machine M the final (halting) configurations of all computations contain both the
input and the output.

Our construction begins with the configuration space Conf(M) of M. The idea of
embedding Rα into the desired automatic successor tree is the following. Assume that y is
a successor of x in Rα. In the automatic tree we wish to connect the nodes (representing)
x and y by the computation of M on the pair (x, y).

We set the domain of the automatic successor tree to be Σ⋆ ∪ Conf(M). The successor
relation of the automatic tree contains the following edges:

E ′ = E ∪ {(x, (λ ι (x, y), λ, λ)) : x, y ∈ Σ⋆} ∪ {(((x, y), λ, λ qf “yes”), y) : x, y ∈ Σ⋆},

where E is the edge relation in Conf(M). Note that E ′ is still a regular binary relation. The
automatic structure now consists of a stretched out version of the tree Rα, where between
each two elements of the original tree we have a coding of their computation. In addition,
extending from each x ∈ Σ⋆ we have infinitely many finite computation chains. Those chains
which output “no” are not connected to any other part of the automatic structure. Finally,
there is a disjoint part of the structure which corresponds to computation chains whose
bases are not valid initial configurations. By the reversibility condition, the extraneous
components of the configuration space are isomorphic either to a finite chain or to an ω-
chain. Moreover, the set J of invalid initial configurations which are the base of such an
unproductive chain is regular. Therefore, the relation

Ẽ = E ′ ∪ {(r, (u, v, w)) : (u, v, w) ∈ J}

AUTOMATIC STRUCTURES AND THEIR COMPLEXITY 19

(where r is the root of Rα) is FA recognisable. We define Tα = (Conf ∪ Σ⋆, Ẽ). It is
straightforward to verify that Tα is, indeed, an automatic successor tree.

We now consider the CB rank of Tα. Note that the first derivative removes all the subtrees
whose roots are at distance 1 from the root and are invalid initial computations. This occurs
because each of the invalid computation chains has no branching and is not connected to
any other element of the tree. Next, if we consider the subtree of Tα rooted at an x ∈ Σ⋆, we
see that all the paths which correspond to computations whose output is “no” vanish after
the first derivative. Moreover, x ∈ d(Tα) if and only if x ∈ d(Rα) because the construction
did not add any new infinite paths. Therefore, after one derivative, the structure is exactly
a stretched out version of d(Rα). Likewise, for all β < α, dβ(Tα) is a stretched out version
of dβ(Rα). Hence, CB(Tα) = CB(Rα) = α. �

