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7.3.2 Let |bn| < B for all n. By hypothesis, such a B exists. Then,

|anbn| < |an|B for all n,

and so
∑

|anbn| converges by comparison with
∑

|an|B = B
∑

|an| (linearity theorem).
Then by absolute convergence theorem,

∑

anbn converges.

7.3.3 a)
∑

|an| converges by hypothesis. Then let SN =
∑N

i=1 |ani
|. We have

SN ≤
∑nN

i=1 |ai| (since SN is some but not necessrily all of the positive
terms on the right). And

∑nN

i=1 ≤
∑

∞

i=1 |ai|, so SN is bounded. Clearly
SN is increasing, hence by completeness property

∑

i |ani
| converges. By

absolute convergence theorem,
∑

i ani
must converge.

7.3.3 b) Let an = (−1)n 1
n
. Then a2n = 1

2n
and

∑

∞

an = ln 2 is convergent but
∑

a2n =
∑ 1

2n
= 1

2

∑ 1
n

is divergent.

7.4.1 b)
∑

1
n2

2n . Ratio Test:

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

(n + 1)22n

n22n+1

= lim
n→∞

1

2

(

1 +
2

n
+

1

n2

)

=
1

2
< 1.

So the series converges.

7.4.1 d)
∑

0
(n!)2

(2n)! Ratio test:

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

((n + 1)!)2(2n)!

(n!)2(2n + 2)!

= lim
n→∞

(n + 1)2

(2n + 1)(2n + 2)

= lim
n→∞

1 + 2
n

+ 1
n2

4 + 6
n

+ 2
n2

=
1

4
< 1.

So the series converges.
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7.4.1 i)
∑

0

(

n
n+2

)n2

. nth root test:

lim
n→∞

|an|
1
n = lim

n→∞

(

n

n + 2

)n

= lim
n→∞

(

1 +
−2

n + 2

)n+2 (

1 +
−2

n + 2

)

−2

= e−2 < 1.

So the series converges.

7.4.1 j)
∑

2 1/(ln n)p Integral test (can be used since 1
(ln n)p ≥ 0 and is decreasing.)

Then,
∑

2
1

n(ln n)p converges iff
∫

∞

2
1

x(lnx)p dx is finite. For p 6= 1,

∫

∞

2

1

x(ln x)p
dx =

(ln x)1−p

1 − p

∣

∣

∣

∣

∞

2

= lim
n→∞

(ln x)1−p

1 − p
−

(ln 2)1−p

1 − p
.

Since limx→∞(ln x) = ∞, then for p < 1 the series diverges and for p > 1
the series converges. For p = 1

∫

∞

2

1

x ln x
dx = ln(ln x)|∞2

which clearly is not finite. Hence convergence exactly on p ∈ (1,∞).

7.4.2 If limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
> 1, then for some N , n > N implies

∣

∣

∣

an+1

an

∣

∣

∣
> 1 (i.e.,

let ε = [limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
− 1]/2.) Then |an+1| > an for n � 1, so an does

not converge to 0. Therefore
∑

an fails the nth-tern test for convergence,
hence diverges.

7-3 We have
∣

∣

∣

an+1

an

∣

∣

∣
≤ r, hence

∣

∣

∣

∣

ak

a0

∣

∣

∣

∣

=

k−1
∏

n=0

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≤ rk

(
∏

is iterated multiplication opeator, as
∑

is interated addition operator.)
Hence |an| ≤ |an|r

k . Then by comparison to geometric series |an|
∑

r2

we have
∑

|an| is convergent. This implies
∑

ak is convergent by the
absolute convergence theorem, in fact absolutely convergent, which is the

conclusion of the ratio test as well. However, limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
need not

exist to apply this (7-3) result, so this is stronger.

Consider the sequence

an =
(r

2

)n
(

2

3

)
1
2
(1+(−1)n)

.
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Then the ratio we’re interested in is either r
3 or 3

4r, depending on the parity
(even or odd) of n, so (7-3) applies even though the ratio test cannot (since
the ratio has no limit).

3


