Math 311 HW 7 Solutions April 11, 2008

7.3.2 Let $|b_n| < B$ for all n. By hypothesis, such a B exists. Then,

 $|a_n b_n| < |a_n| B \quad \text{for all } n,$

and so $\sum |a_n b_n|$ converges by comparison with $\sum |a_n|B = B \sum |a_n|$ (linearity theorem). Then by absolute convergence theorem, $\sum a_n b_n$ converges.

- 7.3.3 a) $\sum_{i=1}^{N} |a_n|$ converges by hypothesis. Then let $S_N = \sum_{i=1}^{N} |a_{n_i}|$. We have $S_N \leq \sum_{i=1}^{n_N} |a_i|$ (since S_N is some but not necessrily all of the positive terms on the right). And $\sum_{i=1}^{n_N} \leq \sum_{i=1}^{\infty} |a_i|$, so S_N is bounded. Clearly S_N is increasing, hence by completeness property $\sum_i |a_{n_i}|$ converges. By absolute convergence theorem, $\sum_i a_{n_i}$ must converge.
- 7.3.3 b) Let $a_n = (-1)^n \frac{1}{n}$. Then $a_{2n} = \frac{1}{2n}$ and $\sum^{\infty} a_n = \ln 2$ is convergent but $\sum a_{2n} = \sum \frac{1}{2n} = \frac{1}{2} \sum \frac{1}{n}$ is divergent.
- 7.4.1 b) $\sum_{1} \frac{n^2}{2^n}$. Ratio Test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2 2^n}{n^2 2^{n+1}}$$
$$= \lim_{n \to \infty} \frac{1}{2} \left(1 + \frac{2}{n} + \frac{1}{n^2} \right)$$
$$= \frac{1}{2} < 1.$$

So the series converges.

7.4.1 d) $\sum_{0} \frac{(n!)^2}{(2n)!}$ Ratio test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{((n+1)!)^2 (2n)!}{(n!)^2 (2n+2)!}$$
$$= \lim_{n \to \infty} \frac{(n+1)^2}{(2n+1)(2n+2)}$$
$$= \lim_{n \to \infty} \frac{1 + \frac{2}{n} + \frac{1}{n^2}}{4 + \frac{6}{n} + \frac{2}{n^2}}$$
$$= \frac{1}{4} < 1.$$

So the series converges.

7.4.1 i) $\sum_{0} \left(\frac{n}{n+2}\right)^{n^2}$. *n*th root test:

$$\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{n}{n+2}\right)^n$$
$$= \lim_{n \to \infty} \left(1 + \frac{-2}{n+2}\right)^{n+2} \left(1 + \frac{-2}{n+2}\right)^{-2}$$
$$= e^{-2} < 1.$$

So the series converges.

7.4.1 j) $\sum_{2} 1/(\ln n)^{p}$ Integral test (can be used since $\frac{1}{(\ln n)^{p}} \ge 0$ and is decreasing.) Then, $\sum_{2} \frac{1}{n(\ln n)^{p}}$ converges iff $\int_{2}^{\infty} \frac{1}{x(\ln x)^{p}} dx$ is finite. For $p \neq 1$,

$$\int_{2}^{\infty} \left. \frac{1}{x(\ln x)^{p}} \mathrm{d}x = \frac{(\ln x)^{1-p}}{1-p} \right|_{2}^{\infty} = \lim_{n \to \infty} \frac{(\ln x)^{1-p}}{1-p} - \frac{(\ln 2)^{1-p}}{1-p}$$

Since $\lim_{x\to\infty} (\ln x) = \infty$, then for p < 1 the series diverges and for p > 1 the series converges. For p = 1

$$\int_{2}^{\infty} \frac{1}{x \ln x} \mathrm{d}x = \ln(\ln x)|_{2}^{\infty}$$

which clearly is not finite. Hence convergence exactly on $p \in (1, \infty)$.

7.4.2 If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| > 1$, then for some N, n > N implies $\left|\frac{a_{n+1}}{a_n}\right| > 1$ (i.e., let $\epsilon = [\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| - 1]/2$.) Then $|a_{n+1}| > a_n$ for $n \gg 1$, so a_n does not converge to 0. Therefore $\sum a_n$ fails the *n*th-tern test for convergence, hence diverges.

7-3 We have
$$\left|\frac{a_{n+1}}{a_n}\right| \le r$$
, hence

$$\left|\frac{a_k}{a_0}\right| = \prod_{n=0}^{k-1} \left|\frac{a_{n+1}}{a_n}\right| \le r^k$$

(\prod is iterated multiplication opeator, as \sum is interated addition operator.) Hence $|a_n| \leq |a_n| r^k$. Then by comparison to geometric series $|a_n| \sum r^2$ we have $\sum |a_n|$ is convergent. This implies $\sum a_k$ is convergent by the absolute convergence theorem, in fact absolutely convergent, which is the conclusion of the ratio test as well. However, $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ need not exist to apply this (7-3) result, so this is stronger.

Consider the sequence

$$a_n = \left(\frac{r}{2}\right)^n \left(\frac{2}{3}\right)^{\frac{1}{2}(1+(-1)^n)}$$

Then the ratio we're interested in is either $\frac{r}{3}$ or $\frac{3}{4}r$, depending on the parity (even or odd) of n, so (7-3) applies even though the ratio test cannot (since the ratio has no limit).