
Mathematics 311 Solutions to Preliminary Exam 2 Introduction to Analysis

Instructor: Marius Ionescu

1. Let an =
√

n.

(a)(5pts) Prove that for every ε > 0 there is N ≥ 1 such that |an+1 − an| < ε if n ≥ N .

Solution: Let ε > 0. Then |an+1− an| < ε is equivalent with |
√

n + 1−
√

n| < ε. Simplifying,
this inequality is equivalent with

1√
n + 1 +

√
n

< ε.

Note that the previous expression is positive so we do not need the absolute value bars. Since

1√
n + 1 +

√
n

<
1

2
√

n

if we choose N = (1/(2ε))2, it follows that |an+1 − an| < ε if n ≥ N .

(b)(5pts) Is an a Cauchy sequence? Why?

Solution: an is not a Cauchy sequence. To prove this, suppose by contradiction that an is
Cauchy. Then an must be convergent by Theorem 6.4. The sequence an is, however, divergent.
Thus it can not be Cauchy.
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2. (a)(7pts) Show that if
∑

an converges absolutely, then so does
∑

a2
n. Is this true without the hypothesis of

absolute convergence (prove or give a counterexample)?

Solution: If the series
∑

an converges absolutely it converges. Then limn→∞ an = 0. Then
there is N ≥ 1 such that |an| < 1 for all n ≥ N . It follows that a2

n ≤ |an| for all n ≥ N . The
comparison test for positive series implies that

∑∞
n=N a2

n converges. From the tail theorem we
conclude that

∑
a2

n converges.

The conclusion fails without the hypothesis of absolute convergence. Consider
∑ (−1)n

√
n

. This
series is convergent by the Cauchy test. The series

∑
1
n , however, diverges (it is a p-series with

p = 1).

(b)(3pts) If
∑

an converges and an ≥ 0, does it follow that
∑√

an converges? Prove or give a counterexample.

Solution: If
∑

an converges and an ≥ 0, it does not follow that
∑√

an converges. For
example,

∑
1

n2 converges (p-series with p = 2) but
∑

1
n diverges.
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3.(20pts) Find the radius of convergence of
∑∞

n=0(sin n)xn (with proof).

Solution: The main point about this problem is that we can not use the root or the ratio test to
determine the radius of convergence of this series (because the sequences (sin(n))(1/n) and sin(n+1)

sin(n)

are divergent).

Notice that | sin(n)xn| ≤ xn for all n ≥ 1. If |x| < 1 we know that
∑

xn converges absolutely. The
comparison theorem implies that

∑
sin(n)xn converges absolutely. For x = 1,

∑
sin(n) diverges

since { sin(n) } does not converge to 0. Thus R = by Theorem-Definition 8.1.
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4.(10pts) Determine if the series
∞∑

n=1

ln
n

n + 2

is convergent. If yes, find it’s value.

Solution: Since ln n
n+2 = ln(n)− ln(n+2) we see that the series is a telescoping series. We compute

the nth partial sum as follows:

sn =
n∑

k=1

(
ln(k)− ln(k + 2)

)
= ln(1) + ln(2)− ln(n + 1)− ln(n + 2).

Then
lim

n→∞
sn = ln(2)− lim

n→∞

(
ln(n + 1) + ln(n + 2)

)
= −∞.

Thus the series is divergent.
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5. Let bn be a decreasing sequence with limn→∞ bn = 0.

(a)(5pts) Prove that
∑∞

n=1(bn − bn+1) converges.

Solution: We notice this is a telescoping series. The partial sum equals

sn = (b1 − b2) + (b2 − b3) + · · ·+ (bn − bn+1) = b1 − bn+1.

Since limn→∞ bn = 0 it follows that the sequence of partial sums is convergent and equals b1.
Thus

∑
(bn − bn+1) converges.

(b)(10pts) Let an be a bounded sequence. Prove that∑∞
n=1 an(bn − bn+1) converges.

Solution: By hypothesis, there exists M > 0 such that |an| ≤ M for all n ≥ 1. Since
bn − bn+1 ≥ 0 we have that |an(bn − bn+1)| ≤ M(bn − bn+1). By the linearity theorem∑

M(bn − bn+1) converges. By the comparison theorem,
∑
|an(bn − bn+1)| converges. Thus∑∞

n=1 an(bn − bn+1) converges.
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6. Prove the following two statements:

(a)(10pts) Every real number is a cluster point of some sequence of rational numbers.

Solution: Let r be a real number. For any n ≥ 1, Theorem 2.5 on page 25 implies that there
is a rational number an such that r < an < r + 1

n . By the squeeze theorem, limn→∞ an = r.
Theorem 6.2 implies that r is a cluster point for the sequence an.

(b)(5pts) Every real number is a cluster point of some sequence of irrational numbers.

Solution: The proof is similar with the previous part. If r is any real number, Theorem 2.5
implies that there is an irrational number an with r < an < r + 1

n for all n ≥ 1. Thus
r = limn→∞ an and r is a cluster point of a sequence of irrational numbers.
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7. Give examples for the following or explain why no example exists.

(a)(3pts) A series that has bounded partial sums but does not converge.

Solution: Consider the sequence an = (−1)n for all n ≥ 1. Then s2k+1 = −1 and s2k = 0 for
all k ≥ 1. Thus { sn } is a bounded sequence which diverges.

(b)(4pts) A sequence which has an infinite number of cluster points.

Solution: Example 6.2A a) in the textbook says that for the sequence 1; 1, 2; 1, 2, 3; . . . every
integer is a cluster point.

(c)(3pts) A power series whose radius of convergence is 2.

Solution: Consider the power series
∑

xn

2n . We compute the radius of convergence using the
ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
|x|
2

.

Thus the series is absolutely convergent if |x| < 2 and divergent for |x| > 2. Thus R = 2.
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8.(10pts) Prove, using the definition, that if { an } and { bn } are Cauchy sequences then { anbn } is Cauchy.

Solution: We proved in class that a Cauchy sequence is bounded (see also part (A) of the proof of
Theorem 6.4). Thus there are M1 > 0 and M2 > 0 such that |an| ≤M1 and |bn| ≤M2 for all n ≥ 1.
Let M = max{M1, M2}. Thus |an| ≤M and |bn| ≤M for all n ≥ 1. Let ε > 0. Since the sequence
an is Cauchy there exists N1 ≥ 1 such that |an− am| < ε

2M for all m, n ≥ N1. Similarly there exists
N2 ≥ 1 such that |bn − bm| < ε

2M for all m, n ≥ N2. Let N = max{N1, N2}. If n, m ≥ N we have

|anbn − ambm| = |anbn − anbm + anbm − ambm|
≤ |anbn − anbm|+ |anbm − ambm|
= |an||bn − bm|+ |bm||an − am|

< M · ε

2M
+ M · ε

2M
= ε.

Since ε was arbitrary, {anbn} is a Cauchy sequence.
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