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The elements in E are called edges.   

If a set of edges is in I, it is called independent. 

 

The set I must obey the following axioms: 

 

1)   I 

 

2) If  A  I, and B  A, then B  I 

 

3) If A, B  I and  B  <  A   then  x  A such that        (B  

{x} )  I 

 

Ex: E := v1, 
,vk  are the columns of a matrix,  

      I := linearly independent subsets of E   (over a given field) 



Matroids from Graphs 
 

Any graph yields a matroid: the edges of the graph are the 

elements (edges) of the matroid 

 

Independent sets are subsets of spanning trees, so a set is 

independent if and only if it contains no circuits. 

 

Examples:                        

                                     -This matroid has 3 elements, any 

                                      two of which are independent 

 

 
 

               

 

 

 

 



Matroids from Graphs 
 

Any graph yields a matroid: the edges of the graph are the 

elements (edges) of the matroid 

 

Independent sets are subsets of spanning trees, so a set is 

independent if and only if it contains no circuits. 

 

Examples:                        

                                     -This matroid has 3 elements, any 

                                      two of which are independent 

 

 

-Any subset of the edges of a tree is independent     
 

-Every graphical matroid can be represented by a the columns 

of a matrix (but the converse is not true) 
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The rank of this matrix is 3.  The nullity is 2. 

 

The middle three vectors form a circuit, or minimal dependent 
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Here are two representations of the same matroid: 

 

 

 

 

 

 

The rank of this matrix is 3.  The nullity is 2. 

 

The middle three vectors form a circuit, or minimal dependent 

set 

 

The fifth element is called a loop: it forms a circuit by itself. 

 

The first vector, on the other hand, is not contained in any 

circuits.  Such an element is called a coloop (or isthmus). 
 



The Tutte Polynomial  
 

T(M; x, y) is a 2-variable polynomial.  It’s a matroid invariant that 

behaves nicely with respect to deletion and contraction: 
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The Tutte Polynomial  
 

T(M; x, y) is a 2-variable polynomial.  It’s a matroid invariant that 

behaves nicely with respect to deletion and contraction: 

 

If e is a coloop:  T(M; x, y) = x         * T(M-e; x, y) 

If e is a loop:     T(M; x, y) = y         * T(M-e; x, y) 

 

If e  is neither:    T(M; x, y) = T(M-e; x, y)+T(M        /e; x, y)  

 

T(a loop;  x, y) = y    ;   T(a coloop ;  x, y) = x 

 

 

T(       ;   x, y) = T (         ;  x, y) + T(         ;  x, y) 

 

                 = x*T(       ;  x, y) + T(       ;  x, y) + T(     ;  x, y) 

                   

                 = x2  + x + y 

 



Binary Spherical Quotients 
 

Orthogonal matrices represent symmetries of the sphere. In 

the case where the orthogonal matrices form a group 

isomorphic to (Z2) r , we call the quotient space a BSQ. 

 
 

 

 
 

 

 
 

 

 



Binary Spherical Quotients 
 

Orthogonal matrices represent symmetries of the sphere. In 

the case where the orthogonal matrices form a group 

isomorphic to (Z2) r , we call the quotient space a BSQ. 

 

Ex: The following elements of O(3) act on S2, yielding BSQ’s 

 

               Reflection over the z-axis,  

       the resulting quotient is a hemisphere 

 

 

        Rotation by 180, 

       the resulting football-shaped orbifold 

 

 

RPn  is a BSQ  It is the quotient of Sn-1 by the antipodal map x 

 -x, which is a diagonal matrix of -1’s.  
 



What can we say about Homology? 
 

Since we can give the sphere a very nice simplicial structure, 

and we are acting by a finite group, we have the following 

theorem:  

 

Theorem:  If G is a finite group, and F be a field such that 

char(F) = 0 or char(F)    G.   

 

Then Hi(K/G, F) = Hi(K, F)G   . 

 

 

  
 

 

  
 
 
 
 



What can we say about Homology? 
 

Since we can give the sphere a very nice simplicial structure, 

and we are acting by a finite group, we have the following 

theorem:  

 

Theorem:  If G is a finite group, and F be a field such that 

char(F) = 0 or char(F)    G.   

 

Then Hi(K/G, F) = Hi(K, F)G   . 

 

Since the sphere only has homology in dimension n, the 

rational homology is zero everywhere but n.   

Hn(X) = 0  any of the involutions are orientation reversing 

 

Conclusion: Only homology over  Z2      or Z will be of interest. 

 

  
 



The Matroid Corresponding to a BSQ 
 

If AO(3) represents an element of (Z2) r , then A2 = I, thus A 

is conjugate to a diagonal matrix of 1’s. 

 

We can get a rn binary matrix M from the action by using 

these diagonals as rows.  We convert 1’s to 0’s and -1’s to 1’s 

 

                               

                               The matroid [0 0 1] (coloop & 2 loops) 

    

 

         The matroid [0 1 1] (loop & 2-circuit) 

                                       

                       

                      

                     RPn       The matroid [1 1 1]  (U1,3 ) 

 
 



What the Matroid Gives Us 
 

Theorem: There is a one-to-one correspondence between binary 

matroids (up to isomorphism) and binary spherical quotients (up 

to isometry) 

 

Fact: If X is a BSQ, and the corresponding M contains a  coloop, 

the quotient is contractible;  Hi(X , Z2) = 0 

 

Fact: If X is a BSQ, and the corresponding M contains a loop e, 

then X is the suspension of Y, corresponding to M-e     ;  

Hi(X , Z2) = Hi-1(X-e, Z2) 
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to isometry) 

 

Fact: If X is a BSQ, and the corresponding M contains a  coloop, 

the quotient is contractible;  Hi(X , Z2) = 0 

 

Fact: If X is a BSQ, and the corresponding M contains a loop e, 

then X is the suspension of Y, corresponding to M-e     ;  

Hi(X , Z2) = Hi-1(X-e, Z2) 

 

Theorem[Swartz]: Let X be BSQ with corresponding matroid M. 

Let PX(t) = m dimZ2
(Hm(X, Z2))t

m be the Poincare polynomial.  

Then PM(t) = tr-1 T(M; 0, t). 

 

Proof: Meyer-Vietoris Sequence + a lot of work 



Odd Primes 
 

Take (Zp) ry S2n-1  an effective/faithful action. 

 

This gives us a representation (Zp) r O(2n) 
 

Though not necessarily diagonalizable over R, we can represent 

each element of (Zp) r  as a block diagonal matrix:  

A = diag(A1, 
…, An) where each Ai is a 2x2 rotation matrix.   

 

Thus  A        is rotating each circle of the join S2n-1 = S1 *  *S1 at 

some speed kj   1  j  n as Aj is rotation by e
kj(2/p) 

 

We     once again use this “diagonal”, i.e. the values of kj  for a 

given A, to create a row a matrix over Zp, and thus a matroid. 

 

Although this correspondence is NOT one-to-one, we can use it 

to find the homology over Zp. 
 



Quotients By Tori 
 

Once again, representation theory gives us an answer: an S1 – 

generator  of Tr = S1  …  S1 act on the circles of  

S2n-1 = S1 *  *S1 by rotation with wrapping number kj 

 

We get an integer rn matrix by creating a row out of the the 

kj’s for each generator of Tr. 

 

We can use the corresponding matroid to compute the rational 

homology: 
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If                                  then                                   

 

 

Notice that the homology only appears in every other degree. 

I haven’t tried integer homology yet! 

 

 



Quotients by Cyclic Groups 
 

Rational homology is again easy to compute (since we are acting 

by a finite group) 

 

Integer homology is difficult to compute, as we would need more 

pieces: the homology over all the primes that divide the order of 

the group 

 

I have written a program that computes the homologies of given 

examples (of sufficiently small dimension). 

 

I have a conjecture….but it isn’t easy to phrase in terms of 

matroids.  Stay tuned for next time! 

 

 


