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What is a Matroid?

@ A Matroid can be thought of in a number of ways, the
most common as a generalization of graphs (and cycles)
and a generalization of vectors (linear independence)
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@ A Matroid can be thought of in a number of ways, the
most common as a generalization of graphs (and cycles)
and a generalization of vectors (linear independence)

@ Matroids are a good generalization since they share a lot
of the important properties of these structures, including
the Tutte Polynomial
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What is a Matroid?

@ A Matroid can be thought of in a number of ways, the
most common as a generalization of graphs (and cycles)
and a generalization of vectors (linear independence)

@ Matroids are a good generalization since they share a lot
of the important properties of these structures, including
the Tutte Polynomial

@ Matroids also come from a lot of other combinatorial
structures like really nice lattices and simplicial complexes
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A Linear Independence Refresher

@ A set of vectors vy, -+, v, is called linearly independent if
none of the vectors can be expressed as a linear
combination of others:
avi+ ave+ -+ ap_1Vva—1 = anpv, = All the a; are zero
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A Linear Independence Refresher

@ A set of vectors vy, -+, v, is called linearly independent if
none of the vectors can be expressed as a linear
combination of others:
avi+ ave+ -+ ap_1Vva—1 = anpv, = All the a; are zero

@ n vectors are independent if and only if they span R".

1 independet vector is a basis for a line
2 independent vectors are a basis for a plane
3 independent vectors are a basis for R3
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A Linear Independence Refresher

@ A set of vectors vy, -+, v, is called linearly independent if
none of the vectors can be expressed as a linear
combination of others:
avi+ ave+ -+ ap_1Vva—1 = anpv, = All the a; are zero

@ n vectors are independent if and only if they span R".

1 independet vector is a basis for a line
2 independent vectors are a basis for a plane
3 independent vectors are a basis for R3

@ We can tell if a set of n vectors is linearly independent by
putting them in the columns of a matrix and row
reducing. The matrix has rank n if and only if the vectors
are independent.
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A Definition of Matroids

@ A Matroid is a set E of edges and a set Z of independent
sets of E, so Z C P(E)
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A Definition of Matroids

@ A Matroid is a set E of edges and a set Z of independent
sets of E, so Z C P(E)

@ The set Z must obey certain axioms to be a matroid:
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A Definition of Matroids

@ A Matroid is a set E of edges and a set Z of independent
sets of E, so Z C P(E)

@ The set Z must obey certain axioms to be a matroid:
0o 1)DeZ
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A Definition of Matroids

@ A Matroid is a set E of edges and a set Z of independent
sets of E, so Z C P(E)

@ The set Z must obey certain axioms to be a matroid:

° 1)@€I
e 2)IfAcZ and BC A then BeZ
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A Definition of Matroids

@ A Matroid is a set E of edges and a set Z of independent
sets of E, so Z C P(E)

@ The set Z must obey certain axioms to be a matroid:

0o 1)DeZ

e 2)IfAcZ and BC A then BeZ

e 3)If A B €Z and |A| > |B|, then 3x € A such that
Bui{x}eZ
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A Definition of Matroids

@ A Matroid is a set E of edges and a set Z of independent
sets of E, so Z C P(E)

@ The set Z must obey certain axioms to be a matroid:
0o 1)DeZ
e 2)IfAcZ and BC A then BeZ

e 3)If A B €Z and |A| > |B|, then 3x € A such that
Bui{x}eZ
@ For any A C E, define the rank of A, denoted r(A) to be
the size of the biggest independent set in A
@ If e € E such that r({e}) =0, then e is called a loop

o If ec Esuch thatforall AC E, r(AUe) =r(A)+1
then e is called a coloop
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Getting a Matroid from a Matrix

1 0000
Start withamatrix M= (0 1 1 0 O
01010

Take E := the column vectors of this matrix
Take Z := linearly independent subsets of the columns

Then rank(E) = rank(M)
@ Which element is a loop?
@ Which element is a coloop?

@ Which elements for a circuit, or minimal dependent set?
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A Graph Theory Refresher/Lesson

A Graph G consists of a vertex set V and edge set E C V x V

@ A path in a graph is a sequence of connected edges
@ A cycle is a path that starts and ends at the same point
@ A tree is a graph with no cycles.

@ A spanning tree, this is a subgraph with no cycles that
hits every vertex. If G has n vertices, every spanning tree
has n — 1 edges.
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Getting a Matroid from a Graph

Start with a graph G. The edges E of the matroid associated
to the graph are the edges of the graph.

A set of edges is independent if and only if it contains no
circuits (it is a subset of a spanning tree)

If |V|=n,then r(E)=n—-1

i )
O~ O
= O O

0
0 o
0
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Deletion and Contraction

Deletion:
@ Remove an edge from a graph, leaving the rest of the
graph the same
@ Deleting a column from a matrix, resulting in a smaller
matrix

o Creating a new matroid M — e with edge set E — e and
AcIy_.=Acl
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Contraction

Contraction:
@ In a graph, contract the edge to a vertex as below

e For a matroid, the edge set of M/e is again E — e, but
the independence relation has changed:
Aset AC EyeisinIye & AUe €l

From the matroid perspective, deletion and contraction are the
same for loops and coloops
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The Tutte Polynomial

The Tutte polynomial is a two variable matroid invariant. Any
representation of the same matroid will have the same tutte

polynomial. The polynomial can tell us a lot about the
matroid.
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The Tutte Polynomial

The Tutte polynomial is a two variable matroid invariant. Any
representation of the same matroid will have the same tutte
polynomial. The polynomial can tell us a lot about the
matroid.

The Tutte Polynomial is defined recursively as the unique
2-variable polynomial such that:

e T(a single loop) =y

@ T (a single coloop) = x

@ When e is a loop or coloop, T(M) = T(e)* T(M — e)
@ For e neither, T(M) = T(M —e)+ T(M/e)
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Some Information Hidden in the Tutte Polynomial

Some nice properties of the tutte poly:
If we have the Tutte Polynomial T(M;x,y) we can find....
@ r(E) is the highest degree of x in the Tutte polynomial

@ The nullity of M, |E| — r(E), is the highest degree of y in
the Tutte polynomial

@ T(M;1,1) the total number of bases or spanning trees
that exist in M

e T(M;2,1) = |Z|, the total number of independent sets in
M (subtrees)

o T(M;2,2) = 2Bl nhumber of subsets of M
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Graph Colorings

A graph coloring is a selection of colors for the vertices so that
every edge touches two different colors.

A graph is called m-colorable if you can color it with m colors
obeying this rule.

For example, every tree is 2-colorable (just alternate the
colors). The square is 2-colorable, but you need 3 colors for a
triangle (and the Peterson Graph):
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How Many Colors do we Need?

It's a common problem in graph theory to ask what the
minimum number of colors is for a given graph. Also, if you
can color a graph with m colors, how many different ways are
there to do it?

This information is expressed by the chromatic polynomial.
Xc(A) = the number of ways to colorg G with A colors.

Let's do the triangle:

e x¢(1) =

° x¢(2)=0

® x¢(3)=6

° x¢(A) =AA-1)(A-2)
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But this gets hard quickly...

The Chromatic polynomial of the Peterson graph is
t(t —1)(t — 2)(t" — 12t° + 67> — 230t* + 529¢> — 814t +
775t — 352)

Yikes!
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Saved by Tutte

In fact, xg(\) = MO (—)VEI=KE)T(M; 1~ ), 0)
Where k(G) is the number of connected compodents,
V(G) is the vertex set of G
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Saved by Tutte

In fact, xg(\) = MO (—)VEI=KE)T(M; 1~ ), 0)
Where k(G) is the number of connected compodents,
V(G) is the vertex set of G

Let's check this for the triangle graph: T(G) = x> + x + y

X6(A) = A (—1)V@I=KEOT(M; 1 - A, 0)
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Saved by Tutte

In fact, xg(\) = MO (—)VEI=KE)T(M; 1~ ), 0)
Where k(G) is the number of connected compodents,
V(G) is the vertex set of G

Let's check this for the triangle graph: T(G) = x> + x + y

xc(A) = A (—1)VIQ)I=KE) T (M; 1 — A, 0)
= AN (=1)3Y([1= AP +1-))
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Saved by Tutte

In fact, xg(\) = MO (—)VEI=KE)T(M; 1~ ), 0)
Where k(G) is the number of connected compodents,
V(G) is the vertex set of G

Let's check this for the triangle graph: T(G) = x> + x + y
xc(A) = A (—1)VIQ)I=KE) T (M; 1 — A, 0)

= AN (=1)3Y([1= AP +1-))
= M[1-A2+1-))
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Saved by Tutte

In fact, xg(\) = MO (—)VEI=KE)T(M; 1~ ), 0)
Where k(G) is the number of connected compodents,
V(G) is the vertex set of G

Let's check this for the triangle graph: T(G) = x> + x + y
xc(A) = A (—1)VIQ)I=KE) T (M; 1 — A, 0)
N (1P AR+ 1)

=AML= AP +1-))
AN =224+ 1+1-))
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Saved by Tutte

In fact, xg(\) = MO (—)VEI=KE)T(M; 1~ ), 0)
Where k(G) is the number of connected compodents,
V(G) is the vertex set of G

Let's check this for the triangle graph: T(G) = x> + x + y

X6(A) = MO (—1)VOI-KE) T(M; 1 — A, 0)
=AM AP+1-0)
=M1-AP+1-))
=AM —20+1+1-))
= AN —-31+2)
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Saved by Tutte

In fact, xg(\) = MO (—)VEI=KE)T(M; 1~ ), 0)
Where k(G) is the number of connected compodents,
V(G) is the vertex set of G

Let's check this for the triangle graph: T(G) = x> + x + y

X6(A) = MO (—1)VOI-KE) T(M; 1 — A, 0)
=M(E)HA - AP +1-2)
=M1-AP+1-))

AN =20+ 14+1-))

AN2 =31 +2)

AA-1)(A=-2)
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But...why did THAT work?!?

Why should x¢(\) behave like T(M;1 — X, 0)?
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But...why did THAT work?!?

Why should x¢(\) behave like T(M;1 — X, 0)?
The Tutte Polynomial is defined recursively as the unique
2-variable polynomial such that:

e T(a single loop) =y

e T(a single coloop) = x

@ When e is a loop or coloop, T(M) = T(e)* T(M — e)
e For e neither, T(M) = T(M —e)+ T(M/e)
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But...why did THAT work?!?

Why does yg(\) = AKO)(—1)V(OI-KE) T(M; 1 — A, 0)?
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But...why did THAT work?!?

Why does yg(\) = AKO)(—1)V(OI-KE) T(M; 1 — A, 0)?

@ There are 0 colorings of any graph with a loop

@ There (A)(\ — 1) colorings of a coloop/single edge
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But...why did THAT work?!?

Why does yg(\) = AKO)(—1)V(OI-KE) T(M; 1 — A, 0)?

@ There are 0 colorings of any graph with a loop

@ There (A)(\ — 1) colorings of a coloop/single edge

o If e was a loop, you can remove it and multiply the
chromatic number by zero
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But...why did THAT work?!?

Why does xg(\) = AK(C) (1)@= T(M; 1 — X, 0)?
@ There are 0 colorings of any graph with a loop

@ There (A)(\ — 1) colorings of a coloop/single edge

o If e was a loop, you can remove it and multiply the
chromatic number by zero

@ If e is a coloop of G, its deletion disconnects the graph.
(Since k(G) increases, we expect a "—\" to appear.)

The colorings of G are precisely colorings of G — e where
the endpoints of e, u and v, are colored differently.

So, if we choose one of A colors for u, there are A — 1
colors possible for v (instead of \).

Thus, x¢ = %Xc—e; SO X6 = @XC—e
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But...why did THAT work?!?

Why does xg(\) = AK(C) (1)@= T(M; 1 — X, 0)?
@ There are 0 colorings of any graph with a loop

@ There (A)(\ — 1) colorings of a coloop/single edge

o If e was a loop, you can remove it and multiply the
chromatic number by zero

@ If e is a coloop of G, its deletion disconnects the graph.
(Since k(G) increases, we expect a "—\" to appear.)

The colorings of G are precisely colorings of G — e where
the endpoints of e, u and v, are colored differently.

So, if we choose one of A colors for u, there are A — 1
colors possible for v (instead of \).

Thus, x¢ = %Xc—e; SO X6 = @XC—e
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But...why did THAT work?!?

Why does x¢(\) = M) (—1)IV(E)I=KE) T(M; 1 — A, 0)?
@ There are 0 colorings of any graph with a loop

@ There (A)(A — 1) colorings of a coloop/single edge

e If e was a loop, you can remove it and multiply the
chromatic number by zero

@ If e is a coloop of G, its deletion disconnects the graph,
and x¢ = (l,;,\)\)XG—e

@ If e is not a loop or coloop, G — e has the same
connectivity as G. Partition the colorings of G — e into
those where u, v are colored the same, x¢/e()), and u
and v are colored differently yg()\) Thus,

X6(A) = —X6/e(A) + X6-e(N)
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So...if a polynomial respects deletion and

contraction...

That's right! It turns out being a Tutte Polynomial!
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So...if a polynomial respects deletion and

contraction...

That's right! It turns out being a Tutte Polynomial!

Given an arrangement of hyperplanes in R” that all pass
through the origin- how many regions do they separate?
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So...if a polynomial respects deletion and

contraction...

That's right! It turns out being a Tutte Polynomial!

Given an arrangement of hyperplanes in R” that all pass
through the origin- how many regions do they separate?
Choose a normal vector to each hyperplane. Take the matroid
with these vectors as elements.

Then, the number of regions = T(M; 2,0)
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So...if a polynomial respects deletion and

contraction...

That's right! It turns out being a Tutte Polynomial!

Given an arrangement of hyperplanes in R” that all pass
through the origin- how many regions do they separate?
Choose a normal vector to each hyperplane. Take the matroid
with these vectors as elements.

Then, the number of regions = T(M; 2,0)
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So...if a polynomial respects deletion and

contraction...

That's right! It turns out being a Tutte Polynomial!

Given an arrangement of hyperplanes in R” that all pass
through the origin- how many regions do they separate?
Choose a normal vector to each hyperplane. Take the matroid
with these vectors as elements.

Then, the number of regions = T(M; 2,0)

If every element e of the matroid M(E) has, independently of
all other elements, a probability 1 — p of being deleted,

(0 < p < 1), what is the probability that a random submatroid
of M has the same rank as M?
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So...if a polynomial respects deletion and

contraction...

That's right! It turns out being a Tutte Polynomial!

Given an arrangement of hyperplanes in R” that all pass
through the origin- how many regions do they separate?
Choose a normal vector to each hyperplane. Take the matroid
with these vectors as elements.

Then, the number of regions = T(M; 2,0)

If every element e of the matroid M(E) has, independently of
all other elements, a probability 1 — p of being deleted,

(0 < p < 1), what is the probability that a random submatroid
of M has the same rank as M?

Answer: (1 — p)lEI=r(M)prM T (M; 1, ﬁ)
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Other Applications

Given a matroid, it is possible to form a simplicial complex:
the vertices are elements of the matroid, and the faces are
independent sets (facets are bases, thus it's a pure complex).
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Other Applications

Given a matroid, it is possible to form a simplicial complex:
the vertices are elements of the matroid, and the faces are
independent sets (facets are bases, thus it's a pure complex).
These complexes are always shellable, and their shelling
polynomial, ha(x) = T(M; x,1)
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Other Applications

Given a matroid, it is possible to form a simplicial complex:
the vertices are elements of the matroid, and the faces are
independent sets (facets are bases, thus it's a pure complex).
These complexes are always shellable, and their shelling
polynomial, ha(x) = T(M; x,1)

If X is a quotient of a sphere by (Z5) and M is the binary
matroid corresponding to it,
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Other Applications

Given a matroid, it is possible to form a simplicial complex:
the vertices are elements of the matroid, and the faces are
independent sets (facets are bases, thus it's a pure complex).
These complexes are always shellable, and their shelling
polynomial, ha(x) = T(M; x,1)

If X is a quotient of a sphere by (Z5) and M is the binary
matroid corresponding to it, then

Zd|m22 (X, Z)t™ = t""1T(M;0, 1)
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Other Applications

Given a matroid, it is possible to form a simplicial complex:
the vertices are elements of the matroid, and the faces are
independent sets (facets are bases, thus it's a pure complex).
These complexes are always shellable, and their shelling
polynomial, ha(x) = T(M; x,1)

If X is a quotient of a sphere by (Z5) and M is the binary
matroid corresponding to it, then

Zd|m22 (X, Z)t™ = t""1T(M;0, 1)

If X is a quotlent of a sphere by a torus,
n(M)

;E’X( Za, 1), where T(M;0, t) Za,
i=1
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