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What is a Matroid?

A Matroid can be thought of in a number of ways, the
most common as a generalization of graphs (and cycles)
and a generalization of vectors (linear independence)

Matroids are a good generalization since they share a lot
of the important properties of these structures, including
the Tutte Polynomial

Matroids also come from a lot of other combinatorial
structures like really nice lattices and simplicial complexes
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A Linear Independence Refresher

A set of vectors v1, · · · , vn is called linearly independent if
none of the vectors can be expressed as a linear
combination of others:
a1v1 + a2v2 + · · ·+ an−1vn−1 = anvn ⇒ All the ai are zero

n vectors are independent if and only if they span Rn.
1 independet vector is a basis for a line
2 independent vectors are a basis for a plane
3 independent vectors are a basis for R3

We can tell if a set of n vectors is linearly independent by
putting them in the columns of a matrix and row
reducing. The matrix has rank n if and only if the vectors
are independent.
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A Definition of Matroids

A Matroid is a set E of edges and a set I of independent
sets of E , so I ⊆ P(E )

The set I must obey certain axioms to be a matroid:

1) ∅ ∈ I
2) If A ∈ I, and B ⊆ A, then B ∈ I
3) If A,B ∈ I, and |A| > |B|, then ∃x ∈ A such that
B ∪ {x} ∈ I

For any A ⊆ E , define the rank of A, denoted r(A) to be
the size of the biggest independent set in A

If e ∈ E such that r({e}) = 0, then e is called a loop

If e ∈ E such that for all A ⊆ E , r(A ∪ e) = r(A) + 1
then e is called a coloop
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Getting a Matroid from a Matrix

Start with a matrix M =

1 0 0 0 0
0 1 1 0 0
0 1 0 1 0


Take E := the column vectors of this matrix

Take I := linearly independent subsets of the columns

Then rank(E ) = rank(M)

Which element is a loop?

Which element is a coloop?

Which elements for a circuit, or minimal dependent set?
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A Graph Theory Refresher/Lesson

A Graph G consists of a vertex set V and edge set E ⊆ V ×V

A path in a graph is a sequence of connected edges

A cycle is a path that starts and ends at the same point

A tree is a graph with no cycles.

A spanning tree, this is a subgraph with no cycles that
hits every vertex. If G has n vertices, every spanning tree
has n − 1 edges.
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Getting a Matroid from a Graph

Start with a graph G. The edges E of the matroid associated
to the graph are the edges of the graph.

A set of edges is independent if and only if it contains no
circuits (it is a subset of a spanning tree)

If |V | = n, then r(E ) = n − 1

M =

1 0 0 0 0
0 1 1 0 0
0 1 0 1 0
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Deletion and Contraction

Deletion:

Remove an edge from a graph, leaving the rest of the
graph the same

Deleting a column from a matrix, resulting in a smaller
matrix

Creating a new matroid M − e with edge set E − e and
A ∈ IM−e ⇔ A ∈ I
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Contraction

Contraction:

In a graph, contract the edge to a vertex as below

For a matroid, the edge set of M/e is again E − e, but
the independence relation has changed:
A set A ⊆ EM/e is in IM/e ⇔ A ∪ e ∈ I

From the matroid perspective, deletion and contraction are the
same for loops and coloops
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The Tutte Polynomial

The Tutte polynomial is a two variable matroid invariant. Any
representation of the same matroid will have the same tutte
polynomial. The polynomial can tell us a lot about the
matroid.

The Tutte Polynomial is defined recursively as the unique
2-variable polynomial such that:

T (a single loop) = y

T (a single coloop) = x

When e is a loop or coloop, T (M) = T (e) ∗ T (M − e)

For e neither, T (M) = T (M − e) + T (M/e)
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Some Information Hidden in the Tutte Polynomial

Some nice properties of the tutte poly:
If we have the Tutte Polynomial T (M ; x , y) we can find....

r(E ) is the highest degree of x in the Tutte polynomial

The nullity of M , |E | − r(E ), is the highest degree of y in
the Tutte polynomial

T (M ; 1, 1) the total number of bases or spanning trees
that exist in M

T (M ; 2, 1) = |I|, the total number of independent sets in
M (subtrees)

T (M ; 2, 2) = 2|E |, number of subsets of M
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Graph Colorings

A graph coloring is a selection of colors for the vertices so that
every edge touches two different colors.

A graph is called m-colorable if you can color it with m colors
obeying this rule.

For example, every tree is 2-colorable (just alternate the
colors). The square is 2-colorable, but you need 3 colors for a
triangle (and the Peterson Graph):
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How Many Colors do we Need?

It’s a common problem in graph theory to ask what the
minimum number of colors is for a given graph. Also, if you
can color a graph with m colors, how many different ways are
there to do it?

This information is expressed by the chromatic polynomial.
χG (λ) = the number of ways to colorg G with λ colors.

Let’s do the triangle:

χG (1) = 0

χG (2) = 0

χG (3) = 6

χG (λ) = λ(λ− 1)(λ− 2)
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But this gets hard quickly...

The Chromatic polynomial of the Peterson graph is
t(t − 1)(t − 2)(t7 − 12t6 + 67t5 − 230t4 + 529t3 − 814t2 +
775t − 352)

Yikes!
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Saved by Tutte

In fact, χG (λ) = λk(G)(−1)|V (G)|−k(G)T (M ; 1− λ, 0)
Where k(G ) is the number of connected compodents,
V (G ) is the vertex set of G

Let’s check this for the triangle graph: T (G) = x2 + x + y

χG (λ) = λk(G)(−1)|V (G)|−k(G)T (M ; 1− λ, 0)
= λ1(−1)3−1([1− λ]2 + 1− λ)
= λ([1− λ]2 + 1− λ)
= λ(λ2 − 2λ + 1 + 1− λ)
= λ(λ2 − 3λ + 2)
= λ(λ− 1)(λ− 2)
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But...why did THAT work?!?

Why should χG (λ) behave like T (M ; 1− λ, 0)?

The Tutte Polynomial is defined recursively as the unique
2-variable polynomial such that:

T (a single loop) = y

T (a single coloop) = x

When e is a loop or coloop, T (M) = T (e) ∗ T (M − e)

For e neither, T (M) = T (M − e) + T (M/e)
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But...why did THAT work?!?

Why does χG (λ) = λk(G)(−1)|V (G)|−k(G)T (M ; 1− λ, 0)?

There are 0 colorings of any graph with a loop

There (λ)(λ− 1) colorings of a coloop/single edge

If e was a loop, you can remove it and multiply the
chromatic number by zero

If e is a coloop of G , its deletion disconnects the graph.
(Since k(G ) increases, we expect a ”−λ” to appear.)

The colorings of G are precisely colorings of G − e where
the endpoints of e, u and v , are colored differently.
So, if we choose one of λ colors for u, there are λ− 1
colors possible for v (instead of λ).

Thus, χG = λ−1
λ
χG−e , so χG = (1−λ)

−λ χG−e
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But...why did THAT work?!?

Why does χG (λ) = λk(G)(−1)|V (G)|−k(G)T (M ; 1− λ, 0)?

There are 0 colorings of any graph with a loop

There (λ)(λ− 1) colorings of a coloop/single edge

If e was a loop, you can remove it and multiply the
chromatic number by zero

If e is a coloop of G , its deletion disconnects the graph,
and χG = (1−λ)

−λ χG−e

If e is not a loop or coloop, G − e has the same
connectivity as G . Partition the colorings of G − e into
those where u, v are colored the same, χG/e(λ), and u
and v are colored differently χG (λ) Thus,
χG (λ) = −χG/e(λ) + χG−e(λ)
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So...if a polynomial respects deletion and

contraction...

That’s right! It turns out being a Tutte Polynomial!

Given an arrangement of hyperplanes in Rn that all pass
through the origin- how many regions do they separate?
Choose a normal vector to each hyperplane. Take the matroid
with these vectors as elements.
Then, the number of regions = T (M ; 2, 0)

If every element e of the matroid M(E ) has, independently of
all other elements, a probability 1− p of being deleted,
(0 < p < 1), what is the probability that a random submatroid
of M has the same rank as M?
Answer: (1− p)|E |−r(M)pr(M)T (M ; 1, 1

1−p )
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If every element e of the matroid M(E ) has, independently of
all other elements, a probability 1− p of being deleted,
(0 < p < 1), what is the probability that a random submatroid
of M has the same rank as M?

Answer: (1− p)|E |−r(M)pr(M)T (M ; 1, 1
1−p )
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Other Applications

Given a matroid, it is possible to form a simplicial complex:
the vertices are elements of the matroid, and the faces are
independent sets (facets are bases, thus it’s a pure complex).

These complexes are always shellable, and their shelling
polynomial, h∆(x) = T (M ; x , 1)

If X is a quotient of a sphere by (Zr
2) and M is the binary

matroid corresponding to it, then

P̃X (t) =
n−1∑
m=0

dimZ2H̃m(X ,Z2)tm = t r−1T (M ; 0, t)

If X is a quotient of a sphere by a torus,

P̃X (t) = t r (

n(M)∑
i=1

ai t
2i−1), where T (M ; 0, t) =

n(M)∑
i=1

ai t
i
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The End
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