
Weekend Activity: Sigma Notation and Series

Goal: This activity reviews Sigma notation, which will be used constantly from next week
forward. We review the rules and definitions of sigma notation, and introduce the definition
of a series. There will be a quiz about sequences and series on Tuesday!

Remember defining integrals? First, we broke our interval up into subintervals. We
multiplied the width of each subinterval by a height of the function in that subinterval,
and added them all up to get a rectangle approximation of the area. The Riemann sum:

Sn =
n∑

k=1

f(ck)∆xk (see page 314) was our approximation using n rectangles.

Then lim
n→∞

Sn =

∫ b

a

f(x)dx

Of course, finding these sums and their limits was a difficult task. We only had a few
tools at our disposal: the algebra rules of finite sums (p 308) and a few selected sums (p.
309). We have more recently learned that these sums can be taken over infinite intervals or
up to vertical asymptotes, where the question of their convergence is an interesting one.

1) Briefly look through section 5.2 as a reminder, being sure to review these rules.

2) Complete the following exercises on a separate sheet, then check your answers using
the back of the book or a solution manual. Section 5.2 : 1, 3, 7, 15, 17, 31.

The sums you computed above were all finite sums. A series is a sum of infinitely many

numbers. It is usually written by
∞∑
n=1

an. Of course, if we want to add up infinitely many

numbers, we need a list of infinitely many numbers. Thus the an above is a sequence.

So a series is defined by the sequence of numbers that it adds up. We can also use the
series itself to define another special sequence: the sequence of partial sums.

sn =
n∑

k=1

ak is the nth term of the sequence of partial sums

Consider the series
∞∑
n=1

1

n2

3) Find s1, s2, s3, s4, and s5; Do not simplify your answers.
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4) Note that sn an increasing sequence (each term is bigger than the previous term).

Why should we expect this to occur? Will this be true of the partial sums sn =
n∑

k=1

ak for

ANY sequence an?

So although the terms of an = 1
n2 get smaller and smaller, the terms of sn keep getting

get bigger and bigger. It’s clear that lim
n→∞

1

n2
= 0, but what is lim

n→∞
sn? Unfortunately, iit

could be just about anything!

5) Explain why the limit of sn is so unpredictable, even though the sequence is increasing.

6) Using your calculator, approximate
∞∑
n=1

1

n2
by finding s10 as a decimal.

7) The actual value of this sum is π2/6. Estimate π2/6 using your calculator, and com-
pare the results to your approximation. How do the two compare? How would you know
which is bigger without even checking the numbers?
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We say a series converges if and only if its sequence of partial sums converges.

Another way to say this would be
∞∑
n=1

an = lim
k→∞

k∑
n=1

an = lim
k→∞

sk

We will be devoting a lot of time to the question of whether or not a given series con-
verges. The answer to this question can be tricky, but we will learn a number of techniques
that can help us answer it. It will not always be clear which technique to use, so we will
have to practice. In this regard, learning the tests for convergence of a series will be a lot
like learning the techniques of integration. The problems below will give you a taste of the
different ways to determine if a sequence converges. Once you’ve finished a problem, think
about how your methods would be generalized.

8) Use the definition of convergence to show that the series
∞∑
k=1

0 converges to zero. Begin

by finding a formula for the sequence of partial sums sn.

9) Use the definition of convergence to show that the series
∞∑
k=1

c diverges for any con-

stant c 6= 0. Begin by finding a formula for the sequence of partial sums sn.

10) If we know that the series
∞∑
n=1

an converges, what (if anything) can we say about

a) lim
n→∞

sn?

b) lim
n→∞

an?

If
∞∑
k=1

an = A and
∞∑
k=1

bn = B (both converge to constants), what will
∞∑
k=1

(2an + bn) do?

3



11) I have told you that
∞∑
n=1

1

n2
=
π2

6
. Use this fact to determine whether

∞∑
n=1

1

n3
con-

verges or diverges. Justify your answer.

12) Use the fact that
∫∞
1
x−3dx converges to argue that

∞∑
n=1

1

n3
converges.

Hint: Draw a picture of
∫∞
1
x−3dx being underestimated by rectangles of width 1.

13) Let an = (−1)n+1 1
n3 . Consider

∞∑
n=1

an. Note that s5 = 1− 1
8

+ 1
27
− 1

64
+ 1

125
.

∞∑
n=1

an is called an alternating series since the terms of the sum alternate between being

positive and negative. Does
∞∑
n=1

(−1)n+1 1

n3
converge or diverge? Justify your asnwer.

14) Based on your knowledge of improper integrals and your experience in (12), can you
think of a series that probably diverges even though the terms go to zero?

4



Weekend Activity: To Converge or Not to Converge...

Complete this activity by Nov 7. A convergence test is a method for determining
whether a series converges or diverges. Each method can be useful on different types of
series. Some of the tests are not always practical, or can give inconclusive results. They
generally reduce the problem to another that you may be able to solve: the convergence of
a limit, another simpler series, or an improper integral.

A) Attach this to last weekend’s activity. Also attach some extra paper for C-E.
B) Use your experience from the last activity to fill in the blanks below. You will produce
your own versions of four convergence tests.
C) For each test, come up with a series not already in this packet that the test proves is
convergent or divergent
D) Come up with a series or situation for which the test is not useful/inconclusive.
E) Match each test to the best name. Given in no particular order, the names of these four
tests are: the integral test, the absolute convergence test, the comparison test, and the nth
term test.

Note: When it comes to convergence, only the long term behavior of the series matters.
To make the tests a little more general, we restrict our attention to the terms beyond a
certain integer N .

1) Make the most general test that you can, based on your answer to 10b:

If lim
n→∞

an , then
∞∑
n=1

an .

2) Create a test based on the technique you used in question 11: Let an and bn be two
sequences and N a natural number be such that for all n ≥ N . Then if

converges, then converges; if diverges,
then diverges.

3) Create a test based on the technique you used in question 12: Let f(x) be a continuous,
positive, decreasing function for all x ≥ N . Let an be a sequence such that
for all n ≥ N . Then if converges, converges. Additionally,
if diverges, then diverges. (you can use overestimating
rectangles to prove this second part)

4) Create a test based on your solution to question 13: Let
∞∑
i=1

an be an alternating

series. Then if converges,
∞∑
i=1

an converges.


