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These notes will describe some proofs of the existence of conditional
expectation, which we omitted in class.

Theorem 0.1. Let (Ω,F , P ) be a probability space, X an integrable random
variable, and G ⊂ F a σ-field. There exists a random variable Y , denoted
Y = E[X|G], such that:

1. Y ∈ G; and

2. For all events A ∈ G, E[X;A] = E[Y ;A].

We proved in class that Y , if it exists, is unique.

1 Using the Radon-Nikodym theorem

See Durrett section 5.1. Note that his F is our G (and his F0 is our F);
that is, we are applying the Radon-Nikodym theorem in the measure space
(Ω,G, P ).

A proof of the Radon-Nikodym theorem in full generality appears in
Durrett’s appendix A.4.

Durrett has a much more general version of the Radon-Nikodym theorem
than is needed. For a more direct approach, see http://www.math.sc.edu/
∼schep/Radon-update.pdf. To get conditional expectation from it, take
X = Ω, B = G, µ = P , and ν(A) = E[X;A] (this produces a measure on G,
which is easily checked with dominated convergence).

2 Using Hilbert space techniques

Let’s first reduce to the bounded nonnegative case.

1

http://www.math.sc.edu/~schep/Radon-update.pdf
http://www.math.sc.edu/~schep/Radon-update.pdf


Lemma 2.1. If Theorem 0.1 holds for bounded nonnegative random vari-
ables, then it holds for all integrable random variables.

Proof. Suppose X is integrable and X ≥ 0. Taking something like Xn =
X ∧ n gives a sequence of bounded random variables increasing to X; by
assumption E[Xn|G] exists for each n. The conditional monotone con-
vergence theorem (Durrett 5.1.2 (c); its proof did not rely on the exis-
tence of conditional expectation, only the uniqueness) then implies that
E[X|G] = lim E[Xn|G] (i.e. the limit on the right side satisfies properties 1
and 2).

If X is merely integrable, then E[X+|G] and E[X−|G] exist by the pre-
vious step, and it’s easy to check that their difference is E[X|G] (satisfies
properties 1 and 2).

Recall the following theorem asserting the existence of orthogonal pro-
jections in Hilbert space.

Theorem 2.2. Let H be a Hilbert space with inner product 〈·, ·〉, K ⊂ H
a closed subspace, and x ∈ H. Then there exists y ∈ K such that for any
z ∈ K, 〈x− y, z〉 = 0.

We apply this theorem with H = L2(Ω,F , P ), where the inner product
is 〈X, Y 〉 = E[XY ]. Let K = L2(Ω,G, P ) be the subspace of all L2 G-
measurable random variables. To see that K is closed, i.e. that an L2 limit
of G-measurable random variables is still G-measurable, suppose Yn ∈ G,
Yn → Y in L2. By Chebyshev’s inequality, Yn → Y i.p.; by a theorem proved
in class, there is a subsequence with Ynk

→ Y a.e. Thus Y is (a.e. equal to)
a limit of G-measurable random variables, which must be G-measurable.

Now if X ∈ L2 (i.e. E(X2) < ∞), we can use the above theorem: there
exists Y ∈ K so that 〈X − Y, Z〉 = E[(X − Y )Z] = 0 for all Z ∈ K. Y is
certainly G-measurable by definition of K, so that’s property 1. For A ∈ G,
take Z = 1A; then E[(X − Y )1A] = 0, so that E[X;A] = E[Y ;A]. That’s
property 2. Thus Y = E[X|G].

Bounded random variables are certainly in L2, so by Lemma 2.1 we are
done.
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