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These notes will describe some proofs of the existence of conditional
expectation, which we omitted in class.

Theorem 0.1. Let (2, F, P) be a probability space, X an integrable random
variable, and G C F a o-field. There exists a random variable Y, denoted
Y = E[X|G], such that:

1. Y €G; and
2. For all events A € G, E[X; A] = E[Y; A.

We proved in class that Y, if it exists, is unique.

1 Using the Radon-Nikodym theorem

See Durrett section 5.1. Note that his F is our G (and his Fy is our F);
that is, we are applying the Radon-Nikodym theorem in the measure space
(Q,G,P).

A proof of the Radon-Nikodym theorem in full generality appears in
Durrett’s appendix A.4.

Durrett has a much more general version of the Radon-Nikodym theorem
than is needed. For a more direct approach, see http://www.math.sc.edu/
~schep/Radon-update.pdf. To get conditional expectation from it, take
X=Q,B=G, u=P,and v(A) = E[X; A] (this produces a measure on G,
which is easily checked with dominated convergence).

2 Using Hilbert space techniques

Let’s first reduce to the bounded nonnegative case.
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Lemma 2.1. If Theorem holds for bounded nonnegative random vari-
ables, then it holds for all integrable random variables.

Proof. Suppose X is integrable and X > 0. Taking something like X,, =
X A n gives a sequence of bounded random variables increasing to X; by
assumption E[X,|G] exists for each n. The conditional monotone con-
vergence theorem (Durrett 5.1.2 (c); its proof did not rely on the exis-
tence of conditional expectation, only the uniqueness) then implies that
E[X|G] = lim F[X,,|G] (i.e. the limit on the right side satisfies properties 1
and 2).

If X is merely integrable, then E[XT|G] and E[X ~|G] exist by the pre-
vious step, and it’s easy to check that their difference is E[X|G] (satisfies
properties 1 and 2). O

Recall the following theorem asserting the existence of orthogonal pro-
jections in Hilbert space.

Theorem 2.2. Let H be a Hilbert space with inner product (-,-), K C H
a closed subspace, and x € H. Then there exists y € K such that for any
ze K, (x—y,z)=0.

We apply this theorem with H = L?(§2, F, P), where the inner product
is (X,Y) = E[XY]. Let K = L?(Q,G,P) be the subspace of all L? G-
measurable random variables. To see that K is closed, i.e. that an L? limit
of G-measurable random variables is still G-measurable, suppose Y,, € G,
Y,, — Y in L?. By Chebyshev’s inequality, Y,, — Y i.p.; by a theorem proved
in class, there is a subsequence with Y,,, — Y a.e. Thus Y is (a.e. equal to)
a limit of G-measurable random variables, which must be G-measurable.

Now if X € L? (i.e. E(X?) < o), we can use the above theorem: there
exists Y € K sothat (X —Y,Z) = E[(X -Y)Z] =0forall Z e K. Y is
certainly G-measurable by definition of K, so that’s property 1. For A € G,
take Z = 1y4; then E[(X —Y)14] = 0, so that E[X; A] = E[Y; A]. That’s
property 2. Thus Y = E[X|g].

Bounded random variables are certainly in L?, so by Lemma we are
done.
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