Existence of conditional expectation

Nate Eldredge

October 1, 2010

These notes will describe some proofs of the existence of conditional expectation, which we omitted in class.

Theorem 0.1. Let (Ω, \mathcal{F}, P) be a probability space, X an integrable random variable, and $\mathcal{G} \subset \mathcal{F}$ a σ -field. There exists a random variable Y, denoted $Y = E[X|\mathcal{G}]$, such that:

- 1. $Y \in \mathcal{G}$; and
- 2. For all events $A \in \mathcal{G}$, E[X; A] = E[Y; A].

We proved in class that Y, if it exists, is unique.

1 Using the Radon-Nikodym theorem

See Durrett section 5.1. Note that his \mathcal{F} is our \mathcal{G} (and his \mathcal{F}_0 is our \mathcal{F}); that is, we are applying the Radon-Nikodym theorem in the measure space (Ω, \mathcal{G}, P) .

A proof of the Radon-Nikodym theorem in full generality appears in Durrett's appendix A.4.

Durrett has a much more general version of the Radon-Nikodym theorem than is needed. For a more direct approach, see http://www.math.sc.edu/ ~schep/Radon-update.pdf. To get conditional expectation from it, take $X = \Omega, \mathcal{B} = \mathcal{G}, \mu = P$, and $\nu(A) = E[X; A]$ (this produces a measure on \mathcal{G} , which is easily checked with dominated convergence).

2 Using Hilbert space techniques

Let's first reduce to the bounded nonnegative case.

Lemma 2.1. If Theorem 0.1 holds for bounded nonnegative random variables, then it holds for all integrable random variables.

Proof. Suppose X is integrable and $X \ge 0$. Taking something like $X_n = X \land n$ gives a sequence of bounded random variables increasing to X; by assumption $E[X_n|\mathcal{G}]$ exists for each n. The conditional monotone convergence theorem (Durrett 5.1.2 (c); its proof did not rely on the existence of conditional expectation, only the uniqueness) then implies that $E[X|\mathcal{G}] = \lim E[X_n|\mathcal{G}]$ (i.e. the limit on the right side satisfies properties 1 and 2).

If X is merely integrable, then $E[X^+|\mathcal{G}]$ and $E[X^-|\mathcal{G}]$ exist by the previous step, and it's easy to check that their difference is $E[X|\mathcal{G}]$ (satisfies properties 1 and 2).

Recall the following theorem asserting the existence of orthogonal projections in Hilbert space.

Theorem 2.2. Let H be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$, $K \subset H$ a closed subspace, and $x \in H$. Then there exists $y \in K$ such that for any $z \in K$, $\langle x - y, z \rangle = 0$.

We apply this theorem with $H = L^2(\Omega, \mathcal{F}, P)$, where the inner product is $\langle X, Y \rangle = E[XY]$. Let $K = L^2(\Omega, \mathcal{G}, P)$ be the subspace of all $L^2 \mathcal{G}$ measurable random variables. To see that K is closed, i.e. that an L^2 limit of \mathcal{G} -measurable random variables is still \mathcal{G} -measurable, suppose $Y_n \in \mathcal{G}$, $Y_n \to Y$ in L^2 . By Chebyshev's inequality, $Y_n \to Y$ i.p.; by a theorem proved in class, there is a subsequence with $Y_{n_k} \to Y$ a.e. Thus Y is (a.e. equal to) a limit of \mathcal{G} -measurable random variables, which must be \mathcal{G} -measurable.

Now if $X \in L^2$ (i.e. $E(X^2) < \infty$), we can use the above theorem: there exists $Y \in K$ so that $\langle X - Y, Z \rangle = E[(X - Y)Z] = 0$ for all $Z \in K$. Y is certainly \mathcal{G} -measurable by definition of K, so that's property 1. For $A \in \mathcal{G}$, take $Z = 1_A$; then $E[(X - Y)1_A] = 0$, so that E[X; A] = E[Y; A]. That's property 2. Thus $Y = E[X|\mathcal{G}]$.

Bounded random variables are certainly in L^2 , so by Lemma 2.1 we are done.