Homework 1: Math 6710 Fall 2010

Nate Eldredge

August 30, 2010

Due in class on Friday, September 3.

Update: To be consistent with the text, you should assume that all measure spaces are σ -finite. Throughout this homework $(\Omega, \mathcal{F}, \mu)$ is an arbitrary σ -finite measure space. measure space. All functions $f : \Omega \to \mathbb{R}$ or $f : \Omega \to [0, \infty]$ are assumed to be Borel measurable, i.e. $f^{-1}(B) \in \mathcal{F}$ for all Borel sets $B \subset \mathbb{R}$ or $B \subset [0, \infty]$.

- 1. (Durrett 1.4.1). Prove: If $f : \Omega \to [0, \infty]$ is a nonnegative measurable function with $\int f d\mu = 0$, then f = 0 a.e.
- 2. Suppose $f : \Omega \to [0, \infty]$ is a nonnegative measurable function. For any $A \in \mathcal{F}$, define $\nu(A) = \int_A f \, d\mu$. Prove:
 - (a) (Durrett 1.5.4) ν is a countably additive measure on (Ω, \mathcal{F}) .
 - (b) (Like Durrett 1.6.8) If $g: \Omega \to [0, \infty]$ is a nonnegative measurable function, then $\int g \, d\nu = \int f g \, d\mu$.
- 3. (Like Durrett 1.5.8) Let m be Lebesgue measure on \mathbb{R} , and suppose $f \in L^1(\mathbb{R}, m)$. Define $F : \mathbb{R} \to \mathbb{R}$ by $F(x) = \int_{(-\infty,x)} f \, dm$. Show that F is continuous. (Hint: Dominated convergence. Remark: F actually has the stronger property of being *absolutely continuous*.)
- 4. (Durrett 1.5.6) Prove: If $g_m : \Omega \to [0, \infty]$, $m = 1, 2, \ldots$ is a sequence of nonnegative measurable functions, then

$$\int \sum_{m=1}^{\infty} g_m \, d\mu = \sum_{m=1}^{\infty} \int g_m \, d\mu.$$

That is, we may interchange sums and integrals of nonnegative functions. Please do not use Tonelli's theorem (of which this is a special case).

5. (Durrett 1.5.10) Prove: If $g_m : \Omega \to \mathbb{R}$ are measurable functions and $\sum_{m=1}^{\infty} \int |g_m| d\mu < \infty$, then

$$\int \sum_{m=1}^{\infty} g_m \, d\mu = \sum_{m=1}^{\infty} \int g_m \, d\mu.$$

(Please do not use Fubini's theorem, of which this is a special case.) Give an explicit example to show that this may be false if $\sum_{m=1}^{\infty} \int |g_m| d\mu = \infty$.