Homework 2: Math 6710 Fall 2010

Due in class on Friday, September 10.

- 1. It is very easy to check that an arbitrary intersection of σ -fields is again a σ -field. In this problem, you will show that the same does not hold for unions.
 - (a) Give an example of a set Ω and σ -fields $\mathcal{F}_1, \mathcal{F}_2 \subset 2^{\Omega}$ such that $\mathcal{F}_1 \cup \mathcal{F}_2$ is not a σ -field.
 - (b) Give an example of a set Ω and a nested sequence of σ -fields $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$ such that $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is not a σ -field.
- 2. (Durrett 1.6.8) Suppose $f : \mathbb{R} \to [0, \infty)$ is a probability density function (i.e. $\int_{\mathbb{R}} f \, dm = 1$, where *m* is Lebesgue measure), and let $\mu(B) := \int_B f \, dm$ be the corresponding probability measure. Show that for any measurable $g : \mathbb{R} \to \mathbb{R}$ with $g \ge 0$ or $\int_{\mathbb{R}} |g| \, d\mu < \infty$, we have $\int_{\mathbb{R}} g \, d\mu = \int_{\mathbb{R}} fg \, dm$. (See the proof of Theorem 1.6.9 for the "standard mantra." This is sometimes used as the definition of expectation of a continuous random variable in undergraduate texts; this exercise shows the definition is consistent.)
- 3. (Durrett 1.6.1) Suppose $\varphi : \mathbb{R} \to \mathbb{R}$ is strictly convex, i.e.

$$\varphi(tx + (1-t)y) < t\varphi(x) + (1-t)\varphi(y)$$

for all $x \neq y$ and 0 < t < 1. ("Convex" only requires \leq in the above inequality.) Show that under this assumption, equality holds in Jensen's inequality only in the trivial case that X is a.s. constant. That is, if X and $\varphi(X)$ are integrable and $E[\varphi(X)] = \varphi(EX)$ then X = EXa.s.

- 4. (Durrett 1.2.3) Show that a distribution function has at most countably many discontinuities. That is, for any random variable there are at most countably many real numbers x with P(X = x) > 0.
- 5. (Durrett 1.2.4) Show that if $F(x) = P(X \le x)$ is continuous then Y = F(X) has a uniform distribution on (0, 1); i.e. $P(Y \le y) = y$ for $y \in [0, 1]$. Give a counterexample to show that this need not be the case if F is not continuous. (Remark: the "inverse" of this statement is also true: if U has a uniform distribution on (0, 1) and F is a distribution function, then $F^{-1}(U)$ is a random variable with distribution function F. You have to define F^{-1} appropriately since F need not be 1-1 in general. This is useful in programming if you know how to generate uniform random variables but need some other distribution.)