Homework 3: Math 6710 Fall 2010

Due in class on Friday, September 17.

1. Let X be a random variable. Prove that the following are equivalent:
(a) X is independent of every random variable Y.
(b) X is independent of itself.
(c) For all events $A \in \sigma(X), P(A)=0$ or $P(A)=1$. (We say the σ-field $\sigma(X)$ is almost trivial.)
(d) There exists a constant $c \in \mathbb{R}$ such that $X=c$ a.s.
(Remark: We proved in class that the "most independent" events are those which have probability 0 or 1 . This problem gives the corresponding statement for random variables. We will see more of the notion of an almost trivial σ-field when we discuss the Kolmogorov 0-1 law, and later, the Blumenthal 0-1 law.)
2. (Like Durrett 2.1.4) Let g_{1}, \ldots, g_{n} be probability density functions (i.e. $g_{i}: \mathbb{R} \rightarrow[0, \infty)$ is measurable and $\int_{\mathbb{R}} g_{i} d m=1$), and define $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ by $f\left(x_{1}, \ldots, x_{n}\right)=g_{1}\left(x_{1}\right) \ldots g_{n}\left(x_{n}\right)$. Show that $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is a random vector with density f if and only if X_{1}, \ldots, X_{n} are independent random variables where X_{i} has density g_{i}.
(Remark: In Durrett's version, the g_{i} are not assumed to be probability densities, i.e. it is not assumed that $\int_{\mathbb{R}} g_{i} d m=1$. However, one can just rescale them to achieve this.)
3. (a) Let \mathcal{G} be a σ-field, and let $\mathcal{G}_{1} \subset \mathcal{G}_{2} \subset \ldots$ be an increasing sequence of σ-fields. Suppose that for each n, \mathcal{G} and \mathcal{G}_{n} are independent. Let $\mathcal{G}_{\infty}=\sigma\left(\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots\right)$ be the σ-field generated by the \mathcal{G}_{n} (i.e. the smallest σ-field such that $\mathcal{G}_{n} \subset \mathcal{G}_{\infty}$ for all n). Show that \mathcal{G} and \mathcal{G}_{∞} are independent. (Hint: $\bigcup_{n=1}^{\infty} \mathcal{G}_{n}$ is a π-system.)
(b) Let Y be a random variable, and X_{1}, X_{2}, \ldots a sequence of random variables such that Y is independent of $\left(X_{1}, \ldots, X_{n}\right)$ for each n. Show that Y is independent of $\sup _{n} X_{n}$. (It is also independent of $\inf _{n} X_{n}, \limsup _{n} X_{n}$, etc.) (Hint: Use part (a).)
4. (Durrett 2.1.13) Show that if X, Y are independent discrete random variables, then

$$
P(X+Y=n)=\sum_{m} P(X=m) P(Y=n-m)
$$

5. (Durrett 2.1.14) Recall that a random variable Z has the Poisson distribution with parameter λ if $P(Z=k)=e^{-\lambda} \lambda^{k} / k$! for $k=0,1,2, \ldots$; we write $Z \sim \operatorname{Poisson}(\lambda)$. Suppose X, Y are independent with $X \sim \operatorname{Poisson}(\lambda), Y \sim \operatorname{Poisson}(\mu)$. Use the previous exercise to show that $X+Y \sim \operatorname{Poisson}(\lambda+\mu)$.
