Homework 4: Math 6710 Fall 2010

Due in class on Friday, September 24.

1. (Durrett 2.3.12) Let A_{n} be a sequence of independent events with $P\left(A_{n}\right)<1$ for all n. Show that $P\left(\bigcup A_{n}\right)=1$ implies $P\left(A_{n}\right.$ i.o. $)=1$.
2. Suppose A_{n} is any sequence of events with $P\left(A_{n}\right) \geq \epsilon>0$ for all n. Show that $P\left(A_{n}\right.$ i.o $) \geq \epsilon$. (This is sort of a partial converse of the first Borel-Cantelli lemma.)
3. Suppose X_{1}, X_{2}, \ldots are iid.
(a) The essential supremum of a random variable X is defined as

$$
\operatorname{esssup} X:=\sup \{x \in \mathbb{R}: P(X>x)>0\} .
$$

(This is almost like the supremum of X as a real-valued function except that it disregards events of probability zero.) Show that $\lim \sup _{n \rightarrow \infty} X_{n}=\operatorname{esssup} X_{1}$ a.s. So, if you want to know the essential supremum of a random variable, generate an iid sequence with that distribution and look at its limsup.
(b) The essential range of a random variable is defined as the following set of real numbers:

$$
\text { essran } X=\bigcap\{F \subset \mathbb{R}: F \text { closed, } P(X \in F)=1\}
$$

(This is like the closure of the range of X as a real-valued function except that it disregards events of probability zero.) Show that, with probability one, the sequence X_{n} is a dense subset of essran X_{1}. In other words, if

$$
A=\left\{\omega:\left\{X_{1}(\omega), X_{2}(\omega), \ldots\right\} \text { is dense in essran } X_{1}\right\}
$$

show that $P(A)=1$. So, if you want to know the essential range of a random variable, generate an iid sequence with that distribution, collect up all the values you see, and take the closure.
Hint: For any $x \in \operatorname{essran} X_{1}$ and positive integer m, let $A_{x, m}$ denote the event that $\left|X_{n}-x\right|<1 / m$ for some n. Show $P\left(A_{x, m}\right)=1$. Then let $\left\{x_{k}\right\}$ be a countable dense subset of essran X_{1} and check that $A=\bigcap_{k=1}^{\infty} \bigcap_{m=1}^{\infty} A_{x_{k}, m}$.
4. For this problem, suppose we are working on a discrete probability space. That is, Ω is a countable set (finite or countably infinite) and $\mathcal{F}=2^{\Omega}$.
(a) (Durrett 2.3.16) Suppose X_{n} is a sequence of random variables on a discrete probability space such that $X_{n} \rightarrow X$ in probability. Show that $X_{n} \rightarrow X$ almost surely. So, on a discrete probability space, convergence i.p. and a.s. are equivalent (the reverse implication holds in any probability space and was shown in class).
(b) (Bonus problem) Let X_{n} be an iid sequence of random variables on a discrete probability space. Show that there is a constant $c \in \mathbb{R}$ such that $X_{n}=c$ a.s. So, discrete probability spaces are too small to support any really interesting models.

