
Homework 7: Math 6710 Fall 2010

Due in class on Friday, October 22.
Let {Fn}∞n=0 be a filtration on (Ω,F , P ).

1. Recall that a nonnegative integer-valued random variable N is a stopping time provided that {N =
n} ∈ Fn for all n ≥ 0.

(a) If N,M are stopping times, then so is N + M .

(b) Show that N is a stopping time iff {N ≤ n} ∈ Fn for all n ≥ 0. This may be useful in tbe next
two parts.

(c) If Nk, k = 1, 2, . . . is a sequence of stopping times and N = supk Nk, then N is also a stopping
time. (Useful special cases: N1∨N2 is a stopping time; and if Nk ↑ N then N is a stopping time.)

(d) Likewise, show that N ′ = infk Nk is a stopping time.

2. Some uniform integrability examples. Recall the definition:

Definition. A set {Xj : j ∈ J} of random variables is uniformly integrable if

lim
M→∞

sup
j∈J

E[|Xj |; |Xj | > M ] = 0

and the alternate characterization proved in class:

Theorem. A set {Xj : j ∈ J} of random variables is uniformly integrable if and only if the following
two conditions both hold:

(A) (Uniform absolute continuity) For every ε > 0 there exists δ > 0 such that for all events A with
P (A) < δ, we have E[|Xj |;A] < ε for all j ∈ J ;

(B) (L1 boundedness) supj∈J E[|Xj |] < ∞.

Now prove:

(a) If {Xj : j ∈ J} are identically distributed and integrable, then {Xj : j ∈ J} is uniformly
integrable.

(b) If {Xi, i = 1, 2, . . . } is uniformly integrable, and Sn = X1 + · · · + Xn, then {Sn

n , n = 1, 2, . . . } is
uniformly integrable. (In particular, the classical strong or weak law of large numbers implies L1

convergence.)

(c) If {Xj : j ∈ J} is uniformly integrable, and {Yj : j ∈ J} is also uniformly integrable, then so is
{Xj + Yj : j ∈ J}.
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3. (Durrett 5.2.9) Let ξ1, ξ2, . . . be nonnegative iid random variables with E[ξi] = 1, and suppose that
P (ξi = 1) < 1 (i.e. they are not constant). Set Xn =

∏n
i=1 ξi.

(a) Show that Xn is a martingale and conclude that Xn converges almost surely to some random
variable X.

(b) To determine what X is, show that E[
√

ξi] < 1 (hint: φ(x) = x2 is strictly convex) and hence
E[
√

Xn] → 0. Conclude that X = 0.

(c) (Bonus problem) For an alternative proof, use the strong law of large numbers to show 1
n lnXn →

E[ln ξi] < 0 (hint: φ(x) = ex is strictly convex). (Note that E[ln ξi] < +∞ but we could have
E[ln ξi] = −∞; handling this case needs a little extra work.)

Note this shows that although we know expectations of finite products of independent random variables
factor, i.e. E [

∏n
i=1 ξi] =

∏n
i=1 Eξi, this does not carry over to infinite products.

Interpretation: suppose ξi is the amount of money you end up with after betting $1 on a game.
E[ξi] = 1 so the game is fair. The strategy described by Xn is to start with $1 and bet your entire
stake on every play. We’ve shown that this strategy will cause you to go broke in the long run.

4. (Durrett 5.2.11) Let Xn, Yn be positive, integrable, and adapted to {Fn}. Suppose that

E[Xn+1|Fn] ≤ (1 + Yn)Xn

for all n, and that
∑∞

n=0 Yn < ∞ a.s. (So Xn is not a supermartingale, but it’s close.) Show that Xn

converges a.s. to a finite limit. (Hint: Construct a related supermartingale. If you get stuck, ask me
for another hint.)
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