Homework 11: Math 6710 Fall 2010

Due in class on Wednesday, November 24, or prior to that in 593 Malott (put under door if I am out).

1. Show that $X_{n} \Rightarrow X$ iff $E\left[g\left(X_{n}\right)\right] \rightarrow E[g(X)]$ for all compactly supported continuous functions $g: \mathbb{R} \rightarrow \mathbb{R}$. (Recall g is compactly supported iff there exists M with $g(x)=0$ for all $|x|>M$.) Hint: Tightness.
Remark: In functional analysis language, this says that weak convergence of probability measures is the same as weak-* convergence in $C_{c}(\mathbb{R})^{*}$. This space is considerably nicer than $C_{b}(\mathbb{R})^{*} .\left(C_{c}(\mathbb{R})^{*}\right.$ consists exactly of finite complex measures on \mathbb{R}, by the Riesz representation theorem; $C_{b}(\mathbb{R})$ contains some stranger objects such as finitely additive measures which require the axiom of choice to discuss.) More generally, this fact holds for random variables taking their values in a complete, separable, locally compact metric space M. (If M is not locally compact, $C_{c}(M)$ may be too small to be useful.)
2. Show that a family of random variables that is uniformly integrable is tight. Give an example of a tight family that is not uniformly integrable.
3. Recall from last week that the Lévy metric on the set \mathcal{D} of all distribution functions on \mathbb{R} is defined by

$$
\rho(F, G):=\inf \{\epsilon \geq 0: F(x-\epsilon)-\epsilon \leq G(x) \leq F(x+\epsilon)+\epsilon \text { for all } x \in \mathbb{R}\}
$$

You have showed that (\mathcal{D}, ρ) is a metric space, and that convergence in the ρ metric is equivalent to weak convergence.
(a) Suppose that F_{n} is a sequence of distribution functions which is Cauchy in the ρ metric. (Recall this means: for every $\epsilon>0$ there exists N such that for all $n, m \geq N$ we have $\rho\left(F_{n}, F_{m}\right)<\epsilon$.) Show that F_{n} is tight and conclude that F_{n} converges weakly. Hence, (\mathcal{D}, ρ) is a complete metric space.
(b) Show that (\mathcal{D}, ρ) is separable, i.e. contains a countable dense subset.
4. Suppose $X_{n} \Rightarrow X_{\infty}, Y_{n} \Rightarrow Y_{\infty}$, and for each $n \leq \infty, X_{n}$ and Y_{n} are independent. (Here X_{n}, Y_{n} are all defined on the same probability space.) Prove in two different ways that $X_{n}+Y_{n} \Rightarrow X_{\infty}+Y_{\infty}:$
(a) Using Skorohod's theorem (3.2.2). It may be helpful to think about the construction of the random variables in its proof.
(b) Using characteristic functions and the continuity theorem (3.3.6).

