MATH 713 SPRING 2002

LECTURE NOTES ON FUNCTIONAL ANALYSIS

LEONARD GROSS

Contents

1.	Topological Vector Spaces	1
2.	Banach Algebras	10
2.1.	*-Algebras (over complexes)	15
2.2.	Exercises	18
3.	The Spectral Theorem	19
3.1.	Problems on the Spectral Theorem (Multiplication Operator Form)	24
3.2.	Integration with respect to a Projection Valued Measure	25
3.3.	The Functional Calculus	32
4.	Unbounded Operators	35
4.1.	Integration of Unbounded Functions with Respect to a Projection	
	Valued Measure	39
4.2.	Spectral theorem for self-adjoint operators: projection valued measure	
	form	42
5.	Compact Operators	45
5.1.	Riesz Theory of Compact Operators	47
6.	Semigroups of Operators	52

1. Topological Vector Spaces

We consider only real or complex vector spaces.

Definition 1.1. A topological vector space is a Hausdorff topological space X which is also a vector space such that the maps

- a) $x, y \mapsto x y$ is continuous from $X \times X$ to X and
- b) $\alpha, x \mapsto \alpha x$ is continuous from {scalars} $\times X$ to X.

Exercise 1.1. Prove that if X is a topological space and a vector space such that a) and b) hold and such that for every $x \neq 0 \exists$ a neighborhood U of 0 such that $x \notin U$ then X is a Hausdorff space (and is therefore a topological vector space).

Exercise 1.2. Consider \mathbb{R}^2 with the following topology: A set $V \subset \mathbb{R}^2$ is open iff for each point $(a,b) \in V$ there is an $\varepsilon > 0$ such that $\{(x,b) : |x-a| < \varepsilon\} \subset V$.

(1) Prove that \mathbb{R}^2 is a Hausdorff space in this topology.

 $Date: \ January \ 26, \ 2005 \ \textit{File:713} notes 2002.tex.$

(2) Determine whether or not \mathbb{R}^2 is a topological vector space in this topology (with the usual vector space operations).

Example 1.2. Any normed linear space is a topological vector space in the metric topology determined by the norm:

$$d(x,y) = ||x - y||.$$

Definition 1.3. A semi-norm N on a vector space X is a function $N: X \to \mathbb{R}$ such that

- (1) Positivity: $N(x) \ge 0 \ \forall x \in X$.
- (2) Positive homogeneity: $N(\alpha x) = |\alpha| N(x)$
- (3) Subadditivity: $N(x+y) \le N(x) + N(y)$

(Recall that a norm is a semi–norm such that $N(x)=0 \Rightarrow x=0$.) If N is a semi–norm on X and $a \in X$ and $\rho > 0$, then

$$S_N(a, \rho) := \{x \in X : N(x - a) < \rho\}$$

is called the open N ball of radius ρ centered at a.

Example 1.4. Let L be any linear functional on X. Then N(x) = |L(x)| is a semi-norm.

Definition 1.5. A collection \mathcal{N} of semi-norms on a vector space X is called *sepa-rating* if $N(x) = 0 \ \forall N \in \mathcal{N} \Rightarrow x = 0$.

If \mathcal{N} is a family of semi-norms on X, a set S of the form

$$(1.1) S = S_{N_1}(a, \rho_1) \cap S_{N_2}(a, \rho_2) \cap \ldots \cap S_{N_k}(a, \rho_k),$$

where $a \in X$, $N_1, N_2, \ldots, N_k \in \mathcal{N}$ and $\rho_1, \rho_2, \ldots, \rho_k \in (0, \infty)$, is called an open $\mathcal{N}-$ ball centered at a.

Definition 1.6. Given a family \mathcal{N} of semi-norms on a vector space X, let $X^{\mathcal{N}}$ denote X equipped with the topology having the open \mathcal{N} – balls as a basis. (You should check that the \mathcal{N} balls form a basis for a topology.) Explicitly, a set $V \subset X$ is open iff for all $a \in X$ there exists an open \mathcal{N} ball S centered at S such that $S \subset V$. (It is easy to verify that S is Hausdorff iff S is separating and that S is a topological vector space when S is separating.)

Examples 1.7. Some examples of topological vector spaces.

- (1) $S(\mathbb{R}) = C^{\infty}$ complex valued functions f on \mathbb{R} such that $x^n f^{(k)}(x) \in L^2$ $\forall n \geq 0$ and $k \geq 0$. Let $||f||_{n,k} = ||x^n f^{(k)}||_{L^2}$. If $\mathcal{N} = \{||\cdot||_{n,k}\}$ then $S^{\mathcal{N}}$ is called the Schwartz space of rapidly decreasing functions. \mathcal{N} is separating because $||f||_{0,0} = 0$ implies that f = 0.
- (2) If Y is a set of linear functionals on X which separates points of X then the Y topology of X is the topology determined by the semi–norms $N_L(x) = |L(x)|, L \in Y$. Notation: $\sigma(X, Y)$.
- (3) Special Case. $X = C([0,1]), Y = \text{point evaluations, i.e.}, Y = \text{all finite linear combinations of } L_t, t \in [0,1] \text{ where } L_t(f) = f(t). \text{ Note that a sequence } f_n \in X \text{ converges to } f \in X \text{ in this topology iff } f_n(t) \to f(t) \text{ for each } t \in [0,1].$

Remark 1.8. The Hahn–Banach theorem may be stated thus. If N is a semi–norm on a linear space X and V is a subspace of X and f is a linear functional on V such that $|f(x)| \leq aN(x), \ x \in V$ then \exists a linear functional g on X such that $|g(x)| \leq aN(x) \ \forall x \in X$ and $f(x) = g(x), \ x \in V$.

Remark 1.9. If \mathcal{N} is a separating family of semi-norms on X then the space $(X^{\mathcal{N}})^*$ of continuous linear functionals on $X^{\mathcal{N}}$ separates points of X. For if $x_0 \neq 0$ let $f(\alpha x_0) = \alpha$ on span($\{x_0\}$). There exist $N \in \mathcal{N}$ such that $N(x_0) \neq 0$. Then

$$|f(\alpha x_0)| = |\alpha| = \frac{N(\alpha x_0)}{N(x_0)}$$

and hence there exists a linear functional g on X such that

$$g(x_0) = 1$$
 and $g(x) \le \frac{N(x)}{N(x_0)} \, \forall x \in X$.

Clearly $g \in (X^{\mathcal{N}})^*$.

Exercise 1.3. A function $f: \mathbb{R} \to \mathbb{C}$ is said to be of polynomial growth if

$$|f(x)| \le C(1+|x|^k)$$

for some constant C, some integer k and for all x. A Borel measure μ on $\mathbb R$ is said to be of polynomial growth if

$$\int_{\mathbb{R}} (1+|x|^k)^{-1} d\mu(x) < \infty$$

for some integer k. For example Lebesgue measure is of polynomial growth.

(1) Suppose that $f: \mathbb{R} \to \mathbb{C}$ is a Borel measurable function of polynomial growth and μ is a measure of polynomial growth. For φ in $\mathcal{S}(\mathbb{R})$ [see Example 1.7 above] write

(1.2)
$$(f\mu)(\varphi) = \int_{-\infty}^{\infty} \varphi(x)f(x)d\mu(x).$$

Show that the integral in equation (1.2) exists and defines a continuous linear functional (which we denote by $f\mu$) on $\mathcal{S}(\mathbb{R})$.

(2) Show that the operator

$$\frac{d}{dx}:\mathcal{S}(\mathbb{R})\to\mathbb{S}(\mathbb{R})$$

is everywhere defined and continuous.

- (3) If μ is Lebesgue measure we will write fdx instead of $f\mu$. By virtue of b) the operator $(-\frac{d}{dx})$ has an adjoint $D: \mathcal{S}'(\mathbb{R}) \to \mathbb{S}'(\mathbb{R})$ where $\mathcal{S}'(\mathbb{R})$ denotes the dual space of $\mathcal{S}(\mathbb{R})$ (i.e., the space of continuous linear functionals on $\mathcal{S}(\mathbb{R})$). Suppose that g is a continuously differentiable function of polynomial growth whose derivative g' also has polynomial growth. Describe explicitly the linear functional D(gdx) by writing it in the form (1.2) for some wise choice of f and μ and compute it in case $g(x) = x^2 + 3x$.
- (4) Suppose

$$g(x) = \chi_{[0,\infty)}(x) = \left\{ \begin{array}{ll} 1 & \text{if} \quad x \geq 0 \\ 0 & \text{if} \quad x < 0. \end{array} \right.$$

Describe D(gdx) explicitly by writing it in the form (1.2) for some wise choice of f and μ .

(5) Since D is an everywhere defined linear operator on $\mathcal{S}'(\mathbb{R})$ so is D^n for $n = 1, 2, 3, \ldots$ In part d) above $D^2(gdx)$ is therefore an element of $\mathcal{S}'(\mathbb{R})$. Determine whether it can be written in the form (1.2). Prove your claim.

Definition 1.10. Let X be a linear space. A set $A \subset X$ is called *convex* if for any $x, y \in A$, $\alpha x + (1 - \alpha)y \in A$ whenever $0 \le \alpha \le 1$.

Definition 1.11. A topological linear space X is *locally convex* if X has a neighborhood base at 0 consisting of convex sets, i.e., for any open neighborhood U of 0 \exists a convex open neighborhood V of 0 such that $V \subset U$.

Theorem 1.12. Let X be a topological linear space. Let \mathcal{N} be the family of continuous semi-norms on X. Then $X^{\mathcal{N}} = X$ if and only if X is locally convex.

The proof of this theorem will be given after the proof of Lemma 1.17. Before starting into the proof we state a corollary.

Corollary 1.13. If X is a locally convex topological linear space then the topological dual space X^* separates points of X.

Proof. It follows from Theorem 1.12 and Remark 1.9. ■ The proof of Theorem 1.12 depends on the following lemmas.

Definition 1.14. Let $S \subset X$ be a set. Then

- (1) S is called symmetric if $x \in S \Rightarrow \alpha x \in S$ whenever $|\alpha| = 1$.
- (2) S is absorbing if for every $x \in X$, $\exists \alpha > 0$ such that $x \in \alpha S$.
- (3) S is linearly open if for every $x_0 \neq 0$, $\{\alpha : \alpha x_0 \in S\}$ is open.

Remarks 1.15. Let $S \subset X$ then

- (1) if S is absorbing then $0 \in S$.
- (2) If S is nonempty, convex and symmetric then $0 \in S$.
- (3) The intersection of convex sets is convex.

Lemma 1.16. Let X be a linear space. A set $S \subset X$ is convex, symmetric, absorbing and linearly open iff \exists a semi-norm $N \ni S = \{x \in X : N(x) < 1\}$.

Proof. (\Leftarrow) Let $S = \{x : N(x) < 1\}$. S is convex since $N(\alpha x + (1 - \alpha)y) \le \alpha N(x) + (1 - \alpha)N(y) < 1$ if $x, y \in S$. S is clearly symmetric.

S is absorbing: $N(x) = 0 \Rightarrow x \in S$. If $N(x) \neq 0$ let $\alpha = 2N(x)$. Then $x/\alpha \in S$. S is linearly open: $\{\alpha : \alpha x_0 \in S\} = \{\alpha : N(\alpha x_0) < 1\} = \{\alpha : |\alpha|N(x_0) < 1\}$ which is open.

 (\Rightarrow) Assume S is a symmetric, absorbing, convex, linearly open set. Define $N(x)=\inf\{\alpha:\alpha>0,x\in\alpha S\}$. Then N(0)=0 since $0\in S$ (because S is absorbing). If $\beta\neq 0$ then

$$N(\beta x) = \inf\{\alpha : \alpha > 0, \beta x \in \alpha S\} = \inf\left\{\alpha : \alpha > 0, x \in \frac{\alpha}{\beta} S\right\}$$
$$= \inf\left\{\alpha : \alpha > 0, x \in \frac{\alpha}{|\beta|} S\right\} \text{ by symmetry of } S$$
$$= \inf\{|\beta|\gamma : \gamma > 0, x \in \gamma S\} = |\beta| N(x).$$

This shows positive homogeneity. We must show *subadditivity*. Given $x, y \in X$. Take $\alpha > N(x)$, $\beta > N(y) \ni \exists u, v \in S$ with $x = \alpha u$, $y = \beta v$. Then

$$\frac{x+y}{\alpha+\beta} = \frac{\alpha}{\alpha+\beta}u + \frac{\beta}{\alpha+\beta}v \in S$$

$$\therefore x + y \in (\alpha + \beta)S$$

$$\therefore N(x + y) \le \alpha + \beta \text{ for all such } \alpha \text{ and } \beta$$

$$\therefore N(x + y) \le \inf_{\alpha} (\alpha + \beta) = N(x) + \beta \forall \text{ such } \beta$$

$$\therefore N(x + y) \le N(x) + \inf \beta = N(x) + N(y)$$

$$\therefore N \text{ is a seminorm.}$$

Now suppose N(x) < 1. $\exists \alpha < 1 \ni x \in \alpha S$, i.e., $x/\alpha \in S$. Then $x = \alpha(1/\alpha)x + (1-\alpha)0 \in S$. Conversely if $x \in S$ then $\alpha^{-1}x \in S$ for some $\alpha < 1$ because S is linearly open. So N(x) < 1.

$$S = \{x : N(x) < 1\}$$

Lemma 1.17. A topological vector space is locally convex iff the convex symmetric neighborhoods of zero form a base at 0.

Proof. \Leftarrow trivial \Rightarrow Let V be a convex neighborhood of 0. Let $V_1 = \bigcap_{|p|=1} pV$. Then $V_1 \subset V$

and $0 \in V_1$. V_1 is an intersection of convex sets so is convex. If $|\beta| = 1$ then $\beta V_1 = \bigcap_{|p|=1} \beta pV = \bigcap_{|\gamma|=1} \gamma V = V_1$. Therefore V_1 is symmetric.

We show next that the interior of V_1 is not empty. Since $(\alpha, x) \mapsto \alpha x$ is continuous and $0 \cdot 0 = 0 \in V \exists$ an a > 0 and a neighborhood V_2 of $0 \ni \alpha V_2 \subset V$ whenever $|\alpha| < a$. Put $V_3 = (a/2)V_2$. Then if |p| = 1, $pV_3 = \frac{pa}{2}V_2 \subset V$. $\therefore V_3 \subset pV$ if |p| = 1. $\therefore V_3 \subset V_1$. So V_1 has a non–empty interior W and $0 \in W \subset V$.

Claim: W is convex and symmetric.

Convexity: Let $x, y \in W$ and let $\alpha, \beta > 0$, with $\alpha + \beta = 1$. Since V_1 is convex and $W \subset V_1$ we may conclude that $\alpha x + \beta y \in V_1$. Since W is open x has a neighborhood $U \subset W$ and we may similarly conclude that the open set $\alpha U + \beta y$ is contained in V_1 , and hence in its interior, W. In particular $\alpha x + \beta y \in W$. So W is convex.

Symmetry: If $x \in W$ and $|\beta| = 1$ then $\beta x \in \beta W \subset \beta V_1 = V_1$. Since βW is open $\beta x \in int V_1$.

We are now ready for the proof of Theorem 1.12. The proof given here will follow Rudin 1.33–1.39, p. 24–28] [1975].

Proof. (Proof of Theorem 1.12.) Assume $X = X^{\mathcal{N}}$. If V is a neighborhood of 0 then by definition there exists $N_1, \ldots, N_k \in \mathcal{N}$ and $P_j > 0$, $j = 1, 2, \ldots, k$ such that $V \supset \{x : N_j(x) < P_j, j = 1, 2, \ldots, k\}$. This is an intersection of convex sets by Lemma 1.16 and is therefore a convex neighborhood of 0. Thus X is locally convex. Conversely, suppose X is locally convex. Clearly $X \supset X^{\mathcal{N}}$, i.e., $X^{\mathcal{N}}$ is a weaker topology than the original X topology. Suppose V is an open neighborhood of 0. By Lemma 1.17 \exists a convex symmetric neighborhood W of $0 \ni W \subset V$. W is absorbing, for if $x \in X$ then $0 \cdot x = 0 \in W$. $\therefore \exists a > 0 \ni \alpha x \in W$ for $|\alpha| < a$. Take $\alpha = a/2$. W is linearly open since $\{\alpha : \alpha x_0 \in W\}$ is the inverse image of an open set W under the continuous map $\alpha \to \alpha x_0$. Hence by Lemma 1.16 there exists a semi–norm N on $X \ni W = \{N(x) < 1\}$. N is continuous at 0 since $\{N(x) < \varepsilon\} = \varepsilon W$ which is open. $\therefore N$ is continuous $\therefore X^{\mathcal{N}} \supset X$.

Remark 1.18. If V is a neighborhood of zero in a locally convex space then \exists a continuous semi-norm N with $\{x: N(x) < 1\} \subset V$, for we know $X = X^N$ where

 \mathcal{N} is the family of continuous semi–norms

$$\therefore \exists N_j, \rho_j \text{ such that } \bigcap_{j=1}^m \{x : N_j(x) < \rho_j\} \subset V$$

$$\therefore \text{ Take } N = \sum_{j=1}^{m} \rho_j^{-1} N_j$$

Definition 1.19. Let X be a normed linear space and X^* its dual space (all continuous linear functionals on X).

- (1) The weak topology on X is the X^* topology of X, i.e., $\sigma(X, X^*)$.
- (2) The weak* topology on X^* is the X topology of X^* , i.e., $\sigma(X^*,\widetilde{X})$ where \widetilde{X} is the image of X in X^{**} . [Recall topology of product spaces and Tychonoff's Theorem.]

Theorem 1.20 (Banach–Alaoglu Theorem). Let X be a normed linear space. Then the unit ball of X^* is weak* compact.

Proof. Let $A = \{\text{scalar valued functions } \xi \text{ on } X : |\xi(x)| \leq ||x|| \forall x \}$. For $x \in X$ let $B_x = \{\lambda : |\lambda| \leq ||x||\}$. B_x is compact. Therefore $A = \prod_{x \in X} B_x$ is compact. A

basic neighborhood of a point ξ_0 is

$$\{\xi : |\xi(x_j) - \xi_0(x_j)| < \varepsilon, j = 1, \dots, n\}$$

The projection map $\xi \mapsto \xi(x)$ from A to {scalars} is continuous for each x in this (product) topology. Now the unit ball of $X^* \subset A$. The induced topology is the weak* topology on X^* . It remains to show the unit ball is closed in A.

Let $x, y \in X$, α , β scalars

$$\xi(\alpha x + \beta y) - \alpha \xi(x) - \beta \xi(y)$$
 is a continuous function of ξ on A .

$$\therefore \{\xi : \xi(\alpha x + \beta y) - \alpha \xi(x) - \beta \xi(y) = 0\} \text{ is closed in } A.$$

Hence

$$\bigcap_{x,y,\alpha,\beta} \{ \xi : \xi(\alpha x + \beta y) - \alpha \xi(x) - \beta \xi(y) = 0 \} \text{ is closed in } A.$$

But this is the unit ball.

Exercise 1.4. Let X be a separable Banach space. Show that the weak* topology on the closed unit ball B of X^* is metrizable. **Hint:** let $\{x_1, x_2, \ldots\}$ be a sequence of unit vectors in X which is dense in $\{x \in X : ||x|| = 1\}$. Consider

$$d(\xi, \eta) := \sum_{n=1}^{\infty} 2^{-n} |(\xi - \eta)(x_n)|.$$

Note: The Banach–Alaoglu theorem together with Exercise 1.4 shows that B is sequentially compact when X is separable.

Definition 1.21. Let X be a topological vector space.

- (1) A set $K \subset X$ is called *compex* if it is compact and convex.
- (2) A segment is a set of the form $\{\alpha x + \beta y : \alpha + \beta = 1, 0 \le \alpha \le 1\}$ for some $x, y \in X$. For $x \ne y$, the interior of a segment is $\{\alpha x + \beta y : \alpha, \beta > 0 \ \alpha + \beta = 1\}$.

(3) If K is compex $F \subset K$ is a face of K if F is compex and every segment in K having a point of F in its interior is contained in F, i.e., $\alpha x + \beta y \in F$ for some α , β , $0 < \alpha$, $\beta < 1$, $\alpha + \beta = 1 \Rightarrow \alpha x + \beta y \in F \ \forall \alpha$, $\beta \ 0 \leq \alpha$, $\beta \leq 1$, $\alpha + \beta = 1$.

Remarks 1.22. The following properties are easily checked:

- (1) \cap faces = face
- (2) A face of a face is a face.
- (3) $A: H \to \widetilde{H}$ continuous linear $\Rightarrow (K \text{ compex} \Rightarrow A(K) \text{ compex})$
- (4) \widetilde{F} face of $\widetilde{K} = A(K) \Rightarrow F = K \cap A^{-1}(\widetilde{F})$ is a face of K.
- (5) $\widetilde{F} \subsetneq \widetilde{K} = A(K) \Rightarrow F = K \cap A^{-1}(\widetilde{F}) \neq K$

Definition 1.23. An extreme point of a convex set K is a point x such that $\{x\}$ is a face. (A topology is not necessary for this definition.) **Algebraic definition:** x is an extreme point if it is not contained in the interior of any segment of K. (These definitions are equivalent.)

Notation 1.24. Let K be a compex set, then let \hat{K} be the compex hull of extreme points of K, i.e.

 $\widehat{K} = \bigcap \{\text{compex sets containing all extreme points of } K\}.$

Definition 1.25. F is an extreme face of K if it is a face of K such that the faces of it (F) are precisely \emptyset and F.

Lemma 1.26. Let X be a topological vector space such that X^* separates points of X (e.g. X locally convex). Then a non-empty extreme face is an extreme point.

Proof. View X as a vector space over \mathbb{R} , and let ξ be a continuous real linear functional on X. Let F be an extreme face of K. $\xi(F)$ is a compact convex subset of the reals $:: \xi(F) = [\alpha, \beta]$.

 $\{\alpha\}$ is a face of $\xi(F)$.

$$\therefore F \cap \xi^{-1}\{\alpha\}$$
 is a non-empty face of F

$$\therefore F \cap \xi^{-1}\{\alpha\} = F$$

Hence
$$\xi(F) = \{\alpha\}$$
 by item 5 of Remark 1.22

But if F has two distinct points, then \exists a real linear functional which separates them. Therefore, F has only one point. \blacksquare

Lemma 1.27. Let X be a real or complex locally convex topological vector space and K compex $\subset X$. If $x_0 \notin K$ then \exists a continuous linear functional $\xi_0 \ni \xi_0(x_0) \notin \xi_0(K)$.

Proof. With out loss of generality we may take $x_0 = 0$. Let S be a convex symmetric (absorbing, linearly open) neighborhood of $0 \ni S \cap K = \emptyset$. \exists a seminorm N such that $S = \{x : N(x) < 1\}$. For each $x \notin S$ define ξ_x on the span of x by $\xi_x(\alpha x) = \alpha N(x)$. Now $|\xi_x(\alpha x)| = |\alpha|N(x) = N(\alpha x)$. Extend ξ_x linearly to X such that for all $y \in X$, $|\xi_x(y)| \le N(y)$. If $\varepsilon > 0$ and $y \in \varepsilon S$ then $|\xi_x(y)| \le N(y) < \varepsilon$. Hence, each ξ_x is continuous. $\{y : |\xi_x(y)| > \frac{1}{2}\}_{x \in K}$ is an open cover of K since

$$\xi_x(x) = N(x) \ge 1$$
. There exists x_1, \dots, x_n such that $K \subset \bigcup_{j=1}^n \{y : |\xi_{x_j}(y)| > \frac{1}{2}\}$.

Define $A: X \to \mathbb{R}^n$ or \mathbb{C}^n for real or complex X, respectively, by

$$Ax = (\xi_{x_1}(x), \xi_{x_i}(x), \dots, \xi_{x_n}(x)).$$

Then A is continuous and linear.

Put $\widetilde{K} = A(K)$. $0 \notin \widetilde{K}$ since if $(\alpha_1, \ldots, \alpha_n) \in \widetilde{K}$ then $\exists j$ such that $|\alpha_j| = |\xi_{x_j}(x)| > \frac{1}{2}$. We write the rest of the proof in case X is complex, but the proof is the same in case X is real. We need only construct a linear functional $\eta : \mathbb{C}^n \to \mathbb{C}$ such that $0 \notin \eta(\widetilde{K})$ and then put $\xi_0 = \eta \circ A$. For then $0 \notin \xi_0(K)$.

Construction of η . Let $\|\cdot\|$ be the usual Hilbert norm on \mathbb{C}^n . There exists $r \in \widetilde{K}$ such that $\|r\| = \inf_{y \in \widetilde{K}} \|y\|$. Write $r = (\alpha_1, \dots, \alpha_n)$. Let $\eta(y_1, \dots, y_n) = 0$

 $y_1\overline{\alpha}_1 + \cdots + y_n\overline{\alpha}_n$. Suppose $s \in \widetilde{K}$ and $\eta(s) = 0$, i.e., (s,r) = 0. Put a = ||r||, b = ||s||. Then

$$t = \frac{b^2}{a^2 + b^2}r + \frac{a^2}{a^2 + b^2}s \in \widetilde{K}.$$

But

$$||t||^2 = \left(\frac{b^2a}{a^2 + b^2}\right)^2 + \left(\frac{a^2b}{a^2 + b^2}\right)^2 + 2Re\frac{b^2}{a^2 + b^2}\frac{a^2}{a^2 + b^2}(r, s)$$
$$= \frac{a^2b^2}{a^2 + b^2} = a^2 - \frac{a^4}{a^2 + b^2} < a^2$$

which contradicts the fact that r is the smallest vector in \widetilde{K} . Hence $\eta(s) \neq 0$ if $s \in \widetilde{K}$.

Remark 1.28. ξ_0 may be chosen real even if X is complex because if X is a locally convex vector space over \mathbb{C} , then it is a locally convex vector space over \mathbb{R} in the same topology.

Theorem 1.29. (Krein–Milman Theorem) Let X be a locally convex topological vector space. If K is compex, then $\hat{K} = K$, where \hat{K} is defined in Notation 1.24.

Proof. Clearly $\widehat{K} \subset K$. For any real linear continuous functional, ξ , on X, $\xi(\widehat{K}) \subset \xi(K)$. Let α be an endpoint of $\xi(K)$. $K \cap \xi^{-1}\{\alpha\}$ is a face of K. Let $T = \{\text{non-empty faces of } K \cap \xi^{-1}\{\alpha\}\}$. Order T by reverse inclusion. (T is partially ordered.) The intersection of a simply ordered collection (chain) in T is non-empty because of the finite intersection property of compact sets. By Zorn's Lemma, \exists an extreme face in $K \cap \xi^{-1}\{\alpha\}$. This is an extreme point by Lemma 1.26 \therefore ($K \cap \xi^{-1}\{\alpha\}$) $\cap \widehat{K} \neq \emptyset$. Hence $\alpha \in \xi(\widehat{K})$ \therefore endpoints of $\xi(K) \in \xi(\widehat{K})$ so $\xi(K) \subset \xi(\widehat{K})$. Hence $\xi(K) = \xi(\widehat{K})$ \forall real linear functional ξ . Theorem 1.29 follows from Lemma 1.27. \blacksquare

Application 1. Let H be a Banach space and S be the unit sphere in H^* . In the w^* topology on H^* , S is compex. Hence $\widehat{S} = S$. Therefore, if a Banach space is the dual of a normed linear space, its unit sphere must satisfy the condition $\widehat{S} = S$. For example we may use this to prove that Real C[0,1] is not a dual space under $\|\cdot\|_{\infty}$ of any Banach space.

Proof. Suppose that $f \in \text{Real } C([0,1])$ and is an extreme point of the unit ball. Let g(s) = f(s) - |f(s)| + 1 and h(s) = f(s) + |f(s)| - 1. Then $||g||_{\infty} \leq 1$ and $||h||_{\infty} \leq 1$ since $||f||_{\infty} \leq 1$, as we see by considering for each s the cases $f(s) \geq 0$ and f(s) < 0. But f = (1/2)g + (1/2)h. Hence since f is an extreme point we must

have g = h. That is, |f(s)| = 1 for all s. Hence $f \equiv 1$ or $f \equiv -1$. These are the only extreme points of the closed unit ball S. Hence $\widehat{S} \neq S$. So S is not compact in any locally convex topology on Real C([0,1]). Therefore Real C([0,1]) is not a dual space of any Banach space.

Exercise 1.5. Prove that the closed unit ball of real $L^1(0,1)$ has no extreme points and therefore $L^1(0,1)$ is not a dual space.

Definition 1.30. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are *equivalent* if \exists constants m > 0, M > 0 such that

$$m||x||_1 \le ||x||_2 \le M||x||_1, \quad \forall x \in X.$$

Exercise 1.6. Show that any two norms on a finite dimensional linear space are equivalent. [Hint: Show that any norm is equivalent to an Euclidean norm.]

Proposition 1.31. A finite dimensional subspace F of a normed linear space X is closed in X.

Proof. By Exercise 1.6 the norm on F is equivalent to any Euclidean norm on F and therefore F is complete in its own norm. Suppose then that $\{x_n\}_{n=1}^{\infty}$ is a sequence in F that converges to a point x in X. Then $\{x_n\}$ is a Cauchy sequence in F which therefore converges by completeness of F to a point y in F. By uniqueness of limits x = y. So x is in F and F is closed in X.

Fact 1. If a finite dimensional vector space is a topological vector space in two topologies T_1 , T_2 , then $T_1 = T_2$.

Lemma 1.32. Let H be a normed linear space and H_0 a closed proper subspace. For any $\varepsilon > 0$, there exists $x_0 \in H$ such that $||x_0|| = 1$ and $||x - x_0|| \ge 1 - \varepsilon$ whenever $x \in H_0$.

Proof. Can assume $\varepsilon < 1$. Take any $z_0 \notin H_0$. Let $d = \inf_{x \in H_0} \|x - z_0\|$. For any $\delta > 0$, there exists $z \in H_0$, such that $\|z - z_0\| \le d + \delta$. Take $\delta = \frac{\varepsilon d}{1 - \varepsilon}$. Let $x_0 = (z - z_0)/\|z - z_0\|$, where z is determined for this δ . Then $\|x_0\| = 1$, and if $x \in H_0$,

$$\|x-x_0\| = \frac{\|(\|z-z_0\|)x-z+z_0\|}{\|z-z_0\|} \ge \frac{d}{\|z-z_0\|} \ge \frac{d}{d+\delta} = 1-\varepsilon.$$

Proposition 1.33. A locally compact Banach space is finite dimensional.

Proof. We prove that an infinite dimensional Banach space is not locally compact. We construct a sequence $x_1, x_2, \ldots, x_n, \ldots$ such that $\|x_n\| = 1$, $\|x_i - x_j\| \ge 1/2$, $i \ne j$. Take x_1 to be any unit vector. Suppose vectors x_1, \ldots, x_n are constructed. Let $H_0 =$ linear manifold spanned by x_1, \ldots, x_n . By Proposition 1.31, H_0 is closed. By Lemma 1.32, $\exists x_{n+1} \ni \|x_i - x_{n+1}\| \ge 1/2$, $i = 1, \ldots, n$. Now the sequence just constructed has no Cauchy subsequence. Hence the closed unit ball is not compact. Similarly the closed ball of radius r > 0 is also not compact.

2. Banach Algebras

Definition 2.1. An associative algebra \mathcal{A} over a field F is a vector space over F with a bilinear, associative multiplication: i.e.,

$$(ab)c = a(bc)$$

$$a(b+c) = ab + ac$$

$$(a+b)c = ac + bc$$

$$a(\lambda c) = (\lambda a)c = \lambda(ac)$$

Definition 2.2. A Banach Algebra is a real or complex Banach space which is an associative algebra such that

$$||ab|| \le ||a|| ||b||.$$

Examples 2.3. (1) $X = \text{topological space}, C(X) = \text{bounded}, \text{ complex valued}, \text{ continuous functions on } X, \text{ with } ||f|| = \sup_{x \in X} |f(x)|. \ C(X) \text{ is a commutative}$

Banach algebra under pointwise multiplication. The constant function 1 is an identity element.

- (2) V = Banach space, $\mathcal{B}(V) = \text{all bounded operators } V \to V$. $\mathcal{B}(V)$ is a Banach algebra in operator norm with identity. $\mathcal{B}(V)$ is not commutative if dim V > 1.
- (3) $\mathcal{A} = L^1(\mathbb{R}^1)$ Multiplication = convolution. \mathcal{A} is a commutative Banach algebra without identity.

Proposition 2.4. Let A be a (complex) Banach algebra without identity. Let

$$\mathcal{B} = \{(a, \alpha) : a \in \mathcal{A}, \alpha \in \mathbb{C}\} = \mathbb{A} \oplus \mathbb{C}.$$

Define

$$(a, \alpha)(b, \beta) = (ab + \alpha b + \beta a, \alpha \beta)$$

and

$$||(a, \alpha)|| = ||a|| + |\alpha|.$$

Then \mathcal{B} is a Banach algebra with identity e = (0,1), and the map $a \to (a,0)$ is an isometric isomorphism onto a closed two sided ideal in \mathcal{B} .

Proof. Straightforward.

Definition 2.5. Let \mathcal{A} be a Banach algebra with identity 1. If $a \in \mathcal{A}$, then a is right invertible if $\exists b \in \mathcal{A} \ni ab = 1$. b is called a right inverse. (Similarly for left inverse.) a is called invertible if it has a left and a right inverse.

Proof. Note: ab = 1 and $ca = 1 \Rightarrow c = cab = b$. Therefore if a has left and right inverses they are equal, unique, and called the inverse of a.

Proposition 2.6. $A = Banach \ algebra \ with 1.$ If ||a|| < 1, then 1 - a is invertible and $||(1-a)^{-1}|| \le \frac{1}{1-||a||}$.

Proof. Let $b = \sum_{n=0}^{\infty} a^n$. Since $||a^n|| \le ||a||^n$, the series converges (\mathcal{A} is complete).

Clearly,
$$(1-a)b = b(1-a) = 1$$
. Also $||b|| \le \sum_{n=0}^{\infty} ||a||^n = \frac{1}{1-||a||}$.

Corollary 2.7. If A is a Banach algebra with 1, the invertible elements form an open set.

Proof. Let \mathcal{U} be the set of invertible elements. Let $a \in \mathcal{U}$. Suppose $||x-a|| < ||a^{-1}||^{-1}$. Then: $||a^{-1}x-1|| = ||a^{-1}(x-a)|| \le ||a^{-1}|| \cdot ||x-a|| < 1$. $\therefore 1 - (1-a^{-1}x)$ is invertible, i.e., $a^{-1}x$ has an inverse b. $\therefore (ba^{-1})x = 1$ and $a^{-1}xb = 1$. $\therefore xb = a$, $xba^{-1} = 1$.

Exercise 2.1. Prove that the map $x \to x^{-1}$ from the set \mathcal{U} of invertible elements in \mathcal{A} (= Banach algebra with 1) is continuous.

Henceforth all Banach algebras $\mathcal A$ are complex and have an identity. $\mathcal U=$ invertible elements.

Convention: We write λ instead of $\lambda 1$.

Definition 2.8. Let $x \in \mathcal{A}$. The *spectrum* of x is

$$\sigma(x) = \{ \lambda \in \mathbb{C} : x - \lambda \text{ is not invertible} \}.$$

The resolvent set of x is

$$\rho(x) = \{ \lambda \in \mathbb{C} : x - \lambda \text{ is invertible} \}.$$

The spectral radius of x = r(x)

$$r(x) \equiv \sup\{|\lambda| : \lambda \in \sigma(x)\}.$$

(Note: We will show later that $\sigma(x) \neq \emptyset$.)

Proposition 2.9. For all $a \in \mathcal{A}$, $\sigma(a)$ is compact and $r(a) \leq ||a||$.

Proof. Since $\lambda \in \mathbb{C} \to a - \lambda \in \mathcal{A}$ is continuous and $\rho(a) = \{\lambda : a - \lambda \in \mathcal{U}\}$, $\rho(a)$ is open and hence $\sigma(a) = \rho(a)^c$ is closed. If $|\lambda| > ||a||$, then $||\lambda^{-1}a|| < 1$ and

$$\lambda^{-1}a - 1 \in \mathcal{U}$$

 $\therefore a - \lambda \in \mathcal{U} \text{ since } \lambda \neq 0$

$$|\lambda| > |a| \Rightarrow \lambda \in \rho(a)$$

 \therefore $r(a) \leq ||a||$ and $\sigma(a)$ is compact.

Definition 2.10. The *resolvent* of a is the function $R(\lambda) = (a - \lambda)^{-1}$ defined for $\lambda \in \rho(a)$.

Definition 2.11. A function φ from an open set $V \subset \mathbb{C}$ to a complex Banach space is *weakly analytic* on V if $\xi \circ \varphi$ is analytic on V for every $\xi \in \mathcal{A}^*$.

Theorem 2.12. Let \mathcal{A} be a complex Banach algebra with 1 and let $a \in \mathcal{A}$. Then $R(\lambda) = (a - \lambda)^{-1}$ is weakly analytic on $\rho(a)$ and $||R(\lambda)|| \to 0$ as $\lambda \to \infty$.

Proof. Let $\lambda_0 \in \rho(a)$. Now

$$a - \lambda = (a - \lambda_0)(1 - (a - \lambda_0)^{-1}(\lambda - \lambda_0)).$$

So $a - \lambda$ is invertible if $||(a - \lambda_0)^{-1}(\lambda - \lambda_0)|| < 1$ and then:

$$(a-\lambda)^{-1} = \sum_{n=0}^{\infty} (a-\lambda_0)^{-n} (\lambda-\lambda_0)^n (a-\lambda_0)^{-1}$$

$$\therefore \xi((a-\lambda)^{-1}) = \sum_{n=0}^{\infty} \xi((a-\lambda_0)^{-n-1}) (\lambda-\lambda_0)^n$$

$$\therefore \xi(R(\lambda)) \text{ is analytic.}$$

Finally, $(a - \lambda)^{-1} = [\lambda(\lambda^{-1}a - 1)]^{-1} = \lambda^{-1}(\lambda^{-1}a - 1)^{-1}$ and $\|(\lambda^{-1}a - 1)^{-1}\| \le \frac{1}{1 - |\lambda|^{-1}\|a\|} \to 1$ as $\lambda \to \infty$. \blacksquare

Corollary 2.13. $\sigma(x) \neq \emptyset$ ($\mathcal{A} = complex \ Banach \ algebra \ with 1)$

Proof. Suppose $\sigma(x)$ is empty. Then for any $\xi \in \mathcal{A}^*$, $\lambda \to \xi((x-\lambda)^{-1})$ is an entire function and $\to 0$ as $\lambda \to \infty$. Then, by Liouville,

$$\xi[(x-\lambda)^{-1}] \equiv 0$$

Therefore $(x - \lambda)^{-1} \equiv 0 \ \forall \lambda$. This is impossible.

Theorem 2.14. (Spectral Mapping Theorem) If p is a polynomial then $p(\sigma(a)) = \sigma(p(a))$.

Proof. Let $\lambda_0 \in \sigma(a)$. We will show that $p(a) - p(\lambda_0) \notin U$. Let q be such that $p(\lambda) - p(\lambda_0) = (\lambda - \lambda_0)q(\lambda)$.

Suppose there exists b so that $b(p(a) - p(\lambda_0)) = (p(a) - p(\lambda_0))b = 1$. Then

$$bq(a)(a - \lambda_0) = (a - \lambda_0)q(a)b = 1.$$

Thus $a - \lambda_0$ is invertible. Contradiction. Thus $p(\sigma(a)) \subset \sigma(p(a))$.

Suppose $\lambda_0 \in \sigma(p(a))$. Let $\lambda_1, \ldots, \lambda_n$ be the roots of $p(\lambda) = \lambda_0$. Thus $p(\lambda) - \lambda_0 = \alpha(\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$. But $p(a) - \lambda_0 = \alpha(a - \lambda_1) \cdots (a - \lambda_n)$ is not invertible. Hence at least one of the factors, say $a - \lambda_j$ is not invertible. Thus $\lambda_j \in \sigma(a)$. Thus $\lambda_0 = p(\lambda_j) \in p(\sigma(a))$.

Corollary 2.15. $r(a^n) = r(a)^n$.

Proof. Since $\sigma(a)$ is compact $\exists \lambda \in \sigma(a)$ so that $|\lambda| = r(a)$. Hence $\lambda^n \in \sigma(a^n)$ so $r(a^n) \geq |\lambda^n| = r(a)^n$.

Conversely, $\exists \lambda_0 \in \sigma(a^n)$ so that $r(a^n) = |\lambda_0|$. By Theorem 2.14, $\exists \lambda \in \sigma(a)$ such that $\lambda^n = \lambda_0$. Thus $r(a)^n \ge |\lambda|^n = |\lambda_0| = r(a^n)$.

Corollary 2.16. $r(a) = \lim_{n \to \infty} ||a^n||^{1/n}$.

Proof. For λ sufficiently small:

$$(1 - \lambda a)^{-1} = \sum_{n=0}^{\infty} a^n \lambda^n \text{ and } \xi((1 - \lambda a)^{-1}) = \sum_{n=0}^{\infty} \xi(a^n) \lambda^n.$$

By Theorem 2.12, $\xi((1-\lambda a)^{-1})$ is analytic for $\frac{1}{\lambda} \notin \sigma(a)$. Hence $\sum_{n=0}^{\infty} \xi(a^n) \lambda^n$ converges when $\frac{1}{|\lambda|} > r(a)$, i.e., when $|\lambda| < 1/r(a)$.

Thus $\{|\lambda^n| | \xi(a^n)| : n = 0, 1, 2, ...\}$ is a bounded set for each $\xi \in \mathcal{A}^*$.

By the uniform boundedness principle $\{\lambda^n a^n\}$ is a bounded set: So

$$\|\lambda^n a^n\| \le K \quad (K > 0).$$

Hence $|\lambda| \|a^n\|^{1/n} \le K^{1/n}$ and $|\lambda| \limsup \|a^n\|^{1/n} \le 1$. Thus $\limsup \|a^n\|^{1/n} \le 1/|\lambda|$ whenever $r(a) < \frac{1}{|\lambda|}$. Hence $\limsup \|a^n\|^{1/n} \le r(a)$. But $r(a)^n = 1/|a|$ $r(a^n) \le ||a^n||$ or $r(a) \le ||a^n||^{1/n}$. Therefore $r(a) \le \liminf ||a^n||^{1/n}$. Consequently $\lim \|a^n\|^{1/n}$ exists and $r(a) = \lim \|a^n\|^{1/n}$.

Theorem 2.17. (Gelfand-Mazur) The only complex Banach algebra with unit which is a division algebra is \mathbb{C} .

Proof. Let $x \in \mathcal{A}$ and $\lambda \in \sigma(x)$. Then $x - \lambda 1$ is not invertible. Thus $x - \lambda 1 = 0$ so $x = \lambda 1$. Hence $\mathcal{A} = (\text{scalar multiples of } 1)$.

 $Hence for th \mathcal{B}$ denotes a commutative Banach algebra with identity.

Definition 2.18. (1) \cap (maximal ideals) = radical.

- (2) \mathcal{B} is called *semisimple* if radical = $\{0\}$.
- (3) A character of \mathcal{B} is a nonzero multiplicative linear functional on \mathcal{B} , i.e., $\alpha(ab) = \alpha(a)\alpha(b)$. (We do not assume α is bounded.)
- (4) The spectrum of \mathcal{B} is the set $\widetilde{\mathcal{B}}$ of all characters of \mathcal{B} .

Remarks 2.19. (1) If $\{0\}$ is the only proper ideal in \mathcal{B} then \mathcal{B} is a field.

- (2) If I is a maximal ideal in \mathcal{B} then \mathcal{B}/I is a field.
- (3) Let $a \in \mathcal{B}$. a is invertible \Leftrightarrow a belongs to no maximal ideal. [If a is not invertible then the proper ideal $\mathcal{B}a$ is contained in a maximal ideal.
- (4) \cup (maximal ideals) = \mathcal{S} = (singular elements).
- (5) If $\alpha \in \mathcal{B}$ then $\alpha(1) = 1$.
- (6) If I is a proper ideal in \mathcal{B} then \overline{I} is a proper ideal. Here \overline{I} denotes the closure of I. Proof. I is a subspace and if $b \in \mathcal{B}$, $a \in \overline{I}$ and $a_n \in I$, $a_n \to a$ then $ba = \lim ba_n \in \overline{I}$. Hence \overline{I} is an ideal. Now, $I \subset \mathcal{S}$ and \mathcal{S} is closed. Thus $\overline{I} \subset \mathcal{S}$ so \overline{I} is proper.
- (7) If I is a maximal ideal then $I = \overline{I}$.
- (8) The radical of \mathcal{B} is closed.

Exercise 2.2. Let B be a Banach space and K a closed subspace.

- (1) On the quotient space B/K define $||x+K|| = \inf\{||y|| : y \in x+K\}$. Prove this is a norm on B/K and that B/K is a Banach space in this norm.
- (2) Suppose further that B is a Banach algebra with identity and K is a closed proper two sided ideal in B. Show that B/K is a Banach algebra in the norm described in part (1).

Exercise 2.3. Prove that if B is a Banach space and ξ is a linear functional on B then ξ is continuous $\Leftrightarrow \ker \xi$ is closed.

Lemma 2.20. Any character is continuous.

Proof. If α is a character of \mathcal{B} then $I := \{a : \alpha(a) = 0\} = \ker(\alpha)$ is an ideal which is proper since $\alpha(1) = 1$. For any $a \in \mathcal{B}$ we have:

$$a = (a - \alpha(a)1) + \alpha(a)1 \in I \oplus \mathbb{C}1.$$

This shows that I has codimension 1 (i.e., $\dim(\mathcal{B}/I) = 1$)¹. So I is maximal and thus I is closed. Hence α is continuous by Exercise 2.3.

¹Alternatively, α descends to an algebra isomorphism of $\mathcal{B}/I \to \mathbb{C}$ showing that dim $(\mathcal{B}/I) = 1$.

Lemma 2.21. There is a one to one correspondence between characters and maximal ideals given by $\alpha \to \ker \alpha$.

Proof. By the proof of Lemma 2.20 we see that $\ker \alpha$ is a maximal ideal. Now if I is any maximal ideal then it is closed by item (7) of Remark 2.19. Hence not only is \mathcal{B}/I a field by item (2) of Remark 2.19 but also \mathcal{B}/I is a complex Banach algebra by Exercise 2.2, part (2). Hence by Theorem 2.17, \mathcal{B}/I is isomorphic to \mathbb{C} (under the map $u \to u1_{\mathcal{B}/I}$ $u \in \mathbb{C}$). If $\beta : \mathcal{B} \to \mathcal{B}/I \equiv \mathbb{C}$ is the natural homomorphism then β is a character. Clearly $I = \ker \beta$. So any maximal ideal is the kernel of some character. Finally, if $\ker \alpha = \ker \beta = I$ then since I has codimension 1 (see Lemma 2.20) and 1 is not in I we may write any element as a = c + u1 with c in I and u in \mathbb{C} . Then $\alpha(a) = u = \beta(a)$. So $\ker \alpha$ uniquely determines α .

Notation 2.22. Terminology: $\widetilde{\mathcal{B}}$ is sometimes called the maximal ideal space of \mathcal{B} .

Proposition 2.23. If $\alpha \in \widetilde{\mathcal{B}}$ then $\|\alpha\| \leq 1$.

Proof. To prove: $|\alpha(a)| \leq ||a||$ or $||a|| \leq 1 \Rightarrow |\alpha(a)| \leq 1$. Now $||a|| \leq 1 \Rightarrow ||a^n|| \leq 1$ so $\{a^n\}$ is a bounded set. Suppose $|\alpha(a)| > 1$. Since $|\alpha(a^n)| = |\alpha(a)|^n$, α sends a bounded set onto an unbounded set. Thus α is not bounded. This contradicts Lemma 2.20. \blacksquare

Corollary 2.24. $\widetilde{\mathcal{B}} \subset unit \ ball \ of \ \mathcal{B}^*$.

Corollary 2.25. $\widetilde{\mathcal{B}}$ is a w^* -closed subset of the unit ball in \mathcal{B}^* .

Proof. $\{\xi \in \mathcal{B}^* : \xi(ab) = \xi(a)\xi(b)\}, (a,b \text{ fixed}) \text{ is closed in the } w^*\text{-topology} \text{ since both sides of the equation are } w^*\text{-continuous functions of } \xi. \text{ Thus } \bigcap_{a,b} \{\xi \in \mathcal{B}^* : \xi(ab) = \xi(a)\xi(b)\}, (a,b) \text{ fixed} \}$

 $\mathcal{B}^*: \xi(ab) = \xi(a)\xi(b)$ is w^* -closed. Also $\{\xi \in \mathcal{B}^*: \xi(1) = 1\}$ is w^* -closed. Thus $\widetilde{\mathcal{B}}$ is w^* closed. \blacksquare

Corollary 2.26. $\widetilde{\mathcal{B}}$ is a compact Hausdorff space in the w^* topology.

Remark 2.27. If \mathcal{B} is a commutative Banach algebra without identity and we define a character as a continuous nonzero homomorphism $\alpha: \mathcal{B} \to \mathbb{C}$. Then the preceding arguments shows that $\widetilde{\mathcal{B}} \subset (\text{unit ball of } \mathcal{B}^*)$ but may not be closed because 0 is a limit point of $\widetilde{\mathcal{B}}$. In this case $\widetilde{\mathcal{B}}$ is locally compact.

Definition 2.28. Let $a \in \mathcal{B}$, $\alpha \in \widetilde{\mathcal{B}}$. Define $\widehat{a}(\alpha) = \alpha(a)$. Then \widehat{a} is a continuous function on $\widetilde{\mathcal{B}}$. The map $a \to \widehat{a}$ is called the canonical mapping of \mathcal{B} into $C(\widetilde{\mathcal{B}})$.

Theorem 2.29 (Gelfand). The canonical mapping is a homomorphism of norm ≤ 1 from \mathcal{B} into $C(\widetilde{\mathcal{B}})$ with kernel = (radical of \mathcal{B}). [Here, \mathcal{B} is commutative, complex, with unit.]

Proof. $\widehat{ab}(\alpha) = \alpha(ab) = \alpha(a)\alpha(b) = \widehat{a}(\alpha)\widehat{b}(\alpha)$. Thus is a homomorphism. Thus $\forall \alpha \in \widetilde{\mathcal{B}}$ we have:

$$|\widehat{a}(\alpha)| = |\alpha(a)| \le ||a||$$
 so $||\widehat{a}||_{\infty} \le ||a||$.

Thus the norm of the canonical mapping is ≤ 1 . Now if $\hat{a} = 0$ then $\alpha(a) = 0 \ \forall \alpha$. Hence $a \in \text{kernel}$ of every α . Therefore $a \in \text{every}$ maximal ideal. So $a \in \text{radical}$ of \mathcal{B} . Conversely, to see that radical $\subset \text{kernel}$ note that each of the last four steps is reversible. \blacksquare

Remarks 2.30 (Continuation of Remark 2.19). (11) $\widehat{1}(\alpha) = \alpha(1) = 1 \ \forall \alpha \in \widetilde{\mathcal{B}}$ (12) $\lambda \in \sigma(a) \Leftrightarrow \lambda \in \text{range of } \widehat{a}, \text{ i.e., } \sigma(a) = \mathcal{R}(\widehat{a}). \text{ Proof:}$

a inv. $\Leftrightarrow a$ is not in any maximal ideal

$$\Leftrightarrow \widehat{a}(\alpha) \neq 0$$
 for each α

 $\therefore \lambda \in \sigma(a) \Leftrightarrow a - \lambda 1 \in \text{ some maximal ideal} \Leftrightarrow \exists \alpha \ni \alpha(a - \lambda 1) = 0$

i.e.,
$$\widehat{a}(\alpha) - \lambda \widehat{1}(\alpha) = 0$$
, i.e., $\widehat{a}(\alpha) = \lambda$.

(13) The spectral mapping theorem follows from (12). For

$$\sigma(P(a)) = \mathcal{R}(\widehat{P}(a)) = \mathcal{R}(P(\widehat{a})) = P(\mathcal{R}(\widehat{a})) = P(\sigma(a)).$$

(14) $r(a) = \|\widehat{a}\|_{\infty} \le \|a\|$ from (12).

$$\therefore$$
 $r(a+b) \le r(a) + r(b)$ and $r(ab) \le r(a)r(b)$.

- (15) $a \in \text{radical} \Leftrightarrow \widehat{a} = 0 \Leftrightarrow \|\widehat{a}\|_{\infty} = 0 \Leftrightarrow r(a) = 0.$ (16) $\|\widehat{a}\|_{\infty} = \|a\| \Leftrightarrow \|a^2\| = \|a\|^2 \ \forall a \in \mathcal{B}.$ Proof: Recall $\|\widehat{a}\|_{\infty} = \|a\| \Leftrightarrow r(a) = 0$ ||a||.

$$\Leftarrow: \|a^2\| = \|a\|^2 \Rightarrow \|a^{2^n}\| = \|a\|^{2^n} \Rightarrow \|a\| = \|a^{2^n}\|^{1/2^n}$$

$$\Rightarrow \|a\| = \lim_n \|a^{2^n}\|^{1/2^n} = r(a)$$

$$\Rightarrow: r(a) = \|a\| \forall a \Rightarrow \|a^2\| = r(a^2) = r(a)^2 = \|a\|^2.$$

Remark 2.31. If $\mathcal B$ does not have a unit then a similar theory can be developed in which $\widetilde{\mathcal{B}}$ is locally compact.

2.1. *-Algebras (over complexes).

Definition 2.32. An involution on a Banach algebra \mathcal{B} is a map $\mathcal{B} \to \mathcal{B}$, $a \to a^*$ which is:

- (1) involutory $a^{**} = a$
- (2) additive $(a+b)^* = a^* + b^*$
- (3) conjugate homogeneous $(\lambda a)^* = \overline{\lambda} a^*$
- (4) anti-automorphic $(ab)^* = b^*a^*$

Notice that we automatically have $1^* = 1$ because applying * to the equation $1 \cdot 1^* = 1^*$ gives $1^{**} \cdot 1^* = 1^{**}$. Thus $1 \cdot 1^* = 1$. So $1^* = 1$.

Definition 2.33. An element a is Hermitian if $a = a^*$, strongly positive if $a = b^*b$ for some b, positive if $\sigma(a) \subset [0, \infty)$ and real if $\sigma(a) \subset \mathbb{R}$ is real.

Definition 2.34. An involution * in a Banach algebra \mathcal{B} with unit is *symmetric* if $1 + a^*a$ is invertible for all $a \in \mathcal{B}$.

Proposition 2.35. Let \mathcal{B} be a symmetric Banach algebra, then (1) if a is Hermitian then a is real and (2) if a is strongly positive then a is positive.

Proof. (1) Suppose a is hermitian $(a^* = a)$ and $\lambda = \alpha + \beta i \in \mathbb{C}$ with $\beta \neq 0$. We must show $a - \lambda$ is invertible. Since

$$a - \lambda = (a - \alpha) - \beta i = \beta \left(\frac{a - \alpha}{\beta} - i\right),$$

we must show that $a = a^*$ implies a - i is invertible. But

$$(a-i)(a+i)(1+a^*a)^{-1} = 1$$
 and $(1+a^*a)^{-1}(a+i)(a-i) = 1$

which shows a - i is invertible.

(2) Suppose that a is strongly positive, $a = b^*b$. Then $a^* = b^*b = a$ showing that a is hermitian and hence by (1) that $\sigma(a) \subset \mathbb{R}$. Let $\alpha < 0$, then

$$b^*b - \alpha = -\alpha \left(\frac{b^*b}{-\alpha} + 1\right) = -\alpha \left(\left(\frac{b}{\sqrt{-\alpha}}\right)^* \left(\frac{b}{\sqrt{-\alpha}}\right) + 1\right)$$

which is invertible showing $\sigma(a) \subset [0, \infty)$.

Proposition 2.36. Let \mathcal{B} be a commutative * algebra with unit. The following are equivalent:

- (1) \mathcal{B} is symmetric
- (2) $Hermitian \Rightarrow real$
- (3) $\widehat{a}^*(\alpha) = \overline{\widehat{a}(\alpha)}$
- (4) max. $ideal \Rightarrow * ideal$. That is, every maximal ideal is closed under *.

Proof. 1) \Rightarrow 2) This is Proposition 2.35.

 $2) \Rightarrow 3$) Let $a \in \mathcal{B}$, $b = a + a^*$ and $c = i(a - a^*)$. Then b and c are hermitian and hence $\sigma(b) \subset \mathbb{R}$ and $\sigma(c) \subset \mathbb{R}$. Therefore by Remark 2.30, if α is a character then $\alpha(b)$ and $\alpha(c)$ are real numbers. Hence

(2.1)
$$\overline{\alpha(a)} + \overline{\alpha(a^*)} = \alpha(a) + \alpha(a^*)$$

and

$$-i(\overline{\alpha(a)} - \overline{\alpha(a^*)}) = i(\alpha(a) - \alpha(a^*)),$$

or equivalently

(2.2)
$$\overline{\alpha(a)} - \overline{\alpha(a^*)} = -\alpha(a) + \alpha(a^*).$$

Adding Eqs. (2.1) and (2.2) shows, $\overline{\alpha(a)} = \alpha(a^*)$.

3) \Rightarrow 4) Let \mathcal{I} be a maximal ideal. Let $\alpha = \text{char.}$ with kernel \mathcal{I} .

$$a \in \mathcal{I} \Rightarrow \alpha(a) = 0$$
 so that $\alpha(a^*) = \overline{\alpha(a)} = 0$. Hence $a^* \in \mathcal{I}$.

4) \Rightarrow 1) Let $a \in \mathcal{B}$. We first prove that if α is a character then $\alpha(a^*) = \overline{\alpha(a)}$. Let $b = a - \alpha(a)$. Then $\alpha(b) = \alpha(a) - \alpha(a) = 0$. $\therefore b \in \text{kernel } \alpha : b^* \in \text{kernel } \alpha$, i.e., $\alpha(b^*) = \alpha(a^*) - \overline{\alpha(a)} = 0$. $\alpha(a^*) = \overline{\alpha(a)}$.

Now $\alpha(a^*a) = \alpha(a^*)\alpha(a) = \overline{\alpha(a)}\alpha(a) = |\alpha(a)|^2$ for any character $\alpha : \alpha(1 + a^*a) = 1 + |\alpha(a)|^2 \neq 0$. $\therefore 1 + a^*a \notin \text{any maximal ideal.} \therefore 1 + a^*a \text{ is invertible.} \blacksquare$

Remark 2.37 (Stone–Weierstrass theorem). Recall if T is a compact Hausdorff space and B is a norm closed* subalgebra, $\subset C(T)$ such that given $\xi_1, \ \xi_2, \ t_1 \neq t_2$ $\exists x \in B \ni x(t_1) = \xi_1, \ x(t_2) = \xi_2, \ \text{then } B = C(T). \ (*= \text{conjugation})$

Theorem 2.38. If \mathcal{B} is commutative, symmetric (with unit), the image of \mathcal{B} under the canonical map is dense in $C(\widetilde{\mathcal{B}})$.

Proof. Let $\alpha_1 \neq \alpha_2 \in \widetilde{\mathcal{B}}$. Let ξ_1 , ξ_2 be complex. $\alpha_1(a) \neq \alpha_2(a)$ for some $a \in \mathcal{B}$. There exist $\lambda, \mu \ni \lambda \alpha_1(a) + \mu = \xi_1$, $\lambda \alpha_2(a) + \mu = \xi_2$. Let $b = \lambda a + \mu$. Then $\widehat{b}(\alpha_1) = \xi_1$, $\widehat{b}(\alpha_2) = \xi_2$. Therefore Theorem 2.38 follows from the Stone–Weierstrass theorem, since image of \mathcal{B} is closed under conjugation by Proposition 2.36.

Definition 2.39. A Banach * algebra \mathcal{B} is

- (1) * multiplicative if $||a^*a|| = ||a^*|| ||a||$
- (2) * isometric if $||a^*|| = ||a||$

Remark 2.40. Conditions 1) and 2) in Definition 2.39 are equivalent to condition 3), i.e. * is multiplicative & isometric iff * is quadratic.

Proof. \Rightarrow clear.

$$\Leftarrow ||a||^2 = ||a^*a|| \le ||a^*|| ||a||$$

∴ $||a|| \le ||a^*||$. This also holds for a^*
∴ $||a|| = ||a^*||$.

So

$$||a^*a|| = ||a||^2 = ||a^*|| ||a||.$$

Definition 2.41. A B^* algebra is a quadratic * algebra. [Nowadays, (2002), this is called a C^* algebra.]

Theorem 2.42. If \mathcal{B} is a commutative B^* algebra with identity, then the canonical map is an isometric isomorphism onto $C(\widetilde{\mathcal{B}})$.

Lemma 2.43. If \mathcal{B} is a commutative *-multiplicative Banach algebra with identity then

$$||a|| = r(a) \quad \forall a \in \mathcal{B}.$$

Proof. If b is Hermitian, then $||b^2|| = ||b||^2$, $||b^2|^n || = ||b||^{2^n}$. Hence r(b) = ||b||. Let a be arbitrary. Since a^*a is Hermitian we have

$$r(a^*a) = ||a^*a|| = ||a^*|| ||a||$$

 $||a^*|| ||a|| = r(a^*a) \le r(a^*)r(a)$ by Remark 2.30

So

$$||a^*|| ||a|| \le ||a^*|| r(a).$$

Hence

$$||a|| \leq r(a)$$
.

Since $r(a) \leq ||a||$ by Remark 2.30 we have ||a|| = r(a).

Lemma 2.44. A commutative B^* algebra with identity is symmetric and semi-simple.

Proof. We show $a^* = a \Rightarrow \sigma(a)$ real. As in Proposition 6 it suffices to prove a - i is invertible, i.e., 1 + ia is invertible, i.e., $1 \notin \sigma(-ia)$. This is equivalent to $\lambda + 1 \notin \sigma(\lambda - ia)$ for some real λ . But if $\lambda + 1 \in \sigma(\lambda - ia)$, then

$$(\lambda + 1)^2 \le \|\lambda - ia\|^2 = \|(\lambda + ia)(\lambda - ia)\| = \|\lambda^2 + a^2\| \le \lambda^2 + \|a^2\|.$$

Hence $2\lambda + 1 \le ||a^2||$. But, this inequality fails for λ large enough. The semi-simplicity follows from Lemma 2.43 and Remark (15).

Proof. (Proof of Theorem 2.42.) By Lemma 2.44 and Theorem 2.38 the image of \mathcal{B} is dense in $C(\mathcal{B})$ under the canonical map. By Lemma 2.43, the image is complete, hence closed, hence equal to $C(\widetilde{\mathcal{B}})$ and the canonical map is therefore an isometric isomorphism onto $C(\widetilde{\mathcal{B}})$.

Corollary 2.45. A commutative B^* algebra with identity is isometrically isomorphic to the algebra of complex valued continuous functions on a compact Hausdorff space.

- 2.2. **Exercises.** In each of the following two problems a commutative * algebra \mathcal{A} with identity is given. In each case
 - (1) Find the spectrum of A.
 - (2) Determine whether \mathcal{A} is semi–simple or symmetric or a B^* algebra, or several of these.
 - (3) Determine whether the Gelfand map is one to one, or onto or both or neither or has dense range.

Exercise 2.4. $\mathcal{A} = \text{all } 2 \times 2 \text{ complex matrices of the form } A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Define

 $A^* = \begin{pmatrix} \overline{a} & \overline{b} \\ 0 & \overline{a} \end{pmatrix}$. Define ||A|| to be the operator norm where \mathbb{C}^2 is given the norm $||\binom{c}{d}|| = (|c|^2 + |d|^2)^{1/2}$.

Exercise 2.5. $\mathcal{A} = \ell^1(\mathbb{Z})$ where \mathbb{Z} is the set of all integers. For f and g in \mathcal{A} define

$$(fg)(x) = \sum_{n = -\infty}^{\infty} f(x - n)g(n)$$

and $f^*(x) = \overline{f(-x)}$. Show first that \mathcal{A} is a commutative * Banach algebra with identity. You may cite any results from Rudin's "Real and Complex Analysis".

Exercise 2.6. Let X be a compact Hausdorff space. Show that C(X) in sup norm and pointwise multiplication is a B^* algebra with respect to the * operation given by $f^*(x) = \overline{f(x)}$. For each $x \in X$ let

$$\alpha_x(f) = f(x), \quad f \in C(X).$$

Prove that the map $x \to \alpha_x$ is a homeomorphism of X onto the spectrum of C(X).

Exercise 2.7. Using the previous problem show that if X and Y are compact Hausdorff spaces and $\varphi: C(X) \to C(Y)$ is an algebraic, * preserving, isomorphism of these algebras then there exists a unique homeomorphism $T: Y \to X$ which induces φ . I.e., such that

$$(\varphi f)(y) = f(Ty), y \in Y, f \in C(X).$$

Exercise 2.8. If \mathcal{A} is an n-dimensional commutative B^* algebra with identity show that the spectrum of \mathcal{A} consists of exactly n points $(n < \infty)$.

3. The Spectral Theorem

Let A be a bounded operator on a complex Hilbert space H. If y is in H, the map $x \to (Ax, y)$ is a continuous linear functional on H. Hence, by the Riesz representation theorem, there exists a unique element z in H such that (Ax, y) =(x,z) for all x in H. Define A^* by $A^*y=z$. Thus A^* is defined for all y in H and satisfies

$$(3.1) (Ax, y) = (x, A^*y) x, y \in H.$$

If α , β are scalars then for all x

$$(x, A^*(\alpha y_1 + \beta y_2)) = (Ax, \alpha y + \beta y_2) \quad \text{by (3.1)}$$
$$= \overline{\alpha}(Ax, y_1) + \overline{\beta}(Ax, y_2)$$
$$= (x, \alpha A^* y_1 + \beta A^* y_2) \quad \text{by (3.1) again.}$$

Therefore A^* is linear.

Put $x = A^*y$ in (3.1) to get

$$||A^*y||^2 = (AA^*y, y) \le ||A|| ||A^*y|| ||y||$$

Therefore

$$||A^*y|| \le ||A|| ||y||.$$

Hence A^* is bounded with $||A^*|| \leq ||A||$. Now A^* is uniquely determined by equation (3.1) and taking the complex conjugate of (3.1), we see $A^{**} = A$. Hence $||A|| \le$ $||A^*||$. Thus we have the following properties.

(1) A^* is linear and bounded and $||A^*|| = ||A||$ Properties 3.1.

- (2) $A^{**} = A$
- (3) $(\alpha A + \beta B)^* = \overline{\alpha} A^* + \overline{\beta} B^*$ (exercise).
- (4) a) $||AB|| \le ||A|| ||B||$ b) $(AB)^* = B^*A^*$
- (5) $||A^*A|| = ||A||^2$. Proof: $||A^*A|| \le ||A^*|| ||A|| = ||A||^2$. Also $||Ax||^2 =$ $(A^*Ax, x) \le ||A^*A|| ||x||^2$. Therefore $||A||^2 \le ||A^*A||$.

Terminology: A^* is called the adjoint of A.

(6) Recall: The set $\mathcal{B}(X)$ of all bounded operators on X is a Banach algebra in operator norm whenever X is a Banach space.

Definition 3.2. A C^* algebra on a Hilbert space is a subalgebra \mathcal{A} of $\mathcal{B}(H)$ which is closed in norm and such that $A \in \mathcal{A} \Rightarrow A^* \in \mathcal{A}$. A subalgebra closed under taking adjoints is called a * subalgebra of $\mathcal{B}(H)$.

Example 3.3. $\mathcal{B}(H)$ is a C^* algebra.

Definition 3.4. A maximal abelian self-adjoint (m.a.s.a.) algebra on H is a commutative algebra $\mathcal{A} \subset \mathcal{B}(H)$ which is not contained in any larger commutative subalgebra and such that A is a * subalgebra.

Notation 3.5. If $S \subset \mathcal{B}(H)$ then $S' = \{A \in \mathcal{B}(H), AB = BA \ \forall B \in S\}$. S' is clearly a subalgebra of $\mathcal{B}(H)$ for any set S. S' is called the *commutor algebra* of S.

Proposition 3.6. Let H be a Hilbert space.

- (1) A subalgebra $A \subset \mathcal{B}(H)$ is a maximal abelian algebra iff A' = A.
- (2) A m.a.s.a. algebra A is a C^* algebra.

Proof.

(1) Suppose \mathcal{A} is m.a. Suppose $B \in \mathcal{A}'$. Then the set of all operators of the form $A_0 + A_1B + A_2B^2 + \cdots + A_nB^n$. $A_j \in \mathcal{A}$ is a commutative algebra containing \mathcal{A} . Therefore it is $\mathcal{A} : \mathcal{B} \in \mathcal{A} : \mathcal{A}' \subset \mathcal{A}$. Clearly $\mathcal{A} \subset \mathcal{A}'$ since \mathcal{A} is commutative. Therefore $\mathcal{A}' = \mathcal{A}$.

Conversely, if $\mathcal{A}' = \mathcal{A}$ then since any larger commutative algebra C containing \mathcal{A} is contained in \mathcal{A}' , it follows that $C = \mathcal{A}$. Therefore \mathcal{A} is m.a.

(2) If $A_n \in \mathcal{A}$ and $A_n \to A$ in norm then for any $B \in \mathcal{A}$, $AB - BA = \lim(A_nB - BA_n) = 0$. Therefore $A \in \mathcal{A}' = \mathcal{A}$.

Example 3.7. Let (X,μ) be a measure space. Let $f \in L^{\infty}(\mu)$. Define $M_f: L^2(\mu) \to L^2(\mu)$ by $M_f g = f g$. Then clearly, since $f g \in L^2$ when g is in L^2 , M_f is everywhere defined and

$$||M_f g||_2^2 = \int |fg|^2 d\mu \le ||f||_\infty^2 ||g||_2^2$$

Therefore $||M_f|| \leq ||f||_{\infty}$. Note $M_{fg} = M_f M_g$, $M_{\alpha f + \beta g} = \alpha M_f + \beta M_g$, $M_f^* = M_{\overline{f}}$.

Assumption 1. Assume that every measurable set in X of positive measure contains a subset of finite strictly positive measure. (We say μ has no infinite atoms.)

Lemma 3.8. Under Assumption 1, $||M_f|| = ||f||_{\infty}$.

Proof. Can assume $||f||_{\infty} > 0$. Suppose $0 < a < ||f||_{\infty}$. Then $\mu(\{x : |f(x)| > a\}) > 0$. Therefore there exists a measurable set S of finite positive measure ||f(x)|| > a on S. Then $||M_f\chi_S||_2^2 = \int |f(x)|^2 \chi_S^2 d\mu \ge a^2 \int \chi_S^2 d\mu = a^2 ||\chi_S||_2^2$. Therefore $||M_f|| \ge a$. Hence $||M_f|| \ge ||f||_{\infty}$.

Definition 3.9. Let (X, μ) be a measure space. The multiplication algebra (denoted by $\mathcal{M}(X, \mu)$) of (X, μ) is the algebra of operators on $L^2(X, \mu)$ consisting of all M_f , $f \in L^{\infty}$.

Proposition 3.10. If (X, μ) is a σ -finite measure space, then $\mathcal{M}(X, \mu)$ is a m.a.s.a. algebra.

Proof. Assume first $\mu(X) < \infty$. Write $\mathcal{M} = \mathcal{M}(X, \mu)$ and assume $T \in \mathcal{M}'$. Let g = T(1). If $f \in L^{\infty}$ then $TM_f1 = M_fT1$. Therefore T(f) = fg. Thus $Tf = M_g f$ for f in L^{∞} . The proof in the preceding example shows $\|g\|_{\infty} \leq \|T\|$. Since M_g is bounded the equation $T \mid L^{\infty} = M_g \mid L^{\infty}$, already established, extends by continuity to L^2 . Hence $T \in \mathcal{M}$ and \mathcal{M} is maximal abelian. Since $M_g^* = M_{\overline{g}}$, \mathcal{M} is self-adjoint.

In the general case, write $X = \bigcup_{j=1}^{\infty} X_j$, where the X_j are disjoint subsets of finite measure. If T is in \mathcal{M}' it commutes with $M\chi_{X_j}$ and therefore leaves invariant the subspace $L^2(X_j)$ which we identify with $\{f \in L^2(X) : f = 0 \text{ off } X_j\}$. Apply the finite measure case and piece together the result to get the general case.

Definition 3.11. Let $D(w,\varepsilon) = \{z \in \mathbb{C} : |z-w| < \varepsilon\}$, then if $f \in L^{\infty}(X,\mu)$ the essential range of f is

$$\{w \in \mathbb{C} : \mu(f^{-1}(D(w,\varepsilon))) > 0 \text{ for all } \varepsilon > 0\}.$$

Exercise 3.1. Prove that the spectrum of M_f = essential range of f when X has no infinite atoms.

Definition 3.12. If \mathcal{A} is a subalgebra of $\mathcal{B}(H)$ a vector x in H is called a *cyclic* vector for \mathcal{A} if $\mathcal{A}x \equiv \{Ax : A \in \mathcal{A}\}$ is dense in H.

Remark 3.13. Let \mathcal{A} be any * subalgebra of $\mathcal{B}(H)$. Suppose K is a closed subspace of H and P is the projection on K. Then K is invariant under \mathcal{A} iff $P \in \mathcal{A}'$.

Proof. (\Leftarrow) If $P \in \mathcal{A}'$, $x \in K$ then $Ax = APx = PAx \in K$.

(⇒) If $AK \subset K$ then $APx \in K$. ∴ APx = PAPx. Also, $A^* \in \mathcal{A}$. So $A^*P = PA^*P$. Therefore $PA = P^*A = (A^*P)^* = (PA^*P)^* = PAP = AP$. Hence $P \in \mathcal{A}'$. ■

Lemma 3.14. If H is separable and A is a m.a.s.a. on H then A has a cyclic vector.

Proof. For any $x \in H$, let \overline{Ax} be the closed subspace containing Ax. Since $I \in A$, $x \in Ax$. Since Ax is invariant under A, so is \overline{Ax} . Note that if $y \perp Ax$ then $Ay \perp Ax$ since $(Ay, Bx) = (y, A^*Bx) = 0$. Let $E = \{x_\alpha\}$ be an orthonormal set such that $Ax_\alpha \perp Ax_\beta$ if $\alpha \neq \beta$. Such sets exist (e.g. singletons). Zorn's lemma gives us a maximal such set. For this E, $H = \text{closed span}_{\alpha}\{Ax_\alpha\}$ for otherwise we could adjoin to E any unit vector in $(\text{span}\{Ax_\alpha\})^{\perp}$. Now, since H is separable, E is countable; $E = \{x_1, x_2, \ldots\}$ put $z = \sum_{n=1}^{\infty} 2^{-n}x_n$. Claim: z is a cyclic vector for A. The projection P_n onto $\overline{Ax_n}$ is in A' by the above remark. Therefore $P_n \in A = A'$.

$$\therefore Az \supset AP_n z = A2^{-n} x_n = Ax_n \ \forall n$$
$$\therefore \overline{Az} \supset \text{closed span}_n \{Ax_n\} = H.$$

Definition 3.15. A unitary operator U from Hilbert space H to Hilbert space K is a linear operator from H onto K such that $||Ux|| = ||x|| \ \forall x \in H$. We may emphasize that $U: H \to K$ is surjective by writing $U: H \twoheadrightarrow K$.

Theorem 3.16. Let \mathcal{A} be a m.a.s.a. on separable Hilbert space H. Then there exists finite measure space (X, μ) and a unitary operator $U : H \to L^2(X, \mu)$ such that $U\mathcal{A}U^{-1} = \mathcal{M}(X, \mu)$.

Proof. Let z be a unit cyclic vector for \mathcal{A} . Then z is also a separating vector for \mathcal{A} (i.e., if $A \in \mathcal{A}$ and Az = 0 then A = 0) since if Az = 0 then $\forall B \in \mathcal{A}$, ABz = BAz = 0. Therefore AAz = 0. But Az is dense. A = 0. We have seen that A is a B^* algebra. Let $X = \operatorname{spectrum}(A)$. Then the Gelfand map $A \to \widehat{A}$ is an isometric isomorphism $A \to C(X)$.

Define Λ on C(X) by

$$\Lambda(\widehat{A}) = (Az, z)$$

 Λ is clearly a bounded linear functional on C(X). Indeed, $|\Lambda(\widehat{A})| \leq ||A|| = ||\widehat{A}||$. Λ is positive since

$$\Lambda(\overline{\widehat{A}}\widehat{A}) = (A^*Az, z) = ||Az||^2 \ge 0$$

Therefore there exists a unique regular Borel measure μ on X such that

$$\Lambda(\widehat{A}) = \int \widehat{A} d\mu$$

 $\mu(X)$ is finite because $\mu(X) = \int 1 d\mu = \Lambda(1) = ||z||^2 = 1$. Define U_0 on Az by $U_0Az = \widehat{A}$.

 U_0 is well defined since $Az = 0 \Rightarrow A = 0$. U_0 is thus linear and densely defined. Moreover

$$||U_0Az||^2 = \int \widehat{\widehat{A}}\widehat{A}d\mu = \Lambda(\widehat{A^*A}) = (Az, Az) = ||Az||^2.$$

Hence U_0 is isometric from Az into $L^2(X,\mu)$. Since U_0 is continuous it extends by continuity to an operator $U: H \to L^2(X,\mu)$ such that

$$||Ux|| = ||x|| \quad \forall x \in H$$

Since range(U) is a complete (therefore closed) subspace of $L^2(\mu)$ which contains C(X) it is all of $L^2(\mu)$.

Now, if $A, B \in \mathcal{A}$ then

$$UAU^{-1}\widehat{B} = UABz = \widehat{AB} = M_{\widehat{A}}\widehat{B}$$

Therefore

$$(3.2) UAU^{-1} = M_{\widehat{A}}$$

on a dense set and thus, on all of $L^2(\mu)$.

Let $\mathcal{N} = U\mathcal{A}U^{-1}$ and let \mathcal{M} be the multiplication algebra of (X, μ) . Clearly $\mathcal{N} \subset \mathcal{M}$ by (3.2).

If $T \in \mathcal{M}$ then $T \in \mathcal{N}'$, therefore $U^{-1}TU \in \mathcal{A}'$. But $\mathcal{A}' = \mathcal{A}$

$$\therefore U^{-1}TU \in \mathcal{A}$$

 $\therefore T \in \mathcal{N}$

 $\therefore \mathcal{M} = \mathcal{N}.$

Definition 3.17. A bounded operator $A: H \to H$ is

- (1) normal if $A^*A = AA^*$
- (2) Hermitian if $A = A^*$
- (3) unitary if A is onto and $||Ax|| = ||x|| \ \forall x \in H$
- (4) orthogonal if H is real and A is unitary.

Proposition 3.18. Let H be a Hilbert space. Suppose $A: H \to H$ is linear and $(Ax, x) = 0 \ \forall x \in H$ then

- (a) if H is complex then A = 0
- (b) if H is real and $A^* = A$ then A = 0.

Proof. Polarization identity:

$$(A(x+y), x+y) - (A(x-y), (x-y)) = 2(Ax, y) + 2(Ay, x)$$

Therefore

$$(3.3) (Ax,y) + (Ay,x) = 0 \quad \forall x,y$$

If H is real and $A^* = A$ then

$$(Ay, x) = (y, Ax) = (Ax, y).$$

Therefore $(Ax, y) = 0 \ \forall x, y. : Ax = 0, \forall x.$

If H is complex, replace x by ix in (3.3) to get

$$i(Ax, y) - i(Ay, x) = 0$$

Divide by i and add to (3.3) to get:

$$(Ax, y) = 0 \quad \forall x, y \quad \therefore Ax = 0 \quad \forall x.$$

Corollary 3.19. An operator $U: H \to H$ is unitary iff U is bounded and

$$(3.4) U^*U = UU^* = I$$

Proof. Assume U is bounded and that (3.4) holds. Then $||Ux||^2 = (U^*Ux, x) = ||x||^2$. Since $U(U^*x) = x$, U is onto. Therefore U is unitary. Assume U is unitary. Then

$$((U^*U - I)x, x) = ||Ux||^2 - ||x||^2 = 0$$

Therefore $U^*U-I=0$. Since U is onto, $(\forall x\in H)(\exists y\in H)(x=Uy)$. Therefore $UU^*x=UU^*Uy=Uy=x$. $\therefore UU^*=I$.

Proposition 3.20. Let (X, μ) be a σ -finite measure space. Let $f \in L^{\infty}$. Then

- (1) M_f is normal
- (2) $(M_f \text{ is Hermitian}) \leftrightarrow (f \text{ is real a.e.})$
- (3) $(M_f \text{ is unitary}) \leftrightarrow (|f| = 1 \text{ a.e.})$

Proof. (1) $M_f^* M_f = M_{\overline{f}} M_f = M_{\overline{f}} = M_f M_f^*$. Therefore M_f normal.

- (2) $(M_f^* = M_f) \leftrightarrow (M_{\overline{f}} = M_f) \leftrightarrow (f = \overline{f} \text{ a.e.})$
- (3) $(M_f^* M_f = I) \leftrightarrow (M_{\overline{f}f} = M_1) \leftrightarrow (\overline{f}f = 1 \text{ a.e.}) \blacksquare$

Theorem 3.21 (Spectral Theorem). Let $\{A_{\alpha}\}_{{\alpha}\in I}$ be a family of bounded normal operators on a complex separable Hilbert space. Assume that the family is a commuting set in the sense that:

$$A_{\alpha}A_{\beta} = A_{\beta}A_{\alpha} \quad \forall \alpha, \beta$$

and

$$A_{\alpha}A_{\beta}^* = A_{\beta}^*A_{\alpha} \quad \forall \alpha, \beta$$

Then there exists a finite measure space (X,μ) and a unitary operator $U: H \to L^2(X,\mu)$ and for each α there exists a function $f_{\alpha} \in L^{\infty}$ such that

$$UA_{\alpha}U^{-1}=M_{f_{\alpha}}.$$

Proof. Let \mathcal{A}_0 be the algebra generated by the $\{A_{\alpha}, A_{\alpha}^*\}_{\alpha \in I}$. Then \mathcal{A}_0 is a commutative * algebra. Order the set of all commutative self-adjoint algebras containing \mathcal{A}_0 by inclusion. By Zorn's lemma there exists a largest such algebra, \mathcal{A} . We assert that $\mathcal{A} = \mathcal{A}'$. Indeed if $B \in \mathcal{A}'$ then $B^* \in \mathcal{A}'$ also because \mathcal{A} is self-adjoint. Hence $C := B + B^* \in \mathcal{A}'$. But the algebra generated by \mathcal{A} and C is commutative and self-adjoint. Therefore $C \in \mathcal{A}$. Similarly $i(B - B^*) \in \mathcal{A}$. Hence $B \in \mathcal{A}$. So $\mathcal{A}' = \mathcal{A}$. Therefore \mathcal{A} is maximal abelian and self-adjoint.

Now by the preceding theorem there exists (X, μ) with $\mu(X) = 1$ and a unitary $U: H \to L^2(X)$ such that $U \mathcal{A} U^{-1} = \mathcal{M}(X, \mu)$. Therefore $U A_{\alpha} U^{-1} = M_{f_{\alpha}}$ for some $f_{\alpha} \in L^{\infty}$.

3.1. Problems on the Spectral Theorem (Multiplication Operator Form).

Exercise 3.2. If A is a Hermitian operator on an n-dimensional unitary space $(n < \infty)$ V prove that there is an orthonormal basis of V which diagonalizes A by applying the theorem that a m.a.s.a. algebra is unitarily equivalent to a multiplication algebra.

Exercise 3.3. Let H be a Hilbert space with O. N. basis e_1, e_2, \ldots Let θ_j be a sequence of real numbers in $(0, \pi/2)$. Let

$$x_j = (\cos \theta_j)e_{2j} + (\sin \theta_j)e_{2j-1}$$
 $j = 1, 2, ...$

and

$$y_j = -(\cos \theta_j)e_{2j} + (\sin \theta_j)e_{2j-1}$$
 $j = 1, 2...$

Let

$$M_1 = \text{closedspan } \{x_j\}_{j=1}^{\infty} \text{ and } M_2 = \text{closedspan } \{y_j\}_{j=1}^{\infty}.$$

- (1) Show that the closed span of M_1 and M_2 (i.e., the closure of $M_1 + M_2$) is all of H.
- (2) Show that if $\theta_j = 1/j$ then the vector

$$z = \sum_{j=1}^{\infty} j^{-1} e_{2j-1}$$

is not in $M_1 + M_2$, so that $M_1 + M_2 \neq H$.

Exercise 3.4. Let

 $H = \ell^2(Z) = \{\text{all square summable 2--sided complex sequences } a \text{ with } ||a||^2 = \sum_{i=-\infty}^{\infty} |a_i|^2 \}.$

Define $U: H \to L^2(-\pi, \pi)$ by

$$(Ua)(\theta) = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} a_n e^{in\theta}.$$

It is well known that U is unitary. For f in $\ell^1(Z)$ define

$$(C_f a)_n = \sum_{k=-\infty}^{\infty} f(n-k)a_k.$$

- (1) Show that C_f is a bounded operator on H. (2) Find C_f^* explicitly and show that C_f is normal for any f in $\ell^1(Z)$.
- (3) Show that UC_fU^{-1} is a multiplication operator.
- (4) Find the spectrum of C_f , where

$$f(j) = \left\{ \begin{array}{ll} 1 & \text{if} & |j| = 1 \\ 0 & \text{otherwise} \end{array} \right. .$$

Exercise 3.5. Define f on [0,1] by

$$f(x) = \begin{cases} 2 & \text{if } x \text{ is rational} \\ x & \text{if } x \text{ is irrational} \end{cases}$$

Find the spectrum of M_f as an operator on $L^2(0,1)$.

Exercise 3.6. Find a bounded Hermitian operator A with both of the following properties:

- (1) A has no eigenvectors
- (2) $\sigma(A)$ is set of Lebesgue measure zero in \mathbb{R} .

Hint 1: Such an operator is said to have singular continuous spectrum.

Hint 2: Consider the Cantor set. See Rudin, 3rd Edition, Section 7.16.

3.2. Integration with respect to a Projection Valued Measure. We now study a second form of the spectral theorem.

Definition 3.22. A sequence A_n of bounded operators on a Banach space B converges strongly to a bounded operator A if $A_n x \to Ax$ for each $x \in B$. A_n converges weakly if $\langle A_n x, y \rangle \to \langle Ax, y \rangle \ \forall x \in B, y \in B^*$. If B is a Hilbert space weak convergence is equivalently defined as $(A_n x, y) \to (Ax, y) \ \forall x, y \in H$.

Definition 3.23. If P and Q are two projections in H, then P is called *orthogonal* to Q if $\mathcal{R}(P) \perp \mathcal{R}(Q)$.

Proposition 3.24. A bounded operator P with range M is the orthogonal projection onto M iff $P^2 = P$ and $P^* = P$.

Proof. We already know that the orthogonal projection onto a closed subspace M has these properties. Suppose then that $P^2 = P$ and $P^* = P$ and M = rangeP. If $x \in M$ then x = Py for some y. Hence: $Px = P^2y = Py = x$. So $P \mid M = I$ on M. M is closed, for if $x_n \in M$ and $x_n \to x$ then $Px = \lim Px_n = \lim x_n = x$. Hence $x \in M$. It remains to show that $\mathcal{N}(P) = M^{\perp}$.

If $x \in M$ and Py = 0 then (x, y) = (Px, y) = (x, Py) = 0. Therefore $\mathcal{N} \subset M^{\perp}$. If $y \in M^{\perp}$ then $\forall x \in H$, (Px,y) = 0. Therefore $(x,Py) = 0 \ \forall x \in H$. Therefore Py = 0. So $y \in \mathcal{N}$.

Note: Henceforth projection means "orthogonal projection".

Corollary 3.25. If P_1 , P_2 are two projections with ranges M_1 , M_2 , respectively,

- a) $M_1 \perp M_2 \Rightarrow P_1 P_2 = P_2 P_1 = 0$
- b) $P_1P_2=0 \Rightarrow M_1 \perp M_2$
- c) In case of a) or b) $P_1 + P_2$ is the projection onto span $\{M_1, M_2\}$.

Proof. a) Assume $M_1 \perp M_2$. For any $x \in H$, $P_1x \in M_1 \subset M_2^{\perp} = \mathcal{N}(P_2)$. Therefore $P_2P_1x=0$, etc.

- b) Assume $P_1P_2 = 0$. If $x \in M_1, y \in M_2$ then $(x, y) = (P_1x, P_2y) = (x, P_1P_2y) = (y, P_1P_2y) = (y,$ 0. Therefore $M_1 \perp M_2$.
- c) Assume $P_1P_2 = 0$. Then $(P_1 + P_2)^2 = P_1^2 + P_1P_2 + P_2P_1 + P_2^2 = P_1 + P_2$. Clearly $(P_1 + P_2)^* = P_1 + P_2$. Therefore $P = P_1 + P_2$ is the projection onto some closed subspace M. If $x \in M_1$, $y \in M_2$ then $P(x+y) = P_1x + P_2x +$ $P_1y + P_2y = P_1x + P_2y = x + y$. Therefore $M \supseteq M_1 + M_2$. If $z \in M$, then $z = Pz = P_1z + P_2z \in M_1 + M_2$.

Proposition 3.26. If P_n is a sequence of mutually orthogonal projections, then strong $\lim_{n\to\infty}\sum_{k=1}^n P_k$ exists and is the projection onto the closure of span $\{\mathcal{R}(P_n)\}_{n=1}^{\infty}$.

Proof. Let $Q_n = \sum_{k=1}^n P_k$.

Now Q_n is the projection on $M_1 + \cdots + M_n$ where $M_j = \mathcal{R}(P_j)$ by Corollary 3.25 and induction. Therefore $||Q_n x||^2 \leq ||x||^2 \, \forall x$, i.e.,

$$||x||^2 \ge \left\| \sum_{k=1}^n P_k x \right\|^2 = \left(\sum_{k=1}^n P_k x, \sum_{j=1}^n P_j x \right) = \sum_{k=1}^n ||P_k x||^2.$$

Hence the series $\sum_{k=1}^{\infty} \|P_k x\|^2$ converges and is $\leq \|x\|^2$. But if n > m,

$$||(Q_n - Q_m)x||^2 = \sum_{k=m+1}^n ||P_k x||^2.$$

Therefore $\|(Q_n - Q_m)x\| \to 0$ as $n, m \to \infty$. Hence $Q_n x$ converges as $n \to \infty$. Call the limit Qx. Q is clearly a bounded linear operator and $\|Q\| \le 1$. Moreover $(Qx,y) = \lim(Q_n x,y) = \lim(x,Q_n y) = (x,Qy)$. Therefore $Q^* = Q$. Note that $Q_m Q_n = Q_m$ if $n \ge m$.

$$\therefore (Q^2x, y) = \lim_m (Q_mQx, y) = \lim_m \lim_n (Q_mQ_nx, y) = \lim_m (Q_mx, y) = (Qx, y) \quad \forall x, y.$$

$$\therefore Q^2 = Q.$$

Thus Q is the projection on some closed subspace M. If $x \in M_k$, then $Q_n x = x$ for $n \ge k$. Therefore Qx = x.

$$\therefore M_k \subset M \qquad \therefore M \supset \overline{\operatorname{span}\{M_n\}} \equiv N.$$

If $x \perp N$, then $x \perp M_j \, \forall j$. Therefore $Q_n x = 0 \, \forall n$. Therefore Qx = 0. $\therefore x \perp M$, i.e., $N^{\perp} \subset M^{\perp}$, $\therefore N \supset M$.

Definition 3.27. Let X be a set and let \mathcal{S} be a σ -field in X. A projection valued measure on \mathcal{S} is a function $E(\cdot)$ from \mathcal{S} to projections on a Hilbert space H such that

- (1) $E(\emptyset) = 0$
- (2) E(X) = I
- (3) $E(A \cap B) = E(A)E(B)$ where $A, B \in \mathcal{S}$
- (4) If A_1, A_2, \ldots is a disjoint sequence in S then

$$E(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} E(A_n) (\text{strong sum})$$

Remarks 3.28. (1) and (3) in Definition 3.27 imply that if $A \cap B = \emptyset$ then E(A) and E(B) are mutually orthogonal. Hence the strong sum in (4) of Definition 3.27 converges to a projection by Proposition 3.26.

Example 3.29. Let (Y, μ) be a measure space. Let f be a complex valued measurable function on Y. For any Borel set $A \subseteq \mathbb{C}$, define $E(A) = M_{\chi_{f^{-1}(A)}}$ on $L^2(Y, \mu)$. It is straightforward to verify that $E(\cdot)$ is a projection valued measure on the Borel sets.

Let (X, \mathcal{S}) be a measurable space and $E(\cdot)$ a projection valued measure on \mathcal{S} with values in $\mathcal{B}(H)$.

Note: If $x, y \in H$, then $B \to (E(B)x, y)$ is a complex measure on S.

Definition 3.30. If $f = \sum_{j=1}^{n} a_j \chi_{B_j}$ is a simple complex valued measurable function on X, let

$$\int f dE = \sum_{j=1}^{n} a_j E(B_j).$$

Properties 3.31. Properties of \int : If f is simple, then

- (1) $\int f dE$ is well defined because the corresponding bilinear form ($\int f dEx, y$) = $\int fd(Ex,y)$ is well defined.
- $(2) \| \int f dE \| \le \sup_{s \in X} |f(s)|.$
- (3) $\int \alpha f + \beta g dE = \alpha \int f dE + \beta \int g dE$.
- (4) If g is also simple then

$$\int fgdE = \Big(\int fdE\Big)\Big(\int gdE\Big).$$

(5) $\int \overline{f} dE = (\int f dE)^*$.

Proof. 2) Write $f = \sum a_j \chi_{B_i}$ where $B_i \cap B_j = \emptyset$ if $i \neq j$. Then

$$\left\| \left(\int f dE \right) x \right\|^2 = \left\| \sum_j a_j E(B_j) x \right\|^2 = \sum_{ij} (a_i E(B_i) x, a_j E(B_j) x)$$

$$\sum_{ij} a_i \overline{a}_j (E(B_j) E(B_i) x, x) = \sum_j |a_j|^2 (E(B_j) x, x)$$

$$\leq (\max |a_j|^2) \sum_j (E(B_j) x, x) = \left(\sup_{s \in X} |f(s)|^2 \right) (E(\cup B_j) x, x)$$

$$\leq \sup |f(s)|^2 ||x||^2$$

- 3) The bilinear forms of both sides are the integrals with respect to a complex measure.
- 4) If $g = \sum_{j=1}^{n} b_j \chi_{C_j}$ and $f = \sum_{j=1}^{m} a_j \chi_{B_j}$, then by taking a common refinement of the $\{B_j\}$ and $\{C_j\}$, we may assume that $B_j = C_j$ and $B_i \cap B_j = \emptyset$ if $i \neq j$. Then

$$\int fgdE = \sum a_jb_jE(B_j) = \Big(\sum a_jE(B_j)\Big)\Big(\sum b_iE(B_i)\Big).$$

Definition 3.32. If f is a bounded measurable function, let f_n be a sequence of simple measurable functions converging to f uniformly. Then by (2) of Property 3.31

$$\left\| \int f_n dE - \int f_m dE \right\| \to 0 \text{ as } n, m \to \infty.$$

Define $\int f dE = \liminf \int f_n dE$ (in operator norm).

Properties (1)–(4) of Property 3.31 hold for a bounded measurable f – the proofs are straightforward.

Remark 3.33. If H, K are Hilbert spaces and $A: H \to K$ is bounded linear then $A^*: K \to H$ can be defined by $(Ax, y) = (x, A^*y), x \in H, y \in K$ just as if K = H. Usual properties hold:

$$(AB)^* = B^*A^*$$

 $A^{**} = A$. etc.

Definition 3.34. A projection valued measure $E(\cdot)$ on the Borel sets in \mathbb{C} is supported in a closed set K if $E(K^c) = 0$. The support set of E is the complement of $\cup \{V \mid E(V) = 0, V \text{ open}\}.$

Note: If E has compact support, define

$$\int_{\mathbb{C}} z dE = \int_{K} z dE.$$

(This is clearly well defined.)

Example 3.35. Resume notation from Example 3.29. Assume f is bounded. Then $E(\cdot)$ has compact support and

$$\int_{\mathbb{C}} z dE = M_f.$$

Exercise 3.7. Prove the assertions in Example 3.35. Verify first that $E(\cdot)$ is indeed a projection valued measure.

Theorem 3.36 (Spectral Theorem). Let A be a bounded normal operator on a separable Hilbert space H. There exists a unique projection valued Borel measure E on \mathbb{C} with compact support such that

$$A = \int_{\mathbb{C}} z dE.$$

Furthermore if D is any bounded operator on H then D commutes with A and A^* iff D commutes with E(B) for all Borel sets B.

Proof. Existence: By the form of the spectral theorem given on page 24, there exists a measure space (X, μ) and a unitary operator $U: H \to L^2(X, \mu)$ such that

$$UAU^{-1} = M_f$$

where f is a bounded measurable function on X. If B is a measurable set in X, let $G(B) = M_{\chi_{f^{-1}(B)}}$.

In view of Examples 3.29 and 3.35, we see that $G(\cdot)$ is a projection valued measure with compact support in $\mathbb C$ and

$$\int_{\mathbb{C}} z dG = M_f.$$

Let $E(B) = U^{-1}G(B)U = U^*G(B)U$. Then one sees easily that $E(\cdot)$ is also a projection valued measure on $\mathbb C$ with compact support. If h is a simple function on $\mathbb C$ (say $h = \sum a_j \chi_{B_j}$) then

$$\int h(z)dE(z) = \sum a_j E(B_j) = U^{-1} \Big(\sum a_j G(B_j)\Big) U = U^{-1} \int h(z)dG(z) U.$$

Taking uniform limits, we see that

(3.5)
$$\int h(z)dE(z) = U^{-1} \int h(z)dG(z)U.$$

holds for all bounded measurable h. In particular, since E has compact support, we may take h(z) = z and obtain

$$\int z dE(z) = U^{-1} M_f U = A.$$

Uniqueness: Suppose that $F(\cdot)$ is another projection valued Borel measure on $\mathbb C$ with compact support, such that $A = \int z dF(z)$. We wish to show E = F. Let K be a compact set in \mathbb{C} containing the supports of E and F. By (1)–(5) of Property 3.31, we have

(3.6)
$$p(A, A^*) = \int p(z, \overline{z}) dE(z)$$

for any polynomial $p(\cdot)$ in the commuting operators A and A*. (Note that $(\int f dE)^* = \int \overline{f} dE$ must be used here.) Since these polynomials are dense in C(K)in sup norm (by Stone-Weierstrass theorem) it follows that

(3.7)
$$\int_{K} f(x,y)dE(z) = \int_{K} f(x,y)dF(z)$$

for any f in C(K) because (3.6) implies its validity for polynomials. Now let u and v be in H. Then

(3.8)
$$\int_{K} f d(E(z)u, v) = \int_{K} f d(F(z)u, v)$$

for all $f \in C(K)$. Hence the two complex measures $B \to (E(B)u, v)$ and $B \to (E(B)u, v)$ (F(B)u, v) are equal since the dual space of C(K) is the space of complex measures on K. Thus for any Borel set B, $((E(B) - F(B))u, v) = 0 \ \forall u, v \in H$. Thus E(B) = F(B), proving uniqueness.

For the final assertion of the theorem, suppose that $DE(B) = E(B)D \ \forall$ Borel sets B. Then D commutes with all operators of the form $\sum a_i E(B_i)$ and with their uniform limits. In particular, D commutes with $A = \int z dE$ and $A^* = \int \overline{z} dE$.

Conversely, suppose that D commutes with both A and A^* . Then D commutes with all polynomials $p(A, A^*)$, and hence with their uniform limits. Thus if support E = K then D commutes with $\int_K f dE$ for any f in C(K). If u and v are in H, then

$$\left(\left(\int_K f dE\right) Du, v\right) = \left(\left(\int_K f dE\right) u, D^*v\right).$$

That is,

$$\int_{K} f(z)d(E(z)Du,v) = \int f(z)d(E(z)u,D^{*}v).$$

Hence, just as in the uniqueness proof, it follows that for any Borel set B,

$$(E(B)Du, v) = (E(B)u, D^*v)$$
 for all $u, v \in H$.

That is

$$((E(B)D - DE(B))u, v) = 0$$
 for all $u, v \in H$

and therefore E(B)D = DE(B).

Definition 3.37. The projection valued measure $E(\cdot)$ appearing in the preceding theorem is called the *spectral resolution* of A.

Corollary 3.38. If A is a bounded normal operator on H with spectral resolution $E(\cdot)$ then support $E = \sigma(A)$.

Proof. From the construction of E, we see that the support of E is the essential range of f. But essential range of $f = \sigma(M_f) = \sigma(A)$ since unitary equivalences preserve spectrum.

Corollary 3.39. A point $\lambda \in \mathbb{C}$ is an eigenvalue for A iff λ is an atom for E. Moreover if λ is an eigenvalue for A then $\mathcal{R}E(\{\lambda\})$ is the corresponding eigenspace.

Proof. Assume $E(\{\lambda\}) \neq 0$. Let $x \in \mathcal{R}E(\{\lambda\}), x \neq 0$. Then E(F)x = 0 if $\lambda \notin F$, and so

(3.9)
$$||(A-\lambda)x||^2 = ((A-\lambda)^*(A-\lambda)x, x)$$

$$= \int_{\mathbb{C}} |z-\lambda|^2 d(\mathbb{E}(\cdot)x, x) = \int_{\{\lambda\}} |z-\lambda|^2 d(\mathbb{E}(\cdot)x, x) = 0$$

Hence x is an eigenvector for A with eigenvalue λ . Conversely, if there exists $x \neq 0$ such that $Ax = \lambda x$ then (3.9) shows that

$$\int_{\mathbb{C}} |z - \lambda|^2 d(\mathbb{E}(\cdot)x, x) = 0.$$

This implies that (E(F)x, x) = 0 if $\lambda \notin F$. But $(E(\mathbb{C})x, x) = ||x||^2 \neq 0$, and hence $(E(\{\lambda\}x, x) = ||x||^2)$. Therefore $E(\{\lambda\}x) \neq 0$ and $E(\{\lambda\}x) = x$.

Lemma 3.40. For any bounded operator A, $\sigma(A^*) = \overline{\sigma(A)}$; further, if A is invertible, then $\sigma(A^{-1}) = \sigma(A)^{-1}$.

The proof follows easily from the definitions of $\sigma(A)$, A^* and A^{-1} .

Proposition 3.41. a) If A is Hermitian then $\sigma(A)$ is real.

b) If U is unitary then $\sigma(U) \subset \{z : |z| = 1\}$.

Proof. (a) We have already proved this for a * quadratic normed * algebra. But it also follows immediately from Lemma 3.40.

(b)
$$||U|| = 1$$
 and so $\sigma(U) \subseteq \{z : |z| \le 1\}$. If $0 < |z| < 1$ and $z \in \sigma(U)$ then $z^{-1} \in \sigma(U^{-1}) = \sigma(U^*) \subset \{z : |z| < 1\}$,

a contradiction. Finally, it is clear that $o \notin \sigma(U)$.

Corollary 3.42 (Spectral theorem for a bounded Hermitian operator). If A is a bounded Hermitian operator on a separable Hilbert space H, then there exists a unique projection-valued Borel measure $E(\cdot)$ on the line with compact support such that

$$A = \int_{-\infty}^{\infty} \lambda dE(\lambda).$$

For all real Borel sets $B, E(B) \subset \{A\}''$.

Proof. $\sigma(A) \subset (-\infty, \infty)$ by the proposition. Apply Corollary 3.38.

Corollary 3.43 (Spectral theorem for a unitary operator). If U is a unitary operator on a separable Hilbert space, then there exists a unique projection-valued Borel measure $E(\cdot)$ on $[0,2\pi)$ such that

$$U = \int_0^{2\pi} e^{i\theta} dE(\theta),$$

and $E(B) \subset \{U\}''$ for all Borel sets B.

Proof. The same as for Corollary 3.42 if we map $[0,2\pi)$ onto $\{z:|z|=1\}$ with $\theta\to e^{i\theta}$.

$$Ax = \left\{\frac{1}{n}a_n\right\}_{n=1}^{\infty}.$$

Then A is a bounded multiplication operator by a real function, and is hence Hermitian.

$$\sigma(A) = \{1, 1/2, 1/3, \dots, 0\}.$$

Each point is an eigenvalue, except 0. The eigenvector corresponding to 1/n is

$$x_n = (0, 0, \dots, 1, 0, \dots).$$

Definition 3.45. Let A be any bounded operator. The set $\sigma_p(A)$ of all eigenvalues of A is called the *point spectrum* of A. Let H_p be the closed subspace of H spanned by the eigenvectors of A. If $H_p = H$ then A is said to have *pure point spectrum*.

In Example 3.44 $H_p = H$ but $\sigma_p(A) \neq \sigma(A)$ since $0 \notin \sigma_p(A)$.

Definition 3.46. If $H_p = \{0\}$ then A is said to have purely continuous spectrum.

Example 3.47. $H = L^2(0,1), A = M_{x+2}$. Then A has no eigenvalues, as we have seen before. Hence $\sigma_p(A) = \emptyset$. Thus A has purely continuous spectrum. Note that $\sigma(A) = [2,3]$.

Example 3.48. Let Q = rationals in [0,1] with the counting measure. Let $A = M_{x+2}$. Then

$$\sigma(A) = \text{ess. range of } x + 2 = [2, 3].$$

But every rational number in [2,3] is an eigenvalue of A because the function

$$f(x) = \begin{cases} 1 & \text{if} & x = r \\ 0 & \text{if} & x \neq r, \ x \in [0, 1] \end{cases}$$

is an eigenfunction associated to the eigenvalue 2 + r if r is a rational in [0, 1]. Since these functions form an Orthonormal . basis of H we have $H_p = H$. Thus A has pure point spectrum in spite of the fact that $\sigma(A) = [2, 3]$, which is the same spectrum as in Example 3.47.

Definition 3.49. 1) If A is a bounded Hermitian operator we write $A \geq 0$ if $(Ax, x) \geq 0 \ \forall x \in H$.

2) If A and B are bounded Hermitian operators, we write $A \leq B$ if $B - A \geq 0$.

Remark 3.50. The bounded Hermitian operators form a partially ordered set in this ordering.

Exercise 3.8. Prove Remark 3.50.

Exercise 3.9 (Decomposition by spectral type). Let A be a bounded Hermitian operator on a complex Hilbert space H. Suppose that $A = \int_{-\infty}^{\infty} \lambda dE(\lambda)$ is its spectral resolution. Denote by H_{ac} the set of all vectors x in H such that the measure $B \to ||E(B)x||^2$ is absolutely continuous with respect to Lebesgue measure.

- (1) Show that H_{ac} is a closed subspace of H.
- (2) Show that $H_p \perp H_{ac}$.
- (3) Define $H_{sc} = (H_p + H_{ac})^{\perp}$. (So we have the decomposition $H = H_p \oplus H_{ac} \oplus H_{sc}$.) Show that if $x \in H_{sc}$ and $x \neq 0$ then the measure $B \to (E(B)x, x)$ has no atoms and yet there exists a Borel set B of Lebesgue measure zero such that $E(B)x \neq 0$.

(4) Show that the decomposition of part c) reduces A. That is, $AH_i \subset H_i$, for i = p, ac, or sc.

Exercise 3.10 (Behavior of the resolvent near an isolated eigenvalue). We saw in the proof of Theorem 1.12 in Chapter 2 that if A is a bounded operator on a complex Banach space and λ_0 is not in $\sigma(A)$ then $(A - \lambda)^{-1}$ has a power series expansion: $(A - \lambda)^{-1} = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n B_n$ valid in some disk $|\lambda - \lambda_0| < \varepsilon$, where each B_n is a bounded operator.

(1) Suppose that A is the operator on the two dimensional Hilbert space \mathbb{C}^2 given by the two by two matrix

$$A = \left(\begin{array}{cc} 3 & 1 \\ 0 & 3 \end{array}\right).$$

As you (had better) know, $\sigma(A) = \{3\}$. Show that the resolvent $(A - \lambda)^{-1}$ has a Laurent expansion near $\lambda = 3$ with a pole of order two. That is

$$(A - \lambda)^{-1} = (\lambda - 3)^{-2}B_{-2} + (\lambda - 3)^{-1}B_{-1} + \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n B_n$$

which is valid in some punctured disk $0 < |\lambda - 3| < a$. Find B_{-2} and B_{-1} and show that neither operator is zero.

(2) Suppose now that A is a bounded Hermitian operator on a complex, separable, Hilbert space H. Suppose that λ_0 is an <u>isolated eigenvalue</u> of A, by which we mean that, for some $\varepsilon > 0$

$$\sigma(A) \cap \{\lambda \in \mathbb{C} : |\lambda - \lambda_0| < \varepsilon\} = \{\lambda_0\}.$$

Prove that $(A - \lambda)^{-1}$ has a pole of order <u>one</u> around λ_0 , in the sense that, for some $\delta > 0$,

$$(A - \lambda)^{-1} = (\lambda - \lambda_0)^{-1} B_{-1} + \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n B_n, \ 0 < |\lambda - \lambda_0| < \delta,$$

where the operators B_j , j = -1, 0, 1, ... are bounded operators on H. Express B_{-1} in terms of the spectral resolution of A.

3.3. The Functional Calculus. Let A be a bounded normal operator on a separable complex Hilbert space H. Let

$$A = \int_{\mathbb{C}} z dE(z)$$

be its spectral resolution. For any bounded complex Borel measurable function f defined on $\sigma(A)$, we define

$$f(A) = \int_{\sigma(A)} f(z) dE(z).$$

Definition 3.51. If $f : \sigma(A) \to \mathbb{C}$ is a bounded Borel measurable function, then the *essential range* of f with respect to the spectral resolution $E(\cdot)$ of A consists of those $\lambda \in \mathbb{C}$ such that $E(f^{-1}(B)) \neq 0$ for all open sets B containing λ .

Clearly the essential range of f is closed. Define $F(B) = E(f^{-1}(B))$ for all Borel sets E in \mathbb{C} . Clearly $F(\cdot)$ is another projection valued measure in \mathbb{C} with support equal to the essential range of f (because for any open set B, F(B) = 0 iff $B \cap \text{ess.}$ range $f = \emptyset$).

Properties 3.52. (1) If q is another such function and α and β are scalars, then

a)
$$(\alpha f + \beta g)(A) = \alpha f(A) + \beta g(A)$$

b)
$$(fg)(A) = f(A)g(A)$$
.

Proof: These are properties 3 and 4 on page 27.

- (2) If $f(z) = z^n$, then $f(A) = A^n$. Proof: b) above and induction.
- (3) If $f: \sigma(A) \to \mathbb{C}$ is a bounded Borel measurable function, and F(B) = $E(f^{-1}(B))$, then

(3.10)
$$f(A) = \int_{\mathbb{C}} z d\mathbb{F}(z).$$

Hence, $F(\cdot)$ is the spectral resolution of f(A).

Proof.: If $h(z) = \sum_{j=1}^{n} a_j \chi_{B_j}$ is simple, then $h(f(z)) = \sum_{j=1}^{n} a_j \chi_{f^{-1}(B_j)}(z)$.

$$\int h(z)dF(z) = \sum a_j E(f^{-1}(B_j))$$
$$= \int h(f(z))dE(z).$$

Since any bounded Borel function g on ess. range f is a uniform limit of simple functions, we may take the norm limit of both sides of the above equation to obtain

(3.11)
$$\int g(z)dF(z) = \int g(f(z))dE(z)$$

for any bounded measurable complex–valued function g on ess. range f. In particular, putting g(z) = z yields Eq. (3.10).

(4) $\sigma(f(A)) = \text{ess. range } f \text{ if } f : \sigma(A) \to \mathbb{C} \text{ is a bounded complex-valued Borel}$ function.

Proof: $\sigma(f(A)) = \text{supp } F$ by (3.10) and Corollary 3.38. But supp F =ess. range of f.

(5) If g: ess. range $f \to \mathbb{C}$ is a bounded complex-valued Borel function, then $(g \circ f)(A) = g(f(A)).$ Proof:

$$(g \circ f)(A) = \int (g \circ f)(z)dE(z)$$
 by definition
= $\int g(z)dF(z)$ by (3.11)

Corollary 3.53. If A is a bounded Hermitian operator and $A \geq 0$ then

- (a) $\sigma(A) \subset [0, \infty)$
- (b) the support of the spectral resolution of A is contained in $[0, \infty)$
- (c) A has a unique positive square root C (that is, there is a unique positive (and a fortiori Hermitian) operator C such that $C^2 = A$).

Proof. a) and b) are equivalent by Corollary 3.38. We prove b). Suppose $E((-\infty,0)) \neq 0$. Let $x \in \text{range } E((-\infty,0))$. Then the Borel measure that takes B to (E(B)x,x) is supported in $(-\infty,0)$ in the sense that (E(B)x,x)=0 if $B\subset [0,\infty)$ and (E(B)(x), x) > 0 for some $B \subset (-\infty, 0)$. Hence

$$(Ax,x) = \int_{-\infty}^{\infty} \lambda d(E(\lambda)x, x) = \int_{-\infty}^{0} \lambda d(E(\lambda)x, x) < 0,$$

contradicting $A \geq 0$.

To prove c), let $f(\lambda) = \lambda^{1/2}$ for $\lambda \geq 0$. Since $\sigma(A) \subset [0, \infty)$, C = f(A) is well-defined. Since range $f \subset [0, \infty)$, $\sigma(C) \subset [0, \infty)$. The spectral theorem implies $C \geq 0$. Suppose D is another positive (hence Hermitian) square root of A. Let $g(\lambda) = \lambda^2$. Then $(f \circ g)(\lambda) = \lambda$. Hence

$$D = (f \circ g)(D) = f(g(D)) \quad \text{by (5) in Property 3.52}$$

$$= f(A) \qquad \text{by (2) in Property 3.52}$$

$$= C.$$

Definition 3.54. A one parameter unitary group is a function $U: \mathbb{R} \to \text{unitary}$ operators on a Hilbert space H such that

$$U(t+s) = U(t)U(s)$$
 for all real t and s.

Exercise 3.11. Let A be a bounded Hermitian operator on a separable Hilbert space H. Denote by $E(\cdot)$ its spectral resolution. Assume that $A \geq 0$ and write $P = E(\{0\})$ (which may or may not be the zero projection). Prove that for any vector u in H

$$\lim_{t \to +\infty} e^{-tA} u = Pu.$$

Exercise 3.12. Let V be a unitary operator on a separable complex Hilbert space H. Prove that there exists a one parameter group U(t) on H such that

- (a) U(1) = V
- (b) $U(\cdot)$ is continuous in the operator norm.

4. Unbounded Operators

Definition 4.1. If X and Y are Banach spaces and \mathcal{D} is a subspace of X, then a linear transformation T from \mathcal{D} into Y is called a linear transformation (or operator) from X to Y with domain \mathcal{D} . If \mathcal{D} is dense in X, T is said to be densely defined.

Notation 4.2. If S and T are operators from X to Y with domains \mathcal{D}_S and \mathcal{D}_T and if $\mathcal{D}_S \subset \mathcal{D}_T$ and Sx = Tx for $x \in \mathcal{D}_S$, then we say T is an extension of S and write $S \subset T$.

We note that $X \times Y$ is a Banach space in the norm

$$\|\langle x, y \rangle\| = \sqrt{\|x\|^2 + \|y\|^2}.$$

If X and Y are Hilbert spaces then $X \times Y$ is a Hilbert space in this norm with inner product

$$(\langle x, y \rangle, \langle x', y' \rangle) = (x, x') + (y, y').$$

Definition 4.3. If T is an operator from X to Y with domain \mathcal{D} , the graph of T

$$G_T = \{\langle x, Tx \rangle : x \in \mathcal{D}\}.$$

Note that G_T is a subspace of $X \times Y$.

Definition 4.4. T is closed if G_T is closed in $X \times Y$.

It is easy to see that T is closed iff

$$x_n \to x$$
 $x_n \in \mathcal{D} \quad \Rightarrow x \in \mathcal{D} \text{ and } Tx = y$
 $Tx_n \to y$

Recall:

Theorem 4.5 (Closed Graph Theorem). If $T: X^{Ban} \to Y^{Ban}$ is closed and everywhere defined and linear, then T is bounded. (See Rudin, Chapter 5, Problem 16. The solution to this problem depends on Theorem 5.10 of Rudin.)

Moral: Unbounded closed operators cannot be everywhere defined.

Exercise 4.1. Suppose that (X,μ) is a measure space and that $\mu(X) < \infty$. Let $T:L^2(\mu)\to L^2(\mu)$ be a bounded operator. Suppose that range T is contained in $L^5(\mu)$. Show that T is bounded as an operator from $L^2(\mu)$ into $L^5(\mu)$. Hint: Use the closed graph theorem.

Definition 4.6. Let H be a Hilbert space. Let $T: H \to H$ be linear and densely defined with domain \mathcal{D} . Define \mathcal{D}_{T^*} as follows: $y \in \mathcal{D}_{T^*} \Leftrightarrow \text{the map } x \to (Tx, y)$ is continuous from \mathcal{D} to \mathbb{C} . For such y there exists a unique $y^* \in H$ such that $(Tx,y)=(x,y^*)$. We define $T^*y=y^*$. Thus

$$(Tx, y) = (x, T^*y) \quad \forall x \in \mathcal{D}_T, \ y \in \mathcal{D}_{T^*}.$$

Properties 4.7. \mathcal{D}_{T^*} is a linear subspace. T^* is linear. (Same proof as for bounded case.) Even though \mathcal{D}_T is dense, \mathcal{D}_{T^*} need not be dense.

Exercise 4.2. Let $H = L^2(0,1), \mathcal{D} = C([0,1]).$ Let $(Tf)(x) \equiv f(0) = \text{constant}$ function. Then T is densely defined. $T: \mathcal{D} \to H$. Prove that \mathcal{D}_{T^*} is not dense.

Definition 4.8. If A and B are operators on H define A + B on $\mathcal{D}_A \cap \mathcal{D}_B$ by (A + B)x = Ax + Bx and AB on $\{x \in \mathcal{D}_B : Bx \in \mathcal{D}_A\}$ by (AB)x = A(Bx).

Properties of *:

- (0) $(cA)^* = \overline{c}A^*$ if $c \neq 0$
- (1) $(A^* + B^*) \subset (A + B)^*$ if A + B is densely defined
- (2) $(AB)^* \supset B^*A^*$ if AB is densely defined.
- $(3) A \subset B \Rightarrow B^* \subset A^*$

Exercise 4.3. Prove that (1) and (2) are equalities if A is bounded and everywhere defined.

Definition 4.9. We write $H \oplus H$ instead of $H \times H$. Define $V : H \oplus H \to H \oplus H$ by $V\langle x,y\rangle = \langle y,-x\rangle$. V is unitary.

Lemma 4.10. If $T: H \to H$ is linear and densely defined then $G_{T^*} = (VG_T)^{\perp}$.

Proof. $(Tx,y) = (x,y^*) \Leftrightarrow (\langle Tx, -x \rangle, \langle y, y^* \rangle) = 0 \Leftrightarrow (V\langle x, Tx \rangle, \langle y, y^* \rangle) = 0.$ Therefore $\langle y, y^* \rangle \in G_{T^*}$ iff $(V\langle x, Tx \rangle, \langle y, y^* \rangle) = 0 \ \forall x \in \mathcal{D}_T$, i.e., iff $\langle y, y^* \rangle \perp VG_T$.

Corollary 4.11. T^* is always closed when T is densely defined.

Theorem 4.12. If T is densely defined in H and closed, then T^* is densely defined and $T^{**} = T$.

Proof. Suppose \mathcal{D}_{T^*} is not dense. Then $\exists z \neq 0 \ni z \perp \mathcal{D}_{T^*}$. Then $\langle 0, z \rangle \perp \langle T^*y, -y \rangle \ \forall y \in \mathcal{D}_{T^*}$, i.e., $\langle 0, z \rangle \perp VG_{T^*} = V(VG_T)^{\perp}$, therefore $V\langle 0, z \rangle \perp (VG_T)^{\perp}$ since $V^2 = -I$, i.e., $V\langle 0, z \rangle \in VG_T$ since G_T and therefore VG_T is closed. So $\langle 0, z \rangle \in G_T$, i.e., z = T(0) — contradiction. Therefore \mathcal{D}_{T^*} is dense and T^{**} exists. Now for any unitary V and any closed subspace M we have $VM^{\perp} = (VM)^{\perp}$. Hence $G_{T^{**}} = (VG_{T^*})^{\perp} = (V(VG_T)^{\perp})^{\perp} = V^2G_T = G_T$. Therefore $T^{**} = T$.

Exercise 4.4. Prove that if T is densely defined in H then T^* is densely defined in H iff T has a closed linear extension. Show that in this case T^{**} is the smallest closed linear extension, i.e., it is contained in any other closed linear extension. Moreover $G_{T^{**}} = \overline{G}_T$.

Definition 4.13. If T is a densely defined linear operator in H and if T has a closed linear extension then the closure of T is the smallest closed linear extension.

In view of the preceding exercise, the closure of T, if it exists, is equal to T^{**} if it exists — which it does if T^* is densely defined.

Definition 4.14. A *core* for a closed operator T is a subspace $L \subset \mathcal{D}_T$ such that T is the closure of the restriction of T to L, i.e., $T = (T \mid L)$ closure.

Definition 4.15. Let A be densely defined in H A is symmetric if $A \subset A^*$. A is self-adjoint if $A = A^*$.

Notes: 1) To say that A is symmetric simply means that (Ax, y) = (x, Ay) $\forall x, y \in \mathcal{D}_A$.

2) Since A^* is always closed, a self-adjoint operator is always closed. A symmetric operator need not be closed. But since a symmetric operator always has

a closed extension (namely A^*) it always has a closure. However, as we shall see later, a closed symmetric operator need not be self-adjoint.

3) It tends to be easy to show that an operator is symmetric but hard to show that it is self-adjoint (even if it is self-adjoint). The spectral theorem applies to self-adjoint operators but not to symmetric operators in general. We build now some machinery that is useful in proving self-adjointness.

Definition 4.16. Let H_n be a sequence of Hilbert spaces. Define $H = \sum_{n=1}^{\infty} H_n$ to be the set of all sequences (x_1, x_2, \ldots) $x_j \in H_j \ni \sum_{j=1}^{\infty} \|x_j\|^2 < \infty$. For $x, y \in H$ define $(x,y) = \sum_{j=1}^{\infty} (x_j, y_j)$. The sum converges absolutely since

$$\sum |(x_j, y_j)| \le \sum ||x_j|| ||y_j|| \le \sum_{j=1}^{\infty} \frac{||x_j||^2 + ||y_j||^2}{2} < \infty.$$

Then H is a Hilbert space in this inner product. (Proof — straightforward — completeness same as for ℓ^2 .) H is called the (exterior) direct sum of the H_n . Each H_n may be naturally identified with the subspace of H consisting of all $(0,0,\ldots,x,0,\ldots), x \in H_n$, with x in the nth place.

If H is a given Hilbert space and $\{H_n\}$ is a sequence of mutually orthogonal subspaces such that the set of all $\sum_{j=1}^n x_j, x_j \in H_j$, are dense in H, then every x in H can be uniquely written in the form $\sum_{j=1}^\infty x_j, x_j \in H_j$, with $\|x\|^2 = \sum \|x_j\|^2$, and every such sum determines a vector in H (when $\sum \|x_j\|^2 < \infty$). In this case H is called the *(interior) direct sum* of the subspaces H_n and we write $H = \sum_{n=1}^\infty \oplus H_n$.

Proposition 4.17. Let H_n be a sequence of Hilbert spaces. Let $H = \sum_{n=1}^{\infty} H_n$. Let $A_n : H_n \to H_n$ be a bounded operator for each n. Define $A : H \to H$ by $A(x_1, x_2, \ldots) = (A_1 x_1, A_2 x_2, \ldots)$ with

$$\mathcal{D}_A = \{ x \in H : \sum_{j=1}^{\infty} ||A_j x_j||^2 < \infty \}.$$

Note that \mathcal{D}_A is a dense subspace of H because it contains all finitely non-zero sequences. Define $B(x_1, x_2, ...) = (A_1^* x_1, A_2^* x_2, ...)$ with

$$\mathcal{D}_B = \{ x \in H : \sum_{j=1}^{\infty} ||A_j^* x_j||^2 < \infty \}.$$

Then $A^* = B$. Moreover, the set of finitely nonzero sequences in H is a core for A and A is closed.

Proof. Clearly A takes \mathcal{D}_A into H. If $x \in \mathcal{D}_A$ and $y \in \mathcal{D}_B$ then

$$(Ax,y) = \sum_{j=1}^{\infty} (A_j x_j, y_j) = \sum_{j=1}^{\infty} (x_j, A_j^* y_j) = (x, By).$$

Hence the map $x \to (Ax, y)$ is continuous on \mathcal{D}_A and $y \in \mathcal{D}_{A^*}$, and $A^*y = By$. Thus $A^* \supset B$. Conversely, suppose that $z \in \mathcal{D}_{A^*}$. Then there exists $z^* \in H$ such that $(Ax, z) = (x, z^*)$, for all $x \in \mathcal{D}_A$. Then for all $x \in H_n$ we have:

$$(x,(A_n)^*z_n) = (A_nx,z_n) = (Ax,z_n) = (Ax,z) = (x,z^*) = (x,(z^*)_n).$$

Hence $(A_n)^*z_n=(z^*)_n$. Thus

$$\sum_{n=1}^{\infty} \|(A_n)^* z_n\|^2 = \sum_{n=1}^{\infty} \|(z^*)_n\|^2 = \|z^*\|^2 < \infty.$$

This shows that $z \in \mathcal{D}_B$ and $z^* = Bz$. Hence $A^* \subset B$. Thus $A^* = B$. Finally, if $x \in \mathcal{D}_A$, $x = (x_1, x_2, \ldots)$, then the element $z^j = (x_1, \ldots, x_j, 0, 0, \ldots)$ is a finitely nonzero sequence and $z^j \to x$ as $j \to \infty$, while $Az^j \to Ax$, in view of the definition of \mathcal{D}_A . Hence the finitely nonzero sequences form a core for A. Since adjoints are closed B is closed. A similar argument with A_n and A_n^* interchanged shows that $B^* = A$. So A is closed.

Definition 4.18. The operator A in the proposition is called the *direct sum of the operators* A_n . Notation: $A = \sum_{n=1}^{\infty} \oplus A_n$

Corollary 4.19. If, in the preceding proposition, each A_n is Hermitian then A is self-adjoint. Moreover it is the only self-adjoint operator whose domain contains each H_n and agrees with A_n there.

Proof. B=A. Hence $A^*=A$. If C is another self-adjoint operator with $\mathcal{D}_C\supset H_n$ $\forall n$ and $C=A_n$ on H_n , then C=A on the finitely nonzero sequences. Since this set is a core for A, it follows that $C\supset A$. E.g., if $x\in\mathcal{D}_A$ and z^j is as in the proof of the proposition, then $Cz^j=Az^j$ converges, as does z^j . Hence, since C is closed $x\in\mathcal{D}_C$ and $Cx=\lim Cz^j=\lim Az^j=Ax$. But a self-adjoint operator can never have a proper self-adjoint extension. For $C\supset A\Rightarrow C^*\subset A^*$, i.e., $C\subset A$, therefore C=A.

Examples 4.20. Let (X,μ) be a measure space. Let f be a complex valued measurable function on X. Let $\mathcal{D}=\{g\in L^2(\mu): fg\in L^2(\mu)\}$. Define $M_fg=fg$ for $g\in\mathcal{D}$. Then M_f is densely defined. \mathcal{D} is its "natural domain." We shall always understand the domain of a multiplication operator to be its natural domain. Of course if f is bounded then its domain obviously is all of $L^2(\mu)$.

Corollary 4.21. $(M_f)^* = M_{\overline{f}}$. If f is real then M_f is self-adjoint.

Proof. This is of interest primarily if f is unbounded because we have already proved it if f is bounded. Let $E_n = \{x \in X : n-1 \le |f(x)| < n\}$ for $n=1,2,\ldots$ Let H_n be the set of functions in $L^2(\mu)$ which are zero off E_n . Then clearly $L^2(\mu) = \sum_{n=1}^{\infty} \oplus H_n$. Moreover the restriction of M_f to H_n is bounded (with norm at most n) and the domains of M_f and $M_{\overline{f}}$ are precisely those described in the proposition for A and B. Hence $M_f^* = M_{\overline{f}}$.

Exercise 4.5. In the notation of the proposition, prove that $||A|| = \sup_n ||A_n||$ if this is finite, and otherwise A is unbounded. That is, a direct sum of bounded operators is bounded iff they are uniformly bounded.

Exercise 4.6. Let H be a Hilbert space and A a closed symmetric operator on H. Suppose that there exists an increasing sequence of closed subspaces K_n of H, each of which is contained in \mathcal{D}_A and is invariant under A, i.e., $AK_n \subset K_n$. Suppose moreover that $\bigcup_{n=1}^{\infty} K_n$ is a core for A. Prove that A is self-adjoint.

Example 4.22. A closed symmetric operator which is not self-adjoint. Let $H = L^2(0,\infty)$, $D = C_c^{\infty}((0,\infty))$. Define $T_0 f = f''$ for f in D. Then T_0 is densely defined. If $f, g \in D$, then

$$(T_0 f, g) = \int_0^\infty f'' \overline{g} dx = -\int_0^\infty f' \overline{g'} dx = \int_0^\infty f \overline{g''} dx = (f, T_0 g).$$

Therefore $T_0 \subset T_0^*$. Hence T_0^* is densely defined and so T_0 closure exists. Let T be the closure of T_0 . Then $T^* = (T_0^{**})^* = T_0^*$. But $T_0^* \supset T_0$. Thus $T^* \supset T$, i.e., T is symmetric.

Claim: T is not self-adjoint.

Proof. Let $f \in D_T$, g = Tf. Then $\exists f_n \in D_{T_0} \ni f_n \to f$ in L^2 and $T_0 f_n \to g$.

$$f_n(x) = \int_0^x f'_n(t)dt = \int_0^x \left(\int_0^t f''_n(s)ds \right) dt = \int_0^x \int_0^x \chi_{[0,t]}(s)f''_n(s)ds dt$$
$$= \int_0^x \left(\int_0^x \chi_{[0,t]}(s)f''_n(s)dt \right) ds = \int_0^x (x-s)f''_n(s)ds \to \int_0^x (x-s)g(s)ds.$$

Therefore

(4.1)
$$f(x) = \int_0^x (x - s)g(s)ds \text{ a.e.}$$

Since f is determined only up to a set of measure zero, we may assume (4.1) holds for all x by modifying f on a set of measure zero. Thus f is absolutely continuous on $[0,\infty)$ since the integrand is in L^1 locally. Clearly $f(0)=\lim_{x\to 0}f(x)=0$. Moreover

$$\frac{f(x+h) - f(x)}{h} = \frac{1}{h} \left(\int_0^{x+h} (x+h-s)g(s)ds - \int_0^x (x-s)g(s)ds \right)$$
$$= \frac{1}{h} \left(\int_x^{x+h} (x+h-s)g(s)ds + h \int_0^x g(s)ds \right)$$

but

$$\left|\frac{1}{h} \int_{x}^{x+h} (x+h-s)g(s)ds\right| \le \int_{x}^{x+h} |g(s)|ds \to 0 \quad \text{as} \quad h \to 0.$$

Therefore $f'(x) = \int_0^x g(s)ds$ everywhere. Thus f' is absolutely continuous on $[0, \infty)$ and f'(0) = 0. Hence $f \in D_T \Rightarrow f$ and f' are absolutely continuous and $f'' = g \in$ L^2 , and Tf = f''. Also f(0) = f'(0) = 0. But suppose φ is an arbitrary $C^2([0, \infty))$ function with compact support in $[0,\infty)$. Then $\forall f \in D_{T_0}$; $(Tf,\varphi)=(f,\varphi'')$, and therefore $\varphi \in D_{T^*}$. But if $\varphi(0) \neq 0$ then $\varphi \notin \mathcal{D}_T$. Hence $T \subsetneq T^*$.

4.1. Integration of Unbounded Functions with Respect to a Projection Valued Measure. Let $E(\cdot)$ be a projection valued measure on a Hilbert space H over a σ -field S of subsets of a set X. For any vector u in H, the measure

$$B \to m_u(B) \equiv (E(B)u, u)$$

is a positive finite measure. If f is a bounded measurable function on X, then

$$\left\| \left(\int f dE \right) u \right\|^2 = \left(\int f dE u, \int f dE u \right)$$

$$= \left(\left(\int f dE \right)^* \left(\int f dE \right) u, u \right)$$

$$= \left(\left(\int |f|^2 dE \right) u, u \right) = \int |f|^2 d(E(\cdot)u, u).$$
(4.2)

thus

(4.3)
$$\left\| \left(\int f dE \right) u \right\|^2 = \int |f|^2 dm_u.$$

Hence the map $f \to (\int f dE)u$ defined for bounded measurable f on X extends uniquely to an isometry from $L^2(x, m_u)$ into H. We denote by $\int f dEu$ the value of this isometry for each f in $L^2(x, m_u)$.

Now let g be a fixed complex valued measurable function on X. We define an operator A on H as follows: $D_A = \{u \in H : g \in L^2(X, m_u)\}$ and on this domain, define $Au = \int g dEu$ and write $A = \int g dE$.

Proposition 4.23. A is a closed operator and $A^* = \int \overline{g} dE$. If g is real, then A is self-adjoint.

Proof. Let $B_n = \{x \in X : n-1 \le |g(x)| < n\}$ for $n=1,2,\ldots$ Let $H_n = \text{range } E(B_n)$. Since the B_n are disjoint and $\bigcup_1^\infty B_n = X$, we have $H = \sum_{n=1}^\infty \oplus H_n$. Let $A_n = \int g\chi_{B_n}dE$. Since $g\chi_{B_n}$ is a bounded function, A_n is a bounded operator and $E(B_n)A_n = A_nE(B_n) = \int g\chi_{B_n}\chi_{B_n}dE = \int g\chi_{B_n}dE = A_n$. Thus A_n leaves H_n invariant and is zero on the orthogonal complement of H_n . Moreover, $A_n^* = \int \overline{g}\chi_{B_n}dE$ also leaves H_n invariant and annihilates H_n^{\perp} . We may regard A_n as an operator defined in H_n and we consider the direct sum operator $\sum_{n=1}^\infty \oplus A_n$ defined in Proposition 4.17. If u is in H, then

$$\sum_{n=1}^{\infty} ||A_n u||^2 = \sum_{n=1}^{\infty} \int |g\chi_n|^2 d(E(\cdot)u, u) = \sum_{n=1}^{\infty} \int |g|^2 \chi_n dm_u = \int |g|^2 dm_u.$$

Hence u is in the domain of $\sum_{n=1}^{\infty} \oplus A_n$ if and only if $u \in D_A$. Moreover if u is in D_A , then

$$Au = \int g dE u = \lim_{n \to \infty} \int g \chi_{\bigcup_{k=1}^{n} B_{k}} dE u$$

by the definition of A since

$$g\chi_{\bigcup_{k=1}^n B_n} \to g$$

in $L^2(m_u)$. Hence

$$Au = \lim_{n \to \infty} \sum_{k=1}^n \int g\chi_{B_k} dEu = \lim_{n \to \infty} \sum_{k=1}^n A_k E(B_k) u = \Big(\sum_{k=1}^\infty \oplus A_k\Big) u.$$

Thus A is a direct sum of bounded operators and is therefore closed by Proposition 4.17. Moreover $A^* = \sum_{k=1}^{\infty} \oplus A_k^*$ which, by what we have just shown, is equal to $\int \overline{g} dE$. Finally if g is real, then $A^* = \int \overline{g} dE = \int g dE = A$, so A is self-adjoint.

As in the case of bounded Hermitian operators we shall prove two forms of the spectral theorem for self-adjoint operators. Our proof depends on the following basic criterion for self-adjointness. (The organization of the next theorem and its corollary is taken from Reed and Simon, vol. 1.)

Theorem 4.24. Let T be a symmetric operator on a Hilbert space H. Then the following three statements are equivalent:

- (a) T is self-adjoint
- (b) T is closed and $\ker(T^* + i) = \ker(T^* i) = \{0\}.$
- (c) Range(T+i) = Range(T-i) = H.

Proof. We prove (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a).

Assume (a). Since $T=T^*$, T is closed. If $\varphi \in \ker(T^*-i)$ then $i(\varphi,\varphi)=(i\varphi,\varphi)=(T^*\varphi,\varphi)=(T^*\varphi,\varphi)=(\varphi,T^*\varphi)=(\varphi,i\varphi)=-i(\varphi,\varphi)$. Therefore $\|\varphi\|^2=0$ and $\varphi=0$. A similar proof shows that $\ker(T^*+i)=\{0\}$.

Assume (b). If ψ were orthogonal to Range(T+i) then $((T+i)\varphi,\psi)=0$, $\forall \varphi \in \mathcal{D}_T$. Hence $\psi \in \mathcal{D}_{T^*}$ and $(\varphi,(T^*-i)\psi)=0$ $\forall \varphi \in \mathcal{D}_T$. Since \mathcal{D}_T is dense

 $(T^*-i)\psi=0$. But by (b) $\psi=0$. Hence Range(T+i) is dense in H. But for any $\varphi \in \mathcal{D}_T$,

$$(4.4) ||(T+i)\varphi||^2 = ((T+i)\varphi, (T+i)\varphi) = ||T\varphi||^2 + ||\varphi||^2 \ge ||\varphi||^2.$$

Hence if $\psi \in H$ is arbitrary $\exists \varphi_n \in \mathcal{D}_T \ni (T+i)\varphi_n \to \psi$ and the last inequality shows that then φ_n is Cauchy. Hence $\exists \varphi \in H$ such that $\varphi_n \to \varphi$. But T+i is closed. Hence $\varphi \in \mathcal{D}_T$ and $(T+i)\varphi = \psi$. Therefore Range(T+i) = H. The proof that Range(T - i) = H is similar.

Assume (c). To show $T^* = T$ it suffices to show $\mathcal{D}_{T^*} \subset \mathcal{D}_T$ since T is symmetric. Let $\varphi \in \mathcal{D}_{T^*}$. Since Range(T-i) = H, $\exists y \in \mathcal{D}_T$ such that $(T-i)y = (T^*-i)\varphi$. Since $\mathcal{D}_T \subset \mathcal{D}_{T^*}$, $\varphi - y \in \mathcal{D}_{T^*}$ and $(T^* - i)(\varphi - y) = 0$. But Range(T + i) = Himplies $\ker(T^*-i)=\{0\}$. Hence $\varphi-y=0$. That is, $\varphi\in\mathcal{D}_T$.

Definition 4.25. An operator T is called essentially self-adjoint if its closure, \overline{T} , exists and is self-adjoint.

Corollary 4.26. Let T be a symmetric operator on a Hilbert space. The following are equivalent:

- (a) T is essentially self-adjoint.
- (b) $\ker(T^* + i) = \ker(T^* i) = \{0\}.$
- (c) Range(T+i) and Range(T-i) are dense in H.

Proof. Since $T^* = \overline{T}^*$ (a) and (b) are equivalent by the theorem. For any symmetric operator T, the inequality (4.4) in the proof of the theorem, together with the definition of closure of an operator, imply that $Range(T+i) = Range(\overline{T} + i)$ i). Similarly $\overline{\text{Range}(T-i)} = \text{Range}(\overline{T}-i)$. Hence condition (c) of the corollary is equivalent to condition (c) of the theorem for \overline{T} .

Remark 4.27. If T is a closed symmetric operator then the inequality (4.4) in the proof of the theorem holds and the argument following it shows that the subspaces $K_{\pm} = \text{Range}(T \pm i)$ are closed. Of course T is self-adjoint if and only if $K_{\pm} = 1$ $K_{-}=H$. But if this fails then the numbers $m_{\pm}=\dim K_{\pm}^{\perp}$ are measures of the deviation of T from self-adjointness. The cardinal numbers m_{\pm} are called the deficiency indices of T. It is a theorem that if $m_+ \neq m_-$ then T has no self-adjoint extensions. If $m_+ = m_- \neq 0$ then T has many self-adjoint extensions. Reference: Riesz and Nagy "Functional Analysis," Section 123.

Exercise 4.7. Let $S = S(\mathbb{R})$ as in (1) of Example 1.7. Define $L: S \to S$ by

$$Lf = -\frac{d^2f}{dx^2}.$$

S is dense in $L^2(\mathbb{R})$. Regard L as a densely defined linear transformation in $L^2(\mathbb{R})$.

- a) Show that L has a closed linear extension.
- b) Show that the closure T of L is self-adjoint.

Definition 4.28. For any (possibly unbounded) linear operator $T: H \to H$, a complex number λ is said to be in the resolvent set of T if $T - \lambda I$ is one to one and onto and $(T - \lambda I)^{-1}$ is bounded. Otherwise λ is said to be in the spectrum of T.

Exercise 4.8. a) Restrict the operator L of the previous problem to the set \mathcal{D} consisting of those f which vanish in a neighborhood of 0. (The neighborhood depends on f.) Call the restriction A. Prove that A is densely defined and symmetric but is not essentially self-adjoint. **Hint:** Let $\varphi = \text{Fourier transform of } \frac{1}{t^2 - i}$ and show that $A^* \varphi = i \varphi$. b)Find the spectrum of A^* .

Exercise 4.9. Suppose that A is a linear transformation in H and that A is densely defined, closed, one to one, and has dense range. Then clearly A^{-1} exists and is densely defined, and A^* and $(A^{-1})^*$ both exist. Prove

- $i) \quad \ker(A^*) = 0$
- ii) Range A^* is dense in H
- iii) $(A^{-1})^* = (A^*)^{-1}$ (which exists by i) and ii))
- iv) A^{-1} is closed.

Theorem 4.29 (Spectral Theorem for a self-adjoint operator). Let T be a self-adjoint operator on a separable Hilbert space H. Then there exists a finite measure space (X, μ) , a unitary operator $U: H \to L^2(X, \mu)$ and a real valued measurable function f on X such that

$$(4.5) UTU^{-1} = M_f.$$

Proof. By Theorem 4.24, T+i is one to one and onto from \mathcal{D}_T to H. Hence its inverse $(T+i)^{-1}$ exists. Moreover by (4.4) (page 41) $(T+i)^{-1}$ is bounded. Similarly $(T-i)^{-1}$ is also a bounded, everywhere defined operator. Moreover, by the preceding exercise $((T+i)^{-1})^* = (T-i)^{-1}$. Since (T+i) commutes with T-i (be careful with domains when verifying this) their inverses also commute. It follows that $(T+i)^{-1}$ is a normal (bounded) operator. Hence, by the spectral Theorem 3.21 there exists a finite measure space (X,μ) and a bounded measurable function g on X and a unitary operator $U: H \to L^2(X)$ such that

$$U(T+i)^{-1}U^{-1} = Mg.$$

Now $(T+i)^{-1}$ is one to one. Hence, so is Mg. Therefore g can be zero only on a set of measure zero. Thus the function f(x) = 1/g(x) - i is well defined a.e. $[\mu]$ and we may define it to be zero where g = 0. Thus $g(x) = (f(x) + i)^{-1}$ a.e. If h is in $L^2(\mu)$ then each of the following assertions is clearly equivalent to the next:

- 1) $h \in \mathcal{D}_{M_f}$
- 2) $h \in \mathcal{D}_{M_{f+i}}$
- 3) $h \in \text{Range } M_{(f+i)^{-1}} = \text{Range } Mg$
- 4) $U^{-1}h \in \text{Range } (T+i)^{-1} = \text{Domain } (T+i) = \mathcal{D}_T.$

Thus $U\mathcal{D}_T = \mathcal{D}_{M_f}$. Moreover if $h \in \mathcal{D}_{M_f}$ and $\varphi = (f+i)h$ then $h = g\varphi$ so that $U^{-1}h = U^{-1}MgUU^{-1}\varphi = (T+i)^{-1}U^{-1}\varphi$. Thus $(T+i)U^{-1}h = U^{-1}\varphi$ or $U(T+i)U^{-1}h = M_{f+i}h = M_{f}h + ih$, so $UTU^{-1}h = M_{f}h$ and (4.5) holds. But for any unitary operator U and closed operator A, $(UAU^{-1})^* = UA^*U^{-1}$ (exercise). Hence (4.5) shows that M_f is self-adjoint. Thus by Corollary 4.21 f is real almost everywhere.

4.2. Spectral theorem for self-adjoint operators: projection valued measure form.

Theorem 4.30 (Spectral theorem). Let T be a self-adjoint operator on a separable complex Hilbert space H. Then there exists a projection valued measure $E(\cdot)$ on the Borel sets of the line such that

$$(4.6) T = \int_{-\infty}^{\infty} \lambda dE(\lambda).$$

Proof. Just as in the existence proof of the spectral Theorem 3.36 for bounded normal operators, it suffices, in view of the preceding theorem, to prove the theorem in case T is a multiplication operator. Thus if $T = M_f$ where f is a real-valued measurable function on (X, μ) , we define $E(B) = M_{\chi_{f^{-1}(B)}}$ for any Borel set $B \subset \mathbb{R}$. Then if $g(\lambda) = \sum_{j=1}^{n} a_j \chi_{B_j}(\lambda)$ is a simple function on the line with $\{B_j\}$ disjoint we have

$$\int g(\lambda)dE(\lambda) = \sum a_j E(B_j) = \sum a_j M_{\chi_{f^{-1}(B_j)}} = M_{g \circ f}.$$

Thus

(4.7)
$$\int_{-\infty}^{\infty} g(\lambda)dE(\lambda) = M_{g \circ f}$$

when g is a simple function. By taking uniform limits of a sequence of simple functions we see that this continues to hold for any bounded measurable function g on \mathbb{R} . Thus, from (4.7) and the equations (4.2) and (4.3) we have

$$\int_X |(g\circ f)(x)u(x)|^2 d\mu(x) = \left\| \Big(\int g dE \Big) u \right\|^2 = \int_{-\infty}^\infty |g(\lambda)|^2 dm_\mu(\lambda).$$

Now, if g is an arbitrary measurable function on \mathbb{R} , we put $g_n(\lambda) = g(\lambda)$ if $|g(\lambda)| \leq n$ and 0 otherwise. Then by monotone convergence we get

(4.8)
$$\int_{X} |(g \circ f)(x)u(x)|^{2} d\mu(x) = \int_{-\infty}^{\infty} |g(\lambda)|^{2} dm_{\mu}(\lambda)$$

for all g. In particular, putting $g(\lambda) = \lambda$ we see that

$$\int_X |f(x)u(x)|^2 d\mu(x) = \int_{-\infty}^{\infty} \lambda^2 dm_u(\lambda).$$

Hence $u \in \mathcal{D}_{M_f}$ iff $u \in \mathcal{D}_S$ where $S = \int_{-\infty}^{\infty} \lambda dE(\lambda)$. Thus if $u \in \mathcal{D}_{M_f}$, then

$$Su = \lim_{m \to \infty} \int_{-m}^{m} \lambda dE(\lambda) u = \lim_{m \to \infty} \int_{-\infty}^{\infty} g_m(\lambda) dE(\lambda) u$$
$$= \lim_{m \to \infty} M_{g_m \circ f} u = M_f u$$

as one sees easily using the dominated convergence theorem twice. Thus

$$\int_{-\infty}^{\infty} \lambda dE(\lambda) = M_f$$

which proves the theorem.

Remark 4.31. The uniqueness portion of the spectral theorem as in the proof of Theorem 3.36 holds in the unbounded case also. But we omit the proof.

Remark 4.32. Questions of commutativity for unbounded operators are delicate and dangerous. If T is unbounded and D is a bounded operator the useful definition is as follows: T commutes with D if

$$DT \subset TD$$
.

Note that with this definition 0 commutes with all unbounded operators (but would not if we insisted on DT = TD). With this definition it is true that if $T = \int \lambda dE(\lambda)$ is self-adjoint, then a bounded operator D commutes with T iff it commutes with all E(B) (B = Borel set).

Remark 4.33. (Functional Calculus.) Just as for bounded operators, there is a functional calculus for unbounded self-adjoint operators also. For any Borel measurable function f on $\mathbb R$ and self-adjoint operator T define

(4.9)
$$f(T) = \int_{-\infty}^{\infty} f(\lambda) dE(\lambda)$$

where $E(\cdot)$ is the spectral resolution of T. We will omit here further discussion of the consistency of this definition for unbounded functions. For bounded functions some of the discussion in Subsection 3.3 applies.

Exercise 4.10. Let A be a self-adjoint operator on a complex separable Hilbert space H and define e^{itA} by using $f(\lambda) = e^{it\lambda}$. The usual power series for the unitary operator e^{itA} cannot, of course, converge in norm if A is unbounded because each term of the series is an unbounded operator. But it could happen that for some vectors x the series

(4.10)
$$\sum_{n=0}^{\infty} (n!)^{-1} (itA)^n x$$

converges and actually equals $e^{itA}x$. A vector x is called an analytic vector for A if

- a) $x \in \mathcal{D}(A^n)$ for $n = 1, 2, \dots$ and
- b) the series (4.10) converges absolutely for all t in some interval $(-\varepsilon, \varepsilon)$ depending on x.

Prove that any self–adjoint operator A has a dense set of analytic vectors. [One says $\sum_{n=0}^{\infty} y_n$ converges absolutely if $\sum_{n=0}^{\infty} \|y_n\| < \infty$.]

5. Compact Operators

Definition 5.1. A linear map $A: H^{Ban} \to K^{Ban}$ is compact if the image of every bounded set has compact closure.

Remarks 5.2. Let $A: H^{Ban} \to K^{Ban}$ be a linear map. Then

- (1) If A is compact then A is bounded.
- (2) Let A be compact and define $S_n = \{x : ||x|| \le n\}$. Then $\overline{AS_n}$ is compact and therefore separable. Since $ran(A) = \bigcup_{n=1}^{\infty} \overline{AS_n}$, the range of A is separable.
- (3) Let $\{A_n\}$ be a sequence of compact operators such that $||A_n A|| \to 0$. Then A is compact.²

Proof. Given $\{x_n\}$ with $||x_n|| \le 1$ there is a subsequence $n_{j,1}$ such that $A_1x_{n_{j,1}}$ converges as $j \to \infty$. This subsequence has in turn a subsequence $n_{j,2}$ such that $A_2x_{n_{j,2}}$ converges, etc. Let $y_k = x_{n_{k,k}}$. Then $\{y_k\}$ is a subsequence of $\{x_n\}$. Moreover A_ny_k converges in k for each n.

$$||Ay_k - Ay_\ell|| \le ||Ay_k - A_iy_k|| + ||A_iy_k - A_iy_\ell|| + ||A_iy_\ell - Ay_\ell||$$

$$\le 2||A - A_i|| + ||A_iy_k - A_iy_\ell||.$$

Hence $\overline{\lim}_{k,\ell\to\infty} ||Ay_k - Ay_\ell|| \le 2||A - A_i||$ which can be made arbitrarily small.

Definition 5.3. A has finite rank if $\mathcal{R}(A)$ is finite dimensional, where $\mathcal{R}(A)$ = range A.

Example 5.4. Let ξ_j be in H^* and y_j be in K for $j=1,\ldots,n$. Let $Ax=\sum_{j=1}^n \xi_j(x)y_j$. Then A is bounded and of finite rank.

Remarks 5.5. A bounded and finite rank $\Rightarrow A$ is compact. Every norm limit of bounded finite rank operators is compact.

Partial converse: If $A: H^{Ban} \to K^{Ban}$ is compact and has closed range then A is of finite rank.

Proof. By the open mapping theorem $A: H \to \mathcal{R}(A)$ is open. Therefore $\mathcal{R}(A)$ is locally compact and hence finite dimensional. \blacksquare

Corollary 5.6. If $A: H^{Ban} \to H^{Ban}$ is compact and H is infinite dimensional then $0 \in \sigma(A)$.

Proof. If 0 is not in $\sigma(A)$ then $\mathcal{R}(A) = H$, which is closed but not finite dimensional.

Example 5.7. Let K(s,t) be continuous on $[0,1] \times [0,1]$. Define an operator $A: L^1(0,1) \to C([0,1])$ by

$$(Af)(s) = \int_0^1 K(s,t)f(t)dt$$
 for all $f \in L^1(0,1)$.

Af is continuous by the dominated convergence theorem. We will show that A is a compact operator.

²One can prove this by showing that AS_1 is totally bounded. Indeed if $\epsilon > 0$ is given and $\|A - A_m\| < \epsilon$, since $A_m S_1$ is totally bounded, there exists a finte set $\Lambda \subset K$ such that $A_m S_1 \subset \bigcup_{y \in \Lambda} B(y, \epsilon)$. It is now easily seen that $AS_1 \subset \bigcup_{y \in \Lambda} B(y, 2\epsilon)$.

Let $M = \sup\{|K(s,t)| : 0 \le s, t \le 1\}$. Then $|(Af)(s)| \le M$ for all s in [0,1] if $||f||_1 \le 1$. Since K is uniformly continuous there is, for given $\varepsilon > 0$ a $\delta > 0$ such that $|K(s,t) - K(s_0,t)| \le \varepsilon$ whenever $|s - s_0| < \delta$. Hence if $||f||_1 \le 1$ then

$$|(Af)(s) - (Af)(s_0)| \le \int |K(s,t) - K(s_0,t)| |f(t)| dt \le \varepsilon$$

whenever $|s - s_0| < \delta$. Thus A (unit ball of L^1) is a pointwise bounded equicontinuous family of functions on [0, 1] and therefore has compact closure by Ascoli's theorem. So A is a compact operator.

Further examples can be obtained from the preceding example by changing the domain and/or range. Thus, since $||f||_p \ge ||f||_1$ for $1 \le p \le \infty$, the restriction of A to L^p or L^∞ or C([0,1]) defines a compact operator into C([0,1]). Moreover, since a totally bounded subset of C([0,1]) is also totally bounded in L^p , for $1 \le p \le \infty$, one can simultaneously change the range also to any one of these spaces.

Theorem 5.8 (Schauder). An operator in B(X,Y) is compact iff its adjoint is compact.

Proof. Let S, S^* be the closed unit balls in X, Y^* respectively.

Let $T:X\to Y$ be compact and let $\{y_n^*\}$ be an arbitrary sequence in S^* . Let $B=\{y\in Y:\|y\|\leq\|T\|\}$. The restriction of y_n^* to B gives a sequence of uniformly bounded functions on B which are equicontinuous since $|y_n^*(y)-y_n^*(z)|\leq\|y-z\|$, $n=1,2,\ldots$. Since \overline{TS} is a compact subset of B Ascoli's theorem shows that there is a subsequence $y_{n_j}^*$ which is Cauchy in sup norm on \overline{TS} . Thus $(T^*y_{n_j}^*)(x)=y_{n_j}^*(Tx)$ is Cauchy in sup norm on S. Thus $T^*y_{n_j}^*$ converges in norm to some continuous linear functional on X and so T^* is compact. Conversely, let T^* be compact. Then, by the point just proved, T^{**} is compact, hence if S^{**} is the closed unit ball in X^{**} , $T^{**}S^{**}$ is totally bounded. Thus if $\chi:Y\to Y^{**}$, is the natural imbedding, we have $\chi TS\subseteq T^{**}S^{**}$, χTS is totally bounded hence TS is totally bounded. Therefore \overline{TS} is compact and T is compact. \blacksquare

Exercise 5.1. Let H be a separable complex Hilbert space. A bounded operator A is said to be of Hilbert–Schmidt type (or simply a Hilbert–Schmidt operator) if

(5.1)
$$\sum_{n=1}^{\infty} ||Ae_n||^2 < \infty$$

for some Orthonormal basis $\{e_1, e_2, \ldots\}$ of H.

a) Prove that if A is of H.S' type then the sum in (5.1) is independent of the choice of Orthonormal 'basis.

Denote the sum in (5.1) by $||A||_2^2$.

b) Prove that

$$(5.2) ||A|| \le ||A||_2.$$

c) Prove that the set of H.S' operators on H is itself a Hilbert space in the usual operations of addition and scalar multiplication if one defines

(5.3)
$$(A,B) = \sum_{n=1}^{\infty} (Ae_n, Be_n).$$

d) Prove that a Hilbert–Schmidt operator is compact.

5.1. Riesz Theory of Compact Operators. Let H be a Banach space. Let $C: H \to H$ be compact. Let B = I - C then $B^* = I - C^*$.

Lemma 5.9. If $\{y_n\}$ is a bounded sequence and By_n converges then $\{y_n\}$ has a convergent subsequence.

Proof. Since C is compact there is a subsequence y_{n_j} such that Cy_{n_j} converges, to z say. Since $y_{n_j} - Cy_{n_j}$ converges, to w say, it follows that y_{n_j} converges to w + z.

Definition 5.10. An operator $B: X^{normed} \to Y^{normed}$ is said to be bounded below if there is a constant m > 0 such that $||Bx|| \ge m||x||$ for all $x \in X$.

Lemma 5.11. If B = I - C is one to one then B is bounded below.

Proof. Suppose that B is not bounded from below. Then there exists a sequence y_n such that $||y_n|| = 1$ while $By_n \to 0$. By Lemma 1 there is a convergent subsequence y_{n_j} . But if $x = \lim y_{n_j}$ then ||x|| = 1 and Bx = 0, so B is not one to one.

Proposition 5.12. ker(B) is finite dimensional.

Proof. Let $H_0 = \ker(B)$. x is in H_0 if and only if Cx = x. But C sends the unit ball of H_0 into a totally bounded set. Therefore H_0 is finite dimensional by Proposition 1.33. \blacksquare

Lemma 5.13. Let F be a finite dimensional subspace of a Banach space H. Then there is a closed subspace $M \subset H$ such that

$$H = F \oplus M$$

in the sense that every vector z, in H is uniquely of the form z = x + y with x in F and y in M.

Proof. Let x_1, \ldots, x_n be a basis of F. For each j the linear functional $\xi_j : F \to \text{scalars}$, defined by $\xi_j(\sum_{k=1}^n a_k x_k) = a_j$, is a well defined linear functional on the finite dimensional space F, hence is continuous. It therefore has a continuous linear extension to all of H by the Hahn–Banach theorem. Denote the extension by ξ_j also. Define an operator $P: H \to H$ by

$$Px = \sum_{j=1}^{n} \xi_j(x) x_j.$$

If $x = \sum_{k=1}^{n} a_k x_k$ then clearly Px = x. Therefore, since range $P \subset F$ we have $P^2 = P$. P is a finite sum of continuous operators, hence is continuous. Let $M = \ker P$. Then M is closed and $M \cap F = \{0\}$. If $z \in H$ then $P(z - Pz) = Pz - P^2z = 0$. So $y := z - Pz \in M$. I.e., z = x + y with x = Pz. (Note that P is a projection onto F.)

Proposition 5.14. Range B is closed.

Proof. Since $\ker(B)$ is finite dimensional it has a closed complement M as in Lemma 5.13. Then $\operatorname{Range}(B) = B(M)$. Suppose w is a limit point of $\operatorname{Range}(B)$. Then there exists a sequence y_n in M such that $By_n \to w$. Now the proof of Lemma 5.11 shows that, as an operator from M into H, B is bounded below. That is, the restriction $B \mid M$ is bounded below. Hence the y_n form a bounded sequence. We may apply Lemma 5.9 to conclude that this sequence has a convergent subsequence $\{y_{n_k}\}$. Its limit v satisfies $Bv = \lim_{k \to \infty} By_{n_k} = w$.

Proposition 5.15. If B is onto then B is one to one.

Proof. Let $H_0 = \{0\}$. For $n \ge 1$ let $H_n = \ker(B^n)$ then $H_0 \subseteq H_1 \subseteq H_2 \subseteq \cdots$. If B is not 1:1 there exists $x \ne 0$ such that Bx = 0. Let $x_1 = x$, define x_n inductively such that $Bx_n = x_{n-1}$. Then $B^n x_n = 0$, $B^{n-1} x_n \ne 0$. Therefore $x_n \in H_n$ but $x_n \notin H_{n-1}$, hence H_{n-1} is properly contained in H_n . There exists $y_n \in H_n$ with $||y_n|| = 1$ and $||y_n - x|| \ge 1/2$ for all $x \in H_{n-1}$ (see Lemma 1.32). If n > m

$$Cy_n - Cy_m = y_n - [y_m + By_n - By_m] = y_n - x$$
 for some $x \in H_{n-1}$.

So $||Cy_n - Cy_m|| \ge 1/2$. Therefore $C\{y_n\}$ is not totally bounded, contradiction.

Proposition 5.16. If B is one to one then B is onto.

Proof. Suppose B is one to one, by Lemma 5.11, B is bounded below. It follows that if $M \subset H$ is a closed subspace then B(M) is closed also.

Suppose that Range $B \neq H$. Let $H_0 = H$, $H_1 = BH$, $H_2 = BH_1, \ldots$ Then H_{m+1} is a closed and proper (because B is 1:1) subspace of H_m . By Lemma 1.32 there exists a vector x_n in H_n such that $||x_n|| = 1$ and $\operatorname{dist}(x_n, H_{n+1}) \geq 1/2$. But then if n > m

$$Cx_m - Cx_n = x_m - Bx_m - x_n + Bx_n = x_m - x$$
 where $x \in H_{m+1}$.

Hence $||Cx_m - Cx_n|| \ge d(x_m, H_{m+1}) \ge 1/2$. Thus the sequence Cx_n contains no Cauchy subsequence, contradicting the compactness of C.

Proposition 5.17. dim ker $B = \dim \ker B^*$.

Proof. Let x_1, \ldots, x_n be a basis for ker B and let $\eta_1, \ldots, \eta_{\nu}$ be a basis for ker B^* . By the Hahn–Banach theorem $\exists \xi_i \in H^*$ such that

(5.4)
$$\xi_{i}(x_{i}) = \delta_{i,j}, i, j = 1, \dots, n.$$

Moreover, if $K = \ker B^*$ and $x \to \widehat{x}$ is the natural injection of H into H^{**} then the map $x \to \widehat{x} \mid K$ must map onto K^* , for if not then there is a non–zero vector u in the finite dimensional subspace K annihilated by all such \widehat{x} . That is $u(x) = \widehat{x}(u) = 0$ for all $x \in H$ — which means u = 0 after all. Thus there are vectors y_1, \ldots, y_{ν} in H such that

(5.5)
$$\eta_i(y_i) = \delta_{i,j}, i, j = 1, \dots, \nu.$$

Now suppose $n < \nu$. Define

$$C'x = Cx + \sum_{j=1}^{n} \xi_j(x)y_j.$$

Then C' is a compact operator. If B' = 1 - C' then we assert B' is one to one. For suppose $B'x_0=0$. Then

(5.6)
$$Bx_0 = \sum_{j=1}^n \xi_j(x_0) y_j.$$

But

$$0 = B^* \eta_i(x_0) \text{ because } \eta_i \in \ker B^*$$

$$= \eta_i(Bx_0) \text{ by definition of } B^*$$

$$= \sum_{j=1}^n \xi_j(x_0) \eta_i(y_j) \text{ by (5.6)}$$

$$= \xi_i(x_0) \text{ by (5.5)}.$$

Hence $Bx_0 = 0$ by (5.6) and the last equality. Hence $x_0 = \sum_{j=1}^n \alpha_j x_j$ for some scalars α_j , because x_1, \ldots, x_n spans ker B. But by (5.7) and (5.4) $\alpha_i = \xi_i(x_0) = 0$. Hence $x_0 = 0$. This shows $\ker B' = 0$.

Thus by Proposition 5.17, B' is onto. Hence $\exists x \in H$ such that $y_{n+1} = B'x$. But then

$$1 = \eta_{n+1}(y_{n+1}) = \eta_{n+1}(B'x)$$

$$= \eta_{n+1}(Bx) - \eta_{n+1}\left(\sum_{j=1}^{n} \xi_j(x)y_j\right)$$

$$= (B^*\eta_{n+1})(x) - \sum_{j=1}^{n} \xi_j(x)\eta_{n+1}(y_j) = 0 - 0.$$

Contradiction.

Thus we have shown $n \geq \nu$. I.e.,

$$\dim \ker B \ge \dim \ker B^*.$$

Since C^* is also compact we have

$$\dim \ker B^* > \dim \ker B^{**}.$$

But B^{**} "agrees" with B on the canonical image of H in H^{**} . Hence

$$\dim \ker B^{**} \ge \dim \ker B.$$

Combining (5.8), (5.9) and (5.10) shows that these are all equalities — which proves the proposition.

Theorem 5.18. Let C be a compact operator on a Banach space H. Every nonzero point λ of the spectrum of C is an eigenvalue of finite multiplicity. (That is, $\dim \ker(\lambda - C)$ is finite.) Moreover the multiplicity of λ for C is the same as for C^* . The only possible cluster point of the spectrum of C is zero.

Proof. If $\lambda \neq 0$ is in $\sigma(C)$ then $1 - \lambda^{-1}C$ is not invertible. Since $\lambda^{-1}C$ is compact $1 - \lambda^{-1}C$ can fail to be invertible either because it is not one to one in which case λ is an eigenvalue (of finite multiplicity by Proposition 5.12 — or because it is not onto — in which case it is also not one to one by Proposition 5.16. If it is both one to one and onto it is of course invertible by the open mapping theorem (or Lemma 5.11). By Proposition 5.17 dim $\ker(\lambda - C) = \dim \ker(\lambda - C^*)$ if $\lambda \neq 0$ since $\ker(\lambda - C) = \ker(1 - \lambda^{-1}C)$.

Finally, to prove that zero is the only possible cluster point of $\sigma(C)$ assume that $\exists \ \lambda_n \in \sigma(C)$ and that λ_n converges to some $\lambda \neq 0$. We may assume $\lambda_n \neq \lambda_m$ for $m \neq n$ and that $\exists \ \gamma > 0$ such that $|\lambda_n| \geq \gamma$ for all n. Then $\exists \ x_n \neq 0$ such that $Cx_n = \lambda_n x_n$. We assert that the set $\{x_n\}$ is linearly independent. If not let n be the first integer such that $x_n = \sum_{j=1}^{n-1} \alpha_j x_j$ with some $\alpha_j \neq 0$. Then

$$\lambda_n x_n = C x_n = \sum_{j=1}^{n-1} \alpha_j \lambda_j x_j.$$

Thus

$$\lambda_n \sum_{j=1}^{n-1} \alpha_j x_j = \sum_{j=1}^{n-1} \alpha_j \lambda_j x_j$$

and

$$\sum_{j=1}^{n-1} \alpha_j (\lambda_n - \lambda_j) x_j = 0.$$

Therefore $\alpha_j = 0, j = 1, \dots, n-1$ — contradiction.

Let $H_n = \operatorname{span}(x_1, \dots, x_n)$. Then H_n is a properly increasing sequence of subspaces. $\exists y_n$ such that $||y_n|| = 1$, $y_n \in H_n$ and $||y_n - x|| \ge \frac{1}{2} \ \forall x \in H_{n-1}$ by Lemma 1.32.

Let $y \in H_n$. Then $y = \sum_{j=1}^n \alpha_j x_j$, and

$$Cy - \lambda_n y = \sum_{j=1}^n \alpha_j (\lambda_j - \lambda_n) x_j \in H_{n-1}.$$

If n > m then

$$||Cy_n - Cy_m|| = ||(Cy_n - \lambda_n y_n) + \lambda_n y_n - \lambda_m y_m + (\lambda_m y_m - Cy_m)||$$

$$= ||\lambda_n y_n - z|| \text{ where } z \in H_{n-1}$$

$$\geq \frac{|\lambda_n|}{2} \geq \frac{\gamma}{2}.$$

Hence $\{Cy_m\}$ contains no Cauchy subsequence — contradiction.

Corollary 5.19. If C has an infinite number of eigenvalues then 0 is a cluster point of eigenvalues. Thus the eigenvalues can be arranged in a sequence converging to zero.

Proof. If $Cx = \lambda x$, $x \neq 0$, then

$$|\lambda| ||x|| = ||\lambda x|| = ||Cx|| \le ||C|| ||x||$$

Therefore $|\lambda| \leq ||C||$.

The set of proper values has at least one cluster point if there are an infinite number of them. This must be 0 by the theorem. Since only finitely many can lie outside the disc $|z| \leq 1/n$ they may be arranged in a sequence converging to zero. \blacksquare

Corollary 5.20. If C is a compact normal operator on a separable complex Hilbert space H there is a finite or infinite sequence P_n of mutually orthogonal finite dimensional projections such that

(5.11)
$$C = \sum_{n=1}^{\infty} \lambda_n P_n \quad (or \ C = \sum_{n=1}^{k} \lambda_n P_n)$$

where $\{\lambda_n\}$ are the non-zero eigenvalues of C and the series converges in the operator norm. Moreover H has an orthonormal basis consisting of eigenvectors of C (i.e., C can be "diagonalized").

Proof. Let

(5.12)
$$C = \int_{\sigma(C)} \lambda dE(\lambda)$$

be the spectral representation of C and let $\lambda_1, \lambda_2, \ldots$ be the non-zero eigenvalues of C. Then this set is finite or else $\lambda_n \to 0$ as $n \to \infty$ by Corollary 5.19. Let $P_n = E(\{\lambda_n\})$. Then dim $P_n =$ multiplicity of $\lambda_n < \infty$. Then equation (5.12) reduces to equation (5.11) because the functions

$$f_n(\lambda) = \lambda \cdot \chi_{\{\lambda_1, \lambda_2, \dots \lambda_n\}}(\lambda) = \begin{cases} \lambda & \text{if } \lambda \in \{\lambda_1, \lambda_2, \dots \lambda_n\} \\ 0 & \text{otherwise} \end{cases}$$

form a sequence of simple functions on $\sigma(C)$ which converge uniformly on $\sigma(C)$ to λ , while

$$\int_{\sigma(C)} f_k(\lambda) dE(\lambda) = \sum_{n=1}^k \lambda_n P_n.$$

We may now choose an Orthonormal . basis x_1, x_2, \ldots of H such that each vector is in Range P_n for some n or is in Range $E(\{0\})$ = null space C. C is diagonal on this basis.

Exercise 5.2. Let $\mathcal{D} = \{ f \in L^2(0,1) : f \text{ is absolutely continuous on } [0,1], f' \text{ is } f \in L^2(0,1) : f \in L^2(0,1)$ absolutely. continuous on [0,1], f'' is in $L^2(0,1)$, and f(0)=f(1)=0. Define Tf = f'' for f in \mathcal{D} .

- a) Prove that T has a compact inverse.
- b) Prove that T is self-adjoint.
- c) Find the spectrum of T.

6. Semigroups of Operators

Definition 6.1. A semigroup of operators on a Banach space B is a function $s \hookrightarrow T_s$ from $[0, \infty)$ to bounded operators on B such that

- a) $T_0 = I$
- b) $T_{t+s} = T_t T_s$ for $s, t \ge 0$

The semigroup is called *strongly continuous* if for each $x \in B$, the function $t \to T_t x$ is continuous from $[0, \infty)$ into B.

Example 6.2. Let A be a bounded operator on B. Define $e^{tA} = \sum_{n=0}^{\infty} \frac{(tA)^n}{n!}$. This series converges in norm because $\|\frac{(tA)^n}{n!}\| \leq \frac{\|tA\|^n}{n!}$. Thus $\|e^{tA}\| \leq e^{\|tA\|}$. Any elementary combinatorial (power series) proof that $e^{x+y} = e^x e^y$ shows, without change in proof, that $e^{(t+s)A} = e^{tA}e^{sA}$. Hence the function $T_t = e^{tA}$ defines a semigroup. This semigroup is not only strongly continuous but also *norm* continuous, i.e., $\|e^{tA} - e^{sA}\| \to 0$ as $t \to s$. To see this, note that

$$||e^{tA} - e^{sA}|| = ||(e^{(t-s)A} - 1)e^{sA}|| \le ||e^{(t-s)A} - 1|| ||e^{sA}||.$$

But the power series representation of $e^{(t-s)A} - 1$ shows $||e^{(t-s)A} - 1|| = O(t-s)$. Thus $||e^{tA} - e^{sA}|| \to 0$ as $t \to s$.

Of course, norm continuity of any semigroup T_t is stronger than strong continuity — as follows from $||T_tx - T_sx|| \le ||T_t - T_s|| \ ||x|| \to 0$ as $t \to s$. It is a fact that the above example yields all the norm-continuous semigroups. The most important semigroups, however, are not norm continuous. They correspond — in a sense to be described below to an A which is unbounded.

Example 6.3. Let $E(\cdot)$ be a projection valued measure on the complex plane with values which are projections on a complex Hilbert space H. Assume that the support set of E is contained in the left half-plane $\mathbb{C}_{-} = \{z : Re \ z \leq 0\}$. Define

$$T_t = \int_{\mathbb{C}} e^{zt} dE(z), \quad t \ge 0.$$

Since $|e^{zt}| \leq 1$ for $z \in \mathbb{C}_-$ and $t \geq 0$, it follows that $||T_t|| \leq 1$ for $t \geq 0$. Moreover, the functional calculus shows that $T_{t+s} = T_t T_s$ and of course $T_0 = 1$. Hence $T(\cdot)$ is a semi–group. It is strongly continuous, for if $x \in H$ and $m_x(B) = (E(B)x, x)$, then we have

$$||T_t x - T_s x||^2 = \int_{\mathbb{C}_-} |e^{zt} - e^{zs}|^2 dm_x(z).$$

Since the integrand is at most 4 on \mathbb{C}_- and goes to zero pointwise as $t \to s$, the dominated convergence theorem shows that $||T_t x - T_s x|| \to 0$ as $t \to s$. Thus $T(\cdot)$ is a strongly continuous semigroup.

Symbolically, if we write $A = \int_{\mathbb{C}_{-}} z dE(z)$, then in view of the functional calculus definition of e^{tA} , we have $T_t = e^{tA}$.

As we have seen, T_t is a contraction operator (i.e., $||T_t|| \le 1$) because the spectrum of A lies in the left half plane.

Informally, the function $u(t) = e^{tA}x$ solves the equation

(6.1)
$$\frac{du}{dt} = Au(t), \quad u(0) = x.$$

Two important special cases are:

- 1) $A = i(-\Delta + V)$ acting in $L^2(\mathbb{R}^n)$, where V is multiplication by a suitable real function. In this case, iA is self-adjoint and consequently $\sigma(A)$ lies on the imaginary axis. The equation (6.1) is the Schrödinger equation.
- 2) $A = \Delta$ acting in $L^2(\mathbb{R}^n)$. In this case, A is self-adjoint and negative, so $\sigma(A)$ lies along the negative real axis. The equation (6.1) is then the heat equation.

We remark also that the wave equation $\frac{\partial^2 u}{\partial t^2} = \Delta u$ can be reformulated so as to reduce to (6.1), with $\sigma(A)$ lying along the imaginary axis.

Definition 6.4. A semigroup of operators T_t is called a *contraction* semi-group if $||T_t|| \le 1$ for all $t \ge 0$. This is the most important class of semigroups.

Definition 6.5. Let T_t be a semigroup of linear operators in a Banach space B. Define $Af = \lim_{h \downarrow 0} \frac{T_h - 1}{h} f$ with domain $\mathcal{D}_A = \{ f \in B : \text{ for which } Af \text{ exists} \}$. Ais called the *infinitesimal generator* of the semigroup T_t .

The basic facts about semigroups of operators are the following theorems.

Theorem 6.6. If T_t is a strongly continuous semigroup of bounded linear operators, then its infinitesimal generator A is a closed densely defined linear operator. T_t is uniquely determined by A in the sense that distinct semigroups have distinct infinitesimal generators. Moreover, if f is in \mathcal{D}_A , then $u(t) = T_t f$ solves the differential equation

$$\frac{du}{dt}(t) = Au(t), \quad t \ge 0 \text{ with } u(0) = f.$$

Theorem 6.7 (Hille Yosida theorem). A densely defined, closed, linear operator A is the infinitesimal generator of a strongly continuous contraction semigroup \Leftrightarrow the positive half line $(0,\infty)$ is contained in the resolvent set of A and

$$\|(\lambda - A)^{-1}\| \le \frac{1}{\lambda} \quad \forall \lambda > 0.$$

For the proofs of these theorems and other exciting facts about semigroups, we refer the reader to E. B. Dynkin, Markov Process I, pages 22–33 which present a rather direct and self-contained account of the theory.

The earliest theorem of this type is the Stone-Von Neumann theorem.

Theorem 6.8 (Stone-Von Neumann). Every strongly continuous one parameter unitary group U(t) on a complex Hilbert space H is of the form $U(t) = e^{itB}$ where B is a self-adjoint operator. The infinitesimal generator of $U(\cdot)$, in the sense of the previous definition, is precisely A = iB.

Proof. See Reed and Simon, Functional Analysis, Vol. 1, 266–267.

Exercise 6.1. A vector x in a Banach space B is called a C^{∞} vector for a densely defined operator A on B if $x \in \mathcal{D}(A^n)$ for $n = 1, 2, 3, \ldots$ Notation: $C^{\infty}(A) = \bigcap_{n=1}^{\infty} \mathcal{D}(A^n)$. Prove that if A is the infinitesimal generator of a contraction semigroup, T_s , on B then $C^{\infty}(A)$ is dense in B. Hint: Consider vectors $\int_0^\infty g(s)T_sxds$ for wise choices of g.