Don investigates a series of train wrecks that recreate accidents due to railroad negligence. A numerical code is left at the site of each accident. Charlie helps Don to find the terrorist behind the recreations by breaking the codes, which contain statistics of the wrecks occurred in the past.
The art of breaking codes by analyzing patterns is part of a wider mathematical area called Cryptography. In Episode 205 the reader can find a brief explanation of some of the simplest algorithms to encode and decode information (we also refer the reader to Episode 324). In order to break the code in this Episode Charlie also uses statistical data analysis, a technique mentioned in Episode 211 as well.
By the end of the episode, Charlie gives a passionate speech about the way nature communicates to us in terms of mathematical patterns. We quote his exact words here: "Math is the real world, okay, it's everywhere, okay. Can I show you? You see how the petals spiral? The number of petals in each row is the sum of the preceding two rows, the Fibonacci Sequence. It's found in the structure of crystals and the spiral of galaxies and a nautilus shell. What's more, the ratio between each number in the sequence to the one before it is approximately 1.61803, what the Greeks call the Golden Ratio. It shows up in the pyramids of Giza and the Parthenon at Athens, the dimensions of this card. And it's based on a number we can find in a flower. Math is nature's language... its method of communicating directly with us. Everything is numbers."
Below we will explain the main properties of the Fibonacci sequence and the Golden Ratio, and we will formally establish the relationship between these two mathematical entities.
In words, every number in the sequence is equal to the sum of the two previous ones. The numbers in this sequence get arbitrarily big as n increases. The first 11 numbers in this sequence are shown below:
These spirals appear in nature in numerous examples, such as sea shells, flowers and galaxies. The reader can find more about the appearance of the Fibonacci sequence in nature at http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html.
The Fibonacci numbers satisfy a numerous amount of very interesting identities. The reader can find some of them at http://mathworld.wolfram.com/FibonacciNumber.html. We will concentrate our attention here to its relationship with the golden ratio, which we explain below.
The golden ratio is usually denoted by the Greek letter
which implies that
There is also a nice way of expressing the golden ratio as a limit of radicals in the following way,
Regarding the construction at the beginning of the section, if we continue partitioning the successive rectangles into a square and a new rectangle, we deduce that all the rectangles are similar, and if we draw a curve joining the opposite vertices of the squares we obtain a spiral similar to the one generated by the Fibonacci sequence. Below we explain the algebraic relationship between the golden ratio and the Fibonacci sequence, which explains the similarity of the mentioned spirals.
Since
Define
The two facts above imply that
We conclude that
This formula in words tells us that as n increases, the ratio between consecutive terms of the Fibonacci sequence approaches the golden ratio. This is exactly what Charlie is referring to when he says: "... the ratio between each number in the sequence to the one before it is approximately 1.61803, what the Greeks call the Golden Ratio."