Papers available in electronic format
-
Nussbaum, M., Spline smoothing in regression models and asymptotic efficiency in L 2. Ann. Statist. 13 984-997 (1985) . pdf
-
Golubev, G. and Nussbaum, M., A risk bound in Sobolev class regression. Ann. Statist. 18 758-778 (1990). pdf
-
Golubev, G. and Nussbaum, M., Adaptive spline estimates in a nonparametric regression model. (Russian) Teor. Veroyatnost. i Primenen. 37 (1992), no. 3, 554-561; translation in Theory Probab. Appl. 37 (1992), no. 3, 521-529 pdf
-
Nussbaum, M., Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24, 2399-2430 (1996 ). pdf The corresponding preprint contains one more section than the published paper, on application to asymptotics of estimation risk
-
Hall, P., Nussbaum, M., Stern, S. E. : On the estimation of a support curve of indeterminate sharpness. J. Multivariate Analysis, 62 (2), 204-232 (1997). pdf Contains one more section than the published paper, with detailed discussions.
-
Grama, I and Nussbaum, M: Asymptotic equivalence for nonparametric generalized linear models. Prob. Theor. Rel. Fields, 111 (1998), 167-214 pdf
-
Milstein, G. and Nussbaum, M., Diffusion approximation for nonparametric autoregression. Prob. Theor. Rel. Fields 112 (1998), 535-543. pdf
-
Korostelev, A. and Nussbaum, M., The asymptotic minimax constant for sup-norm loss in nonparametric density estimation. Bernoulli 5 (1999) 1099-1118 pdf
-
Nussbaum, M., Minimax risk: Pinsker bound. In: Encyclopedia of Statistical Sciences, Update Volume 3, 451-460 (S. Kotz, Ed.) 1999. Wiley, New York. Survey paper written as an Encyclopedia entry. pdf
-
Milstein. G. and Nussbaum, M., Maximum likelihood estimation of a nonparametric signal in white noise by optimal control. Statistics and Probability Letters, 55 (2) 193-203 (2001) pdf
-
Genon-Catalot, V, Laredo, C. and Nussbaum, M., Asymptotic equivalence of estimating a Poisson intensity and a positive diffusion drift. Ann. Statist. 30 731-753 (2002) pdf
-
Grama, I and Nussbaum, M., Asymptotic equivalence for nonparametric regression. Mathematical Methods of Statistics 11 (1) 1-36 (2002) pdf
-
Grama, I and Nussbaum, M., A functional Hungarian construction for sums of independent random variables. Annales de l'Institut Henri Poincare, Probabilites et Statistiques, 38 (6) pp. 923-957 (2002) pdf Based on the preprint A nonstandard Hungarian construction for partial sums. WIAS-preprint No. 324, 1997, Weierstrass Institute, Berlin
-
Jaehnisch, M. and Nussbaum, M., Asymptotic equivalence for a model of independent non identically distributed observations. Statistics & Decisions 21 197-218 (2003) pdf
-
Nussbaum, M., Equivalence asymptotique des experiences statistiques. (Survey paper in French). Journal de la Societe francaise de Statistique 145 (1) 31-45 (2004) pdf
-
Jaehnisch, M. and Nussbaum, M., A functional Hungarian construction for the sequential empirical process, C.R. Acad. Sci. Paris, Ser. I 341 761-763 (2005) pdf
-
Audenaert, K. M. R., Nussbaum, M., Szkola, A. and Verstraete, F., Asymptotic error rates in quantum hypothesis testing. Commun. Math. Phys. 279 (1) 251-283 (2008) pdf
-
Nussbaum, M. and Szkola, A., The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Statist. 37 (2) 1040-1057 (2009) pdf
-
Golubev, G. K., Nussbaum, M. and Zhou, H. H., Asymptotic equivalence of spectral density estimation and Gaussian white noise, Ann. Statist. 38 (1) 181-214 (2010) pdf The corresponding preprint contains more detailed proofs
-
Nussbaum, M. and Szkola, A., Exponential error rates in multiple state discrimination on a quantum spin chain, J. Math. Phys. 51 072203 (2010) pdf
-
Nussbaum, M. and Szkola, A., Asymptotically optimal discrimination between multiple pure quantum states. In: Theory of Quantum Computation, Communication and Cryptography. 5th Conference, TQC 2010, Leeds, UK. Revised Selected Papers. Lecture Notes in Computer Science, Vol 6519, van Dam, Wim; Kendon, Vivien M.; Severini, Simone (Eds.), pp. 1-8, Springer (2011) pdf
-
Nussbaum, M. and Szkola, A., An asymptotic error bound for testing multiple quantum hypotheses. Ann. Statist. 39 (6) 3211 3233 (2011) pdf
-
Tecuapetla-Gomez, I. and Nussbaum, M., On large deviations in testing simple hypotheses for locally stationary Gaussian processes. Statistical Inference for Stochastic Processes, 15 (3) 225-239 (2012) pdf
-
Nussbaum, M., Attainment of the multiple quantum Chernoff bound for certain ensembles of mixed states. In: Proceedings of the First International Workshop on Entangled Coherent States and Its Application to Quantum Information Science, (Usuda, T.S., Kato, K., Eds.), Tamagawa University Quantum ICT Research Institute, Tokyo, Japan, 77-81 (2013). pdf Also at arXiv:1308.6563 [quant-ph]
-
Nussbaum, M., Sharp Adaptive Nonparametric Testing for Sobolev Ellipsoids. In: Low M, Munk A, Tsybakov A. (Eds.), Adaptive Statistical Inference. Oberwolfach Report 11 (2014), 721-779, European Mathematical Society Publishing House, Zurich pdf
-
Ji, P., Nussbaum, M., Sharp minimax adaptation over Sobolev ellipsoids in nonparametric testing, Electron. J. Stat. 11 (2) 4515-4562 (2017) pdf
-
Butucea, C, Guţă, M. and Nussbaum, M., Local asymptotic equivalence of pure quantum states ensembles and quantum Gaussian white noise. Ann. Statist. 46 3676-3706 (2018) pdf
-
Online supplement to the previous paper (DOI: 10.1214/17-AOS1672SUPP.): pdf