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Summary: It is shown that a nonparametric model of independent non identically distributed
observations on the unit interval can be approximated, in the sense of Le Cam’s A-distance, by
a bivariate Gaussian white noise model. The parameter space is a smoothness class of conditional
densities uniformly bounded away from zero on the unit square. The proof is based on coupling
of likelihood processes via a functional Hungarian construction of the sequential empirical process
and the Kiefer—Miiller process.

1 Introduction and main result

In the asymptotic theory of experiments, regression models have served as a prime ex-
ample, along with i.i. d. models. With regard to local Gaussian limits involving an n~!/2
renormalization rate, the most general theory for nonparametric regression has been
worked out by Millar in 1982 [11]. Millar’s neighborhoods and limit experiments fot
regression are an analog of the theory for the empirical distribution function in the i.1.d.
case. It is well-known however that local Gaussian limits over n~'/?-sized parametric
neighborhoods are insufficient to treat many nonparametric function estimation prob-
lems, and should be replaced by global approximations in terms of Le Cam’s A-distance.
The first such approximation, or asymptotic equivalence, in a truly nonparametric model
(after a result by Le Cam about Poisson experiments in [10]) was obtained by Brown
and Low [1] for a Gaussian regression model. This regression result gave rise to the
corresponding conjecture for the nonparametric i. i. d. case which was subsequently con-
firmed in [12]. The methodology of the latter paper, i. e. coupling of likelihood processes,
then allowed to treat nonparametric regression also in the non-Gaussian case (Grama
and Nussbaum [5, 6]). The purpose of the present paper is to extend the result of [12]
to the case of independent but non identically distributed (i. n. i. d.) observations on the
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unit interval. Assume that 4 (-) is a family of probability densities on [0, 1] indexed by
s € [0, 1]. We observe independent data X;,, i = 1, ..., n such that X;, has density
hi/m. If hg does not depend on the index s, i.e. hy = hg then we recover the identically
distributed case of [12] where under smoothness and boundedness conditions on A an
approximation in A-distance by the white noise model

1
dy(t) = hy/*(tydr + 5n“ﬂdwa),t e[0,1]

was established. Below we will show (cf. Theorem 1.1) that this result extends to the
nonindentically distributed case, in the sense that if hg(¢) fulfills a joint smoothness
condition in s and 7 and is bounded away from O then the accompanying Gaussian
experiment is

1
dy(s, 1) = b (pydsdr + 5n—l/zafW(s, 0, (s, €0, 17

where W is a two-dimensional Brownian sheet.

In Grama and Nussbaum [6] asymptotic equivalence to a Gaussian experiment is
proved for a related model of i.n.i.d. observations: for a fixed (known) parametric
family of densities fy, ¥ € ©, observations X;, have density f,(;/n) Where g is an
unknown smooth regression function on [0, 1]. Thus formally we also have a family
of densities hs(-) = fg(s)(-), but this is a narrower class since it is not given solely in
terms of smoothness conditions in the two variables (s, ). The model in [6] is closer to
a semiparametric one since fy, % € ® is a known parametric family. On the other hand,
in [6] the X;, need not take values in the unit interval and can be discrete.

Let us also briefly discuss the general setup of Millar [11] who aims at local limit
experiments. The starting point there is also a parametric family of densities fy, 0 € ©
combined with a regression function g on [0, 1] such that X;, has density fg(i/n). How-
ever the perturbation neighborhoods for the LAN-result there are not just in terms of
the regression function g but they also account for nonparametric deviations from the
model { f, ¥ € ©}. This general limit experiment theory for regression indeed suggests
that smoothness conditions on the function of two variables /() enable an asymptotic
equivalence result.

To be precise, we write (s, t) for hs(f) where hg(-), s € [0, 1] is a family of Lebesgue
densities on [0, 1]. For functions g on [0, 1)? and for any o € (0, 1) define a Holder
seminorm by

lg(x) — g

Co =
7] = sop

where the supremum is taken over all x € [0, 113, y € [0, 112 such that x # y. We also
denote |g|C°| with [|glloo, Where [[glloy = SUP, o112 18(X)]. Let z = (z1,22) € N be
a multiindex where Ng = NU {0}, let |z] = z| + z» and let D? be the differential operator

Izl - . ..
D* = 9 For any positive smoothness index «, define a Holder norm

= oz
lsico]:= 2 10% ] + 3

|z|<a lz|=le]

nglca—[a]
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and for any M > 0 consider a Holder smoothness class on [0, 112
C*(M) = {g: |gIC*| < M}.

Furthermore, we will require that densities 4 (s, -) are uniformly bounded away from O.
For € > 0 consider a set of continuous functions on [0, 1]?

1
Foe:=1{h: h(s,t)ze,V(s,t)e[O,l]z,/ h(s,0dt =1,V s € [0, 1]}.
0

We write X ~ f if the random variable X has a Lebesgue density f. For a given parameter
space X C F»>, consider the two experiments indexed by & € X

E,: Xin,..., Xnn independent, X;, ~ h(i/n, ),
Fp: o dy(s,f) = h'/2(s, ydsdt + §n='2dW(s, 1), (s, 1) € [0, 11

Theorem 1.1 For M > 0,0 <€ < landa > 3, let © C C*(M) N F>¢. Then we have
lim A(E,, Fp,) =0,
n—00

i. e. the experiments E, and F, are asymptotically equivalent.

Remark 1.2 Similarly to the approach in [12], the proof is based on coupling of likeli-
hood processes via a functional Hungarian construction. In this construction (Theorem 4.3
below) the sequential empirical process and the Kiefer—Miiller process replace the empir-
ical process and the Brownian bridge which figure in the i.i. d. case; cf. Koltchinski [9]
for the respective coupling result. Theorem 4.3 below also generalizes one aspect of the
functional Hungarian construction for the partial sum process (Grama and Nussbaum [7])
which was used for the likelihood processes in [6].

Remark 1.3 The smoothness condition « > 3 appears not to be optimal; since o > 1/2
is a sharp condition in the i. . d. case for Holder smoothness on the unit interval (Brown
and Zhang [3]), it can be conjectured that @ > | is a minimal condition on the unit square.
A proof that « > 1 is necessary for the present smoothness classes C* (M) can be found
in [8]. The reason for our gap in terms of « is that in the i. n.i.d. case, there seems to
be no obvious analog of the technique applied in [12] where the empirical process was
first approximated by a Poisson process with a convenient independence structure on the
sample space In the present paper, we are only using the a priori independence of the
data X;,,i = 1, ..., n. Note that in the i.1i.d. case, an alternative to Poissonization has
recently been found by Carter [4] who applied a multiresolution scheme for Gaussian
approximation of multinomial experiments.

Remark 1.4 Consider i.i. d. observations Zy, ... , Z, on the unit square distributed as
Z = (X, S) where S is uniform on [0, 1] and conditionally on S, X ~ h(S, -). This
represents the “random design” analog of the present model; the result of Brown et
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al. [2] for Gaussian regression with random design suggests that the above white noise
experiment F}, is still asymptotically equivalent. More generally, it can be conjectured that
the white noise approximation with signal /!/2 is valid for i.i. d. bivariate observations
having smooth density A.

Remark 1.5 The Gaussian approximations of Millar [11] and Grama and Nussbaum [6]
apply to the important case of the location type regression model where X;, ~ f(- —
g(i/n)), f is a density on the real line and g is a regression function. This model is not
covered by our results since the conditional densities A(s, -) all have support [0, 1] and are
bounded away from 0. Indeed the corresponding problem for the i. i.d. case (to include
location families in the nonparametric density class in [12]) is still open.

2 The local approximation

We will prove Theorem 1.1 by localizing the parameter space. Let y,, := n~/4(logn) =
and for some fixed kg € X, let £, (ho) be defined as follows:

Tn(ho) :={h € T :ID°h — D*hollcc < yu,V Iz| < 1}
(where z € N} and |z| = z1 + 22).

Remark 2.1 The quantity y, is the minimax rate of convergence (up to logarithmic
factors) for an estimator of a first order derivative of the function h, provided the function
is Holder continuous with smoothness 3. To that extent, X, (h¢) is of minimal size such
that an estimator for k¢ (for a true /) lies in that vicinity, with high probability asn — oo.

Consider now the following localized experiments:
Eon(ho) : X1n, ..., Xnn independent, X;, ~ h(i/n,-), h € X, (ho)
Evn(ho) : dyi(®) = (g i/, 0) = [y dnno(i/n, $)ds)dt +dWi(5), h € n(ho),
tel0,11,i=1,...,n

where Wy, ..., W, are independent Brownian motions and
h -1
Ahoho (s, 1) = log %(s, Py (s, 1) ),

where Py 1(s, 1) is the inverse mapping of

t

t—> Py(s, 1) =/ ho(s, v)dv.
0

Theorem 2.2 For the previously defined experiments we have

lim A(Eo,n(ho), E1,n(ho)) =0
n—oo

uniformly over hy € X.
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The main tool for proving this result will be the following well know inequality, where
we assume to have versions of the likelihood processes A’ (6) of experiments E; on some
common probability space:

Fact 2.3
A(Eo. Ey) < sup Ep|Aj(6) — AT(O)]
=C
(Cf. [12, p. 2404]).
Remark 2.4 The likelihood processes have the properties of densities since
) AT () >0 ii) EpAT () = 1.
Thus the squared Hellinger distance between likelihood processes can be defined by
2
H? (A5(60), AT(0)) == Ep((A506))"% = (AT(6O))'?)

and since the L!-distance Ep ]Ag ©) — A} (9)] is bounded by the Hellinger distance from
above, we obtain

AY(Eo, E) < sup (Ep |A§(6) — AT©)])
0e®
< sup H* (A§(9), A}9)).
0e®
Furthermore we need the following well-known equalities for computing the Hellinger

distance.

Fact 2.5 Let P; be the probability measures on (C[0, 11, Bc[o,1)) that are induced by the
distributions of the stochastic processes y; where

dyi(t) = gi(hdt +edW(®  tel0,1],i=1,2

(W is a Brownian motion, € > 0 and g1, g» € L*([0, 11, 1)). Then
1
HY(P, Py) =2 (1 — exp (—@”gl - gzl!%)) .

Furthermore, a similar statement holds for the Brownian sheet:

Fact 2.6 Let P; be the probability measures on (C[0, 1]2, BC[O,]P) that are induced by
the distributions of the stochastic processes y; where

dyi(s, 1) = gi(s, Hdsdt + edW(s, 1) (5,0 €[0,1%i=1,2
(W is a Brownian sheet, € > 0 and g1, g2 € L%([0, 112, A2)). Then

1
H(P, P) =2 (1 — exp (—é—gngl - gzn§)) :



202 Jahnisch — Nussbaum

The likelihood processes of factorized experiments bound the Hellinger distance of the
product processes due to the following lemma:

Lemma 2.7 Let Pi,..., P, and Q1,..., Qn be probability measures. Then, for the
product measures P" := ®_, P; and Q" := ®_, Q;:

H*(P", Q") <2 " H*(P;, Q).

i=1
Proof: [13, Lemma 2.19]. (W

Due to Fact 2.3 we can now bound the A-distance of experiments Ey ,(ho) and
E| n(ho) from above by constructing versions of their likelihood processes on some
common probability space such that these processes are close to each other. The likelihood
processes can be easily computed. Let A; , (h, ho) be the likelihood process of E; , (ho),
then

n 1
Ag.n(h, ho) = exp [n‘/zcn CNEDS fo Mo (i1, t)dz] @1
i=1

where

[ns]

~ 1
Guls. 1) = —= Y () =1
i=1

is the sequential empirical process. The z;s are i. i. d. uniform [0, 1] random variables and
14 is the indicator function of set A; furthermore, for f € L%([0, 112, 1?), define

Gu(f) = f Gy
[0,1]2

For the Gaussian experiment E1 ,(ho) the likelihood process is the following:

1 n
At n(h, ho) = exp <1< (o) = 5 D Var(hap i/, zm) . 22)

i=1
Again, 71, ...,2, ¢ 1.i.d. ~ U[0, 1] and

[ns]

Kn(s.0) := ) Bi(0)

i=1
is a discretized version of the Kiefer—Miiller process, the B; are independent Brownian
bridges and K, (f) is the stochastic integral over f with respect to the process K.

Remark 2.8 We could now use Theorem 4.3 in order to define versions of the likelihood
processes Ap , and A, for which we could estimate the Hellinger distance. However,
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this would not lead to the desired result. The reason is that the coupling result 4.3 is
applied in an optimal way only if the rate of convergence of the parameter space X, (fg)
is the inverse of the square root of the number of observations in each experiment.

‘We will therefore split the experiments Eg ,(ho) and E ,(ho) into smaller factors for
which this assumption is fulfilled. These doubly localized experiments will be defined
by taking only a fraction of the observations of the original experiment (cp. Defini-
tion 4.4). This idea was already applied in Nussbaum [12] and Grama and Nussbaum [5].
As a consequence, the likelihood processes of experiments Ej ,(hg) (j = 0, 1) are the
products of the independent likelihood processes of the doubly localized experiments
respectively. Theorem 4.3 will then be used to construct versions of the likelihood pro-
cesses of these doubly localized experiments. Thus we constructed the processes by
decomposing them into independent factors and applying the Hungarian construction to
each factor.

We finally obtain the following estimate of the Hellinger distance:

Lemma 2.9 There are versions AZ‘; (h, ho) and AT , (h, ho) of the likelihood processes
of experiments Eq n(ho) and E1 ,(ho) on some common probability space, such that

sup sup H*(A§,(h, ho), A}, (h, ho)) —> 0
hoeX heX, (hg)

holds for n — oo, where H*(-, -) is the Hellinger distance.

This lemma leads directly to the proof of Theorem 2.2 by invoking Remark 2.4. In
order to prove Theorem 1.1, we need asymptotic equivalence of Eg , (ko) to a Gaussian
experiment which does not depend explicitly on the center A of the parameter space.
Otherwise it will not be possible to globalize the equivalence result. The next theorem
states local asymptotic equivalence of E; (ko) to four other Gaussian experiments, one
of which does not depend on k.

Theorem 2.10 Consider the following experiments:
Exn(ho) i dyit) = (h = ho)(i/n, Dt + hg/*i/n, DdW; ()
E3nlho) s dyi(t) = (b1 = h*)(i/n, nydt + FdW; ()
(Lett € [0,1),i =1, ..., n and W; are independent Brownian motions and h € X, (ho).)
Egn(ho) : dy(s, 1) = log (h(s, Py ' (s, 0)))dsdt +n~"2dW(s, 1)

Fatho):  dy(s.t) = h'/%(s, ydsdt + sn="/2dW(s, 1).

(Let (s, 1) € [0, 1%, hex, (ho) and W be a two-dimensional Brownian sheet.) Then, each
of these experiments is asymptotically equivalent to E1 ,(hg), uniformly over hy € X.
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Together with Theorem 2.2 and the triangle inequality for the A-distance, we proved
a local version of Theorem 1.1:

Corollary 2.11 Uniformly over hg € X, we have

lim A(Eg.,(ho), Fn(ho)) = 0.
n—>0o0

Remark 2.12 Experiment F;, (ko) no longer depends on #¢. The reason for this is that
in experiment E3 ,(h¢), one can omit the term hé/ 2 in the observations without changing
the equivalence class of the experiment. Function A¢ is an a priori known parameter and
therefore we can transform the observed data by adding the integral over h(l,/ 2(i /n, ) to
the ith observation.

3 Globalization of the results

Corollary 2.11 is somewhat unsatisfactory since in practice one can not assume to have
such prior knowledge on the function 2. However, we can globalize this result following
the ideas that are described in detail in Nussbaum [12, sec. 9, p. 2425]. The proofs of the
equivalence results (e. g. Equations (3.1) and (3.2)) work exactly as in [12, p. 2425] using
the properties of the estimators of Lemmas 3.1 and 3.2.

We will proceed as follows: first of all, split the observations of £, into two sets of the
same size. With the first set of observations we will construct an estimator ’ﬁn for h. Then
we define a new experiment Ff , which is almost the same as E,, but where the second set
of observationsin E, is replaced by its “locally asymptotic equivalent” set of observations
from F,,. If the estimator &, fulfills a certain optimality criterion (namely Lemma 3.1),
then one can show that E, and F# are asymptotically equivalent. Lemma 3.1 states that
the estimator 7, is asymptotically, with probability tending to one, an element of the set
%, (h) — uniformly over & € X. For that reason the radius y,, of the set X,, (k) should not
tend to zero faster than the minimax rate of convergence for an estimator of /. We will
then apply this procedure again to F¥ in order to replace the first set of observations by its
“asymptotically equivalent set”. Again, we need an estimator for 2z which is derived from
the second part of the observations in F¥ and which has to fulfill the same optimality
criterion (Lemma 3.2).

More precisely, we have:

Lemma 3.1 Let N, = [n/2]. Then there exists a sequence of estimators iz\,, in Eg ,(ho)
that depend only on the observations {y2;; i = 1, ..., N,} and for which

inf Py p(hn € Tn(h)) —> 1
heX

(as n — oo) holds. Without loss of generality we can assume that this estimator takes
values only in the finite set 3o, C X.
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We will now define a compound experiment F with the following independent
observations:

{{y2i§ i=1,..., N}, (¥(s, t))(s,t)e[O,l]Z}

where the y; are independent with densities y; ~ h(j/n, -); y(s, f) is given by

1
dy(s, t) = h'/*(s, ndsdt + S(n— No) " V2aws, ),

and & € X. For the previously defined experiments we have:

lim A(E,, F}) =0. (3.1)

n—0o0

Lemma 3.2 In F? there exists an estimator hy, depending only on the observations
(s, t))(S,t)E[O.l]z such that

inf Pyj(hn € Sa(h)) — 1
hex

as n — oo. We may assume again that hy, takes only finitely many values in the set .

Remark 3.3 Lemmas 3.1 and 3.2 can be proved via standard wavelet estimators. Details
of the proof of these lemmas can be found in [8, p. 51]. As already mentioned, the diameter
of the localized parameter space equals the minimax rate of convergence (up to some
logarithmic factor) for the estimation of a first order derivative of a Holder continuous
function on the unit square with smoothness « = 3 (which is exactly the lower bound of
the smoothness for which our result (Theorem 1.1) holds). In general, this rate is (up to

logarithmic factors)
p—@/2=d/D)/(@+1)

where o is the smoothness of the functions and d is the order of the derivative that one
wants to estimate. Comparing this to the minimax rate for functions on the unit interval
we see, that the “effective smoothness” for functions on the unit square is or/2. This leads
to the conjecture that a sharp bound for the smoothness parameter in Theorem 1.1 is
a > 1, since for densities on the unit interval « > 1/2 is a sharp bound for a similar
equivalence result (cp. [12], Theorem 1.1).

With this lemma we can prove Theorem 1.1 similarly to the last theorem. Consider
the compound experiment Ff# where one observes

(G165, 0D, G265 D] s pegoap »

where h € ¥ and

1
dyi(s, f) = h'/?(s, Ndsdt + S0 = N 12w (s, 1)
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1
dya(s, 1) = hY2(s, ydsdt + ENJ/ 2dWa (s, )

holds. (W, and W; are independent Brownian sheets.) Similarly to Equation (3.1) we
have

lim A(F}, F¥) =o0. (3.2)

n—>00

By applying a sufficiency argument we see that Ff# is equivalent to a model where we
observe n i.i.d. stochastic processes, each of which is distributed according to

1
dy(s, 1) = h'/%(s, Hdsdr + 7AW, 0.

By the same sufficiency argument as before, this experiment is equivalent to F,, which
finally proves Theorem 1.1.

4 Proofs of Lemma 2.9 and Theorem 2.10
4.1 Coupling of likelihood processes

Remark 4.1 In this section we will often prove existence of absolute, positive constants.
By this we mean that these constants depend only on the quantities M, € and « from
Theorem 1.1 and thus hold uniformly over the set .

The main tool of the proof of asymptotic equivalence of the previously described
doubly localized experiments is the following theorem on a coupling of the Kiefer—Miiller
process and the sequential empirical process. Its proof is rather long and technical; we
refer to the thesis [8] for more details.

Definition 4.2 For g € L%([0,1],1), 8 > 0 let

(g, 8) = sup / (g(t) — gl + &)Y
0<|&|<é J[0,1)N[0,1]—&

For f € L*([0, 112, A%), 8,82 > O let

2 .
wy(f,81,82) == sup / [fQu, v) — flu+ &1, v)
0<&1=81 Juel0o.1]N[0, 1] —&
0= 8 =8y vel0, 11N[0. 1] - &

— fu, v+ &) + fu+ &, v+ £)Pdudv
@3(f,81,82) = sup sup f (f(s,v) — fs + &1, v + £2))%dv.
1] v
S |

0=<|6|=<3 € [0, €[0,1]1N[0,1]—

R e S
For the next definition we assume that a sum equals zero if its index runs from Q to —1.
(This convention is in force throughout the paper.)
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m My—1
ulf) =30 ) 22 s ojtfw, .27
r=1 i=0 uel0
m My—1M,—1

_|_Z Z Z 2/+; ( ”r2 G+D o= (1+1))

r=1 i=0 j_O

+ Zzwrwg( f,27Mr oMy

r=1
n | i 1
+;§/0 [f(;,t) —/O f(;,w)dw] dr
where
ny =2k k1 = [logy(n)]
ny = 2k ky = [logy(n — ny)]

M =2 k= logy (n = 205" )

andn =n1+ -+ np.
Forr € {1,...,m} let

log, (=
M, (y) ;= max [ |:£22(y_)} ,0}

and M = M(y) = (M1, ..., Mp)(y).
The following result holds:

Theorem 4.3 There is a probability space and for all n € N there exist versions of the
processes G, and K, on that space such that forallx > 0,y > Oand F C L*([0, 1], A?)
where || flloo < 1 forall f € F and #F < oo holds, we have

P (n'2]Ga(H) =17 2Ka ()] 2
> (logn)? (Ax + Bx2(y\2 4 C)(logn)3RM(f-)))
< D[#Fexp(—Gx) + nexp(—Gy)].

(A, B, C, D and G are positive, absolute constants and Ry(F) = ||Ru(f)|x and
I -llFr=maxser]|-|.)

In this section we will prove Lemma 2.9. Because of Remark 2.8 we will split the
experiments Eo ,(ho) and Ej ,(ho) into products of experiments, in which we have less
observations than in the original ones.
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More precisely, let k, := n'/2(logn)~10 and let ng € N be such that kn, = 1 holds.

For n > ng consider
A ]k_l k] k=1 [kn]
k= |——,—1, =1,...,
[kn] Tk "

ng = #Ar where Ay :={i/nli/n € Ax}.

Then it follows y,, = (n/kn)‘l/2 and foreach k € {1, ..., [k,]} we have nk_l/2 > %y,,.
Consider the doubly localized experiments
Definition 4.4
Eo.k,n(ho) : {yili/n € Ax), yi bnid, yi~h(/n,-),
EiknCho) : {yi®Dlt € [0, 1],i/n € Ax},
1
dyi) = (Mo G/, 0 f Mo i/, $)ds | di + AW (o),
0
Wi, ..., W, are again independent Brownian motions, k € {1, ..., [k,]} and h € T, (hg).

Let (Ajk,n (B, hohes, ho) (J = 0, 1) be the likelihood processes of these experiments.

Because of the independence structure, we have ®,Ek="]1 Ejintho) = Ejn(ho), j =
0, 1 where for experiments E; = (;, A;, (P, 0 € ®)) (i = 1,..., k), the product is
defined as follows:

k k k k
QR E:i = (@ Qi (X A:. (® Pig,0 € @)) .
=1 i=1 i=1 i=1

As already mentioned, we will use Theorem 4.3 to construct the likelihood processes
of Egkn(ho) and Ej n(ho) on a common probability space. In this way we obtain
a construction of the likelihood processes of Ey ,(ho) and Ej ,(ho), since these are the
products of the independent processes of the previous experiments.

The coupling has the desired approximation quality so we can estimate the Hellinger
distance of Eg ,(ho) and E1 , (ko) in order to prove Lemma 2.9.

The following lemma is the crucial step of the proof of asymptotic equivalence. The
Hungarian construction (i. e. Theorem 4.3) will be used here.

Lemma 4.5 There exists a constant K > 0 and on the probability space of Theorem 4.3
there exist versions A;k . Of the likelihood processes of experiments Ej r n(ho) such that
foralln e Nandallk € {1, ..., [k,]} we have

sup  sup HZ(AS.k’n(h, ho), A ;. (R, ho)) < K(n) " 'dogn)'8.
hoeX heX, (ho)
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Proof: With the mapping

ar: Ap —> [0,1]
I;;ll nj ng
f [ T + [7

and the definition Ap k(S £) 1= Ap po(ak(s), t) we can write the likelihood processes of
experiments Ey  ,(ho) and E1  ,(ho) as follows (cp. Equations (2.1) and (2.2)):

nk 1
Ao,k,n(ho) = exp (’l}(/ank (An,ho,k) + Z,/o Ah b,k (E/Rk, t)dt) “4.1)
i=1
and

1 & ,
Atkn(ho) = exp (Knk (An,hgk) — 3 ZVar(?»h,hO,k(l/ﬂk, Zi))) 4.2)

i=1

where the z;s are i. i. d. random variables on the unit interval.
For the construction of these processes we now use our coupling result. Therefore,

we set in Theorem 4.3
_{ Ah.hg.k }
| Ah kg koo

The first task is to estimate the term Ry (Ap,py,4) (cp. Definition 4.2).

The following lemma holds for functions Aj_p, « as well as Ay p,. Indeed they differ
only by the linear transformation a; and, therefore, they have the same smoothness
properties. Thus we write A hoho meaning Ay p, « as well as Ay p,. The proof follows easily
from the smoothness of the functlons

Lemma 4.6 There is a constant K| > 0 such that

sup  sup RM(Ahh ) < KiyF(logn)*.
hoeX heX,(hg)

1/2

Because of n, """ > % we can increase the diameter of the localized parameter space to

y,, := +/2n~1/2, By substituting n; by n we end up with the experiments Eo n(hp) and
E 1,n(ho) where the same objects as in Ep , (ko) and E1 ,(ho) respectively are observed.
A bound for the Hellinger distance of the likelihood processes of these experiments is
obviously (in view of the enlargement of the parameter space and the substitution) also
a bound for the likelihood processes of Eg . (ho) and E1 k.n(ho) for all k. Therefore, in
order to prove Lemma 4.5 we show that for Versmns AO n(h, hg) and A1 n(h, ho) of the
likelihood processes of experiments Eo n(hg) and E 1,n(hg) it holds

sup sup  H>(Aou(h, ho), Aia(h,ho)) < Kn"'(logn)!® vneN  (43)
ho€X he ¥, (ho)

for a constant K > 0 and for all n € N. Obviously, Lemma 4.5 follows directly from this
inequality.
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Proof of Inequality (4.3): For simplicity of notation, we write A instead of A4, ;. From
Theorem 4.3 with the choice F = { ﬁ; l we get forall x, y > 0

Dlexp(—=Gx) + nexp(=Gy)]

= P(n'(Gu(pz) —n ™Kl

> (logn)*[Ax + Bx'/>(y'/? + C)(log n)3RM(m)])
- P(nl/zlan(x)—n-l/an(x)|

> (logm)[Ax|[Alloc + Bx'/2(y'/2 + C)(log n)* Ry (1] )
> P(n'?Gu0) —n K1)

> (logn)2[Ax7y + Bx'/2(y!/2 + C)(logn)* D7)
(Because Ry (L) < Dy,(logn)3/? and ||Alleo < DPn.)
Now we choose
y =G (x + logn), 4.4)

thus we get i) exp(—Gy) = exp(—x)n~! and ii) x'/2y!/2 < Exlogn (for an absolute
constant £ > 0 and only for x > | and n > 3).
Forall x > 1,n > 3 and G := min{1l, G} we therefore have

2D exp(—Gox) > P (n‘/2|6,,(x) —n 2K, (0] = (1ogn)8Fx5;,,) 4.5)

(whe£e F = A+ BED + BCD). Recall the likelihood processes of experiments ’Eo,,,(ho)
and E; ,(ho):

n 1
Kon(h, ho) = exp (n'/zf;nm + f AGi/n, t)dz)
i=1 0

~ 1<
Ay.n(h, ho) = exp (Kn(k) —3 21: Var(A(i/n, m))) .
=
(Where the z;s are i. i. d. random variables on the unit interval.) Furthermore, we consider
the following process

n 1
Ain(h, ho) := exp (K,,(A) +y /O AGi/n, t)dt) .
i=l1

Although this is not a likelihood process of any experiment (as its expectation is not equal
to 1), we can compute its Hellinger distance to the previous processes. We will proceed
as follows: There exists a constant K1 > 0, such that uniformly over z and ho we have

H*(Ro.n(h, ho), Asn(h, ho)) < Kin~'(logn)'® ¥neN. (4.6)
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As we also have H(Ag n, A1.n) < H(Agn, Aon), inequality (4.3) follows immediately
from the triangle inequality. m|

Consider the space L%(2, A, P) of real-valued random variables. Let H. (K#, " A 1.7)
be the distance between (A#,,)"/2 and (A|.,)"/? in that space.
Because of
A = (Bpn) 2 (ERy )V,

A 1.n 18 the orthogonal projection of K#,,, on the unit sphere.~ Therefore, (7\1,,,)‘/ 2 is the
element on the unit sphere that has the smallest distance to (A ) 1/2 and thus we get

H(K#,na Kl,n) =< H(K#,n, KO.n)-

Proof of Inequality (4.6): Let u,, = 2(log n)9(GLO7,,) (with the constants from Inequal-
ity (4.5)). We define the event

A= o 0260 — Kn(W)| < un)
and we split the expectation
H*(Kon, Ay.n)
~ ~ 2
= Ep([Aonl"? = [Apal"?)

~ ~ 2 ~ ~ 2
Epla([R0.n1"? = [Agn]"?)" + Epl o ([A0n]"? — [Agnl'?)
= L1+ .

(From now on, we will omit the parameters i and h¢ in the notation.)

Estimation of /;: By a change of measure, we get

~oN\12 2 ~ N\1/2 2
Iy = Eply <(—i\#’") - 1) Ao = EPo,n lg ((—é#'") - 1)
Ag.n Ao.n

(where dPy , = 1~\o‘,,dP). Now we have

NNV -
(A#,n) ” 1 = ex (Knm—n‘/zcnm) —1

KO,n

On the event A it holds R
[n'2G(0) — Ka(W)| < tn.

For all n € N we have therefore on the event A

- oN1)2 2
((ﬁ*") ~ 1) < Ciu,
AO,n

Iy < Cruj = Ko(7n)* (logn)'® = 2Kon ™! (logn)'®.

and thus
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Estimation of /»:

Elzc([Ron)"? - [IA\‘#,n]l/z)2 < Elsc(Non + Aun)
(PLASYERo ) + (PACYE(Rs 0)?)

I

IA

(from the Cauchy—Schwarz inequality). There is a constant K > 0 such that
a) E[(Ron)’] <K
b) E[(Asn)?] < K.

a)Forz; : [i.i.d.] ~ U[O, 1]:

E(Ko.n)? = Eexp (22)\(;‘/;1, z,—)) =[] Eexp@rii/n, z)),

i=1 i=|

and

1 1
E exp(2(i/n, 2)) = / (0(0)dt = 1 + / (¢() — 1)%dr,
0 0

(for p() = exp(A(i/n, 1)), since fol @(H)dt = 1). Because of |A(i/n, t)| < KoV, we get
directly

(o) —1)* < K1()* 4.7
and thus we get E(Ag )% < (1+ %)n <2exp(Kp) =: K.
b) Because of K, (A) ~ N (0, Y1, Var(A(i/n, z;))) it follows:
Eexp(2K,(1)) = exp (ZZVar()»(i/n, Zi)))
i=1

= E(Ain)? = Eexp (2 [K,,(x) —~ %ZVar(k(i/n, Zi))i|>

i=1

exp (Z Var(A(i/n, Zi))) = nexp (Var(A(i/n, z;))) .

i=1 i=1
Furthermore we have Var(A(i/n, z;)) < l]k[lgo < KQ(T/’,,)2 = Kln*', such that
E(A1,0)* < exp(Kin™!)" = exp(K1) =: K.

From K#,n = 1~\1‘,,EK#,,, we get

E(A$ )% = E(A1 )2 (EAu0)?.
N e’

<K3
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The proof of b) follows from
nooel
EAsn = Eexp(K,())exp (Z / AGi/n, t)dt)
i=10

n n 1
exp (% ZVM()‘(i/n'Zi))> H/O exp(2A(i/n,t)dt))l/2
i=1

<
i=1
< Ko < K
S—— ——
(as above) (asina)
And i) follows easily:
~ 1/2 ~ 1/2
I < (PAS) E(R1 2)?) " + (P(AC) E(R 0)?) .
—_—— —_————
<K =K
Ini . _ _ 2logn C -2
n inequality (4.5) we set x = x, = To and we get P(A%) < 2Dn™* and thus, (4.6)
follows. 0

Note that in inequality (4.5) n > 3 and x > 1 are assumed and fulfilled here. Finally,
we proved Lemma 4.5. O

Lemma 4.5 leads us directly to Lemma 2.9:

Proof: From Lemma 2.7 it follows that for all # € X and n € N we have

sup  sup HZ(Aan (h, ho), AT ,(h, ho))

ho€ T he Ty (ho)
[kn 1 [kn ]
= sup sup H° HAS,k,n(h’hO)’n 1k (hs o)
hoeX heX, (hy) k=1 k=1
[kn)
< 2sup sup Y H?(A},,(h ho), AT ,(h, ho))

hoeX heXy,(hg) k=1

IA

K[kn]nz' (logn)'®

(from Lemma 4.5 for ake {1, ..., [ks]}). We had

L k—1 &k
nkz#{l/n.t/ne}—[kn] ,m]}

and thus we get forall k € {1, ..., [k,]} and n large enough:

Il n n 1 .,
~ > =ZVn -
2[kal = 2kn 2

ng =
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Thus we have nk_' < 2y,% and
sup sup H*(A},(h, ho), A} ,(h, ho)) < 2Kkny, (logn)'®
hoeX heZ, (hgy)
= 2Kny*(logn)'® = 2K(logn) X (logn)'® = 2K (logn)™2 — 0
for n — oo, which finally proves Lemma 2.9. O

4.2 Further local approximations for the experiment E; ,(ho)

In this section we will prove Theorem 2.10. In addition to the experiments already
introduced, let

E¥ (ho): dyi(t) = (h”—o —1)(i/n, Py Gi/n, 1))dt + dW;(0)
1/2 . 1.

Ef (ho) : dyit) =2((£)'"? = 1)(i/n, Py /n, )dt + dW; ()

Ef,(ho) s dy(s, 0 =2[ ()" = 1](s, Py s 0)dsdr -+ ™1 2aW(s, 1
where ¢t € [0, 1], (s, 1) € [0, 1]2,1' =1, ..., n; furthermore, Wy, ..., W, are independent
Brownian motions, W is a two-dimensional Brownian sheet and for each experiment let
h € X, (hp).

Lemma 4.7 Fori = 2,3 we have

A(Et#n (ho), Ei,n(ho)) =0.

This can be easily shown as the transformations
t
W (1) = f hg 2(i/n, HA(W; o Po(i/n, s))
0

are also independent Brownian motions.

Proof of Theorem 2.10: In view of Lemma 4.7 and the triangle inequality it suffices to
prove that uniformly over zg € ¥ the following holds:

A(Evn(ho), E5 ,(ho)) — 0 (4.8)
A(Evn(ho), E§ ,(he)) — 0 (4.9)
A(Fy(ho), Ean(ho)) —> 0O (4.10)
A(E3 n(ho), Fa(ho)) —> 0 (4.11)

forn — oo.

Proof of Relation (4.8): In the sequel we omit the subscript of the function Ay p,. With
Facts 2.3 and 2.5 and Lemma 2.7 we have
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A(El,n(h0)7 Eg,n(hO))

< sup H*(Apn(h, ho), A} (R, ho))
heZy (ho)

n 1
sup 222<l—exp|:—%uk(i/n,-)—/o A(i/n, $)ds

heTutho) 5
h . 1. 2
(&) onf])

Consider the Taylor expansion of the logarithm

IA

1
logl+@x—1)=x—-1-— E(e)(x —1))?
for some 6 € [0, 1]. For x := 7= (i/n, Py (i/n, 1), we get

AGfn, 1) = log:—o(z’/n, Py ' (i/n, 1)
= (" Y m PG Vol 2 — 1] (i/m P26 ’
= (h_o_ )(l/n, 5 (t/n,t))—§< [%— ](z/n, 0 (l/n,t)))

hence
1

. h . _1,.
/ Ai/n, s)ds — (— — 1) (i/n, Py (i/n, ))“
0 ho

”k(i/n, )=
2
|
+ '/ A(i/n, s)ds
2 0
=:B

< Hx(i/n, ) - (h% - l)(i/n, Py i/n, )

=:A

2

|
A? = ]0{x(i/n,z)—(hio—l)(i/n,PJI(i/”’f))} de

1 2\ 2
Ho (2 _ (i/n, Py (i/n, D) | ) at
/0 21" ho Y To '

(where 6; € [0, 1]forall £ € [0, 1])

lfl (—h— - 1)4 (i/n, Py ' (i/n, 0)dt < Ky,
4 Jo \ho o ’ G

=(h—ho)*/h{

(since ho > € forall h € T). For proving B < Ky? we set ¢(t) = :—O(i/n, PO'1 (i/n, ).
We get A(i/n, £) = log(e(t)) and fol @(Hdt = 1. Since due to inequality (4.7) there exists
a constant Ko > 0, such that [p(f) — 1| < Koy, holds, we get from the Taylor expansion
(for 6; € [0, 1])

1
mywm=¢m—1—§@wm—nﬂ
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Thus

1
‘ /0 log(p(6))dt

1 1 !
‘/ (p(0) — l)dt_if O (p(t) — 1)%dt| < Ky
0 0
=0

Now, the proof of (4.8) is easy:

K 4
A(E\n(ho), E} ,(ho)) < 4n(1 — exp ( - —g—)) < Kiny, = Ki(logn) ™ — 0
(by the Taylor expansion of exp(x) and for n — 00). O

Proof of Relation (4.9): Again, according to Facts 2.3, 2.5 and Lemma 2.7 we have to
show that

2
<Ky} 4.12)
2

a2
“k(i/n, ) —2[<h—) - 1](i/n, Py, )
0

holds.
Again, we use the Taylor expansion of the logarithm and get

Anho(i/n, 1)

= 2log I:(h%)]/z(i/n, Po_l(i/n,t))]
2

h 1/2 | T h 1/2 .
2[(%) —I:I(i/n,PO" (i/n, 1)) —6 [(%) —1] (i/n, Py (i/n, 1)

for some @ € [0, 1]. Because of 4, hg > € we have {(E”B)l/2 - 172 < —\/l—g ,f’—o — 1| and
thus

Il

2

h 1/2
Nx(i/n, D — 2<%> (i/n, Py G/n, )

2

h 1/2 2 . L 2
() o]
! (ﬁ - 1)2(i/n, Py (i/n, ) 2 < Koyj
€\ ho )
which proves (4.9). O

Proof of Relation (4.10): Recall that

Esn(ho):  dy(s,0) =log (h(s, Py (s, 0)))dsdt + n~ /2 aW(s, 1)
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where (s, 1) € [0, 11?2 and h € T, (ho). We proceed as before, i. . let
1/2
Ej,:  dys,p= 2[(}1—) —~ 1}(& Py ' (s, 1))dsdt + n2aw(s, ).
' 0
According to Fact 2.6, in order to prove

sup lim A(E4n(ho), Ef ,(ho)) =0,

hoex P00

it suffices to show that

h h 1/2
log (%(s, Py, t))) - 2[(;;_0) — 1](s, Py (s, )

holds uniformly over hp € ¥ and for n — oco. The proof is exactly the same as the one
for Inequality (4.12).
For the experiment

2
— 0
2

n

- I
Futhoy:  dy(s,0) = (h'/? — n/*)(s, ndsdr + s~ AW, 1

we obviously have A(F, (ho), E,(ho)) = 0.
As

s t
W*(s, 1) == / / hy ' (u, vdW(u, Po(u, v))
0 JO

is again a Brownian sheet, the likelihood processes of Ef’n(ho) and I:il(h, ho) have the
same distribution which proves (4.10). ad

Proof of Relation (4.11): It remains to show that E3 ,(ho) and F; (ho) are asymptotically
equivalent uniformly over kg € X. This result holds even globally and thus we omit the
localizing notation (hg) for all experiments. The idea is to discretize experiment F, (hg)
and it was first applied by Brown and Low (cp. [1]):

Consider another experiment

_ 1
Fy: dya(s, £) = h?(s, H)dsdt + S dW(s. )
where
i—1 i

hp(s,t) ;= h(i/n,t) for se€ ]T, —].

n

Then we have lim,_, 0o A(Fy, F,) = 0 as can be shown by computing the L? distance of
hand h,. As

I(y) := (n[y(1/n. 1) = ¥(0, Dlieo,1); - - -, nly(n/n, ) — y(n — 1/n, )lsef0,11)

is a sufficient statistic and as
_ - 12 i 1
TF,=E3,: dyi)=h —,t)dt + EdW,-(t)
n
we have shown (4.11). a

Now the proof of Theorem 2.10 is finished. a
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