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Abstract

The idea of approximating a sequence of statistical experiments by a gaussian family
goes back to Wald (1943), but has been fully developed by Lucien Le Cam, who intro-
duced the term “local asymptotic normality”. This theoretical framework has become a
standard tool for proving efficiency of tests and estimators (in particular of the maximum
likelihood estimator) in an asymptotic sense. It suffices to note that the initial model is
approximately normal and thus inherits, in an asymptotic sense, the simple structure of
normal models. The passage to the limit in the sense of the whole model is stronger and
richer in consequences than the results on limit laws of various individual functions of the
sample which are consequences of the central limit theorem.

1 Basic definitions and first examples

In this article we try to give an elementary introduction to asymptotic theory of statistical
experiments, a theory closely associated with the name of Lucien Le Cam (see [15], [16]).
Furthermore, we discuss related developments in nonparametric statistics that have recently
expanded the scope of applications of this theory.

The basic object in statistics is a family of laws (Pϑ, ϑ ∈ Θ) on a measurable space (Ω,A).
This structure could be called a statistical model; but we will use the term statistical exper-
iment. An experiment P is defined as a collection

P = (Ω,A, (Pϑ, ϑ ∈ Θ)).

We observe a random variable X defined on Ω distributed according to Pϑ; and the value of
ϑ is unknown. Because the measurable space is already subsumed in the definition of the law
Pϑ, we can write P = (Pϑ, ϑ ∈ Θ).

Here is a direct quotation by L. Le Cam that nicely describes the starting point (see [13]):
En général, la famille P est compliquée. On voudrait alors l’approcher par une famille plus
simple.

The method used to choose a “simpler” family is provided by the sufficient statistics. These
allow one to reduce the data dimensionality in a general sense by a specified transformation
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without loss of information. Let us begin with one of the most elementary examples in which
we can find a sufficient statistic. In the following, a n-sample is a vector of i.i.d. observations.

Example 1 (Normal n-sample location family) Let Xi, i = 1, . . . , n, be independent
N(ϑ, 1). The sample mean X̄n is a sufficient statistic. The law of X̄n is L(X̄n) = N(ϑ, n−1).

In this case, the initial experiment is given by the family of joint distribution of the n-sample,
ϑ being unknown (ϑ ∈ Θ say, with Θ ⊂ R). If one observes only the value of the sufficient
statistic X̄n, one is dealing with its family of distributions N(ϑ, n−1) which depends on the
unknown parameter ϑ, as does the family of distributions of the entire sample. Thus we obtain
two experiments indexed by the same ϑ. If we believe that a sufficient statistic contains all
the information available about ϑ, we are led to the intuitive notion of equivalent experiment.

Proposition 1 Suppose that Θ ⊂ R. Then the experiments given by the observations

Xi = ϑ+ ξi, i = 1, . . . , n, ξi ∼ N(0, 1), independent, ϑ ∈ Θ

Y = ϑ+ n−1/2ξ, ξ ∼ N(0, 1), ϑ ∈ Θ

are equivalent.

The exact definition of equivalence will be given later. For now, we will settle with the
intuitive notion that the two experiments contain the same information about ϑ.

Example 2 (Normal n-sample scale family)
Let Xi, i = 1, . . . , n, be independent N(0, σ2). The sample variance S2

n = n−1Σn
i=1X

2
i is a

sufficient statistic. S2
n is distributed as n−1σ2χ2

n, where χ2
n is a chi-square random variable

with n degrees of freedom.

Suppose that the unknown parameter σ2 satisfies that σ2 ∈ Θ, where Θ ∈ (0,∞). Here the
reduction in the dimension of the model took place, but we could try a further simplication,
wondering if the family of laws L(n−1σ2χ2

n), σ2 ∈ Θ could admit an extra simplication
through the central limit theorem. Indeed, it can

√
n(S2

n − σ2) L=⇒ N(0, 2σ4). (1)

If the law of a sufficient statistic has a normal limit law, as is the case here, one is tempted to
conclude that also the family law (initial experiment) converges to a Gaussian experiment.
We would rewrite (1) as

S2
n ≈ N

(
σ2, 2σ4

)
(2)

without specifying the relation ≈, and the experiment would limit the family(
N
(
σ2, 2σ4

)
, σ2 ∈ Θ

)
. (3)

However, since this convergence in law is a weak convergence, we need a stronger version of
(1). Recall that the total variation distance ‖·‖TV of the laws P,Q is defined as

‖P −Q‖TV = 2 sup
A mesurable

|P (A)−Q(A)| =
∫
|p− q| dµ
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where p, q are the densities with respect to µ of P and Q, respectively. It is well-known,
under certain regularity conditions, that the central limit theorem applies to the stronger
sense of total variation (cf. van der Vaart [22], 2.31). Let us explain why. In our case the
law χ2

n is continuous and very regular, so the distribution of
√
n(S2

n − σ2) admits a density
function. Since this law converges itself to the law of N(0, 2σ4), it is natural that the density
also converges. For densities, the central limit theorem is known as the local limit theorem.
If this theorem is applied point by point (pointwise?) for a sequence of densities, it follows
by Scheffé’s lemma that for the two densities (pσ,n and qσ, say), we have∫

|pσ,n − qσ| → 0, as n→∞,

and therefore, for the total variation distance,∥∥L(
√
n(S2

n − σ2))−N(0, 2σ4)
∥∥
TV
→ 0, as n→∞.

The application (mapping?) x 7→ n−1/2x+σ2 is measurable and bijective. As a consequence,∥∥L(S2
n)−N(σ2, 2n−1σ4)

∥∥
TV
→ 0, as n→∞.

For an additional argument, we deduce that this convergence is uniform on any parameter
set of the form σ2 ∈ Θ ⊂ (a, b), a > 0.

Thus, the law of the sufficient statistic converges in total variation, uniformly. Since the
normal approximation can be made for all the events, uniformly on the unknown parameter,
it is legitimate to describe the initial experiment with a normal law (asymptotically).

Hence, we can formulate the concept of asymptotic equivalence as follows: it is a comparison of
experiments intended to contain asymptotically, as n→∞, the same amount of information
about the unknown parameter σ2. Clearly, if we want to clarify the precise meaning of the
foregoing, it will be closely related with a concept to define asymptotic sufficiency.

Proposition 2 Suppose that σ2 ∈ Θ ⊂ (a, b), a > 0. Then the experiments given by the
observations

Xi = σξi, i = 1, . . . , n, ξi ∼ N(0, 1),independents, σ2 ∈ Θ

Y = σ2 + n−1/2
√

2σ2ξ, ξ ∼ N(0, 1), σ2 ∈ Θ

are asymptotically equivalent.

Since we want the simplest approximation of the initial experiment, the second model above
is not entirely satisfactory. Although normal expectation of σ2, the second experiment is
heteroskedastic, that is to say that the variance will also depend on σ2.

For all the problems of statistical inference, a homoscedatic Gaussian model would be prefer-
able. To obtain homoscedasticity, we used a procedure to stabilize the variance. Remember
the principle of this idea well known in statistics. Returning to equation 1 and note that for
a regular function g (twice differentiable, say), it leads

√
n(g(S2

n)− g(σ2)) L=⇒ N(0, 2σ4(g′(σ2))2). (4)
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The function g(x) = log x has derivative g′(x) = x−1; we obtained

√
n(logS2

n − log σ2)) L=⇒ N(0, 2n−1),

and we could rewrite (2) as
logS2

n ≈ N
(
log σ2, 2

)
. (5)

In this case, S2
n 7→ log(S2

n) is the transformation for stabilizing variance. This simple rea-
soning is good for the convergence in law, to justify at the level of experiences, we must use
convergence in total variation.

Proposition 3 Suppose that σ2 ∈ Θ ⊂ (a, b), a > 0. Then, the experiments given by the
observations

Xi = σξi, i = 1, . . . , n, ξi ∼ N(0, 1), independent, σ2 ∈ Θ

Y = log σ2 + n−1/2
√

2ξ, ξ ∼ N(0, 1), σ2 ∈ Θ

are asymptotically equivalents.

With the second experiment above was pushed further simplification, by obtaining a simple
Gaussian model of translation. But the disadvantage now is that the unknown parameter (the
average) is not the original σ2, but the transformed log σ2, which makes it more complicated
procedures such as statistical estimation of σ2. However, this reduced model is not without
interest, and is the main subject of this presentation.

Example 3 (Poisson n-sample) Let Xi, i = 1, . . . , n be Poisson Po(ϑ). Again, the sample
mean X̄n is a sufficient statistique.

By the central limit theorem, we have

√
n(X̄n − ϑ) L=⇒ N(0, ϑ). (6)

Here, however, convergence in total variation does not hold because the law of L(X̄n) is
discrete (we have L(nX̄n) = Po(nϑ)). But from what we know about the limit theorems,
convergence in total variation could take place after appropriate smoothing. This idea leads
us reasonable to reconsider the concept of statistical equivalence.

Recall the equivalence of Example 1 (n-sample Gaussian by sufficient statistic): set Pn,ϑ =
L(X1, . . . , Xn) and Qn,ϑ = L(X̄n) = N(0, n−1ϑ). Moreover, Pn,ϑ(·|X̄n = x) is the conditional
distribution of (X1, . . . , Xn) given X̄n. According to the definition of a sufficient statistic,
Pn,ϑ(·|X̄n = x) does not depend on the parameter ϑ so to speak.

Pn,ϑ(A|X̄n = x) = Pn,·(A|X̄n = x) (7)

for any Borel set A of Rn. But regardless of completeness, in this very regular conditional
law may be chosen as the Markov kernel (transition function).

Kϑ(A, x) = Pn,ϑ(A|X̄n = x)
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to restore the law Pn,ϑ from the law Qn,ϑ; if the mapping Kϑ : Qn,ϑ 7→ KϑQn,ϑ is defined as

KϑQn,ϑ(A) =
∫
Kϑ(A, x)Qn,ϑ(dx) =

∫
Pn,ϑ(A|X̄n = x)Qn,ϑ(dx), A ∈ A,

so we have KϑQn,ϑ = Pn,ϑ. The sufficiency (7) implies that the kernel Kϑ can be chosen
independently of ϑ; so there exists a Markovian kernel K such that

KQn,ϑ = Pn,ϑ for all ϑ ∈ Θ. (8)

Regarding the converse relationship, it is clear that there is a another Markovian kernel K ′

which yields Qn,ϑ from Pn,ϑ. Let X = (X1, . . . , Xn) and consider the non-random application
t(X) = X̄n; the trivially defined Markovian kernel

K ′(B, x) = 1B(t(x))

for all Borelian B of R is one the satisfies that

K ′Pn,ϑ(B) =
∫

1B(t(x))Pn,ϑ(dx) =
∫
B
Qn,ϑ(dx) = Qn,ϑ(B).

We therefore have
K ′Pn,ϑ = Qn,ϑ for all ϑ ∈ Θ. (9)

The two relations (8) and (9) which are satisfied within the framework of a sufficient statistic
inspire the following definition

Definition 1 (∆-distance of Le Cam) Let P = (Pϑ, ϑ ∈ Θ) and Q = (Qϑ, ϑ ∈ Θ) be
two experiments indexed by the same parameter Θ, but possibly with different sample spaces.
The deficiency of P with respect to Q is

δ(P,Q) = inf
K

sup
ϑ∈Θ
‖Qϑ −KPϑ‖TV

(inf is taken over all the Markovian kernels) and the ∆-distance is

∆(P,Q) = max(δ(P,Q), δ(Q,P)).

This is a simplified definition, which is valid under the following conditions of regularity. For
both experiments, P = (ΩP ,AP , (Pϑ, ϑ ∈ Θ)) (resp., Q = (ΩQ,AQ, (Qϑ, ϑ ∈ Θ))), space
observations ΩP (resp., ΩQ) is a Polish space (separable metric space and complete) and
AP (resp., AQ) is the corresponding Borelian. In addition, the family (Pϑ, ϑ ∈ Θ) (resp.,
(Qϑ, ϑ ∈ Θ)) is dominated by a σ-finite measure. If these conditions are not satisfied, the
definition involves more abstract objects as generalized Markov kernels (cf. Le Cam [15],
Chap. 2.3 or van der Vaart [23], Chap. 8).

In examples 1-3, if P = (Pϑ, ϑ ∈ Θ) is the family of origin, T is a sufficient statistic and Q =
(Qϑ , ϑ ∈ Θ) is the family Qϑ = L(T |Pϑ), then we have ∆(P,Q) = 0. The latter relationship
is interpreted as the equivalence of experiments (in strict sense).

Definition 2 Supppose that Pn = (Pn,ϑ , ϑ ∈ Θ) and Qn = (Qn,ϑ, ϑ ∈ Θ) are two sequence
of experiments, indexed by n, and such that the space of observations can also depend on n.
The sequences Pn,Qn are asymptotically equivalent if ∆(Pn,Qn)→ 0.
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To clarify the statistical significance of the deficiency, recall the classical setting of decision
theory. For a parameter space Θ and a measurable space of decisions (E, E), W : E × Θ 7→
[0,∞) is a loss function such that for all ϑ ∈ Θ, W (ϑ, ·) is measurable with respect to E. A
decision rule in the randomized experiment P = (Ω,A, (Pϑ, ϑ ∈ Θ)) is a Markovian kernel
t(·, ω) which associates to each ω ∈ Ω a probability measure on (E, E). The risk of t at ϑ is
defined as

rt(ϑ) =
∫
W (e, ϑ)t(de, ω)Pϑ(dω).

Proposition 4 (Characterization of deficiency) Two experiments P,Q satisfy the rela-
tion δ(P,Q) ≤ ε if and only if for all ε > 0, for all decision problem with loss function W
such that 0 ≤W ≤ 1, for all decision function t avaiable in Q, there exists a decision function
t∗ available in P such that

rt∗(ϑ) ≤ rt(ϑ) + ε, ϑ ∈ Θ

(the decision rule t∗ is as good as t, ε near).

Note that this characterization concerns the deficiency δ(P,Q) of P with respect to Q and
that δ is not symmetric. Therefore, if the symmetrized expression (the Delta-distance) is
such that δ(P,Q) ≤ ε, then the risk found in Q are also available in P, ε close, and vice
versa.

Let’s go back to the Example 3, where the law of the sufficient statistic X̃n = nX̄n =
∑n

i=1Xi

is a Poisson distribution Po(nϑ). First, in (6), we would deduce an approximation by Gaussian
experiment

X̄n ≈ N
(
ϑ, n−1ϑ

)
. (10)

This experiment, however, is heteroscedastic. Here, the function g(x) = x1/2 is a variance
stabilizing transform since, in analogy with (4), we obtain g′(x) = (4x)−1/2 and as a conse-
quence √

n(g(X̄n)− g(ϑ)) L=⇒ N(0, ϑ(g′(ϑ))2) = N(0, 1/4).

Thus, we could rewrite (10) in the form

X̄1/2
n ≈ N

(
ϑ1/2, (4n)−1

)
, (11)

and thus obtain a simple Gaussian approximation, it remains to establish the same result in
the strong sense of Markovian kernels. The most elegant method fot this has recently been
obtained in [2], Theorem 4. Let U be a uniform random variable on [−1/2, 1/2), independent
of X̃n. We set

Zn = sgn
(
X̃n + U

)√∣∣∣X̃n + U
∣∣∣ (12)

and we show that ∥∥∥L(Zn)−N((nϑ)1/2, 1/4)
∥∥∥
TV
≤ C(nϑ)−1/2

where C is independent on ϑ and n. Here, the Markovian kernel is given by the operation
“smoothing” X̃n 7→ X̃n + U which is also invertible: the value of X̃n + U is identified with
that of X̃n which takes integers values. Therefore, we obtain two kernels K, K ′ which are
converging to 0 in both deficiencies δ(P,Q) and δ(Q,P).
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Proposition 5 Suppose that ϑ ∈ Θ ⊂ (a, b), a > 0. Then the experiments given by the
observations

Xi, i = 1, . . . , n, Xi ∼ Po(ϑ),independent, ϑ ∈ Θ

Y = ϑ1/2 +
1
2
n−1/2ξ, ξ ∼ N(0, 1),ϑ ∈ Θ

are asymptotically equivalent.

Similarly in Proposition 3, the approximation is obtained by a Gaussian translation experi-
ment, the parameter here, however, is ϑ1/2.

2 Parametric model: Local Asymptotic Normality

Let Pn = (Pn,ϑ, ϑ ∈ Θ) be a sequence of regular parametric models, Θ ⊂ Rk, generated by n
equally distributed independent variables, in which Pn,ϑ is a product law Pnϑ . Suppose that
the the maximum likelihood estimate ϑ̂n satisfies that

√
n(ϑ̂n − ϑ) L=⇒ Nk(0, J−1

ϑ ),

where Jϑ is the Fisher’s information matrix at the point ϑ. Often the MLE is a sufficient
statistic, or at least sufficient in an assymptotic sense. From what we saw (cf. (2), (3), (10)),
one is tempted to seek an approximation of the experiment Pn by the family(

Nk(ϑ, n−1J−1
ϑ ), ϑ ∈ Θ

)
(13)

which is a Gaussian heteroskedastic experiment, generalizaing that of Proposition 2 (for Y ).
This idea was developed by Le Cam, who also reported that the approximation (13) is not
attractive from the standpoint of decision theory. Indeed, the presence of the parameter ϑ in
the covariance matrix and the structure of J−1

ϑ , ϑ ∈ Θ, essentially arbitrary, do not allow us
to consider (13) as a simplification.

2.1 The local method

A more promising approximation is provided by the local method. We consider a limited series
of experiments where the parameter ϑ varies only in a neighborhood Θn(ϑ0) of a known value
ϑ0, and where the diameter of the neighborhood is on the order of n−1/2. A such restriction
may be justified by two arguments: Firstly, for each decision rule, the risk on the restricted
set of parameters Θn(ϑ0) provides lower bounds for the not restricted experiments. Moreover,
these lower bounds are often reasonable because ϑ0, which is supposde to be known, may be
replaced by a prior estimator that would identify the true ϑ with an accuray of about n−1/2.
Therefore, choose ϑ0 ∈ Θ (localization center) and let ϑ = ϑ0 + n−1/2h, where h is a local
parameter. We have then for all compact K ⊂ Rk

√
n(ϑ̂n − ϑ0) L=⇒ N(h, J−1

ϑ0
), h ∈ K . (14)
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Here, if ϑ0 is assumed known and ϑ̂n is complete, was again a result of complete statistics
which converges in distribution to the family(

N(h, J−1
ϑ0

), h ∈ Rk
)
. (15)

Such a family of Gaussian translation offers all the benefits of simplicity. In order to obtain
a lower bound of the risk in the estimation of ϑ, we make a change of variable accordingly:
For the risk and the quadratic estimator ϑ̃n of any ϑ we have that

n Eϑ

(
ϑ̃n − ϑ

)2
= n Eϑ

(
ϑ̃n − ϑ0 + n−1/2h

)2
= Eϑ

(
n1/2(ϑ̃n − ϑ0)− h

)2

= Eϑ

(
h̃n − h

)2
(16)

where we set h̃n = n1/2(ϑ̃n − ϑ0); h̃n is interpreted as an estimator of h.

It remains to prove rigorously the convergence of the localized and restricted experiment to
the Gaussian limit(15). For this, Le Cam has developed a direct method from the weak
convergence (14), by Markov kernels which is similar to smoothing (12) (see [15], section
11.8, also M(̈u)ller [17] for a comparison).

2.2 The Likelihood Processes

Another method, much more efficient, is based on the deep connection between the equiv-
alence of experiments and the likelihood processes. The latter is defined as follows. Let
P = (Pϑ, ϑ ∈ Θ) be a family defined on (Ω,A), dominated by one of its elements Pϑ0 , where
ϑ0 ∈ Θ. The density Λ(ϑ)(ω) = dPϑ/dPϑ0(ω) generates a random variable Λ(ϑ), if the
argument ω follows the law L(ω) = Pϑ0 . The set of random variables

ΛP = (Λ(ϑ), ϑ ∈ Θ)

all of them defined on the probability space (Ω,A, Pϑ0) form a stochastic process indexed by
ϑ, which is called the likelihood process of the experiment P. The law L(ΛP) of this process
is the set of finite marginal laws. Another key result of Le Cam is: if ΛP and ΛQ are the
likelihood processes associated with the experiments P, Q, then we get

∆(P,Q) = 0 if and only if L(ΛP) = L(ΛQ). (17)

To explain this result in heuristic, note first that the process ΛP is a sufficient statistic. To
be more precise, if ω is the data, we define a statistic T (ω) with values in a high dimensional
space as whole

T (ω) = (Λ(ϑ)(ω), ϑ ∈ Θ)

(this takes values in the space RΘ). According to the factorization criterion of Neyman, if gϑ
is the projection RΘ 7→ R whose value is the corresponding coordinated of ϑ, we have

Λ(ϑ)(ω) = dPϑ/dPϑ0(ω) = gϑ (T (ω)) ,

and as a consequence T is sufficient. The familly of laws

(L(T |Pϑ), ϑ ∈ Θ)
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is an equivalent experiment to P. It suffices to remark that this family is already determined
by one of its elements, i.e. L(T |Pϑ0) = L(ΛP). Now we have for each bounded measurable
function h which only depends on a finite number of coordinates h

Eϑh(T ) = Eϑ0h(T )
dPϑ
dPϑ0

= Eϑ0h(T )gϑ (T ) ,

which is a functional of the law L(T |Pϑ0). We have thus proved (17) loosely, assuming that
the family P is dominated by one of its elements. The criterion (17) suggests a similar
approximating result

∆(Pn,Qn)→ 0 if and only if L(ΛPn)
L
≈ L(ΛQn) for n→ 0 (18)

where the relation
L
≈ means approximation in law, we will precise this concept. If a limit

experiment is designated as in (15), followingQn is constant and the approximation is reduced
to convergence in law.

2.3 Local asymptotic normality (LAN) in the case of an n-sample

In the case of independent variables, the convergence in law of the likelihood process can be
checked in the following way. First, the translation Gaussian model (15), takes the form

ΛQ(h) = exp
(
h>J

1/2
ϑ0

ξ − 1
2
h>Jϑ0h

)
where ξ is a standard Gaussian normal in Rk. In the family Pn = (Pn,ϑ, ϑ ∈ Θ), Θ ⊂
Rk, where Pn,ϑ is a product measure Pnϑ , we performed the localization ϑ = ϑ0 + n−1/2h
introducing the new local parameter h. Let fh be the density of Pϑ0+n−1/2h with respect
to the Lebesgue measure. In the regular cases where fh is differentiable at h, we obtain
fh/f0 − 1 ≈ n−1/2 and the log-likelihood can be written as

log ΛPn(h) =
n∑
i=1

log
fh
f0

(Xi) ≈
n∑
i=1

(
fh
f0

(Xi)− 1
)
− 1

2

n∑
i=1

(
fh
f0

(Xi)− 1
)2

L=⇒ h>J
1/2
ϑ0

ξ − 1
2
h>Jϑ0h (19)

by a sort of central limit theorem and a law of large numbers. The convergence in law from
ΛPn to ΛQ is the verified through the logarithm.

Recall that the Gaussian limit experiment (15) has been established in a local setting, around
ϑ0, assuming implicitly that ϑ0 can be estimated with an accuracy of order n−1/2. The theory
developed around the idea of Le Cam may be called the paradigm LAN (local asymptotic
normality). The scope of applications has been much more extensive than that of the inde-
pendent variables, see Strasser [21] Genon-Catalot and Picard [7] van der Vaart [22], Shiryaev
and Spokoiny [20].

The usefulness of this approach is limited in the non parametric case. Suppose that all Pϑ
are laws on [0, 1], that the family Pn of product laws Pn,ϑ = Pnϑ is parameterized by the
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Lebesgue density ϑ = f of Pϑ and that Θ is identified with a set of densities Σ of infinite
dimension. Again, the location around a central density f0 by f − f0 ≈ n−1/2 and the LAN
property is often possible. But typically the center f0 can not be estimated with precision
n−1/2, because the problem is ill posed (in the analytical sense). Indeed, for the empirical
distribution function F̂n we have

F̂n(t)−
∫ t

0
f(t)dt = Op(n−1/2)

but the mapping f 7→
∫ t

0 f(t)dt has no continuous inverse, so the speed of estimating n−1/2 is
not possible to f . Since the boundaries of risk was obtained through the LAN method based
on renormalization by n1/2 (cf. (16)), it follows that the LAN paradigm is not adequate to
estimate the overall density.

3 Non-parametric asymptotic equivalence

In the case of n independent variables equidistributed on R, the empirical distribution func-
tion F̂n is always a sufficient statistic. The starting point may be the central limit theorem
for this statistic:

√
n(F̂n(t)− F (t)) L=⇒ B ◦ F (t), for a Brownian bridge B.

First, we would derive an approximating Gaussian experiment similar to (10) and (13), which
now could take the form

dy(t) = f(t)dt+ n−1/2f1/2(t)dW (t), t ∈ [0, 1]

(“signal f observed in white noise”). But this heteroskedastic model is not valid in a statistical
sense (i.e. it is trivial) since the laws of the process y(t), t ∈ [0, 1] are orthogonal if f are
different. This effect is caused by the presence of the factor f1/2(t) in dW (t), that is to say,
in the diffusion coefficient. To solve this problem of heteroskedasticity, a stabilization of the
variance, similar to (11), would be desirable. In the case of (11) we have used the square
root transformation and now we could take into account the special role of the root density
f1/2 related to the Hellinger distance. This suggests as a valid Gaussian approximation of
the laws of family Pn a signal model with homoscedastic white noise where the signal is f1/2.

3.1 Approximation by a signal model with white noise

Taking the corresponding statement of the theorem (see [18]). Consider for α ∈ (0, 1), M > 0
a class of Hölder functions

Hα(M) = {f : |f(x)− f(y)| ≤M |x− y|α} . (20)

For α, M , and given ε > 0, define the parameter set

Σd(α,M, ε) = Hα(M) ∩ {densities on [0, 1], bounded from below by ε} .
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Theorem 1 Let Σ = Σd(α,M, ε) for ε > 0, M > 0 and α > 1/2 fixed. Then, the experiments
given by the observations

Xi, i = 1, . . . , n independent, with density f

dy(t) = f1/2(t)dt+
1
2
n−1/2dW (t), t ∈ [0, 1], (21)

where f ∈ Σ, are asymptotically equivalent.

The proof of this result depends on the relation (18) on the likelihood process, where it must

be clarified the concept of approximation in law
L
≈ for two sequences. For this we use the

coupling, that is to say, the construction of processes on the same probability space that are
close to each other in a metric sense. Markov kernels carrying the asymptotic equivalence
are not given explicitly, the method is very indirect. More recent work (Carter [4], Brown,
Carter, Low and Zhang [2]) have managed to redo the proof by exhibiting Markov kernels
that could carry out a smoothing of the empirical process as in (12).

It should be noted that a precursor of Theorem 1 for the parametric models has already
been shown by Le Cam in [14]. This is related to the densities of sets Σ which are finite
dimensional in the Hellinger metric. This case essentially boils down to that of a parametric
family of densities fϑ, ϑ ∈ Θ ⊂ Rk, and the model of white Gaussian noise (21) with signal
f

1/2
ϑ could be understood as a result of stabilization of the variance in (13). There are other

variants of the overall Gaussian approximation, see Pfanzagl [19].

A more immediate precursor of Theorem 1 was the result of Brown and Low [1] on the relation
between a template signal with white noise and its discretized version, that is to say with the
Gaussian nonparametric regression. Let f be a function on [0, 1] belongs to a class Hölder
Hα(M) (cf. (20)) where α > 1/2. Then the asymptotic equivalence occurs between the two
models

Yi, i = 1, . . . , n independent, with law N(f(i/n), 1)

dy(t) = f(t)dt+ n−1/2dW (t), t ∈ [0, 1].

The elegant proof of this result is based on the sufficiency of Gaussian models and it is
constructive in the sense of Markov kernels. Enfin, Brown, Zhang [3] have shown that for
Hölder classes, the bound α > 1/2 is true in Theorem 1 in the nonparametric Gaussian
regression above, giving counterexamples in the case α = 1/2. The case of non-Gaussian
regression has been discussed in [10], [11]. Moreover, it has been shown that the result of
Theorem 1 is reproduced in the case where the model of independent equidistributed variables
is replaced by a diffusion process (see [8]).

Let y(1), . . . , y(n) be n observations of a stationary Gaussian process such that Ey(1) = 0,
with autocovariance function

γ(h) = Ey(t)y(t+ h) =
∫ π

−π
exp (ihω) f(ω) dω

where f is the spectral density defined on [−π, π]. The function f is nonnegative, symmetric
(f(ω) = f(−ω)) and we suppose in addition that f ∈ L2[−π, π]. Again, we consider the
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nonparametric case, that is to say, we assume that f ∈ Σ, a class of regular functions of
infinite dimension. The traditional topics such as estimation of f , the speed of convergence
optimality etc. have been studied in detail. In addition, the property of local asymptotic
normality (LAN) was established in the parametric framework, see Davies [5] and Dzhaparidze
[6] where the Fisher information (the term Jϑ in (19)) is determined as follows. Consider a
family of regular spectral densities: fϑ, ϑ ∈ Θ ⊂ R: then

Jϑ =
1

4π

∫ π

−π

(
∂

∂ϑ
log fϑ(ω)

)2

dω.

This suggests a model of signal with white noise

dZω = log fϑ(ω)dω + 2π1/2n−1/2dWω, ω ∈ [−π, π]

where ϑ ∈ Θ ⊂ R, for all the regular parametric families. In fact, the latter model has the
same asymptotic Fisher information.

Taking the statement of the corresponding theorem (see [9]). Consider, for α ∈ (0, 1) and
M > 0, a class of Hölder functions (20). For α,M and ε ∈ (0, 1) given, define a parameter
space

Σs(α,M, ε) = Hα(M) ∩
{

functions f on [0, 1] with values in (ε, ε−1)
}

.

Theorem 2 Let Σ = Σs(α,M, ε) for ε ∈ (0, 1), M > 0 and α > 1/2 given. Let ωj,
j = 1, . . . , n be a grid of points equally spaced in [−π, π]. Then the three experiments given
by the observations

Yi, i = 1, . . . , n, stationary, centered, Gaussian with spectral density f
Zi, i = 1, . . . , n independents, with the law N(0, f(ωi))

dZω = log f(ω)dω + 2π1/2n−1/2dWω,ω ∈ [−π, π],

where f ∈ Σ, are asymptotically equivalent.

This result has two components. The first one makes the reduction of the stationary sequence
to a model of independent Gaussian variables. This is a non-parametric Gaussian scale model
of Example 2. In this context, the second part of the theorem is similar to Proposition 3.
The known proofs so far are indirect in the sense of the existence of Markov kernels (see [9]).
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