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Abstract

We establish a KMT coupling for the sequential empirical process and the Kiefer-
Müller process. The processes are indexed by functions f from a Hölder class H, but the
supremum over f ∈ H is taken outside the probability. Compared to the coupling in sup-
norm, this avoids the loss of approximation rate which occurs for large functional classes
H. The result is useful for proving asymptotic equivalence of certain nonparametric
statistical experiments.

Let x1, x2, ... be a sequence of independent random variables being uniformly distributed on
the unit interval. The process

bGn(s, t) :=
1√
n

[ns]X
i=1

(1[0,t](xi)− t) (s, t) ∈ [0, 1]2

is called the sequential empirical process. It is well known that an invariance principle holds
for this process. Let K be the Kiefer-Müller process on the unit square, defined as

K(s, t) =W (s, t)− tW (s, 1), (s, t) ∈ [0, 1]2

whereW is the Brownian sheet, i. e. the continuous centered Gaussian process with covariance
function EW (s1, t1)W (s2, t2) = (s1 ∧ s2)(t1 ∧ t2). Then we have convergence in distributionbGn =⇒ K as n→∞

(Cp. [13], Theorem 1, p.131).

According to the principle ’nearby variables for nearby laws’ (cf. [3], section 11.6), one can
expect a strong coupling result to hold for these processes. Indeed the following result is due
to Komlos, Major and Tusnady, (cf. [10], Theorem 4 p. 114).

For every n ∈ N, there is a probability space on which there exist versions of the processesbGn and K such that for all x ≥ 0 we have:

P (n1/2 sup
s∈{i/n,i=1,...,n},t∈[0,1]

| bGn(s, t)−K(s, t)| ≥ (C logn+ x) logn) ≤ L exp (−λx)
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where C, L and λ are positive absolute constants.

A local refinement along with a specification of the constants has been obtained by Castelle
and Laurent-Bonvalot [2]. These authors also presented a complete proof of the above theorem
based on a quantile inequality for hypergeometric distributions. This result is an analog of
the quantile inequality for the symmetric binomial distribution known as Tusnady’s lemma
which was proved in detail by Bretagnolle and Massart [1].

Similarly to [2], our starting point in this note is the quantile inequality for the hypergeometric
distribution but we are aiming at a different kind of coupling result. Firstly, we consider
functional versions of the processes, i. e. for functions f ∈ H, where H is the class of real
valued functions on the unit square, let:

bGn(f) :=
1√
n

nX
i=1

µ
f(i/n, xi)−

Z 1

0
f(i/n, v)dv

¶
. (0.1)

Furthermore, let Bi, i = 1, . . . , n be a set of independent standard Brownian bridges and
define

Kn(f) :=
nX
i=1

Z 1

0
f(i/n, v)dBi(v).

Since the Kiefer-Müller processK(s, t) with the first argument restricted to {i/n, i = 1, . . . , n}
can be represented as

K(s, t) = n−1/2
nsX
i=1

Bi(t), s ∈ {i/n, i = 1, . . . , n}, t ∈ [0, 1],

it is clear that the process n−1/2Kn(f), f ∈ H is a discretized functional version of K. We
will call Kn(f) the discretized Kiefer-Müller process, bearing in mind that rigorously that
term is appropriate for n−1/2Kn(f). The process bGn(f) indexed by f ∈ H will be called the
sequential empirical process.

Secondly, the supremum will not be taken inside the probability, as in the classical KMT
result (cited above) and refinements by Castelle and Laurent-Bonvalot [2], but it will be
taken outside, with the same type of exponential upper bound. A detailed discussion of the
statistical motivation for such a result can be found in [4]; it will also be briefly touched upon
below.

Let H(1, L) be the class of functions on the unit square having Lipschitz norm less or equal
to L and being uniformly bounded. More precisely

H(1, L) =
©
f : [0, 1]2 7→ R : |f(x)− f(y)| ≤ Lkx− yk, |f(x)| ≤ L, x, y ∈ [0, 1]2

ª
.

Theorem 1 For every n ≥ 2, there is a probability space on which there exist versions of
the sequential empirical process and the discretized Kiefer-Müller process, such that for every
L > 0 and all x ≥ 0:

sup
f∈H(1,L)

P (| bGn(f)− n−1/2Kn(f)| ≥ n−1/2log7(n) x) ≤ C1exp(−C2x)

where C1 and C2 are positive constants, depending only on L.
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The proof is in the thesis [7]. This result has an application in the theory of statistical
experiments, where asymptotic equivalence is understood in the sense of Le Cam’s∆-distance.
It is preferable for such applications that the supremum be taken outside the probability.
Indeed, consider two sequences of experiments En and Gn given by families of probability
measures Pn

f and Q
n
f defined possibly on different sample spaces but indexed both by f ∈ Σ.

Assume that for some f0 ∈ Σ, all measures Pn
f are absolutely continuous with respect to P

n
f0
,

and the same for Qn
f and Q

n
f0
, respectively. If there exist versions d ePn

f /d
ePn
f0
and d eQn

f/d
eQn
f0
of

the likelihood processes of the experiments on some common probability space (Ωn,Fn,Pn),
then one can estimate the ∆-distance between the experiments as follows:

∆2(En, Gn) ≤
√
2 sup
f∈Σ

EPn

µq
d ePn

f /d
ePn
f0
−
q
d eQn

f/d
eQn
f0

¶2
More details can be found in [11]. Theorem 1 is used to obtain such a coupling for an exper-
iment given by independent non-identically distributed observations and an accompanying
Gaussian one. The corresponding result on asymptotic equivalence of experiments can be
found in the companion paper to the present note [8] and the thesis [7].

The type of coupling result that is discussed here was first studied by Koltchinskii [9]. This
author considered functional versions of the empirical process and the Brownian bridge and
established an analog of Theorem 1 for classes of functions defined on the unit interval. This
result was instrumental for proving asymptotic equivalence of experiments in [11]. Theorem
1 can be seen as an extension where the uniform empirical process is replaced by the uniform
sequential empirical process and functions are defined on the unit square. In [9] the coupling
was then carried on to a supremum over functional classes inside the probability, in the spirit
of the original KMT result, but this development remains outside the scope of the present
paper. Note that in this framework, for a general function class H, the rate in probability of
the term

sup
f∈H

| bGn(f)− n−1/2Kn(f)|

will no longer be almost n−1/2 as for each individual f in Theorem 1, but will be a slower rate
depending on the entropy of H. This is evident from [9] and also from analogous results in
[12]. Furthermore, it should be noted that the Hölder exponent 1 on the unit square figuring
in Theorem 1 is an analog of the well-known smoothness bound 1/2 for results of this type
on the unit interval.

Another coupling result of the kind established here was obtained by Grama and Nussbaum
[4]. These authors consider the partial sum process indexed by functions h on the unit interval

bSn(h) := 1√
n

nX
i=1

h(i/n)yi

where yi are independent centered random variables. Note that setting f(s, t) = h(s)t in
(0.1) we obtain the partial sum process for centered uniforms yi = xi− 1/2 but the paper [4]
covers more general yi. The corresponding results on asymptotic equivalence of experiments
can be found in [5] and [6].

Theorem 1 is based on a coupling for the sequential empirical and the discretized Kiefer-
Müller process for finite sets of functions. It is in fact Theorem 2 below which is used in [7]
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for the computation of the∆-distance and which is comparable to Theorem 3.5 of Koltchinskii
[9]. This author also first assumed a finite set of functions as index set and then developed
an extension to larger classes.

For f ∈ L2([0, 1], λ), we consider a smoothness measure R2M(f) related to the L
2-modulus of

continuity on the unit interval and the unit square; for details cf. [7]. Analogously to Theorem
3.5 in [9] the result below for a finite set set of functions F involves both the cardinality of
F and the smoothness of functions in F .

Theorem 2 There is a probability space and for all n ∈ N there exist versions of the processesbGn and Kn on that space such that for all x ≥ 0, y ≥ 0 and F ⊂ L2([0, 1]2, λ2) where
kfk∞ ≤ 1 for all f ∈ F such that #F <∞ holds, we have:

P (n
1
2 k bGn(f)− n−

1
2Kn(f)kF ≥ (logn)2(Ax+Bx

1
2 (y

1
2 + C)(logn)3RM(F)))

≤ D[#F exp(−Gx) + n exp(−Gy)]
(A,B,C,D and G are positive, absolute constants and RM(F) = kRM(f)kF and k.kF =
maxf∈F |.|).
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