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THE CHERNOFF LOWER BOUND FOR SYMMETRIC QUANTUM
HYPOTHESIS TESTING

BY MICHAEL NUSSBAUM1 AND ARLETA SZKOŁA2

Cornell University and Max Planck Society

We consider symmetric hypothesis testing in quantum statistics, where
the hypotheses are density operators on a finite-dimensional complex Hilbert
space, representing states of a finite quantum system. We prove a lower bound
on the asymptotic rate exponents of Bayesian error probabilities. The bound
represents a quantum extension of the Chernoff bound, which gives the best
asymptotically achievable error exponent in classical discrimination between
two probability measures on a finite set. In our framework, the classical result
is reproduced if the two hypothetic density operators commute.

Recently, it has been shown elsewhere [Phys. Rev. Lett. 98 (2007) 160504]
that the lower bound is achievable also in the generic quantum (noncommu-
tative) case. This implies that our result is one part of the definitive quantum
Chernoff bound.

1. Introduction. One typical problem in hypothesis testing is to decide be-
tween two equiprobable hypotheses, say H0 and H1, where Hi assumes that the
observed data are generated by an i.i.d. process with law Pi , i = 0,1. In the clas-
sical setting, P0,P1 are probability measures on a measurable space, the sample
space. One discriminates between them by means of test functions, which are non-
negative measurable functions on the n-fold product sample space. An error occurs
if, according to the given decision rule based on the value of the test function, one
accepts hypothesis H0 while the data are generated with law P1, or vice versa.

If one declares one of the hypotheses to be the null hypothesis and the other one
the alternative, then errors occurring while the null hypothesis is true are called
“of first kind,” otherwise “of second kind.” Due to Stein’s lemma there exists test
functions maintaining a given upper bound α on the error probability of first kind,
such that the probability of error of the second kind decreases to 0 with the optimal
asymptotic rate exponent equal to the Kullback–Leibler distance from the null
hypothesis to the alternative. Sanov’s theorem extends this result to the case where,
instead of a single measure P0, a family � of measures is associated with the null
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hypothesis. Then, the negative Kullback–Leibler distance from the set � to P1
gives the minimal asymptotic error exponent ([19], see also [7]).

In symmetric hypothesis testing one treats the errors of first and second kind in a
symmetric way. We will focus here on the Bayesian error probability, which is the
average of the two kinds of error probabilities. It is minimized by the likelihood
ratio test and vanishes exponentially fast as the sample size n tends to infinity. The
corresponding optimal asymptotic rate exponent is equal to the Chernoff bound

inf
0≤s≤1

log
∫

p1−s
0 (ω)ps

1(ω)μ(dω)(1)

pertaining to probability measures P0 and P1, with respective densities p0 and
p1 (wrt dominating measure μ = P0 + P1). These results go back to papers by
Chernoff and Hoeffding [6, 12]. Chentsov and Morozova [5] present a thorough
and illuminating discussion of the Chernoff bound, relating it to the differential
geometry of statistical inference.

If the data are obtained from quantum systems, then one has to replace probabil-
ity measures by quantum states, that is, by normalized positive linear functionals
on an appropriate algebra of observables. In the present paper, this is assumed to be
the algebra of linear operators on a finite-dimensional complex Hilbert space. One
discriminates between two states ρ0 and ρ1 by means of quantum tests, which are
defined as positive operator valued measures on n-fold tensor products of the al-
gebra of observables of a single quantum system. Here, we employed the standard
language of quantum mechanics; throughout the paper, however, we will utilize an
elementary and accessible mathematical framework based on complex linear alge-
bra only. It will become apparent that quantum tests are analogs of test functions
defined on finite sample spaces and their n-fold products.

While the basic problems in nonsymmetric quantum hypothesis testing (per-
taining to α-tests) were solved in [11, 18] and [3] by obtaining quantum ver-
sions of Stein’s lemma and Sanov’s theorem, the case of discrimination (or equally
weighted hypotheses) has not yet received full treatment. Although quantum tests
minimizing the generalized Bayesian error probabilities were constructed about 30
years ago by Helstrom and Holevo [10, 13], a closed form expression for the opti-
mal asymptotic quantum error exponent similar to the classical Chernoff distance
remained an open problem. A reason is that there is no obvious canonical way to
extend (1) to a quantum setting. On the very formal level, due to noncommutativ-
ity effects, there are different nonequivalent ways of generalizing the distance. In
[18], Ogawa and Hayashi list three candidates for the optimal quantum rate expo-
nent, relying on three different extensions of the target function in the variational
formula (1). However, two of these candidate expressions are not well defined if
the hypotheses are not faithful states, that is, if the associated density operators do
not have full rank.

Recently, the problem of symmetric quantum testing was treated by Kargin
[14], with partial progress toward the definitive Chernoff bound. Lower and upper
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bounds on the optimal error exponent in terms of fidelity between the two density
operators were given; the lower bound was shown to be sharp in the case that one
of the density operators has rank one (i.e., represents a pure quantum state). We re-
mark that fidelity is a notion of distinguishability between density operators which
is frequently used in quantum information theory (see, e.g., [8, 16]).

Our main result, which we formulate rigorously in Section 2, states that
inf0≤s≤1 log Tr[ρ1−s

0 ρs
1] is a lower bound on the general asymptotic error expo-

nent, ρ0 and ρ1 being density operators replacing the probability densities p0 and
p1 of the classical setting. We remark that our quantum bound coincides with one
of the three candidates for a quantum Chernoff bound discussed in [18]. We prove
the main theorem in Section 3. Recently, Audenaert et al. have shown in [1] that
in accordance with our conjecture stated in a previous version of the present work,
[17], the lower bound is indeed achievable. This justifies referring to it as the quan-
tum Chernoff bound.

2. Mathematical setting and the main theorem. For an elementary intro-
duction to quantum statistics with physical background, see Gill [9]. We will de-
scribe here only the formalism for the simplest possible nonclassical setup of dis-
crimination between two hypotheses. A density matrix ρ is a complex, self-adjoint,
positive d ×d matrix satisfying the normalization condition Tr[ρ] = 1, where Tr[·]
is the trace operation. Here “positive” means nonnegative definite. We identify a
density matrix with a state of a quantum system; we also use “matrix” and “opera-
tor” interchangeably. The two hypotheses are described by two states, H0 :ρ = ρ0
and H1 :ρ = ρ1.

Physically discriminating between them corresponds to performing a measure-
ment on the quantum system. Mathematically a measurement with k possible out-
comes is associated to a set of positive d × d matrices {r1, . . . , rk} adding up to
the unit matrix. When the state is ρ then the probability of the ith outcome is
Tr[ρri]. In analogy to classical hypothesis testing one accepts H0 or H1 accord-
ing to a decision rule based on the outcome of a measurement. In this case, there
are k = 2 possible outcomes and any appropriate measurement may be written
{1 − r, r}, where r is a complex self-adjoint positive matrix satisfying the inequal-
ity 0 ≤ r ≤ 1. Here, 1 is the unit matrix and ≤ is in the sense of matrix order,
that is, 1 − r is positive (nonnegative definite). We will mostly make reference
to this measurement by its r element, the one corresponding to the alternative hy-
pothesis. Then, Tr[ρr] is the overall probability of rejecting H0 when ρ is the true
state. Accordingly, Tr[ρ0r] is the error probability of first kind and Tr[(1−r)ρ1] =
1 − Tr[ρ1r] is the error probability of second kind. When both ρ0, ρ1 and also r

are diagonal matrices, then the setup reduces to the classical testing problem for
two probability measures on an appropriate index set �, |�| = d , given by ρ0, ρ1,
respectively. The same is true when ρ0, ρ1 have the same set of eigenvectors; then,
ρ0, ρ1 are said to commute (commutative case). In this sense, commuting states
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describe the classical discrimination problem between two probability measures
on a finite sample space �, as a special case of the present quantum setting.

A pure state is given by a density matrix which has rank 1, which means it is
a projection onto a subspace of (complex) dimension one. We will also use the
following notation: we set H = C

d , with the understanding that H can be any
d-dimensional complex Hilbert space, and we write B(H), B(H⊗n) for the set
of complex d ×d or dn ×dn matrices, respectively. In the bra-ket notation, |v〉 and
〈v| denote a vector in H and its dual vector with respect to the scalar product in
H (essentially a column and a row vector). A one-dimensional projection onto a
subspace of H , spanned by a unit vector v, may be written as |v〉〈v|. It is a density
operator of a pure state.

The above describes the basic setup where the finite dimension d is arbitrary.
We consider the quantum analog of having n i.i.d. observations. For this, the two
hypotheses are assumed to be ρ⊗n

0 and ρ⊗n
1 for two basic d-dimensional states

ρ0, ρ1, where ρ⊗n is the n-fold tensor product of ρ with itself. (Recall that the
tensor product a ⊗ b of two matrices is a matrix which consists of blocks aij b,
arranged according to the indices i, j . Thus, ρ⊗n

0 is a dn × dn matrix.) The tests
rn now operate on the states ρ⊗n

0 and ρ⊗n
1 , that is, their dimension is dn × dn,

but they need not have tensor product structure. The corresponding Bayesian error
probability is

Err(rn) := 1
2Tr

[(
rnρ

⊗n
0 + (1 − rn)ρ

⊗n
1

)]
= 1

2

(
1 − Tr[rn(ρ⊗n

1 − ρ⊗n
0 )]).

The optimal hypothesis tests minimizing the error probability are known to be the
Holevo–Helstrom hypothesis tests [10, 13]. They are given for each n ∈ N by the
projections

�∗
n := supp(ρ⊗n

1 − ρ⊗n
0 )+,

where supp a denotes the support projection of a linear operator a and a+ means
the positive part of a self-adjoint operator a. Thus, if a = ∑

i λiEi is the spec-
tral decomposition using projections Ei , then a+ := ∑

λi>0 λiEi and suppa+ =∑
λi>0 Ei . Indeed, we have for an arbitrary test operator in B(H⊗n)

Err(rn) = 1
2

(
1 − Tr[rn(ρ⊗n

1 − ρ⊗n
0 )])

≥ 1
2

(
1 − sup{Tr[r̃(ρ⊗n

1 − ρ⊗n
0 )] : r̃ ∈ B(H⊗n) test})

= 1
2

(
1 − sup{Tr[�(ρ⊗n

1 − ρ⊗n
0 )] : � ∈ B(H⊗n) projection})

= 1
2

(
1 − Tr[�∗

n(ρ
⊗n
1 − ρ⊗n

0 )]) = 1
2

(
1 − 1

2‖ρ⊗n
1 − ρ⊗n

0 ‖1
)
,

where ‖a‖1 = Tr[a+] + Tr[a+ − a] is the generalization of the L1-norm. Note
that the last line above gives an exact closed form expression of the best error
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probability for every n, but its asymptotics as n → ∞ (rate of exponential decay)
is the subject of the present paper.

The Holevo–Helstrom tests �∗
n are noncommutative generalizations of the like-

lihood ratio tests: if the hypotheses H0 and H1 correspond to commuting density
operators ρ0 and ρ1, then, for all n ∈ N, the Holevo–Helstrom projections �∗

n com-
mute with ρ⊗n

0 and ρ⊗n
1 , also. The density operators ρi may be completely speci-

fied by their eigenvalues forming discrete probability measures Pi , i = 0,1, on an
appropriate index set �, |�| = d for the mutually commuting spectral projectors
on H . For each n ∈ N, the set of eigenvalues of the tensor product ρ⊗n

i , i = 0,1,
corresponds to the respective product measure P n

i := ∏n
j=1 Pi on the Cartesian

product �n := ×n
i=1� while the Holevo–Helstrom projection �∗

n generalizes the
indicator function λ∗

n = 1{pn
1 − pn

0 > 0} on �n. Here, pn
i denote the probability

densities of the product measures P n
i . We note that λ∗

n is the well-known maxi-
mum likelihood decision. It takes the value 1, which corresponds to a decision in
favor of H1, on samples x ∈ �n for which the density value (or likelihood) pn

1(x)

is larger than pn
0(x).

The classical Bayesian error probability Err(λ), of a test function λ (0 ≤ λ ≤ 1),
is defined by

Err(λ) := 1
2

(
EP0λ + EP1(1 − λ)

)
(2)

where EP stands for expectation under the law P . The quantity Err(λ) averages
over both possible sources of error with equal weights 1/2. In the more general
situation, the weights are specified by the a priori probabilities (π0, π1) for H0 or
H1 to occur, that is, Err(λ) := π0EP0λ + π1EP1(1 − λ).

As already mentioned in the Introduction, the Bayesian error probability Err(λ∗
n)

vanishes, as n → ∞, with a minimal asymptotic rate exponent equal to the Cher-
noff bound δ(P0,P1):

lim
n→∞

1

n
log Err(λ∗

n) = δ(P0,P1) := inf
0≤s≤1

log
∑
x∈�

p1−s
0 (x)ps

1(x).(3)

We remark that ∑
x∈�

p1−s
0 (x)ps

1(x) =: A(s), s ∈ [0,1],(4)

represent the normalization factors of the parametric family of probability mea-
sures

ps(x) := 1

A(s)
p1−s

0 (x)ps
1(x), x ∈ �.

The family is called a Hellinger arc in the literature. It interpolates between p0
and p1 if their supports D0,D1 ⊆ � coincide. Otherwise, ps , s ∈ [0,1], is dis-
continuous (in the Euclidian metric of R

|�|) at the endpoints s = 0,1 such that
over the open parameter interval (0,1) it represents an interpolation between the



QUANTUM CHERNOFF BOUND 1045

densities of the conditional probabilities Q0 := P0(·|B) and Q1 := P1(·|B), where
B := D0 ∩ D1.

There is an equivalent expression for the Chernoff bound (3) in terms of the
KL-distance (relative entropy):

δ(P0,P1) = inf
s∈[0,1]

(−(1 − s)K(Qs‖Q0) − sK(Qs‖Q1) + logπ1−s
0 πs

1
)
,(5)

where Qs denotes the conditional probability Ps(·|B), for s ∈ [0,1], and πi :=
Pi(B), for i = 0,1. Observe that if the supports D0 and D1 coincide, that is,
B = �, then the target function in (5)—we will refer to it as H(s) in the sequel—
becomes simply −(1 − s)K(Ps‖P0) − sK(Ps‖P1). What is remarkable is that in
this case we have

δ(P0,P1) = −K(Pσ‖P0) = −K(Pσ‖P1),

where the parameter σ ∈ [0,1] is uniquely defined by the second equality above.
In the generic case of possibly different supports, a modified version of the above
formula is valid. One distinguishes two cases: if there exists a σ ∈ (0,1) such that
H ′(σ ) = 0, which is equivalent to K(Qσ‖Q0) − K(Qσ‖Q1) = log(π0/π1), then

δ(P0,P1) = −K(Qσ‖P0) + logπ0 = −K(Qσ‖P1) + logπ1.

Otherwise, the infimum in (5) is attained either at s = 0 or at s = 1, and the corre-
sponding values of the Chernoff bound are logπ0 and logπ1.

The identity (5) and the other claims in the above paragraph follow from (23)
in the Appendix and attendant reasoning. To our knowledge, no quantum general-
ization of (5) has yet been found.

In the following theorem we formulate the classical result (3) for the general
case of probability measures P0, P1 on an arbitrary measurable space (�,�),
not necessarily finite. Consider the Bayesian error probability of discrimination
between P0,P1 by means of test functions 0 ≤ λ ≤ 1:

�(P0,P1) := inf
λ test function

Err(λ)(6)

where Err(λ) is given by (2). Let λ∗ be the maximum likelihood test function
λ∗ = 1{p1 − p0 > 0} on �, in terms of densities p0, p1, for some dominating
measure μ. It is well known that �(P0,P1) can be expressed as

�(P0,P1) = Err(λ∗) = 1
2

∫
min(p0,p1) dμ.(7)

THEOREM 2.1. Let P0,P1 be two probability measures on (�,�). For prod-
uct measures P n

0 , P n
1 corresponding to n i.i.d. observations ω1, . . . ,ωn, all having

law P0 or P1, the Bayesian error probability satisfies

lim
n→∞n−1 log�(P n

0 ,P n
1 ) = inf

0≤s≤1
log

∫
ps

1p
1−s
0 dμ,(8)

where pi = dPi/dμ, i = 0,1, μ := P0 + P1.
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For strictly positive p0 and p1 with p0 �= p1, the proof can be found in the lit-
erature (cf., e.g., [5], page 164, or for finite sample space [7], page 312). For com-
pleteness, we present a proof for the general case of possibly different support of
P0,P1 in the Appendix. Indeed, if P0,P1 have the same support, then the function
A(s) = ∫

ps
1p

1−s
0 dμ is analytic and strictly convex, hence a minimizer σ ∈ [0,1]

of A(s) exists, and the infimum is, in fact, a minimum. However, if the supports are
different, then A(s) may be discontinuous at the endpoints of the interval [0,1].
Hence, a minimizer need not exist, and the r.h.s. in (8) is only an infimum. The
proof of our main theorem, Theorem 2.2 below, uses the above classical result for
the general case of possibly different support.

We intend to investigate the asymptotic behavior of the Bayesian error prob-
ability in the case where the hypotheses are quantum states on B(H), where
dimH = d < ∞. In order to derive the optimal asymptotic rate exponent, we re-
place the target function in the variational formula (3) or (8), which defines the
classical Chernoff bound, by

Â(s) := Tr[ρ1−s
0 ρs

1], s ∈ [0,1].
Our main theorem, formulated below, confirms that the logarithm of the infimum
of Â(s) over [0,1] gives a lower bound on the optimal quantum error exponent.

THEOREM 2.2 (Quantum Chernoff lower bound). Let ρ0, ρ1 be two density
operators representing quantum states on a finite-dimensional complex Hilbert
space H . Then, any sequence of test projections �n ∈ B(H⊗n), n ∈ N, satisfies

lim inf
n→∞

1

n
log Err(�n) ≥ inf

0≤s≤1
log Tr[ρ1−s

0 ρs
1].(9)

We point out that, indeed, Â(s) represents the proper generalization of (4) in the
context of symmetric hypothesis testing. As already noted in the Introduction, and
as conjectured in [17], it turns out to be achievable (see [1]).

It is of interest to evaluate the quantum Chernoff bound for special cases and
to investigate its properties as a distinguishability measure for quantum states. In
the classical case, it is well known that if Pi are normal laws N(μi, σ

2), then the
r.h.s. of (8) is (μ1 − μ0)/8σ 2. The discussion of quantum Gaussian states would
require admitting an infinite-dimensional complex Hilbert space H , and, thus it
is outside the scope of our paper. It can be conjectured, however, that our method
of proof readily generalizes to an infinite-dimensional setting. Anticipating such
a generalized bound, Calsamiglia et al. [4] have recently written down the appro-
priate analog of the r.h.s. of (9) for Gaussian states and evaluated it for various
examples of Gaussian states of light (cf. also [15]). Another discussion of the geo-
metric properties of the quantum Chernoff bound and a derivation of the related
quantum Hoeffding bound can be found in [2].
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3. Proof of the main theorem. We will prove Theorem 2.2, applying the cor-
responding classical result, Theorem 2.1, to appropriate probability distributions
appearing in the general noncommutative setting.

PROOF OF THEOREM 2.2. We will establish

lim inf
n→∞

1

n
log(Err(�n)) ≥ inf

0≤s≤1
log Tr[ρ1−s

0 ρs
1],

for any sequence of projections �n ∈ B(H⊗n), n ∈ N.
We consider two arbitrary density operators ρ0, ρ1 on a finite-dimensional

Hilbert space H = C
d with spectral representations

ρ0 =
d∑

i=1

λi |xi〉〈xi |, ρ1 =
d∑

i=1

γi |yi〉〈yi |,

that is, |xi〉, i = 1, . . . , d , and |yi〉, i = 1, . . . , d , are two orthonormal bases (ONB)
of eigenvectors in C

d , and λi, γi ∈ [0,1] are the respective eigenvalues of ρ0 and
ρ1.

Let � be a projection onto a subspace of C
d , then

Tr[�ρ] = Tr

[
�

(
d∑

i=1

λi |xi〉〈xi |
)]

=
d∑

i=1

λi〈xi |�xi〉

=
d∑

i=1

λi‖�xi‖2 =
d∑

i=1

λi

d∑
j=1

∣∣〈�xi |yj 〉
∣∣2,

where the third identity is true since � is a projection, and the last one is by Par-
seval’s identity for the ONB |yj 〉, j = 1, . . . , d . In the same way, we obtain

Tr[(1 − �)ρ1] =
d∑

j=1

γj

d∑
i=1

∣∣〈(1 − �)yj |xi〉
∣∣2.

Now, in view of the identity |〈(1 − �)yj |xi〉|2 = |〈(1 − �)xi |yj 〉|2, we have

Err(�) = 1
2

(
Tr[ρ0�] + Tr[ρ1(1 − �)])

= 1
2

d∑
i,j=1

(
λi

∣∣〈�xi |yj 〉
∣∣2 + γj

∣∣〈(1 − �)xi |yj 〉
∣∣2)

.

Denote a = 〈�xi |yj 〉 and b = 〈(1 − �)xi |yj 〉. Since for any complex a, b the
inequality |a|2 + |b|2 ≥ |a + b|2/2 holds, we obtain from the last display

Err(�) ≥
d∑

i,j=1

1
4 min{λi, γj }

∣∣〈xi |yj 〉
∣∣2.(10)
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Note that

pi,j := λi

∣∣〈xi |yj 〉
∣∣2, qi,j := γj

∣∣〈xi |yj 〉
∣∣2, i, j = 1, . . . , d,(11)

define probability measures P and Q on d2 elements, respectively. Indeed,

d∑
i,j=1

pi,j =
d∑

i,j=1

λi

∣∣〈xi |yj 〉
∣∣2 =

d∑
i=1

λi‖xi‖2 =
d∑

i=1

λi = 1,

and similarly for (qi,j ). Now, inequality (10) may be written

Err(�) ≥ 1
4

d∑
i,j=1

min{pi,j , qi.j }.(12)

Observe, according to (6) and (7), the r.h.s. above is up to the factor 1/2 equal to the
classical minimal Bayesian error probability �(P,Q) of discrimination between
probability measures P and Q:

1
2

d∑
i,j=1

min{pi,j , qi,j } = �(P,Q).(13)

Next, we consider the case where the quantum hypotheses are ρ⊗n
0 and ρ⊗n

1 .
Then, the corresponding classical probability measures according to (11) are prod-
uct measures P n and Qn, for P,Q corresponding to ρ0, ρ1, respectively. Applying
inequality (12), (13) and subsequently combining it with the classical result on the
Chernoff bound for �(P n,Qn), Theorem 2.1, we obtain for any sequence of pro-
jections �n ∈ B(H⊗n), n ∈ N,

lim inf
n→∞

1

n
log Err(�n) ≥ lim

n→∞
1

n
log

(
1

2
�(P n,Qn)

)

= log

(
inf

0≤s≤1

d∑
i,j=1

p1−s
i,j qs

i,j

)
.

We finish the proof by verifying

d∑
i,j=1

p1−s
i,j qs

i,j =
d∑

i,j=1

λ1−s
i γ s

j

∣∣〈xi |yj 〉
∣∣2 =

d∑
i,j=1

λ1−s
i 〈xi |yj 〉γ s

j 〈yj |xi〉

= Tr

[
d∑

i,j=1

λ1−s
i |xi〉〈xi | γ s

j |yj 〉〈yj |
]

= Tr[ρ1−s
0 ρs

1]. �
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APPENDIX

As announced in Section 2, we give a proof for Theorem 2.1 for the general
case where the two probability measures involved are allowed to have different
supports. As far as possible, we follow the proof in the case of same support by
Chentsov and Morozova [5].

PROOF OF THEOREM 2.1. 1. Preliminary observations. Assume that two
probability measures P0, P1 on a measurable space (�,�) have support Di =
supp(Pi), i = 0,1. Denote B = D1 ∩ D2, and for i = 0,1,

Si = Di \ B.(14)

We introduce the measure μ = P0 + P1 and define the densities pi = dPi/dμ,
i = 0,1. Then, clearly p1 + p2 = 1. We assume the densities and the sets Di are
chosen such that

Di = ω :pi(ω) > 0, i = 0,1,

hence

B = ω :p0(ω) > 0,p1(ω) > 0.

Recall the definition of the Hellinger arc of densities for parameter s ∈ [0,1]:
ps(ω) = ps

1(ω)p1−s
0 (ω)A−1(s),

where

A(s) =
∫

ps
1(ω)p1−s

0 (ω)μ(dω)

is a normalizing factor. Note that for s = 0 and s = 1, we obtain the initial densities
p0, p1 respectively, so that A(0) = A(1) = 1. However, the function A(s) is not
continuous in general at the endpoints 0,1. Indeed, the integral is over the set B ,

A(s) =
∫
B

ps
1(ω)p1−s

0 (ω)μ(dω),

and by dominated convergence it follows that

A+(0) := lim
s↘0

A(s) =
∫
B

p0(ω)μ(dω) = P0(B),

A−(1) := lim
s↗1

A(s) =
∫
B

p1(ω)μ(dω) = P1(B).

Furthermore, observe that for s ∈ (0,1) the densities ps have support B , with limits
at the endpoints

p0+(ω) = p0(ω)/P0(B), p1−(ω) = p1(ω)/P1(B).



1050 M. NUSSBAUM AND A. SZKOŁA

Hence, the corresponding limiting measures are the conditional probability mea-
sures

P0+(·) = P0(·|B), P1−(·) = P1(·|B).

If the sample space is restricted to B , the densities ps , s ∈ (0,1), can be written in
exponential family form:

ps(ω) = exp
(
s log

p1(ω)

p0(ω)

)
p0(ω)A−1(s), ω ∈ B.(15)

For s = 0,1, the above holds if B = Ds . Also, for s = 0,1, if B �= Ds , then the
restriction ps |B is not a probability density. We denote

H(s) = logA(s), H+(0) = logP0(B), H−(1) = logP1(B).

2. Bayesian error probabilities Err(λ∗
n) by change of measure to Ps . Recall the

form of the optimal test λ∗
n on �n for equiprobable hypothetic densities p0 and p1

on �:

λ∗
n = 1

{
n∏

j=1

p1(ωj ) >

n∏
j=1

p0(ωj )

}
,

where ω1, . . . ,ωn are n i.i.d. observations. (One may also take “≥” or decide arbi-
trarily on the “=” set.) We partition the set �n into disjoint subsets S0,n, S1,n and
Bn:

S0,n := {there is j ∈ {1, . . . , n} such that ωj ∈ S0},
S1,n := {there is j ∈ {1, . . . , n} such that ωj ∈ S1},

where Si , i = 0,1, were defined in (14). The remaining case is the event

Bn := {ωn ∈ � : ωj ∈ B for j = 1, . . . , n}.
Denote ωn = (ω1, . . . ,ωn) ∈ �n. We have λ∗

n(ω
n) = 1 (decision in favor of P1)

if ωn ∈ S1,n, that is, an event happens which excludes P0. Similarly, we have
λ∗

n(ω
n) = 0 for ωn ∈ S0,n. For ωn ∈ Bn, define the (normed) log-likelihood ratio

by

Ln(ω
n) := n−1

n∑
i=1

log
p1

p0
(ωi).

Then, we can describe the test λ∗
n

λ∗
n(ω

n) = 1{Ln(ω
n) > 0,ωn ∈ Bn} + 1{ωn ∈ S1,n}.(16)

Further, we define, for i = 0,1, functions

G(i)
s,n(ω

n) = 1{ωn ∈ Bn}n−1
n∑

j=1

log
pi

ps

(ωj ).
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We note the following relations, for ω ∈ B:

log
p0

ps

(ω) = −s log
p1

p0
(ω) + H(s),(17)

log
p1

ps

(ω) = (1 − s) log
p1

p0
(ω) + H(s).(18)

To prove (18), observe that

log
p1

ps

= log
p1A(s)

exp(s logp1/p0)p0
= log

p1

p0
− s log

p1

p0
+ H(s)

= (1 − s) log
p1

p0
+ H(s).

Furthermore, it holds

log
p0

ps

= log
p0A(s)

exp(s logp1/p0)p0
= −s log

p1

p0
+ H(s),

which implies (17). As a consequence of (17) and (18), we have, for ωn ∈ Bn,

G(0)
s,n(ω

n) = −sLn(ω
n) + H(s),(19)

G(1)
s,n(ω

n) = (1 − s)Ln(ω
n) + H(s).(20)

In the sequel, we write Es for expectation under the density ps and denote by
En

s the expectation under the product density for the respective basic density ps .
Notice that the test λ∗

n necessarily decides correctly if ωn ∈ Bc
n = S0,n ∪S1,n. Thus,

the minimal Bayesian error probabilities can be expressed, for any s ∈ (0,1), as

Err(λ∗
n) = En

0 λ∗
n + En

1 (1 − λ∗
n) = En

0 1Bnλ
∗
n + En

1 1Bn(1 − λ∗
n)

(21)
= En

s λ∗
n exp

(
nG(0)

s,n

) + En
s (1 − λ∗

n) exp
(
nG(1)

s,n

)
= En

s λ∗
n exp

(−nsLn + nH(s)
)

+En
s (1 − λ∗

n) exp
(
n(1 − s)Ln + nH(s)

)
(22)

= exp(nH(s))
{
En

s

(
λ∗

n exp(−nsLn) + (1 − λ∗
n) exp

(
n(1 − s)Ln

))}
.

3. Upper risk bound. From the expression (16) for λ∗
n, we see that, for all ωn ∈

Bn,

λ∗
n exp(−nsLn) + (1 − λ∗

n) exp
(
n(1 − s)Ln

) ≤ 1,

so that (22) implies, for all n ∈ N,

Err(λ∗
n) ≤ exp(nH(s))
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and, hence,

1

n
log Err(λ∗

n) ≤ H(s).

Since s ∈ (0,1) was arbitrary, and since the bounds H(0) = H(1) = 0 are trivial,
we obtain

1

n
log Err(λ∗

n) ≤ inf
0≤s≤1

H(s).

4. Convexity of H(s) on (0,1). Using the exponential family expression (15) for
densities ps , the function H(s) may be written for s ∈ (0,1),

H(s) = log
∫
B

exp
(
s log

p1(ω)

p0(ω)

)
p0(ω)dμ(ω).(23)

It follows

H ′(s) = A′(s)
A(s)

=
∫
B logp1(ω)/p0(ω) exp(s logp1(ω)/p0(ω))p0(ω)dμ(ω)

A(s)
,

where the fact that A(s) can be differentiated under the integral sign, and the inte-
gral is finite for all s ∈ (0,1), is from the basic theory of exponential families. In
the sequel, we identify expectation under ps and its restriction ps |B for s ∈ (0,1).
We can thus write (for a random variable ω taking values in B)

H ′(s) = Es log
p1(ω)

p0(ω)
= Es log

ps(ω)

p0(ω)
− Es log

ps(ω)

p1(ω)
.(24)

For the second derivative, we obtain

H ′′(s) = A′′(s)A(s) − (A′(s))2

A2(s)

=
∫
(logp1(ω)/p0(ω))2 exp(s logp1(ω)/p0(ω))p0(ω)dμ(ω)

A(s)
− (H ′(s))2

= Es

(
log

p1(ω)

p0(ω)

)2

−
(
Es log

p1(ω)

p0(ω)

)2

≥ 0,

since the last expression is the variance of the random variable log(p1/p0)(ω)

under ps . Thus, H(s) is convex on (0,1). There are two cases.

Case 1. There is some s ∈ (0,1) such that H ′′(s) = 0. Then, log(p1/p0)(ω)

is constant Ps -almost surely. Since all Ps , s ∈ (0,1), dominate each
other, (p1/p0)(ω) is also constant Ps -almost surely, for all s ∈ (0,1) and
H ′′(s) = 0 for all these s. Hence, H(s) is linear on (0,1). Furthermore,
each Ps , s ∈ (0,1), dominates μ on B (i.e., dominates μ|B). It follows

p1

p0
(ω) = c, μ-a.s. on B,
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for some constant c > 0. In that case,

P1(B) =
∫
B

c dP0 = cP0(B)

and

c = P1(B)

P0(B)
.

This implies

P0(·|B) = P1(·|B) = Ps, s ∈ (0,1),

A(s) = (P0(B))1−s(P1(B))s, s ∈ (0,1).(25)

Case 2. For all s ∈ (0,1), we have H ′′(s) > 0. Then, H(s) is strictly convex on
(0,1).

5. Lower risk bound. Since, according to (24), for arbitrary s ∈ (0,1),

H ′(s) = Es log
p1

p0
(ω),

we have in view of (19) and (20), for each n ∈ N,

En
s G(0)

s,n = −sH ′(s) + H(s) =: γ0(s),

En
s G(1)

s,n = (1 − s)H ′(s) + H(s) =: γ1(s).

Since G
(i)
s,n is an i.i.d. average, we have by the Law of Large Numbers, as n tends

to infinity,

G(0)
s,n(ω

n) → γ0(s), G(1)
s,n(ω

n) → γ1(s),

almost surely under Ps . Let δ, η > 0 be arbitrary and consider the subsets

Un := {
ωn :G(i)

s,n(ω
n) − γi(s) ≥ −η, i = 0,1

}
, n ∈ N.

Then, again by the Law of Large Numbers, there is an nδ ∈ N such that

P n
s (Un) ≥ 1 − δ for all n ≥ nδ.

Starting with identity (21), we estimate the minimal error probability for n ≥ nδ :

Err(λ∗
n) = En

s λ∗
n exp

(
nG(0)

s,n

) + En
s (1 − λ∗

n) exp
(
nG(1)

s,n

)
≥ En

s 1{Un}(λ∗
n exp

(
nγ0(s) − nη

) + (1 − λ∗
n) exp

(
nγ1(s) − nη

))
≥ En

s 1{Un} exp
(
nmin(γ0(s), γ1(s)) − nη

)
≥ (1 − δ) exp

(
nmin(γ0(s), γ1(s)) − nη

)
.

Consequently, we have, for any sequence of test functions λn, n ∈ N,

lim inf
n→∞ n−1 log Err(λn) ≥ min(γ0(s), γ1(s)) − η.
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Since η was arbitrary, we obtain for any s ∈ (0,1)

lim inf
n→∞ n−1 log Err(λn) ≥ min(γ0(s), γ1(s)),

and, hence,

lim inf
n→∞ n−1 log Err(λn) ≥ sup

0<s<1
min(γ0(s), γ1(s)).

It remains to show that

sup
0<s<1

min(γ0(s), γ1(s)) ≥ inf
0≤s≤1

H(s).(26)

Recall that the values H ′(s) are well defined for s ∈ (0,1) and that H(s) is convex
in that domain. Hence, there exist limits

H ′+(0) = lim
s↘0

H ′(s), H ′−(1) = lim
s↗1

H ′(s).

Observe that the limits are possibly infinite. However, due to convexity, only
H ′+(0) = −∞ or H ′+(1) = ∞ may occur.

Again, in view of the convexity of H(s) on (0,1), the following cases may
occur:

(a) H ′+(0) < 0, H ′−(1) > 0,
(b) H ′+(0) < 0, H ′−(1) ≤ 0,
(c) H ′+(0) ≥ 0, H ′−(1) > 0,
(d) H ′+(0) ≥ 0, H ′−(1) ≤ 0.

Case (a). In this case, H cannot be linear, so that due to the above discussion
in 4 (involving Cases 1 and 2) it is strictly convex in (0,1). Hence, there is a unique
minimum of H on [0,1] at some σ ∈ (0,1) with H ′(σ ) = 0. We have

γ0(σ ) = γ1(σ ) = H(σ),

hence,

sup
0<s<1

min(γ0(s), γ1(s)) ≥ H(σ) = inf
0≤s≤1

H(s).

Case (b). Again, due to convexity, the infimum of H on [0,1] is attained
(uniquely) at s ↗ 1:

inf
0≤s≤1

H(s) = lim
s ↗1

H(s) = H−(1).

Now, for s ∈ (0,1) we have H ′(s) ≤ 0, and, hence,

γ0(s) = −sH ′(s) + H(s) ≥ H(s) ≥ (1 − s)H ′(s) + H(s) = γ1(s),
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which implies

sup
0<s<1

min(γ0(s), γ1(s)) ≥ sup
0<s<1

γ1(s) ≥ lim sup
s↗1

γ1(s)

≥ H−(1) = inf
0≤s≤1

H(s).

Case (c). This is symmetric to case (b). We obtain

inf
0≤s≤1

H(s) = H+(0)

and

sup
0<s<1

min(γ0(s), γ1(s)) ≥ H+(0) = inf
0≤s≤1

H(s).

Now, for s ∈ (0,1), we have H ′(s) ≥ 0, and, hence,

γ1(s) = (1 − s)H ′(s) + H(s) ≥ H(s) ≥ −sH ′(s) + H(s) = γ0(s)

which implies

sup
0<s<1

min(γ0(s), γ1(s)) ≥ sup
0<s<1

γ0(s) ≥ lim sup
s↘0

γ0(s)

≥ H+(0) = inf
0≤s≤1

H(s).

Case (d). Due to convexity, we must have H ′+(0) = H ′−(1) = 0; then, H(s) is
constant on (0,1). By (25), we then have P0(B) = P1(B) and

H(s) = logP0(B) = logP1(B), s ∈ (0,1).

Consequently,

γ0(s) = γ1(s) = H(s) = inf
0≤s≤1

H(s),

and we obtain trivially

sup
0<s<1

min(γ0(s), γ1(s)) ≥ inf
0≤s≤1

H(s).

We have verified inequality (26) in all cases (a)–(d). Hence, for any sequence of
test functions λn on �n, n ∈ N, we have

lim inf
n→∞ n−1 log Err(λn) ≥ lim inf

n→∞ n−1 log Err(λ∗
n) ≥ inf

0≤s≤1
H(s).

The upper and lower bounds together complete the proof. �
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