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AN ASYMPTOTIC ERROR BOUND FOR TESTING MULTIPLE
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We consider the problem of detecting the true quantum state among r

possible ones, based of measurements performed on n copies of a finite-
dimensional quantum system. A special case is the problem of discriminating
between r probability measures on a finite sample space, using n i.i.d. obser-
vations. In this classical setting, it is known that the averaged error probability
decreases exponentially with exponent given by the worst case binary Cher-
noff bound between any possible pair of the r probability measures. Define
analogously the multiple quantum Chernoff bound, considering all possible
pairs of states. Recently, it has been shown that this asymptotic error bound
is attainable in the case of r pure states, and that it is unimprovable in gen-
eral. Here we extend the attainability result to a larger class of r-tuples of
states which are possibly mixed, but pairwise linearly independent. We also
construct a quantum detector which universally attains the multiple quantum
Chernoff bound up to a factor 1/3.

1. Introduction. Consider a finite set � = {P1, . . . ,Pr} of probability distri-
butions on a sample space �, and the problem of discriminating between them
on the basis of observed i.i.d. data. It is well known that for the maximum like-
lihood decision rule, the error probability (Bayesian for uniform prior) decreases
exponentially, with a rate given by the worst case among the possible pairwise
hypothesis testing problems. Indeed if ξCB(Pi,Pj ) represents the rate of exponen-
tial decay of the error probability for deciding between Pi and Pj , given by the
classical Chernoff bound

ξCB(Pi,Pj ) = − log inf
0≤s≤1

∫
(dPi)

1−s(dPj )
s,

then the multiple Chernoff bound pertaining to the set � has been defined as

ξCB(�) := min{ξCB(Pi,Pj ) :Pi,Pj ∈ �,Pi �= Pj }(1.1)
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(Salikhov [28–30]). If πn is the maximum likelihood rule for sample size n, with
values in {1, . . . , r}, then, under a uniform prior on �

−1

n
log Pr(πn �= i) → ξCB(�) as n → ∞(1.2)

and since πn is also Bayesian here, the quantity ξCB(�) is the best possible asymp-
totic error exponent for any decision rule under a uniform prior.

On terminology. When large deviation type limits are written in logarithmic
form as in (1.2), then the right-hand side ξCB(�) is referred to as the rate of ex-
ponential decay or, in information theory, as the asymptotic error exponent, to be
maximized by decision rules. Throughout the paper, we adhere to this formulation
as a convenient equivalent to minimizing asymptotic error.

We consider here the analogous problem in a quantum statistical setting, where
� = {ρ1, . . . , ρr} is a set of density operators on the finite-dimensional complex
Hilbert space C

d . Recall that by definition a density operator ρ, describing the
state of a physical system, is a complex, self-adjoint, positive semidefinite matrix
satisfying the normalization condition tr[ρ] = 1. If all operators ρi ∈ � commute,
then the corresponding matrix representations are jointly diagonizable, and the
problem becomes one of discriminating between the associated finite probability
distributions appearing on the matrix diagonal.

The starting point for our investigation is the recent extension of the Chernoff
binary testing bound to the quantum setting [2, 3, 22]. In full analogy to the classi-
cal case, the quantum Chernoff bound specifies the asymptotic error in the decision
problem between ρi and ρj , based on a rule using the outcomes of measurements
performed on n copies of the basic quantum system.

The case of multiple hypotheses (r > 2) represented by quantum states has re-
ceived some interest in the literature over the past three decades; cf. [6, 12, 14,
15, 25, 26, 34] and overviews in [7, 9, 11]. While in the binary case (r = 2) the
optimal quantum test is described explicitly by the Holevo–Helstrom projections,
in the case r > 2 only an implicit description in terms of an extremal problem is
available (Holevo [14], Yuen, Kennedy, Lax [34]). Parthasarathy [26] has dubbed
the quantum Bayes rule “quantum maximum likelihood,” in view of the fact that
in the classical case, for a finite number of hypotheses, the Bayes rule for uniform
prior is indeed maximum likelihood.

Numerous new contributions to multiple quantum hypothesis testing appeared
in the very recent past, for example, [1, 4, 17–19, 21, 27, 32, 33]. The main fo-
cus has been on characterizing the Bayes rule of [14, 34] and finding approxi-
mations to it. We focus here on the asymptotics of the error probability based on
measurements performed on n of copies of the basic quantum system. The true
state is thus described by the nth tensor power ρ⊗n

i of one of the original den-
sity operators ρi ∈ �. Parthasarathy [26] established consistency of the Bayes rule
and also an exponential rate of decay of the error probability, without specifying
the error exponent. The first step toward finding the optimal asymptotic error, for
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which a similar structure as in the classical case (1.2) was conjectured, was made
in [24]. It was shown that if all ρi are pure states [rank(ρi) = 1], then the optimal
asymptotic error is given by ξQCB(�), defined as the worst case error for quantum
discrimination between any pair of distinct states involved. Thus, the situation is
indeed analogous to the classical case (1.2), and the quantity ξQCB(�) describing
the asymptotics of the error probability should be termed the multiple quantum
Chernoff bound.

The fact that ξQCB(�) is valid as a lower error bound is relatively straightfor-
ward to prove; for a precise statement of the result from [24]; cf. Theorem 1. At-
tainability for pure states has been shown in [24] by constructing a measurement
based on a Gram–Schmidt orthonormalization of the r unit vectors representing
the ρi ∈ �. It should be mentioned that earlier Holevo [16] showed such a mea-
surement to be an approximation to the Bayes rule. In [23], it was shown that
without any restriction on the nature of the states, an asymptotic error ξQCB(�)

is achievable up to a factor which is between 2/r(r − 1) and 1, for r being the
number of hypotheses.

In the present paper, we develop a new decision rule generalizing two known
asymptotically optimal ones, in the following sense: if all states commute, the
method reduces to classical maximum likelihood (as does the Bayes rule of
[14, 34]). If all states are pure, then it coincides with the orthonormalization al-
gorithm of [24]. We establish that this rule attains asymptotic error ξQCB(�) for a
class of r-tuples of states which fulfill Condition (LI) below. The condition allows
for mixed states but excludes faithful ones (full rank density matrices). We then
show that a modified version of our rule is near optimal, in the sense that it attains
at least 1

3ξQCB(�) universally.
The outline of our paper is as follows. In Section 2, we introduce notation,

specify the mathematical framework, and state precisely our main results in The-
orems 2 and 3. Some further discussion of the quantum Bayes rule, of results in
statistics resembling the multiple Chernoff bound and other topics follows at the
end of that section. In Section 3, our new quantum decision rule is developed, along
with Lemma 1 providing a basic error bound. Section 4 treats the case of pairwise
linearly independent states [Condition (LI) and Theorem 2]. Section 5 shows how
our decision rule reduces to maximum likelihood in the commuting case, such that
Lemma 1 reproduces the multiple Chernoff bound of [28, 29]. Section 6 concerns
the general attainability of the near optimal error bound (Theorem 3).

2. Notation and preliminaries. We will describe here the formalism for the
simplest possible nonclassical setup of discrimination between several quantum
hypotheses. A density matrix ρ is a complex, self-adjoint, positive, d × d matrix
satisfying the normalization condition tr[ρ] = 1, where tr[·] is the trace opera-
tion. Here, “positive” means nonnegative definite. We identify a d × d density
matrix with a quantum state on Cd ; we also use “matrix” and “operator” inter-
changeably. The r hypotheses are described by states Hi :ρ = ρi , i = 1, . . . , r .
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Physically discriminating between these states corresponds to performing a mea-
surement on the quantum system. Mathematically a quantum decision rule with r

possible outcomes is a set of complex self-adjoint positive matrices d ×d matrices
E = {E1, . . . ,Er} satisfying

∑r
i=1 Ei = 1 where 1 is the unit matrix. The r-tuple

E is often called a POVM (positive operator valued measure); we will refer to it
as a quantum multiple test or a quantum detector. In the special case where all Ei

are projections, the r-tuple E is called a PVM (projection valued measure) or von
Neumann measurement. The individual success probability, that is, the probability
to accept hypothesis Hi when ρi is the true state, is given by

Succi (E) := tr[ρiEi].
The corresponding individual error probability, that is, the probability of rejecting
the true state ρi according to the decision rule, is

Erri (E) = 1 − Succi (E) = tr[ρi(1 − Ei)]

=
r∑

j=1,j �=i

tr[ρiEj ].

The total (averaged) error probability is then

Err(E) := 1

r

r∑
i=1

Erri (E) = 1

r

r∑
i=1

tr[ρi(1 − Ei)].

The above describes the basic setup where the finite dimension d is arbitrary and
the hypotheses are equiprobable. We consider the quantum analog of having n

i.i.d. observations. For this, the r hypotheses are assumed to be ρ⊗n
i , i = 1, . . . , r ,

where ρ⊗n is the n-fold tensor product of ρ with itself (a dn × dn matrix). The
detectors E = {E1, . . . ,Er} now operate on the states ρ⊗n

i , that is, the dimension
of the components Ei is dn × dn, but Ei need not have tensor product structure.
The corresponding total error probability of a detector E is now

Errn(E) = 1 −
r∑

i=1

1

r
tr[ρ⊗n

i Ei].

For the case of two hypotheses r = 2, the Bayes test for each n ∈ N is known to
be the Holevo–Helstrom hypothesis test. It is given by the detector E∗

(n) = {1 −
�∗

n,�
∗
n} where

�∗
n = supp(ρ⊗n

2 − ρ⊗n
1 )+,

where suppa is the projection onto the space spanned by the columns of a and
a+ denotes the positive part of a self-adjoint operator a. Thus, if a = ∑

i λiSi

is the spectral decomposition using projections Si , then a+ := ∑
λi>0 λiSi and

suppa+ = ∑
λi>0 Si . The Bayes test is unique up to a possible reassignment of the

projections Si corresponding to zero eigenvalues of a = ρ⊗n
2 −ρ⊗n

1 . For r > 2, the
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Bayes detector has been described in [14, 34]. Explicit expressions for its r com-
ponents are not known in general; for the convenience of the reader, we present
the available implicit description below at the end of this section.

If for a sequence of detectors E(n) the limit limn→∞ − 1
n

log Errn(E(n)) exists,
we refer to it as the (asymptotic) error exponent. For two density matrices ρ1
and ρ2, the quantum Chernoff bound is defined by

ξQCB(ρ1, ρ2) := − log inf
0≤s≤1

tr[ρ1−s
1 ρs

2].(2.1)

The basic properties of ξQCB(ρ1, ρ2) have been discussed in [3]. Some distance-
like properties have been noted by Calsamiglia et al. [8]. For the binary discrimina-
tion problem, it is known that the Holevo–Helstrom (Bayes) detector E∗

(n) satisfies

lim
n→∞−1

n
log Errn

(
E∗

(n)

) = ξQCB(ρ1, ρ2),

thus specifying ξQCB(ρ1, ρ2) as the optimal error exponent (cf. [2, 3, 22]), and
providing the quantum analog of the classical Chernoff bound, that is, (1.2) for
r = 2.

For a set � = {ρ1, . . . , ρr} of density operators on C
d , where r ≥ 2, we have

introduced in [24] the multiple quantum Chernoff bound ξQCB(�)

ξQCB(�) := min{ξQCB(ρi, ρj ) : 1 ≤ i < j ≤ r}.(2.2)

If all the states are jointy diagonizable (commuting), then (2.2) reduces to the clas-
sical multiple Chernoff bound (1.1), as it was defined in [28, 30] for hypotheses
represented by probability distributions. Taking the minimum over different pairs
of hypotheses corresponds to the worst case in any of the associated binary hy-
pothesis testing problems. The following well-known result shows that ξQCB(�)

as a rate exponent cannot be exceeded (cf. [24], Theorem 1).

THEOREM 1. Let � = {ρ1, . . . , ρr} be a finite set of hypothetic states on C
d .

Then for any sequence {E(n)}n∈N of quantum detectors relative to �⊗n, respec-
tively, one has

lim sup
n→∞

−1

n
log Errn

(
E(n)

) ≤ ξQCB(�).(2.3)

The above theorem has been extended in [23] to the case of quantum hypothe-
ses which correspond to identically distributed but not necessary independent ob-
servations. The corresponding upper bound in (2.3) is then replaced by a mean
generalized Chernoff distance, as introduced in [13] for a stationary observation
scheme in binary case. In [23], it was also shown, again in a wider model corre-
sponding to a class of correlated observations, that quantum detectors with an ex-
ponential decay of Errn(E(n)) can be constructed, with error exponent φξQCB(�)

where 2/r(r − 1) ≤ φ ≤ 1. The method used in [23] yields a factor φ which may
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be close to one for special ensembles of states, but the guaranteed factor 2/r(r −1)

decreases with the number of hypotheses.
The following two theorems represent our main results. The support supp(ρ) of

a state ρ is the subspace of C
d spanned by its columns. Consider:

CONDITION (LI). supp(ρi) ∩ supp(ρj ) = {0} for all i �= j .

The condition is equivalent to requiring that ρi and ρj are linearly indepen-
dent, in the sense that for any two bases of supp(ρi) and supp(ρj ), the union
set of vectors is linearly independent. This is obviously fulfilled for a set � of
r distinct pure states, but the condition allows for mixed states if d > 2. Indeed,
Condition (LI) restricts the dimension of the supports supp(ρi) according to the
inequality supp(ρi) + supp(ρj ) ≤ d that is valid for all i �= j . However, as long as
none of the density matrices is of full rank, that is, rank equal to d , no constraints
on the number r of distinct hypothetic states are imposed by Condition (LI).

THEOREM 2. Let � be a finite set of states on C
d fulfilling Condition (LI).

Then there exists a sequence {E(n)}n∈N of quantum detectors relative to �⊗n, re-
spectively, such that

lim
n→∞−1

n
log Errn

(
E(n)

) = ξQCB(�).

Due to the following theorem in the i.i.d. situation—as considered in the present
paper- an error exponent of 1

3ξQCB(�) can always be achieved, independently of
both the (finite) number r of hypotheses and the special configuration of the cor-
responding states.

THEOREM 3. Let � be a finite set of states on C
d . Then there exists a sequence

{E(n)}n∈N of quantum detectors relative to �⊗n, respectively, such that

lim inf
n→∞ −1

n
log Errn

(
E(n)

) ≥ 1

3
ξQCB(�).

Our results are constructive in the sense that we provide an explicitly com-
putable quantum detector attaining the bounds. This detector reduces to classical
maximum likelihood in the commuting case (cf. Section 5), as does the Bayes rule,
and hence attains the optimal rate exponent (1.2); cf. [28]. Thus our method can
be seen as an alternative to the quantum Bayes rule. The above error bound is a
fortiori true for the latter, and also for computable approximations to it having at
most 2 times its error probability (Tyson [32, 33]). Our results along with those
of [23] allow the conjecture that in Theorem 3, the factor 1/3 can be removed; cf.
also the discussion point 5 below.

To further discuss the context of the main results, we note the following points.
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1. The quantum Bayes rule (Holevo [14], Yuen et al. [34]; cf. also Parthasarathy
[25, 26] and Hayashi [11]). Let � = {ρ1, . . . , ρr} be such that all ρi are dis-
tinct states on C

d . Let be E the set of all pertaining detectors E, that is, E =
{E1, . . . ,Er} where Ei are positive self-adjoint d × d with

∑r
i=1 Ei = 1. Define

μ = max
E∈E

Succ(E) := max
E∈E

r∑
i=1

tr[ρiEi].(2.4)

Then there exists a unique operator M on C
d satisfying

tr[M] = μ, M ≥ ρi, i = 1, . . . , r.

Maximizers E∗ = {E∗
1 , . . . ,E∗

r } ∈ E of (2.4) exist by compactness and continuity,
and any such maximizer (a Bayes rule) satisfies

M =
r∑

i=1

ρiE
∗
i =

r∑
i=1

E∗
i ρi,

(2.5)
(M − ρi)E

∗
i = E∗

i (M − ρi) = 0, i = 1, . . . , r.

A proof using only elementary calculus can be found in [25], Theorem 3.1. If
r = 2, then the Holevo–Helstrom rule {1 − �,�} for � = supp(ρ2 − ρ1)+ is a
Bayes rule. If all states ρi , i = 1, . . . , r commute, hence ρi can be represented as
diagonal matrix with diagonal elements pij , j = 1, . . . , d , then M is a diagonal
matrix with diagonal elements mj = maxi=1,...,r pij . Then any Bayes rule E∗ with
diagonal matrices E∗

i is maximum likelihood, assigning 0 or 1 to the diagonals
of E∗

i , such that a 1 is at (j, j) only if pij = mj .
2. Pretty good measurement. Let � = {ρ1, . . . , ρr} be a set of pairwise distinct

density operators with respective a priori probabilities pi . Define the positive semi-
definite operator ρ = ∑r

i=1 piρi . A possible quantum detector relative to � is of
the form

EPGM
i := ρ−1/2piρiρ

−1/2, i = 1, . . . , r.

(The inverse is understood to be taken on the support of ρ only.) It represents the
widely investigated POVMs called pretty good measurements (PGM). These are
known to be a good approximation of the quantum Bayes rule: if � is a set of pure
states, then the averaged success probability Succ(PGM) = ∑r

i=1 pi Succi (PGM)

is lower bounded by a result of Barnum and Knill [5],

Succ(PGM) ≥
(

max
E∈E

r∑
i=1

pi Succi (E)

)2

,

where E denotes the set of quantum detectors relative to �. For further bounds
on Succ(PGM) refering also to the general case of mixed states see [21] and ref-
erences therein. To the best of our knowledge, in the literature, the PGM has not
been successfully used to study the optimal asymptotic error exponent.
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3. Classical results resembling the multiple Chernoff bound. Let � be a statisti-
cal experiment having finite parameter space {θ1, . . . , θr}, and �n be the associated
product experiment corresponding to i.i.d. observations. Torgersen [31] considered
δ(�n,�a), the deficiency (in the Le Cam sense) of �n with respect to the fully in-
formative experiment �a . Here �a may be identified, up to equivalence, with the
set of r point masses concentrated on θ1, . . . , θr . It was shown ([31], Theorem 4.2)
that

−1

n
log δ(�n,�a) → ξCB(�) as n → ∞

with ξCB(�) defined in (1.1). Krob and von Weizsäcker [20] considered the Shan-
non capacity C(�n) of �n construed as a communication channel, and showed
that C(�n) approaches its upper bound log r exponentially quickly, with rate ex-
ponent ξCB(�):

−1

n
log

(
log r − C(�n)

) → ξCB(�) as n → ∞.

4. Linearly independent states. A stronger condition than Condition (LI) would
be that all states {ρ1, . . . , ρr} are linearly independent (in the sense that for any
selected r bases of the spaces supp(ρi), i = 1, . . . , r , the union set of vectors is
linearly independent.) The paper [10] gives examples of such ensembles of states,
and shows that under this stronger condition, the Bayes detector E = {E1, . . . ,Er}
consists of projections Ei (is a von Neumann measurement or PVM). Lemma 2
implies that our pairwise Condition (LI) on � implies the stronger one for �⊗n,
that is, the states ρ⊗

1 , . . . , ρ⊗
r are linearly independent for sufficiently large n.

5. Other special ensembles. It can be shown that there are other situations be-
sides Condition (LI) where the error exponent ξQCB(�) is attainable exactly. One
condition, which does not impose any rank restrictions on the states and thus al-
lows for full rank density matrices ρi , is as follows. For a set � = {ρ1, . . . , ρr}
of density operators where r > 2, let �(i,j)− be the set where a pair ρi , ρj , is re-
moved, that is, �(i,j)− = � \ {ρi, ρj } for 1 ≤ i < j ≤ r . Assume there is a pair
(i, j) such that

ξQCB(�) ≤ 1
6ξQCB

(
�(i,j)−

)
.

This condition can replace Condition (LI) in the statement of Theorem 2, that
is, the multiple quantum Chernoff bound is then attainable. The proof, not to be
presented here, consists in a combination of the sample splitting method of [23]
with Theorem 3. This further supports the conjecture that the result of Theorem 3
is not final and the factor 1/3 there may be removed.

Throughout the paper, we use the notation j ∈ {1, . . . , d} and j ∈ [1, d] inter-
changeably.
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3. The detection algorithm. In this section, we construct a sequence E(n),
n ∈ N, of quantum detectors for �⊗n. The construction does not rely on the ex-
istence of asymptotically optimal quantum tests for the binary case. It is rather a
modification of a construction used in [24] which yields asymptotically optimal
quantum tests for a set of pure states. At the same time, it represents a quantum
extension of the classical ML method, different from the Bayes rule described
in (2.5).

Consider again the classical case where a set � = {P1, . . . ,Pr} of probability
distributions is given on a finite sample space � with cardinality d . An obvious
algorithmic description of a ML decision rule ϕ :� → {1, . . . , r} is as follows. For
each ω ∈ �, find a maximal element in {Pi(ω)}ri=1, say Pi∗(ω), and then decide
ϕ(ω) = i∗. Alternatively, one may successively find the largest probabilities among
all Pi(ω), identify which Pi and which ω they are from, and assign a corresponding
decision on this ω. This iterative approach can be expressed in a simple algorithm
in pseudocode as follows.

ALGORITHM 1 (Classical ML rule).
Initialize. Let �0 = {Pi(ω), i = 1, . . . , r,ω ∈ �} be the r ×d-matrix of all prob-

abilities.
For s = 1 to d:

(i) In �s−1 find a maximal entry, Pi∗(ω∗) say. Set ωs = ω∗ and decide
ϕ(ωs) = i∗.

(ii) In �s−1, all Pi(ωs), i = 1, . . . , r are replaced by −1; the resulting r × d-
matrix is �s .

After s = d steps, the matrix �s has entries −1 only (a value serving as an
indicator, chosen to be smaller than any probability). We also have enumerated the
elements of � as ω1, . . . ,ωd ; on each of these, a decision ϕ(ωs) has been made,
which is ML by construction.

In the quantum case, there is no initial sample space �; it only appears after
defining a measurement, which in our context can be taken to be an orthonor-
mal basis {es}ds=1 of C

d . After this basis is fixed, the sample space � = {ωs}ds=1
can be identified with the basis itself, or more precisely with the set of pertain-
ing projectors, such that each ωs = |es〉〈es |, and a classical nonrandomized de-
cision rule ϕ :� → {1, . . . , r} has to be found. Then the quantum decision rule
E = {E1, . . . ,Er} is given by the PVM

Ei = ∑
s : ϕ(|es〉〈es |)=i

|es〉〈es |, i = 1, . . . , r.(3.1)

The algorithm we will describe constructs the basis elements ej and the pertain-
ing decision ϕ(·) iteratively, combining the ML principle underlying Algorithm 1
with a Gram–Schmidt orthogonalization.
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For each 1 ≤ i ≤ r let

ρi =
d∑

j=1

λij |vij 〉〈vij |(3.2)

be a spectral decomposition of the density matrix ρi , where λij , j = 1, . . . , d ,
are the eigenvalues of ρi appearing with their multiplicity, in arbitrary order, and
|vij 〉 are the corresponding normalized eigenvectors in C

d . Here 〈vij | denotes the
dual vector such that in this notation |vij 〉〈vij | describes an orthogonal projector
onto the one-dimensional subspace of C

d spanned by |vij 〉. We stress that zero
eigenvalues are included with their multiplicity since d in (3.2) is the dimension
of ρi .

ALGORITHM 2 (A quantum decision rule).
Initialize. Let �0 = {λij , i = 1, . . . , r, j = 1, . . . , d} be the r × d-matrix of all

eigenvalues. Let e0 = 0 be the zero vector in C
d .

For s = 1 to d:

(i) In �s−1 find a maximal entry, λi∗j∗ say. Set es to be a unit vector such that

es ∈ span(e1, . . . , es−1, vi∗j∗), es ⊥ span(e1, . . . , es−1)(3.3)

and decide ϕ(|es〉〈es |) = i∗.
(ii) In �s−1, all λij such that vij ∈ span(e1, . . . , es) are replaced by −1; the

resulting r × d-matrix is �s .

Again, after s = d steps, the matrix �s has entries −1 only. We also have con-
structed an orthonormal basis e1, . . . , ed and on each of these, an associated de-
cision ϕ(|es〉〈es |). The crucial step (3.3) is recognized to define a Gram–Schmidt
orthogonalization process. The quantum detector now is given by the PVM (3.1).

To bound the error probability of this detector, we need to introduce some fur-
ther notation. In each step s of Algorithm 2, in part (i) we have selected an index
pair (i∗, j∗) where λi∗j∗ is a maximal entry of the matrix �s−1; set (i(s), j (s)) =
(i∗, j∗). The sequence of vectors {vi(s),j (s)}ds=1 is linearly independent by con-
struction. For each s ∈ [1, d] define a d × s matrix Vs

Vs := (
vi(1),j (1), . . . , vi(s),j (s)

)
,(3.4)

that is, the columns of Vs are the vectors vi(k),j (k), k ∈ [1, s]. We refer to the s × s-
matrix

�s := V ∗
s Vs(3.5)

as a Gram matrix of {vi(k),j (k)}sk=1. For each s ∈ [1, d] the matrix �s is nonsingular
and the matrix

Ps := Vs(V
∗
s Vs)

−1V ∗
s = Vs�

−1
s V ∗

s
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represents an orthogonal projection onto span(vi(1),j (1), . . . , vi(s),j (s)), an s-
dimensional subspace of C

d . Additionally, we set P0 = 0 and define for s ∈ [1, d]
P (s) := Ps − Ps−1.(3.6)

Observe that the P (s) represent one-dimensional orthogonal projectors, which are
mutually orthogonal, such that P (s) = |es〉〈es | for the unit vectors es defined in
(3.3). The latter can be taken to be es = ‖P (s)vi(s),j (s)‖−1P (s)vi(s),j (s) (or a sign
changed version).

Furthermore, define an index N as

N = max
{
s ∈ [1, d] :λi(s),j (s) > 0

}
.(3.7)

It can be seen from the proof of Lemma 1 below that if N < d , then N can serve as
an early stopping index for Algorithm 2, in the following sense: the obtained set of
orthonormal vectors {es}Ns=1 can be completed to a basis of C

d in an arbitrary way
and the decisions ϕ(es), s > N , can be taken arbitrarily. This is related to the fact
that for all further steps s > N , the remaining eigenvalues λij listed in the matrix
�s are 0; in Algorithm 1 this corresponds to the case that there exist ω ∈ � which
are outside the support of all Pi .

We use the notation λmin(·) for the minimal eigenvalue of a self-adjoint matrix.

LEMMA 1. Let � = {ρi}ri=1 be an arbitrary set of density matrices on C
d .

Then the detector E = {Ei}ri=1 constructed in Algorithm 2 fulfills

Err(E) ≤ λ−1
min(�N)r−1

∑
1≤i,j≤r,j �=i

inf
s∈[0,1] tr[ρ1−s

i ρs
j ],(3.8)

where �N is the Gram matrix according to (3.5) for index s = N defined in (3.7).

PROOF. Define J to be the subset of [1, r] × [1, d] consisting of all pairs
(i(s), j (s)), s ∈ [1, d], and Ji := {j ∈ [1, d] : (i, j) ∈ J }. For given i ∈ [1, r],
consider the corresponding individual success probability of the detector defined
by (3.1):

Succi (E) = tr[ρiEi] =
d∑

j=1

λij tr[|vij 〉〈vij |Ei] ≥ ∑
j∈Ji

λij tr[|vij 〉〈vij |Ei],(3.9)

where the right-hand side is set 0 if the set Ji is empty. For any j ∈ Ji , let s(i, j) be
the unique index s ∈ [1, d] such that (i, j) = (i(s), j (s)). If Ji is nonempty, then

Ei = ∑
j∈Ji

∣∣es(i,j)

〉〈
es(i,j)

∣∣ = ∑
j∈Ji

P (s(i,j))

with P (s) defined in (3.6), hence Ei ≥ P (s(i,j)) for all j ∈ Ji , in the sense of the
ordering for self-adjoint matrices. This implies

tr[|vij 〉〈vij |Ei] ≥ 〈
vij

∣∣P (s(i,j))
∣∣vij

〉 = 〈
vij

∣∣Ps(i,j)

∣∣vij

〉 − 〈
vij

∣∣Ps(i,j)−1
∣∣vij

〉
.
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Recall that the matrices Ps are constructed as orthogonal projectors onto
span(vi(1),j (1), . . . , vi(s),j (s)), and since for j ∈ Ji and s = s(i, j) we have vij =
vi(s),j (s), it follows that for s = s(i, j)〈

vij

∣∣Ps(i,j)

∣∣vij

〉 = 〈
vi(s),j (s)|Ps |vi(s),j (s)

〉 = 1.

Consequently,

Succi (E) ≥ ∑
j∈Ji

λij

〈
vij

∣∣P (s(i,j))
∣∣vij

〉 = ∑
j∈Ji

λij − ∑
j∈Ji

λij

〈
vij

∣∣Ps(i,j)−1
∣∣vij

〉
.

For the individual error probability under state ρi this implies, setting J c
i := [1,

d] \ Ji ,

Erri (E) = 1 − Succi (E) ≤ ∑
j∈Ji

λij

〈
vij

∣∣Ps(i,j)−1
∣∣vij

〉 + ∑
j∈J c

i

λij

(3.10)
= S1 + S2,

say.
Bounding the term S1. Consider only those terms in

S1 = ∑
j∈Ji

λij

〈
vij

∣∣Ps(i,j)−1
∣∣vij

〉
,

where λij > 0. Since for j ∈ Ji we have λij = λi(s),j (s) for some s = s(i, j) ∈
[1, d], the assumption λij > 0 implies s(i, j) ≤ N . Recall that Ps = Vs�

−1
s V ∗

s ,
s = 1, . . . , d , and that each �s−1 is a principal submatrix of �s . As a consequence,
λmin(�s) ≥ λmin(�N), s ∈ [1,N], and for j ∈ Ji , if not s(i, j) = 1,

λij

〈
vij

∣∣Ps(i,j)−1
∣∣vij

〉 ≤ λ−1
min

(
�s(i,j)−1

)
λij

〈
vij

∣∣Vs(i,j)−1V
∗
s(i,j)−1

∣∣vij

〉
(3.11)

≤ λ−1
min(�N)λij

〈
vij

∣∣Vs(i,j)−1V
∗
s(i,j)−1

∣∣vij

〉
,

where λmin(�N) > 0 by construction. Formally setting V0 = 0 ∈ C
d , the above

inequality holds also if s(i, j) = 1. One obtains the upper bound

S1 = ∑
j∈Ji

λij

〈
vij

∣∣Ps(i,j)−1
∣∣vij

〉

≤ λ−1
min(�N)

∑
j∈Ji

λij

〈
vij

∣∣Vs(i,j)−1V
∗
s(i,j)−1

∣∣vij

〉
(3.12)

= λ−1
min(�N)

∑
j∈Ji

λij

s(i,j)−1∑
k=1

∣∣〈vi(k),j (k)|vij

〉∣∣2.
The identity above is based on the fact that the columns of Vs(i,j)−1 are given by the
vectors vi(k),j (k), k ∈ [1, s(i, j) − 1]. Note that in (3.12), for every pair of vectors
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occurring in 〈vi(k),j (k)|vij 〉 the corresponding eigenvalues satisfy λi(k),j (k) ≥ λij

by construction. This implies

λij ≤ λ1−s
ij λs

i(k),j (k)(3.13)

for every s ∈ [0,1]. Recall that every eigenvalue λi(k),j (k) pertains to a state
ρi(k); we may assume i(k) �= i, since otherwise necessarily j (k) �= j and thus
〈vi(k),j (k)|vi(k),j 〉 = 0. Setting now m = i(k) and assuming m �= i, we will apply
inequality (3.13) for an exponent s which is allowed to depend on i and m. De-
note by s(i,m) = s(m, i) ∈ [0,1] the exponent associated to the pair of indices
(i,m) ∈ [1, r]2. Observe that for any subset Dm ⊂ [1, d]∑

j∈Ji

∑
j ′∈Dm

λ
1−s(i,m)
ij λ

s(i,m)
m,j ′ |〈vm,j ′ |vij 〉|2

(3.14)

≤ ∑
j∈Ji

d∑
j ′=1

λ
1−s(i,m)
ij λ

s(i,m)
m,j ′ |〈vm,j ′ |vij 〉|2,

where on the right-hand side of the inequality we are just adding positive reals. It
now follows from (3.12), (3.13) and (3.14) that

S1 ≤ λ−1
min(�N)

∑
j∈Ji

∑
1≤m≤r,m�=i

d∑
j ′=1

λ
1−s(i,m)
ij λ

s(i,m)
m,j ′ |〈vm,j ′ |vij 〉|2.(3.15)

Bounding the term S2. We have

S2 = ∑
j∈J c

i

λij = ∑
j∈J c

i

λij 〈vij |vij 〉.

Consider only those terms where λij > 0. By definition of J c
i , there exists

s ∈ [1, d] such that vij ∈ span(vi(1),j (1), . . . , vi(s),j (s)). Then λi(k),j (k) ≥ λij for
k ∈ [1, s], hence λi(s),j (s) > 0 and consequently s ≤ N . We also have 〈vij |vij 〉 =
〈vij |Ps |vij 〉, so the same reasoning as for S1 leads to

S2 ≤ λ−1
min(�N)

∑
j∈J c

i

∑
1≤m≤r,m�=i

d∑
j ′=1

λ
1−s(i,m)
ij λ

s(i,m)
m,j ′ |〈vm,j ′ |vij 〉|2.(3.16)

Putting together (3.15) and (3.16), we obtain

Erri (E) ≤ λ−1
min(�N)

d∑
j=1

∑
1≤m≤r,m�=i

d∑
j ′=1

λ
1−s(i,m)
ij λ

s(i,m)
m,j ′ |〈vm,j ′ |vij 〉|2.

Since s(i,m), m �= i, are arbitrary in [0,1], we obtain

Erri (E) ≤ λ−1
min(�N)

∑
1≤m≤r,m�=i

inf
s∈[0,1] tr[ρ1−s

i ρs
m].

By averaging over i ∈ [1, r], we obtain (3.8). �
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4. Pairwise linearly independent states. The main difficulty for utilizing
Lemma 1 for an asymptotic error bound is the control of the minimal eigenvalue
of the Gram matrix �N . Imposing Condition (LI) on the set � = {ρ1, . . . , ρr} is
one way to achieve that control, resulting in Theorem 2. Observe that this con-
dition is equivalent to requiring that for each pair ρi, ρj , i �= j , the joint set of
eigenvectors pertaining to a nonzero eigenvalue is linearly independent. Lemma 2
below implies in this case: the Gram matrix �N associated to the tensor product
set �⊗n = {ρ⊗n

1 , . . . , ρ⊗n
r } has minimal eigenvalue bounded away from zero as

n → ∞.
For each of the original ρi , let di := rank(ρi) the number of nonzero eigen-

values. Condition (LI) implies that for any i �= j we have di + dj ≤ d , and since
di ≥ 1 this implies that all di < d . In this case rank(ρ⊗n

i ) = dn
i < dn. Let Vn be

the set of eigenvectors of ρ⊗n
1 , . . . , ρ⊗n

r pertaining to a nonzero eigenvalue; more
precisely, if we assume spectral representations

ρ⊗n
i =

rank(ρ⊗n
i )∑

j=1

λij |vij 〉〈vij |

with unit vectors vij and eigenvalues λij > 0, then Vn is the double array

Vn = {vij , j ∈ [1, dn
i ], i ∈ [1, r]}

so that #Vn = Dn := ∑r
i=1 dn

i .

LEMMA 2. Let � = {ρ1, . . . , ρr} be a set of density matrices in C
d , fulfilling

Condition (LI). Let Vn be the set of eigenvectors defined above and let
◦
�n its Dn ×

Dn Gram matrix. Then

λmin(
◦
�n) = 1 + o(1) as n → ∞.(4.1)

PROOF. We will first argue for the generic case n = 1, and subsequently im-
pose the tensor product structure on the ρi . As above, let {vij }di

j=1 be the eigenvec-
tors of ρi pertaining to a nonzero eigenvalue. Define a d × di matrix

Ui := (ui1, . . . , uidi
),(4.2)

that is, the columns of Ui are the vectors uij , j ∈ [1, di]. Furthermore, define a
d × D matrix (where D = ∑r

i=1 di )

U := (U1| · · · |Ur)

made up of submatrices Ui . Now, for n > 1 replace the matrices Ui in (4.2) by
their nth tensor powers U⊗n

i . Then for n ≥ 1 the dn × dn
i blocks U⊗n

i correspond
to eigenvectors of ρ⊗n

i , and U is now of dimension dn ×Dn where Dn = ∑r
i=1 dn

i .

For the Dn × Dn Gram matrix
◦
�n := U∗U we show (4.1).
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We will again begin with the case n = 1 and develop a representation of U

which takes account of its block structure in terms of U∗
i Uj . To this end, for i ∈

[1, r] define di × D matrices

Ei = (0di×d1 | · · · |0di×di−1 |1di
|0di×di+1 | · · · |0di×dr ),

where we denote a k × l matrix of 0’s by 0k×l and the k-dimensional unit matrix
by 1k . Then it is easily seen that U = ∑r

i=1 UiEi and consequently

◦
�1 = U∗U =

r∑
i,j=1

E∗
i U∗

i UjEj .(4.3)

Here U∗
i Ui = 1di

, i ∈ [1, r], so that

1D =
r∑

i=1

E∗
i U∗

i UiEi.

We define

� := ◦
�1 − 1D(4.4)

and write
◦
�1 = 1D + �. Moreover, for j < i we define

�ij = E∗
i U∗

i UjEj + E∗
j U∗

j UiEi.(4.5)

Clearly �ij is Hermitian, and by construction � = ∑r
i=2

∑i−1
j=1 �ij . Now, with

‖a‖ = λ
1/2
max(a

2) being the operator norm of a Hermitian matrix a, we have

λmin(
◦
�1) = min‖v‖=1

〈v|1D + �|v〉 = 1 + min‖v‖=1
〈v|�|v〉

(4.6)

≥ 1 − ‖�‖ ≥ 1 −
r∑

i=2

i−1∑
j=1

‖�ij‖ = 1 −
r∑

i=2

i−1∑
j=1

λ1/2
max(�

2
ij ),

where the second inequality is by the triangle inequality for the operator norm.
For the case n > 1, replacing the matrices Ui in (4.2) by their nth tensor powers

U⊗n
i leads to a representation of

◦
�n analogous to (4.3). Here the matrices Ei have

to be replaced by Ei,n, defined analogously to Ei with di replaced by dn
i , i ∈

[1, r]. Furthermore, we define �n and �ij,n analogously to (4.4) and (4.5) with
Ui , Ei replaced by U⊗n

i and Ei,n. In order to prove (4.1) we use the analog of

(4.6) holding for
◦
�n and �n, which is

λmin(
◦
�n) ≥ 1 −

r∑
i=2

i−1∑
j=1

λ1/2
max(�

2
ij,n).

It now suffices to show that for all i ∈ [2, r], j ∈ [1, i − 1]
λ1/2

max(�
2
ij,n) → 0 as n → ∞.(4.7)
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Clearly, we have

�ij,n = E∗
i,n(U

∗
i Uj )

⊗nEj,n + E∗
j,n(U

∗
j Ui)

⊗nEi,n

and by a computation, since Ei,nE
∗
i,n = 1dn

i
and Ej,nE

∗
i,n = 0dn

j ×dn
i

for j < i,

�2
ij,n = E∗

i,n(U
∗
i UjU

∗
j Ui)

⊗nEi,n + E∗
j,n(U

∗
j UiU

∗
i Uj )

⊗nEj,n.

The two hermitian matrices composing �2
ij,n are orthogonal, and their nonzero

eigenvalues are those of (U∗
i UjU

∗
j Ui)

⊗n and (U∗
j UiU

∗
i Uj )

⊗n, respectively.
Hence,

λmax(�
2
ij,n) = max{λmax(U

∗
i UjU

∗
j Ui)

⊗n, λmax(U
∗
j UiU

∗
i Uj )

⊗n}
(4.8)

= max{λn
max(U

∗
i UjU

∗
j Ui), λ

n
max(U

∗
j UiU

∗
i Uj )}.

Let Pi = UiU
∗
i be the projection operator onto the space supp(ρi) = span(Ui).

Note that U∗
i PjUi and PiPjPi have the same set of nonzero eigenvalues,

hence by Lemma 3 below and Condition (LI) we have λmax(U
∗
i PjUi) < 1 and

λmax(U
∗
j PiUj ) < 1. It follows

λn
max(U

∗
i PjUi) → 0 as n → ∞,

λn
max(U

∗
j PiUj ) → 0 as n → ∞,

hence by (4.8) λmax(�
2
ij,n) → 0. Thus, (4.7) is established. �

LEMMA 3. Let L0, L1 be linear subspaces of C
d and P0,P1 be the corre-

sponding projection operators. Then L0 ∩ L1 = {0} if and only if

λmax(P0P1P0) < 1.

PROOF. It is obvious that always λmax(P0P1P0) ≤ 1, so it suffices to prove
that L0 ∩ L1 �= {0} is equivalent to λmax(P0P1P0) = 1. Assume there exists
x ∈ L0 ∩ L1, ‖x‖ > 0, then Pix = x, i = 0,1 and hence P0P1P0x = x so that
λmax(P0P1P0) = 1. For the other direction, assume

λmax(P0P1P0) = 1.(4.9)

Then there exist v0 ∈ C
d , ‖v0‖ = 1 such that 〈v0|P0P1P0|v0〉 = 1. Here ‖P0v0‖ ≤

1 by the properties of projections. Assume ‖P0v0‖ < 1. Then for u0 = P0v0 we
have

〈v0|P0P1P0|v0〉 = 〈u0|P1|u0〉 < 1,

which contradicts the assumption (4.9). Hence, we must have ‖P0v0‖ = 1 and
hence v0 ∈ L0 and P0v0 = v0. Then

1 = 〈v0|P0P1P0|v0〉 = 〈v0|P1|v0〉,



TESTING MULTIPLE QUANTUM HYPOTHESES 3227

which implies v0 ∈ L1 by an analogous reasoning. Hence, v0 ∈ L0 ∩ L1 where
‖v0‖ = 1, hence L0 ∩ L1 �= {0}. �

PROOF OF THEOREM 2. We utilize the detector constructed in Algorithm 2,
applied to the tensor product case � = �⊗n; call this detector E(n). Lemma 2 im-
plies that the set Vn is a linearly independent set for sufficiently large n. As a conse-
quence, when Lemma 1 is applied to the tensor product set �⊗n = {ρ⊗n

1 , . . . , ρ⊗n
r },

the matrix �N occurring there equals
◦
�n up to a rearrangement and λmin(�N) =

λmin(
◦
�n). We find from (3.8) that

Err
(
E(n)) ≤ λ−1

min(
◦
�n)r

−1
∑

1≤i,j≤r,j �=i

inf
s∈[0,1] tr[(ρ⊗n

i )1−s(ρ⊗n
j )s]

(4.10)
= r−1(

1 + o(1)
) ∑

1≤i,j≤r,j �=i

(
inf

s∈[0,1] tr[ρ1−s
i ρs

j ]
)n

.

Recall the definition (2.1) of the pairwise quantum Chernoff bound ξQCB(ρi, ρj );
then

Err
(
E(n)) ≤ r−1(

1 + o(1)
) ∑

1≤i,j≤r,j �=i

exp(−nξQCB(ρi, ρj )).(4.11)

Taking log of both sides and dividing by n, the limit of the right-hand side above is
determined by the smallest of the ξQCB(ρi, ρj ), which according to (2.2) coincides
with ξQCB(�). The theorem follows. �

5. Commuting states. Suppose all the density matrices ρi are commuting:
ρiρj = ρjρi for all i, j ∈ [1, r]. Then the ρi have a common set of eigenvectors
vj , j ∈ [1, d]. The spectral decompositions (3.2) now are

ρi =
d∑

j=1

λi,j |vj 〉〈vj |, i ∈ [1, r].

Also, w.l.o.g., by applying a unitary transformation, we can assume that all ρi are
diagonal matrices and vj is a canonical basis vector of C

d . Then the set of eigen-
values of ρi represents a probability distribution Pi on a finite sample space �,
#� = d , where each ω ∈ � can be identified with one of the projections |vj 〉〈vj |.

With this identification, Algorithm 2 reduces essentially to Algorithm 1. Indeed,
in the orthogonalization step (3.3), the newly appearing unit vector vi∗j∗ in step s

is one of the basis vectors vj . By induction, it follows that the constructed basis
e1, . . . , ed coincides with v1, . . . , vd up to possible reindexing and change of sign.
Thus, the classical decision rule ϕ found in Algorithm 2 on the sample space ele-
ments |ej 〉〈ej | is equivalent to a decision rule on �, constructed according to Al-
gorithm 1, and the latter is a maximum likelihood rule. The ML rule is not unique
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in general; in case of nonuniqueness, any version may result from Algorithm 1,
according to the choice of a maximal entry in step (i).

In Lemma 1, �L is the Gram matrix pertaining to {vj }dj=1, that is unity. Thus,
we obtain

Err(E) ≤ r−1
∑

1≤i,j≤r,j �=i

inf
s∈[0,1] tr[ρ1−s

i ρs
j ]

= r−1
∑

1≤i,j≤r,j �=i

inf
s∈[0,1]

∑
ω∈�

P 1−s
i (ω)P s

j (ω)

and reasoning further as in (4.10) and (4.11 ), we have thus reproduced the attain-
ability result for the multiple classical Chernoff bound (cf. (1.2) and [28, 29]).

6. A near optimal rate in the general case. We establish that, as stated in
Theorem 3, in the general case of a finite number of quantum hypotheses there exist
quantum tests that achieve an error exponent equal to the generalized quantum
Chernoff distance up to a factor 1/3.

To construct the detector attaining the exponential bound in the general case,
we will modify Algorithm 2 such that it assumes certain density matrices ρ̃i ,
which represent ε-perturbations of embeddings of the original ρi into a higher-
dimensional space C

D , D > d . These states ρ̃i are not observable; the detector
will be applied to the extensions of ρi , which are observable.

Set D = (r + 1)d and consider the kth canonical unit vector fk in (r + 1)d-
dimensional space C

D . Reindex the basis vectors fk such that fi,j = f(i−1)d+j for
(i, j) ∈ [1, r + 1] × [1, d] and define subspaces

Si = span{fi,j }dj=1.

Then C
D is a direct sum C

D = ⊕r+1
i=1 Si where all Si are isomorphic to C

d . Let the
operator F represent the canonical embedding F : Cd → S1. Recall the spectral
representation (3.2) of ρi with eigenvectors vij ∈ C

d ; setting ui,j = Fvij , we may
equivalently assume that instead of ρi we measure a D × D density matrix ρ0,i

having spectral representation

ρ0,i =
d∑

i=1

λi,j |ui,j 〉〈ui,j |.

For ε ∈ (0,1) and δε = (1 − ε2)1/2, define vectors

ũi,j := δεui,j + εfi+1,j

for (i, j) ∈ J = [1, r] × [1, d]. Then, since 〈ui,j |fi+1,j 〉 = 0, the vectors ũi,j are
unit vectors; define density matrices

ρ̃i =
d∑

i=1

λi,j |ũi,j 〉〈ũi,j |, i ∈ [1, r].(6.1)
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Relative to this set of density matrices on C
D , satisfying

tr[ρ̃1−s
i ρ̃s

j ] = δ4
ε tr[ρ1−s

i ρs
j ](6.2)

construct a detector according to (3.1) and Algorithm 2, and call this Ẽε . Then
each Ẽε,i is a projection matrix in C

D and
∑r

i=1 Ẽε,i = 1D . Define now Eε,i as the
upper d × d submatrix of Ẽε,i . Then Eε,i is a positive matrix and

∑r
i=1 Eε,i = 1d ,

so that

Eε := {Eε,i}ri=1(6.3)

constitutes a POVM in C
d .

It should be noted that Eε,i are not projections, that is, Eε is a general POVM
but not a PVM, contrary to the detector constructed in Algorithm 2. However,
Eε results from a PVM Ẽε in a higher-dimensional space by taking submatrices.
This relationship holds between POVMs and PVMs in general, on the basis of
Naimark’s theorem; cf. Parthasarathy [25] for a discussion.

LEMMA 4. Let � = {ρi}ri=1 be an arbitrary set of density matrices on C
d . For

sufficiently small ε > 0, the detector Eε constructed in (6.3) fulfills

Err(Eε) ≤ r−1
(

2ε + ε−2
∑

1≤i,j≤r,j �=i

inf
s∈[0,1] tr[ρ1−s

i ρs
j ]

)
.(6.4)

PROOF. Consider the Gram matrix �̃J of the set of vectors {ũi,j , (i, j) ∈ J }.
Since for (i, j) ∈ J and (k, l) ∈ J we have

〈ũi,j |ũk,l〉 = δ2
ε 〈ui,j |uk,l〉 + ε2〈fi+1,j |fk+1,l〉

it follows that �̃J is a convex combination of two Gram matrices, which implies
that

λmin(�̃J ) ≥ ε2.

Hence, {ũi,j , (i, j) ∈ J } is a set of rd linearly independent vectors in C
D . Since

Algorithm 2 eliminates from V1(�) all eigenvectors pertaining to zero eigenval-
ues, the sequence V1(�) of length L contains exactly the vectors {ũi,j , (i, j) ∈ J }
pertaining to nonzero λi,j in (6.1). Their full Gram matrix �L as given by (3.5) for

s = L is a submatrix of �̃J (after rearrangement) and hence also fulfills

λmin(�L) ≥ ε2.(6.5)

Consider the error probability of the POVM Eε

Err(Eε) = 1 − r−1
r∑

i=1

tr[Ẽε,iρ0,i]
(6.6)

= 1 − r−1
r∑

i=1

tr[Ẽε,i ρ̃i] + r−1
r∑

i=1

tr[Ẽε,i(ρ̃i − ρ0,i)].
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Now according to Lemma 1, (6.5), and (6.2) we have

1 − r−1
r∑

i=1

tr[Ẽε,i ρ̃i] ≤ ε−2r−1
∑

1≤i<j≤r

inf
s∈[0,1] tr[ρ̃1−s

i ρ̃s
j ]

≤ ε−2r−1
∑

1≤i<j≤r

inf
s∈[0,1] tr[ρ1−s

i ρs
j ].

For the second term on the right-hand side of (6.6) note that

ρ̃i − ρ0,i =
d∑

j=1

λi,j (|ũi,j 〉〈ũi,j | − |ui,j 〉〈ui,j |).

Here we have

|ũi,j 〉〈ũi,j | − |ui,j 〉〈ui,j |
= |δεui,j + εfi+1,j 〉〈δεui,j + εfi+1,j | − |ui,j 〉〈ui,j |
= −ε2|ui,j 〉〈ui,j |

+ δεε|ui,j 〉〈fi+1,j | + δεε|fi+1,j 〉〈ui,j | + ε2|fi+1,j 〉〈fi+1,j |
= δεε|ui,j + fi+1,j 〉〈ui,j + fi+1,j |

− (δεε − ε2)(|ui,j 〉〈ui,j | + |fi+1,j 〉〈fi+1,j |)
− 2ε2|ui,j 〉〈ui,j |.

Since the matrix

(δεε − ε2)(|ui,j 〉〈ui,j | + |fi+1,j 〉〈fi+1,j |) + 2ε2|ui,j 〉〈ui,j |
is positive for sufficiently small ε, we have

|ũi,j 〉〈ũi,j | − |ui,j 〉〈ui,j | ≤ δεε|ui,j + fi+1,j 〉〈ui,j + fi+1,j |
consequently

tr[Ẽε,i(ρ̃i − ρ0,i)] ≤
d∑

j=1

λi,j tr[Ẽε,i(δεε|ui,j + fi+1,j 〉〈ui,j + fi+1,j |)]

≤
d∑

j=1

λi,j tr[(δεε|ui,j + fi+1,j 〉〈ui,j + fi+1,j |)]

= δεε

d∑
j=1

λi,j · 2 ≤ 2ε.
�

PROOF OF THEOREM 3. We denote the factor of ε−2 in (6.4) by K1, and in
the n-fold tensor product case, where ρi is replaced by ρ⊗n

i , by Kn, respectively.
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To find the best upper bound in (6.4), we minimize the expression 2ε+ε−2Kn in ε.
The solution is ε = K

1/3
n and the value at the minimum is 3K

1/3
n . Since Kn tends

to zero as n goes to infinity it is ensured that for sufficently large n, the value K
1/3
n

is small enough to satisfy the condition of Lemma 4. Thus from (6.4) we obtain

Err
(
E(n)

ε

) ≤ 3r−1
( ∑

1≤i,j≤r,j �=i

inf
s∈[0,1] tr[(ρ⊗n

i )1−s(ρ⊗n
j )s]

)1/3

,

where E
(n)
ε denotes the respective detectors in the tensor product case �⊗n. It

follows

1

n
log Err

(
E(n)) ≤ 1

3

1

n
log

( ∑
1≤i,j≤r,j �=i

inf
s∈[0,1] tr[(ρ⊗n

i )1−s(ρ⊗n
j )s]

)
+ o(1)

= 1

3
log ξQCB(�) + o(1),

which proves our claim. �
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