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Abstract We derive a large deviation result for the log-likelihood ratio for testing simple
hypotheses in locally stationary Gaussian processes. This result allows us to find explicitly the
rates of exponential decay of the error probabilities of type I and type II for Neyman–Pearson
tests. Furthermore, we obtain the analogue of classical results on asymptotic efficiency of
tests such as Stein’s lemma and the Chernoff bound, as well as the more general Hoeffding
bound concerning best possible joint exponential rates for the two error probabilities.

Keywords Hypothesis testing · Likelihood ratio · Large deviations · Locally stationary
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1 Introduction and main results

Consider a locally stationary Gaussian process X := (Xk,n)1≤k≤n and the problem of testing

H0 : X ∼ Pn vs H1 : X ∼ Qn, (1.1)

where Pn ∼ Nn(0, �n) and Qn ∼ Nn(0,˜�n). In our setting, both hypotheses remain fixed
as n → ∞, so the study of error probabilities has to be based on large deviation theory. The
main objective of this paper is to characterize the exponential rates of decrease for the error
probabilities of the first and second kind and their interdependence. In the information the-
oretical literature, this characterization (for the i.i.d. case) is known as the Hoeffding bound
(Hoeffding 1965; Csiszár and Longo 1971; Blahut 1974); Stein’s lemma and the Chernoff
bound then appear as special cases. For a concise presentation of these results in the con-
text of large deviation theory and asymptotic statistics see Genon-Catalot and Picard (1993).
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In order to treat the case of locally stationary Gaussian processes we mainly follow some work
by Bouaziz (1993) and Taniguchi and Kakizawa (2000) who have obtained large deviations
for stationary Gaussian sequences.

Locally stationary Gaussian processes were introduced and amply studied by Dahlhaus
(1996a,b, 1997, 2009). We begin with a brief introduction to these processes and also to the
hypothesis testing problem that we are concerned with in this paper.

Definition 1 A triangular array of random variables X := (Xk,n)1≤k≤n is called a locally
stationary Gaussian process with trend μ and transfer function A◦, if it allows the following
spectral representation

Xk,n = μ

(

k

n

)

+
π

∫

−π
exp(iλk) A◦

k,n(λ) dε(λ) (1.2)

where

1. ε(λ) = ε1(λ) + iε2(λ) is a complex-valued Brownian motion on [0, π] extended to
[−π, 0] by ε(λ) = ε(−λ), λ ∈ [−π, 0], where ε1(λ), ε2(λ) are independent standard
Brownian motions on λ ∈ [0, π ].

2. There exist a constant K and a 2π -periodic function A : [0, 1] × [−π, π] → C with
A(u,−λ) = A(u, λ) and

sup
k,λ

∣

∣A◦
k,n(λ)− A(k/n, λ)

∣

∣ ≤ K n−1,

for all n.

Note that when A◦
k,n(·) does not depend on k, we obtain a spectral representation of

stationary Gaussian processes. Definition 1 allows for more stochastic processes to be stud-
ied within the framework of oscillatory processes. This family of processes was introduced
by Priestly (1981). Priestley provided a stochastic representation of a certain type of non-
stationary processes, in addition, Dahlhaus’ approach allows for an asymptotic treatment of
statistical inference problems. A concise comparison between these two approaches can be
found in Dahlhaus (1996b).

The function f : [0, 1] × [−π, π] → R given by

f (u, λ) = 1

2π
|A(u, λ)|2

is called the time-varying spectral density of the process.
Although f , as given above, may not be unique, if the function A is sufficiently smooth,

then the function f is asymptotically uniquely determined by the whole triangular array
(Xk,n)1≤k≤n . Indeed, if A is uniformly Lipschitz continuous in both components with index
α > 1/2 then for all u ∈ (0, 1), we have

π
∫

−π
| fn(u, λ)− f (u, λ)|2 dλ = o(1),

where fn(u, λ) is the Wigner–Ville spectrum for fixed n:

fn(u, λ) := 1

2π

∞
∑

s=−∞
cov

(

X[un+s/2],n, X[un−s/2],n
)

exp(−iλs),
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where Xs,n obeys the representation (1.2) and [x] is the largest integer less or equal than x .
See Theorem 2.2 in Dahlhaus (1996a).

Along with the time-varying spectral density f we have the time-varying covariance
function of lag k at time u

c(u, k) :=
π

∫

−π
f (u, λ) exp(iλk) dλ.

For two transfer functions A◦ and B◦, set

�n(A, B) :=
⎛

⎝

π
∫

−π
exp{iλ(r − s)}A◦

r,n(λ)B
◦
s,n(λ) dλ

⎞

⎠

r,s=1,...,n

. (1.3)

If the true process is locally stationary with transfer function A◦ and approximating func-
tion A, then�n = �n(A, A) is the true covariance matrix of the process. Instead of working
directly with the theoretical covariance matrix, we can appropriately approximate�n by using
the time-varying covariance function. For instance, if A(u, λ) is uniformly differentiable in
u then

cov
(

X[un],n, X[un]+k,n
) = c(u, k)+ O(n−1).

See Remark 2.8 in Dahlhaus (2009).
Throughout this paper X := (Xk,n)1≤k≤n will denote observations from a locally station-

ary Gaussian process with zero trend function, transfer function A◦, approximating function
A and time-varying spectral density f . We study asymptotic statistical inference about X
under the two simple hypotheses established in (1.1).

In accordance with the results above under H0, the covariance matrix, �n , is asymptoti-
cally defined through the time-varying spectral density f . Under H1, the covariance matrix
of X , denoted by ˜�n , is asymptotically defined via another time-varying spectral density,
say g.

Let Tn be a test for the hypotheses in (1.1). The performance of Tn is determined by the
false-alarm rate (type I error probability or simply αn) and the nondetection rate (type II error
probability or just βn) which by definition are

αn = P{ Tn Rejects H0 | H0 }, βn = P{ Tn Rejects H1 | H1 }. (1.4)

We are interested in obtaining exponential rates of decrease of αn and βn for Neyman–
Pearson and Bayes-type tests. In order to formulate our main results some notation is in
order. The torus T will be the set T = [0, 1] × [−π, π]. Let BT denote the set of functions
h : T → C such that:

1. There exists a constant C > 0 such that |h(u, λ)| > C , for all (u, λ) ∈ T, and
2. the derivative ∂

∂u
∂
∂λ

h is uniformly bounded.

Proposition 1 Suppose that f, g ∈ BT and f �= g on T. Let βεn be the infimum of βn among
all tests with αn < ε. Then for any ε < 1

lim
n→∞

1

n
logβεn = −KL( f ; g),

where

KL( f ; g) = 1

4π

∫

T

[

log
g

f
+ f − g

g

]

dλ du.
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Recall that f := f (u, λ) and g := g(u, λ).

In the scenario of having some a priori probability on H0 we have the following result.

Proposition 2 Suppose that the conditions of Proposition 1 hold. Let P
B
n = αnP{H0} +

βnP{H1} be the Bayes probability of error for testing the simple hypotheses (1.1). If 0 <
P{H0} < 1 then

inf
S

lim
n→∞

1

n
log P

B
n = −	
(0).

The infimum is taken over all tests for (1.1) with error probabilities given by (1.4). Moreover,

	
(0) = −KL(gα0 ; f ),

with KL( f ; g) given above and

gα0 = f g

α0 f + (1 − α0)g
.

The value of α0 is determined in the proof of this result.

Remark 1 Hirukawa and Taniguchi (2006) have studied non-Gaussian locally stationary
processes, focusing on proving local asymptotic normality (LAN). We comment on possible
relations to our results at Sect. 2.1.

This paper is organized as follows. In Sect. 2 we derive a large deviation result for the
log-likelihood ratio for testing simple hypotheses for locally stationary Gaussian processes.
Also in this section, we present a study about the rates of exponential decay of the type I and
type II error probabilities given in (1.4), as a result we obtain a Hoeffding bound for testing
the simple hypotheses (1.1). A proof of Proposition 1 is given in Sect. 3 along with an intro-
duction that refers to the classical Stein’s lemma for i.i.d. observations. In the same spirit,
Sect. 4 presents the classical Chernoff bound and the corresponding proof of Proposition 2.
Finally, some technical details used in our proofs are relegated to the Appendix.

2 Large deviations for locally stationary Gaussian processes

We begin this section with some definitions. Let Pn and Qn be probability measures defined
on some space (�n,Fn). For each n, suppose that Qn is absolutely continuous w.r.t. Pn (in
short notation Qn 	 Pn). Let �n = log dQn

dPn
be the log-likelihood ratio between Qn and

Pn . Let µn be a measure dominating Pn and Qn . Since dPn = pn dµn and dQn = qn dµn ,
where pn and qn are the Radon-Nykodim derivatives of Pn and Qn w.r.t. µn,�n = log qn

pn
.

Under Pn , let 
n(·) be the m.g.f. of �n; 
n(α) = EPn [exp{α �n}]. Note that for any
α ∈ [0, 1]


n(α) =
∫

p1−α
n (x)qαn (x) dµn(x). (2.1)

The RHS of (2.1) is known as the Hellinger transform between Pn and Qn . For mean zero
Gaussian processes, i.e., Pn ∼ Nn(0, �n),Qn ∼ Nn(0,˜�n), Taniguchi and Kakizawa (2000)
have introduced the terms asymptotic Kullback–Leibler divergence and asymptotic Chernoff
information with index α, 0 < α < 1, as

KL = lim
n→∞

1

n
EPn

[

log
dPn

dQn

]

(2.2)

123



Stat Inference Stoch Process (2012) 15:225–239 229

and

Cα = lim
n→∞ − 1

n
log EPn

[{

dQn

dPn

}α]

, (2.3)

respectively. See Sect. 7.6 in Taniguchi and Kakizawa (2000).
Following these definitions we have that for any two equivalent Gaussian measures Pn

and Qn

lim
n→∞

1

n
log
n(α) = lim

n→∞
1

n
log

∫

p1−α
n (x)qαn (x) dx = −Cα. (2.4)

That is, computing the asymptotic Chernoff divergence is equivalent to knowing the loga-
rithmic limit of the Hellinger transform which in turn, and thanks to Bouaziz’ lemma below,
is equivalent to establishing a large deviation principle for the log-likelihood ratio of Qn w.r.t
Pn . This is summarized by the Eq. (2.4).

Bouaziz (1993) showed the following general result on large deviations. Let Sn be a
sequence of real-valued random variables defined on some probability space (�∗

n,F
∗
n,Pn).

Let φn be the moment generating function of Sn , i.e., φn(α) = EPn [exp{αSn}].
Bouaziz’ Lemma (Lemma 2.1 in Bouaziz 1993) Suppose that

1. φn(1) < ∞ for all (sufficiently large) n,
2. (1/n) logφn(α) → ψ(α) ∀α ∈ [0, 1],
3. ψ is differentiable and strictly convex on (0, 1).

Then for all a ∈ (

ψ ′(0), ψ ′(1)
)

lim
n→∞

1

n
log Pn{ Sn > na } = −ψ
(a),

where ψ
 is the Fenchel-Legendre conjugate of ψ defined by

ψ
(a) = sup
0≤α≤1

[aα − ψ(α)].

In addition, the same result holds for { Sn ≥ na }.
We will apply this lemma to the log-likelihood �n of two locally stationary Gaussian

processes. More precisely, let X = (Xk,n)1≤k≤n and ˜X = (˜Xk,n)1≤k≤n be realizations of
locally stationary Gaussian processes with probability laws Pn,Qn and time-varying spectral
densities f, g, respectively. From now on Pn ∼ Nn(0, �n) and Qn ∼ Nn(0,˜�n) where �n

and ˜�n are defined in (1.3). Let�n = log dQn
dPn

be the log-likelihood ratio of Qn w.r.t. Pn and

n(·) its moment generating function. From (2.1), it can be seen that 
n(1) = 1 for all n.
Let T and BT be as in the introduction. We have the following

Lemma 1 If f, g ∈ BT then for any α ∈ [0, 1]

lim
n→∞

1

n
log
n(α) = 	(α),

where

	(α) = 1

4π

∫

T

[

α log
f

g
− log

(

α f + (1 − α)g

g

)]

dλ du, (2.5)

where f := f (u, λ) and g := g(u, λ).
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Proof Since
n(1) = 
n(0) = 1, the result is trivial for α ∈ {0, 1}. For α ∈ (0, 1) we show
in the Appendix that for any n ∈ N we have that

1

n
log
n(α) = α

2n

(

log det�n − log det ˜�n
)

− 1

2n

(

log det
[

α�n + (1 − α)˜�n
] − log det ˜�n

)

.

Since f, g ∈ BT it follows that for any α ∈ (0, 1), α f + (1 − α)g ∈ BT. An application
of Theorem 3.2(ii) in Dahlhaus (1996a) yields

1

n
log det�n → 1

2π

∫

log 2π f dλ du,

1

n
log det ˜�n → 1

2π

∫

log 2πg dλ du,

1

n
log det

[

α�n + (1 − α)˜�n
] → 1

2π

∫

log 2π(α f + (1 − α)g) dλ du.

The result now follows by summing up all the terms above.

According to (2.3) and (2.5), the asymptotic Chernoff information between two locally
stationary Gaussian processes is given by the integral

Cα = 1

4π

∫

T

[

log

(

α f + (1 − α)g

g

)

− α log
f

g

]

dλ du.

In the Appendix we show that (2.2) is given by the quantity

KL = 1

4π

∫

T

(

log
g

f
+ f − g

g

)

dλ du.

In accordance with the terminology introduced by Taniguchi and Kakizawa, this expression is
called the asymptotic Kullback–Leibler divergence for locally stationary Gaussian processes.

Observe that when f (u, λ) and g(u, λ) do not depend on u the two expressions above
generalize well-known formulas for the asymptotic Chernoff information between stationary
Gaussian sequences (Coursol and Dacunha-Castelle 1979) and for the asymptotic Kullback–
Leibler divergence between stationary Gaussian sequences (obtained by Taniguchi 2001 as
the approximate slope of the primitive likelihood ratio test between stationary Gaussian
processes with spectral density f (λ)).

Let f, g and 	 be as in Lemma 1. Since the function h(x) = − log(1 + θx) is strictly
convex ∀ θ �= 0 it follows that 	(·) is strictly convex whenever f �= g. In addition, the
function 	(·) is differentiable and 	 ′(0, 1) = (	 ′(0),	 ′(1)) where

	 ′(0) = 1

4π

∫

T

[

log
f

g
− f − g

g

]

dλ du (2.6)

	 ′(1) = 1

4π

∫

T

[

log
f

g
− f − g

f

]

dλ du. (2.7)

Since log(x) < x−1,∀x > 0, x �= 1 it follows that	 ′(0) < 0 < 	 ′(1)whenever f �= g. So,
we have found conditions under which the m.g.f.,
n(·), of the log-likelihood ratio between
two locally stationary Gaussian processes satisfies the assumptions of Bouaziz’ lemma. We
have the following
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Theorem 1 Let Pn and Qn be probability measures corresponding to two locally stationary
Gaussian processes with time-varying spectral densities f and g, respectively. Let f, g ∈ BT

and suppose that f �= g on T. Let�n be the log-likelihood ratio of Qn w.r.t. Pn. Then for all
a ∈ (

	 ′(0),	 ′(1)
)

lim
n→∞

1

n
log Pn{�n > na } = −	
(a),

where

	
(a) = sup
0≤α≤1

[aα −	(α)],

with 	(α) given as in (2.5). The same is true for {�n ≥ na }.
This result is a large deviation for the log-likelihood ratio between the laws of two locally
stationary Gaussian processes. Large deviations for quadratic forms of locally stationary pro-
cesses have been obtained by Zani (2002). We now use Theorem (1) to establish exponential
rates of decrease for the false-alarm and nondetection rates for testing the hypotheses con-
sidered in (1.1). Following Bouaziz let us recall that given a false-alarm level αn in (0, 1),
the most powerful tests of Pn against Qn at the level αn are the Neyman–Pearson tests of size
αn , i.e., those tests τn which satisfy

1l{�n>an} ≤ τn ≤ 1l{�n≥an}, EPn [τn] = αn, EQn [τn] = 1 − βn .

For every n ∈ N we have the following inequalities:

1

n
log Pn{�n > an } ≤ 1

n
logαn ≤ 1

n
log Pn{�n ≥ an }.

Under the conditions of Theorem 1 and assuming that an ∼ na, it follows that for all
a ∈ (	 ′(0),	 ′(1)), 1

n logαn(a) → −	
(a). Let ̂
n(α) = EQn [exp{α˜�n}] be the m.g.f. of
˜�n = log dPn

dQn
under Qn . Observe that ˜�n = −�n . A straightforward calculation allows us

to see that ̂
n(α) = 
n(1 − α), for all α ∈ [0, 1]. Consequently,

lim
n→∞

1

n
log ̂
n(α) → 	(1 − α).

The Fenchel-Legendre conjugate of this limiting function is given by

̂	
(a) = sup
α∈[0,1]

[aα −	(1 − α)] = a +	
(−a).

Thus, under conditions of Theorem 1 we have that

lim
n→∞

1

n
log Qn{ ˜�n > na } = −a −	
(−a),

and the same holds for {˜�n ≥ na}.
Since {�n < nb } = { ˜�n > −nb } it follows that

lim
n→∞

1

n
log Qn{�n < nb } = b −	
(b).

Thus, for Neyman–Pearson tests and for every n ∈ N we have the following inequalities:

1

n
log Qn{�n < an } ≤ 1

n
logβn ≤ 1

n
log Qn{�n ≤ an }.
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Hence for locally stationary Gaussian processes satisfying the conditions of Theorem 1
we conclude that for all a ∈ (	 ′(0),	 ′(1)),

lim
n→∞

1

n
logβn(a) = a −	
(a),

where 	
(·) is the Fenchel-Legendre conjugate of 	(·) given in (2.5). Summarizing, we
have the following

Corollary 1 Consider the assumptions of Theorem 1. Let 	 ′(0) and 	 ′(1) be given as in
(2.6) and (2.7), respectively. Then for all a ∈ (	 ′(0),	 ′(1))

lim
n→∞

1

n
logαn(a) = −	
(a) < 0, (2.8)

lim
n→∞

1

n
logβn(a) = a −	
(a) < 0, (2.9)

where

	
(a) = 1

4π

∫

T

[

log

(

αa f + (1 − αa)g

g

)

+ αa(g − f )

αa f + (1 − αa)g

]

dλ du,

with αa the unique solution to 	 ′(αa) = a.

Proof It remains to establish the expression for	
(a). Define G(a, α) = aα−	(α). Observe

that ∂
∂α

G(a, α) = a − 	 ′(α), ∂2

∂2α
G(a, α) = −	 ′′(α). Since for all α ∈ [0, 1], 	 ′′(α)

= (4π)−1
∫

T
( f − g)2/[α f + (1 − α)g]2 dλ du > 0, the function ∂

∂α
G(a, α) is strictly

decreasing on
(

	 ′(0),	 ′(1)
)

. Then, the equation a = 	 ′(α) has a unique solution αa , i.e.,
there exists a unique αa ∈ [0, 1] such that a = 	 ′(αa). It follows that 	
(a) = G(a, αa). A
straightforward calculation yields

G(a, αa) = 1

4π

∫

T

[

log

(

αa f + (1 − αa)g

g

)

+ αa(g − f )

αa f + (1 − αa)g

]

dλ du

= KL(gαa , f ), (2.10)

where KL( f, g) is given in Proposition 1 and

gαa = f g

αa f + (1 − αa)g
.

Recall that f := f (u, λ) and g := g(λ, u).

Results of this type can be found in the literature on large deviations for stochastic pro-
cesses. For instance, Genon-Catalot and Picard (1993) (Theorem 3.4.3 §4.2) have obtained
Corollary 1 for the case of a sequence of n i.i.d. random variables, Theorem 2.4 in Bouaziz
(1993) and Lemma 8.2.3 in Taniguchi and Kakizawa (2000) treat the same problem for station-
ary Gaussian sequences. In the information theoretic literature this type of result is referred
to as the Hoeffding-Blahut-Csiszár-Longo bound. Recently, Audenaert et al. (2008) have
obtained a Hoeffding bound in quantum hypothesis testing, and Gapeev and Küchler (2008)
have provided similar large deviation results for testing Ornstein-Uhlenbeck-type models.

An interpretation of Corollary 1 is that for every a ∈ (	 ′(0),	 ′(1)) there exists a test
τa whose type I and type II error probabilities, αn(a) and βn(a), satisfy (2.8) and (2.9),
respectively. Moreover, the ratio αn(a)

βn(a)
behaves roughly like e−na , and we have the following

cases:
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1. For a > 0, αn(a)
βn(a)

→ 0 as n → ∞. That is, αn(a) → 0 and βn(a) → c0.

2. For a = 0, αn(a)
βn(a)

→ 1 as n → ∞. That is, for n large enough αn(a) and βn(a) share
the same growth rate.

3. For a < 0, αn(a)
βn(a)

→ ∞ as n → ∞. That is, αn(a) → c1 and βn(a) → 0.

In the next sections we study these three cases in more detail. For instance, the rate with
which βn → 0, case a < 0, is given by Stein’s Lemma and the rate in which both type I error
and type II error grow equally, case a = 0, appears as the Chernoff bound for testing simple
hypotheses.

2.1 A comment on large deviations for non-Gaussian locally stationary processes

To our knowledge, Hirukawa and Taniguchi (2006) have presented the only systematic study
on non-Gaussian locally stationary processes. We now present an outline of a possible exten-
sion of our large deviation results to the non-Gaussian processes introduced in Hirukawa and
Taniguchi (2006).

Let us begin by saying that a non-Gaussian locally stationary process satisfies the repre-
sentation given in (1.2):

Xk,n =
π

∫

−π
exp(iλk) A◦

k,n(λ) dε(λ).

As in Definition 1.1, ε is a complex-valued stochastic process defined on [−π, π] but it is
not necessarily a Brownian motion. Instead, it is supposed that

cum { dε(λ1), . . . , dε(λk) } = η

(

k
∑

i=1

λi

)

hk(λ1, . . . , λk−1) dλ1 · · · dλk,

where cum stands for the cumulant of k-th order, η is a 2π-periodic extension of the Dirac
delta function and |hk(λ1, . . . , λk−1)| ≤ Ck . As in Definition 1.2 the trend function A◦

k,n(·)
has a uniformly approximating function A(k/n, ·)which is assumed to be uniformly bounded
from above and bounded away from zero as well as continuous in the first component.

Since Hirukawa and Taniguchi (2006) were focused on locally asymptotic normality
(LAN), it was natural to assume that the process had a parametric structure. Namely,
realizations (Xk,n)1≤k≤n of a non-Gaussian locally stationary process with trend function
A◦
θ , approximating function Aθ and time-varying function fθ (u, λ) := |Aθ (u, λ)|2 where

θ = (θ1, . . . , θq) ∈ � ∈ R
q have been considered.

In Hirukawa and Taniguchi (2006) the following assumptions were made:

A1. Aθ (u, λ), the gradient ∇ Aθ (u, λ), and the Hessian ∇2 Aθ (u, λ) have components which
are differentiable in u and λ with uniformly continuous derivative ∂

∂u
∂
∂λ

. Also, it is
assumed that the gradient and Hessian of A◦

θ,k,n(λ)−Aθ (k/n, λ) are uniformly bounded
in k and λ.

A2. Write

ξk =
π

∫

−π
exp(iλk) dε(λ),

and assume that the ξk’s are i.i.d. random variables with E[ξk] = 0,E[ξ2
k ] = 1 and

E[ξ4
k ] < ∞. Furthermore, assume that the distribution of ξk is absolutely continuous
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w.r.t. Lebesgue measure and that the corresponding probability density p satisfies reg-
ularity conditions such as being light-tailed and having smooth first two derivatives p′
and p′′.

A3. Assume that {Xk,n} has the MA(∞) and AR(∞) representations

Xk,n =
∞
∑

j=0

a◦
θ,k,n( j) ξk− j ,

a◦
θ,k,n(0) ξk =

∞
∑

t=0

b◦
θ,k,n(t) Xk−t,n .

It is also assumed that the non-random coefficients a◦
θ,k,n(·) and b◦

θ,k,n(·) satisfy some
smoothness and summability conditions.

Let Pθ,n be the probability distribution of
(

ξs, s ≤ 0, X1,n, . . . , Xn,n
)

. Then under assump-
tions A1, A2 and A3, the log-likelihood ratio between two non-Gaussian locally stationary
processes defined via the points θ, θn ∈ � is given by

�n(θ, θn) = log
dPθn ,n

dPθ,n
= 2

n
∑

k=1

log
k,n(θ, θn),

where


2
k,n(θ, θn) = gθn ,k,n(zθ,k,n + qk,n)

gθ,k,n(zθ,k,n)

with

gθ,k,n(·) = 1

a◦
θ,k,n(0)

p

(

·
a◦
θ,k,n(0)

)

, zθ,k,n = a◦
θ,k,n(0) ξk

a◦
θ,k,n(0) ≡ exp

⎧

⎨

⎩

1

4π

π
∫

−π
log fθ,k,n(λ) dλ

⎫

⎬

⎭

, fθ,k,n(λ) = ∣

∣A◦
θ,k,n(λ)

∣

∣

2

qk,n =
k−1
∑

t=1

[

1√
n

h�∇b◦
θ,k,n(t)+ 1

2n
h� ∇2b◦

θ∗,k,n(t) h

]

Xk−t,n

+
∞
∑

r=0

1√
n

h� ∇c◦
θ∗∗,k,n(r) ξ−r

c◦
θ,k,n(r) =

r
∑

s=0

b◦
θ,k,n(k + s) a◦

θ,0,n(r − s).

The points θ∗ and θ∗∗ belong to the segment defined by θ and θ + h√
n

, for some h ∈ R
q .

As shown in the present paper, to establish a large deviation for the log-likelihood ratio
between non-Gaussian locally stationary processes we could start by studying the behavior
of

1

n
log EPθ,n

[

exp {s�n(θ, θn)}
]

as n → ∞ with�n(θ, θn) as given above. This task is beyond the scope of the present article;
however, as it will be illustrated in the next sections such a large deviation result might prove
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useful to determine the asymptotic efficiency of Neyman–Pearson and Bayes tests even in a
non-Gaussian setting.

3 Proof of Proposition 1

In the i.i.d. case, Stein’s lemma for testing simple hypotheses can be stated as follows. Let
X = (X1, . . . , Xn) be a sequence of i.i.d. random variables. Consider the following hypoth-
eses

H0 : X ∼ pn vs H1 : X ∼ qn . (3.1)

The Neyman–Pearson lemma dictates to use the log-likelihood ratio test between qn and
pn to minimize the type II error probability, βn , of this test. Stein’s lemma tells us that, when
the type I error probability, αn , of this test is bounded then βn will converge to zero at an
exponential rate given by the Kullback–Leibler divergence between p and q . More precisely,
and following Dembo and Zeitouni (1998), we have

Stein’s Lemma Let βεn be the infimum of βn among all tests whose false-alarm rate αn < ε.
Then for any ε < 1

lim
n→∞

1

n
logβεn = −KL(p; q),

where KL(p; q) is the Kullback–Leibler information divergence between p and q.

Many authors have provided proofs of this lemma. For instance, Lemma 6.1 in Bahadur
(1971), Section B, Chapter 6 in Bucklew (1990), Lemma 3.4.6 in Dembo and Zeitouni (1998)
or the original statement, Theorem 2, in Chernoff (1956) all present proofs of the so-called
Stein’s lemma. Roughly speaking, in an i.i.d. framework when testing between two probabil-
ity measures, p and q , if the false-alarm detection rate of the test statistic remains bounded
when n → ∞ then the nondetection rate, βn , will decrease to zero exponentially fast.

We have stated an analogue of Stein’s lemma for locally stationary Gaussian processes in
the introduction of this paper. In this section we present a proof of this lemma which is based
on Corollary 1. From now on we assume that an ∼ na, that Qn is absolutely continuous w.r.t.
Pn and that 	 ′(0) = −KL( f, g) where 	 ′(0) is given in (2.6).

We now give a proof of Proposition 1.

Proof Let ε > 0 be given. Let βεn be the infimum of βn among all tests with αn < ε. It is
enough to consider Neyman–Pearson tests, i.e., those tests τn such that

1l{�n>an } ≤ τn ≤ 1l{�n≥an }, EPn [τn] = αn, EQn [τn] = 1 − βn . (3.2)

We get that

1

n
log Qn{�n < an } ≤ 1

n
logβn ≤ 1

n
log Qn{�n ≤ an }. (3.3)

Since Qn 	 Pn we have
∫

1l{�n≤an } e�n dPn = ∫

1l{�n≤an } dQn . This implies that

1

n
log Qn{�n ≤ an } ≤ a. (3.4)

For any a ∈ (	 ′(0),	 ′(1)) there exists a test, τa say, such that its error probabilities
of first type, αn(a), and second type, βn(a), satisfy (2.8) and (2.9). For n large enough,
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αn(a) < ε. Hence 1
n logβεn <

1
n logβn(a). Now, use the RHS of (3.3) and (3.4) to deduce

that 1
n logβεn ≤ 	 ′(0). Therefore ∀δ > 0 we get that

lim sup
n

1

n
logβεn ≤ 	 ′(0)+ δ.

To continue with the proof we need the following law of large numbers for�n . For every
θ ∈ (0, 1), define dPn,θ = [eθ�n/	n(θ)] dPn, 	n = 1

n log
n . Then

1

n
�n → 	 ′(θ) in Pn,θ probability. (3.5)

The argument to show that (3.5) holds is contained in the proof of Lemma 2.1 in Bouaziz
(1993).

Choose a ∈ (

	 ′(0),	 ′(1)
)

whose corresponding test, τa , is such that for n large enough
αn(a) = Pn{�n > an} ≤ ε. The law of large numbers for �n just presented implies that for
all δ > 0

lim inf
n

Pn{�n ∈ [n(	 ′(0)− δ), an] } ≥ 1 − ε. (3.6)

Use the LHS of the inequality in (3.2) to get that

βn ≥
∫

1l{�n<an } dQn =
∫

1l{�n<an } e�n dPn

≥
∫

1l{�n∈[n(	 ′(0)−δ),an ] } e�n dPn

≥ en(	 ′(0)−δ)
∫

1l{�n∈[n(	 ′(0)−δ),an ] } dPn .

Hence for all δ > 0

1

n
logβn(a) ≥ 	 ′(0)− δ + 1

n
log Pn{�n ∈ [n(	 ′(0)− δ), an] }.

Finally, use (3.6) and recall that by assumption ε < 1 to deduce that for all δ > 0

lim inf
n

1

n
logβεn ≥ 	 ′(0)− δ.

This completes the proof.

We have extended Stein’s Lemma from the classical i.i.d. setup to nonstationary pro-
cesses. In the context of model selection, Dahlhaus (1996a) found 	 ′(0) and termed it as
the Kullback–Leibler divergence between two locally stationary processes wih time-varying
spectral densities f and g. According to the conclusion of Proposition 1 we can now adopt
the notation KL( f, g) and refer to it as the asymptotic Kullback–Leibler divergence between
two locally stationary Gaussian processes.

4 Proof of Proposition 2

Consider the setting given in (3.1). Because of the Neyman–Pearson lemma, to study the
asymptotic efficiency of any test in (3.1) it is sufficient to have some a priori probability on
H0 and to consider the two types of error probabilities given by
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αn = P{Sn ≥ an | H0}, βn = P{Sn < an | H1},
where Sn = ∑n

k=1 Xk . A principle to find the threshold an is that of minimizing αn + λβn

for some λ > 0. Basically, this criterion is equivalent to requiring that as n → ∞, αn and βn

approach zero at the same rate. A solution to this problem was provided by Chernoff (1952).
Namely, we have

Chernoff Bound

lim
n→∞

[

inf
an
(βn + λαn)

]1/n

= inf
0<t<1

∫

p(x)1−t q(x)t dx .

Dembo and Zeitouni (1998) consider the same problem. Their solution is mainly based on
elements of large deviations for the log-likelihood ratio test. Taniguchi and Kakizawa (2000)
have obtained the Chernoff bound for testing simple hypotheses for stationary processes.
Their solution is also mainly based on large deviations. The content of Proposition 2 is an
extension of these results to the framework of locally stationary Gaussian processes. We now
present a proof of such proposition.

Proof Again it is sufficient to consider Neyman–Pearson tests, τn . Let αn(0) and βn(0)
be the error probabilities of the Neyman–Pearson test with zero threshold. For any other
Neyman–Pearson test, τn , either αn ≥ αn(0) (an ≤ 0) or βn(0) ≤ β (an ≥ 0). Thus the
inequalities

min{αn(0), βn(0) } min { P{H0},P{H1} } ≤ P
B
n

≤ 2 max{αn(0), βn(0) } max{ P{H0},P{H1} }
yield

inf
S

lim inf
n→∞

1

n
log P

B
n ≥ lim inf

n→∞ min{ 1

n
logαn(0),

1

n
logβn(0) }

and

inf
S

lim sup
n→∞

1

n
log P

B
n ≤ lim sup

n→∞
max{ 1

n
logαn(0),

1

n
logβn(0) }.

Recall that 0 < P{H0} < 1 and S denotes the set of all tests for (1.1) with probability errors
given by (1.4). Given (2.8) and (2.9)

lim
n→∞

1

n
logαn(0) = lim

n→∞
1

n
logβn(0) = −	
(0).

Observe that by definition

−	
(0) = − sup
α∈[0,1]

[−	(α)] = inf
α∈[0,1]	(α) = f (0, t0)

where f (0, t0) is given by (2.10). This completes the proof.
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Appendix

In this section we use the notation introduced in Sect. 2 and the assumptions of Lemma 1.
Consider the log-likelihood of Qn w.r.t. Pn,�n = log dQn

dPn
, and its moment generating func-

tion with respect to Pn , i.e., the function 
n : [0, 1] → [0, 1] given by


n(α) = EPn

[

exp {α�n}] = EPn

{

dQn

dPn

}α

=
∫

p1−α
n (x)qαn (x) dx .

Let us calculate this integral:


n(α) =
∫

det(2π�n)
−(1−α)/2e− (1−α)

2 x��−1
n x det(2π˜�n)

−(α)/2e− α
2 x�

˜�−1
n x dx

= det(�n)
−(1−α)/2 det(˜�n)

−α/2 det[(1 − α)�−1
n + α˜�−1

n ]−1/2

= det(�n)
α/2 det(˜�n)

(1−α)/2 det[α�n + (1 − α)˜�n]−1/2.

The latter follows after multiplying the integrand by a proper constant, using the fact that
every probability density function integrates to 1 and using properties of the determinant.

Therefore

log
n(α) = 1

2

(

α log
det�n

det ˜�n
− log

det[α�n + (1 − α)˜�n]
det ˜�n

)

.

Similar calculations show that the m.g.f. of the log-likelihood ratio of Pn w.r.t. Qn is equal
to

log
dPn

dQn
(x) = −1

2
log

det�n

det ˜�n
− 1

2
x� (

�−1
n − ˜�−1

n

)

x . (4.1)

Recall that if Z ∼ N(0, S) then E[Z� AZ ] = tr(AS). Hence

EPn

[

log
Pn

Qn

]

= −1

2

[

log
det�n

det ˜�n
+ n − tr

(

˜�−1
n �n

)

]

.

Lemma 4.8 in Dahlhaus (1996a) now yields that

1

n
tr

(

˜�−1
n (˜A, ˜A)�n(A, A)

) → 1

2π

∫

T

f

g
dλ du.

Hence the asymptotic Kullback–Leibler information of two locally stationary Gaussian pro-
cesses (as termed by Taniguchi and Kakizawa) with time-varying spectral densities f and g,
respectively, is

KL = lim
n→∞

1

n
EPn

[

log
dPn

dQn

]

=
(

−1

2

)

lim
n→∞

1

n

[

log
det�n

det ˜�n
+ n − tr

(

˜�−1
n �n

)

]

=
(

−1

2

)

1

2π

∫

T

(

log
f

g
+ 1 − f

g

)

dλ du

= 1

4π

∫

T

(

log
g

f
+ f − g

g

)

dλ du.
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