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Abstracts

Sharp Adaptive Nonparametric Testing for Sobolev Ellipsoids
MICHAEL NUSSBAUM
(joint work with Pengsheng Ji)

Consider the Gaussian white noise model in sequence space
Y= fi+n"Y%, j=1,2,..

with signal f = {f7};x:1 and §; ~ N (0,1) independent. For some p, 5, M > 0,

consider hypotheses of "no signal” vs. an ellipsoid with l9-ball removed:

Hy:f=0 oagainst H,:feX(5,M)NB,,
By ={fet:Ifl3=p}, D8, M) ={f: Y%} < M}.
j=1

Consider a-tests ¢ and their worst case type II error over the alternative:

(1) \Pn(¢7 ,O,ﬂ,M) = sup (1 _En,f¢)~
FES(B,M)NB,
Ingster [8] found the critical rate for p — 0, the so-called separation rate p, =<
n~48/(48+1) " where a nontrivial type II error behaviour occurs:
0 < liminf inf W, and limsup inf V¥, <1-—a.
¢ a-test ¢ a-test

This rate is known as the optimal rate for nonparametric testing. As in non-
parametric estimation (cf. Pinsker [13]), the step from optimal minimax rate to
optimal constant has been made, with the result by Ermakov [3]:

Suppose a € (0,1) and py, ~ (cn)74ﬁ/(4ﬂ+1) for some ¢ > 0. Then

(2) . inf (¢, p,8,M) = ®(za eM~Y*n5) 4+ o(1)
where zq, is the upper a-quantile of N(0,1) and ng = (26-+1)Y/2(45+1)~1/2-1/48,

We address the question of sharp minimaz adaptive testing, that is the question
of whether this constant can be attained by tests which do not depend on (8, M).
For minimax estimation with ls-loss over ellipsoids (3, M), cf. Efroimovich and
Pinsker [2], Golubev [6], Tsybakov [16]. Adaptation to Pinsker’s constant is pos-
sible there, without a penalty such as rate loss. For testing, Spokoiny [15] showed
that for adaptation to (8, M), there is a rate penalty of order (loglog n)l/Q. Es-
sentially this result concerns adaptation to 8 only; indeed M is irrelevant for the
optimal rate. Moreover, for adaptation to  only, Ingster and Suslina [9] obtained
a sharp constant, within the (loglog n)l/ 2 rate loss framework. Adaptation to
both parameters (3, M) is an open problem.

We first consider the problem of adaptation to M only, assuming 5 known.
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Theorem 1. Suppose ¢ > 0, 0 < My < My < oo and p, ~ (cn)74ﬁ/(46+1).

Then there is no test ¢, satisfying En odn < a+ o(1) and both relations
U (Gns ps B, Mi) < ®(za — M, Png) +0(1), i =1,2.

In view of (2), adaptation to M only is impossible at the separation rate. We now
replace the constant ¢ in p, ~ (1371)_46/(4‘13'~'l> by a sequence c¢,, — oo arbitrarily
slowly. Then ®(z, — ch*1/4ﬁ175) — 0, and taking the standard log-asymptotics
approach, it turns out that adaptation to Ermakov“s constant is possible.

Theorem 2. Assume c, — oo and c, = o(n’) for every K > 0. If p, =
(cnn)745/(4’8+1) then there exists a test ¢n, fulfilling E, o¢n, < a+o0(1) and for all
M>0 -

-1
M,

2

Ermakov [4] showed that the r. h. s. above is also the best achievable for tests
possibly depending on M. Hence there is no ”penalty for adaptation” here, except
that one has to change the optimality criterion. Proofs for this case are in [10].

For the problem of full adaptation to (8, M), we first state a lower asymptotic
risk bound for known M and unknown B € [B1, 2], a variation of a result of
Ingster and Suslina [9]. Assume that 0 < 51 < B2 and that M > 0 is fixed. Let D
be arbitrary and define a radius sequence p, g p by

1
limsupglog \Iln(d)nvpnvﬁaM) < -

n

3) (pnp.a) D/ = L0451 ((210glog )/ + D).

Then for any sequence of tests ¢,, satisfying E, o¢n < a+ o(1)

(4) sup U, (Pny s, B, M) > (1 —a)®(=D) + o(1).
BE[B1,B2]

Here the test sequences ¢,, are assumed not to depend on § (but possibly on M);
the radius p, g, depends on 3 and M. The concept of a radius p,, varying with
B (inside the risk supremum) has been introduced by Spokoiny [15] in the context
of rate adaptivity. In the refinement of [9], Ermakov’s constant M ~1/4%1, enters
the critical radius p, g,n as well.

The attainability of the bound (4) is shown in [9] for tests depending on M.
We show it for tests not depending on M, establishing adaptivity in (8, M).

Theorem 3. Assume that 0 < 1 < 2 and 0 < My < M are fized. Let D be
arbitrary and let p, g m be the radius sequence in (3). Then there exists a test ¢,
fulfilling Ey, o¢n < a+ o(1) and

sup \Ijn(q&nvpn,ﬁ,l\laﬁvM) < (1704)(1)(7D)+0(1)'
BE[B1,B2], M €[ M1, Mz]
It turns out that there is no additional penalty for M being unknown, and there
is no need to consider tail probabilities.

Ingster and Suslina [9] establish their lower bound (4) for l,- ellipsoids of
smoothness r with shrinking /.- ellipsoids of smoothness s removed, and also Besov
classes, but not for sup-norm settings. Lepski and Tsybakov [12] prove a sharp
minimax result in testing when the alternative is a Holder class with a sup-norm
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ball removed. This represents a testing analog of the minimax estimation result of
Korostelev [11] and also a sup-norm analog of Ermakov [3]; for the regression case
cf. [5]. When 3 is given, Diimbgen and Spokoiny [1] establish a sharp adaptivity
result with respect to the size parameter M only. The case of unknown (3, M)
seems to be an open problem for sup-norm testing; for the estimation case cf. [7].
But in [1] a test is given which is adaptive rate optimal without a loglog n-type
penalty. Rohde [14] considers the sup-norm case for regression with nongaussian
errors, combining methods of [1] with ideas related to rank tests.
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