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Abstracts

Sharp Adaptive Nonparametric Testing for Sobolev Ellipsoids

Michael Nussbaum

(joint work with Pengsheng Ji)

Consider the Gaussian white noise model in sequence space

Yj = fj + n�1/2⇠j , j = 1, 2, ...

with signal f = {fj}1j=1 and ⇠j ⇠ N (0, 1) independent. For some ⇢,�,M > 0,
consider hypotheses of ”no signal” vs. an ellipsoid with l2-ball removed:

H0 : f = 0 against Ha : f 2 ⌃(�,M) \B⇢,

B⇢ =
n

f 2 l2 : kfk22 � ⇢
o

, ⌃(�,M) = {f :
1
X

j=1

j2�f2
j  M}.

Consider ↵-tests � and their worst case type II error over the alternative:

(1)  n(�, ⇢,�,M) := sup
f2⌃(�,M)\B⇢

(1� En,f�) .

Ingster [8] found the critical rate for ⇢ ! 0, the so-called separation rate ⇢n ⇣
n�4�/(4�+1), where a nontrivial type II error behaviour occurs:

0 < lim inf inf
� ↵-test

 n and lim sup inf
� ↵-test

 n < 1� ↵.

This rate is known as the optimal rate for nonparametric testing. As in non-
parametric estimation (cf. Pinsker [13]), the step from optimal minimax rate to
optimal constant has been made, with the result by Ermakov [3]:

Suppose ↵ 2 (0, 1) and ⇢n ⇠ (cn)�4�/(4�+1)
for some c > 0. Then

(2) inf
� ↵-test

 n(�, ⇢,�,M) = �(z↵ � cM�1/4�⌘�) + o(1)

where z↵ is the upper ↵-quantile of N(0, 1) and ⌘� = (2�+1)1/2(4�+1)�1/2�1/4� .
We address the question of sharp minimax adaptive testing, that is the question

of whether this constant can be attained by tests which do not depend on (�,M).
For minimax estimation with l2-loss over ellipsoids ⌃(�,M), cf. Efroimovich and
Pinsker [2], Golubev [6], Tsybakov [16]. Adaptation to Pinsker’s constant is pos-
sible there, without a penalty such as rate loss. For testing, Spokoiny [15] showed

that for adaptation to (�,M), there is a rate penalty of order (log log n)1/2. Es-
sentially this result concerns adaptation to � only; indeed M is irrelevant for the
optimal rate. Moreover, for adaptation to � only, Ingster and Suslina [9] obtained

a sharp constant, within the (log log n)1/2 rate loss framework. Adaptation to
both parameters (�,M) is an open problem.

We first consider the problem of adaptation to M only, assuming � known.
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Theorem 1. Suppose c > 0, 0 < M1 < M2 < 1 and ⇢n ⇠ (cn)�4�/(4�+1)
.

Then there is no test �n satisfying En,0�n  ↵+ o(1) and both relations

 n(�n, ⇢n,�,Mi)  �(z↵ � cM
�1/4�
i ⌘�) + o(1), i = 1, 2.

In view of (2), adaptation to M only is impossible at the separation rate. We now

replace the constant c in ⇢n ⇠ (cn)�4�/(4�+1) by a sequence cn ! 1 arbitrarily
slowly. Then �(z↵ � cnM

�1/4�⌘�) ! 0, and taking the standard log-asymptotics
approach, it turns out that adaptation to Ermakov´s constant is possible.

Theorem 2. Assume cn ! 1 and cn = o(nK) for every K > 0. If ⇢n =

(cnn)
�4�/(4�+1)

then there exists a test �n fulfilling En,0�n  ↵+ o(1) and for all

M > 0

lim sup
n

1

c2n
log n(�n, ⇢n,�,M)  �

M�1/2�⌘2�
2

.

Ermakov [4] showed that the r. h. s. above is also the best achievable for tests
possibly depending on M . Hence there is no ”penalty for adaptation” here, except
that one has to change the optimality criterion. Proofs for this case are in [10].

For the problem of full adaptation to (�,M), we first state a lower asymptotic
risk bound for known M and unknown � 2 [�1,�2], a variation of a result of
Ingster and Suslina [9]. Assume that 0 < �1 < �2 and that M > 0 is fixed. Let D
be arbitrary and define a radius sequence ⇢n,�,M by

(3) (⇢n,�,M )(4�+1)/4� = n�1M1/4�⌘�1
�

⇣

(2 log log n)1/2 +D
⌘

.

Then for any sequence of tests �n satisfying En,0�n  ↵+ o(1)

(4) sup
�2[�1,�2]

 n(�n, ⇢n,�,M ,�,M) � (1� ↵)� (�D) + o(1).

Here the test sequences �n are assumed not to depend on � (but possibly on M);
the radius ⇢n,�,M depends on � and M . The concept of a radius ⇢n varying with
� (inside the risk supremum) has been introduced by Spokoiny [15] in the context
of rate adaptivity. In the refinement of [9], Ermakov’s constant M�1/4�⌘� enters
the critical radius ⇢n,�,M as well.

The attainability of the bound (4) is shown in [9] for tests depending on M .
We show it for tests not depending on M , establishing adaptivity in (�,M).

Theorem 3. Assume that 0 < �1 < �2 and 0 < M1 < M2 are fixed. Let D be

arbitrary and let ⇢n,�,M be the radius sequence in (3). Then there exists a test �n

fulfilling En,0�n  ↵+ o(1) and

sup
�2[�1,�2],M2[M1,M2]

 n(�n, ⇢n,�,M ,�,M)  (1� ↵)� (�D) + o(1).

It turns out that there is no additional penalty for M being unknown, and there
is no need to consider tail probabilities.

Ingster and Suslina [9] establish their lower bound (4) for lp- ellipsoids of
smoothness r with shrinking lq- ellipsoids of smoothness s removed, and also Besov
classes, but not for sup-norm settings. Lepski and Tsybakov [12] prove a sharp
minimax result in testing when the alternative is a Hölder class with a sup-norm



Adaptive Statistical Inference 7

ball removed. This represents a testing analog of the minimax estimation result of
Korostelev [11] and also a sup-norm analog of Ermakov [3]; for the regression case
cf. [5]. When � is given, Dümbgen and Spokoiny [1] establish a sharp adaptivity
result with respect to the size parameter M only. The case of unknown (�,M)
seems to be an open problem for sup-norm testing; for the estimation case cf. [7].
But in [1] a test is given which is adaptive rate optimal without a log log n-type
penalty. Rohde [14] considers the sup-norm case for regression with nongaussian
errors, combining methods of [1] with ideas related to rank tests.
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