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Equation numbers without section refer to the main part of the article.

APPENDIX A: FURTHER DISCUSSION

A.1. Classical models. Here we review several asymptotic normality results for classical
models which are analogous to the quantum models investigated in the paper.

A classical statistical model is defined as a family of probability distributions Q = {Pf :
f ∈ W} on a measurable space (X ,A), indexed by an unknown, possibly infinite dimensional
parameter f to be estimated, which belongs to a parameter space W. In the asymptotic
framework considered here we assume that we are given a (large) number n of independent,
identically distributed samples X1, . . . , Xn from Pf , from which we would like to estimate f . If
d :W×W → R+ is a chosen loss function, then the risk of an estimator f̂n = f̂n(X1, . . . , Xn)
is

R(f̂n, f) = Ef
[
d(f̂n, f)2

]
.

In nonparametric statistics, the parameter of the model f is often a function that belongs to
a smoothness class. We consider two classes W: the periodic Sobolev class Sα(L) of functions
on [0, 1] with smoothness α > 1/2, and the Hölder class Λα(L), with smoothness α > 0. For
any f ∈ L2[0, 1], let {fj , j ∈ Z} be the set of Fourier coefficients with respect to the standard
trigonometric basis. The classes are defined as

Sα(L) :=

f : [0, 1]→ R :
∑
j∈Z

∫
|fj |2|j|2αdu ≤ L

 .

and
Λα(L) := {f : [0, 1]→ R : |f(x)− f(y)| ≤ L|x− y|α, x, y ∈ [0, 1]} .

In addition, when densities f are considered, we will assume that W includes an additional
restriction to a class

Dε =

{
f : [0, 1]→ [ε,∞) :

∫
[0,1]

f(x)dx = 1

}
for some ε > 0.

Density model. The classical density model consists of n observations X1, . . . , Xn which are
independent, identically distributed (i.i.d.) with common probability density f

Pn =
{
P⊗nf : f ∈ W

}
.
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Gaussian regression model with fixed equidistant design. In this model, we observe Y1, ..., Yn
such that

Yi = f1/2

(
i

n

)
+ ξi, i = 1, ..., n,

where the errors ξ1, ..., ξn are i.i.d., standard Gaussian variables. Denote the Gaussian regres-
sion model by

Rn =

{
n⊗
i=1

N
(
f1/2

(
1

n

)
, 1

)
: f ∈ W

}
.

Gaussian white noise model. In this model the square-root density f1/2 is observed with
Gaussian white noise of variance n−1, i.e.

(A.1) dYt = f1/2(t)dt+
1√
n
dWt, t ∈ [0, 1].

If we denote by Qf the probability distribution of {Y (t) : t ∈ [0, 1]}, the corresponding model
is

Fn := {Qf : f ∈ W} .

Gaussian sequence model. In this model we observe a sequence of Gaussian random variables
with means equal to the coefficients of f1/2 in some orthonormal basis of L2[0, 1] for f ∈ F

(A.2) yj = θj(f
1/2) +

1√
n
ξj , i = 1, 2, . . .

where {ξi}i≥1 are Gaussian i.i.d. random variables. We denote this model

Nn =

⊗
j≥1

N
(
θj

(
f1/2

)
,

1

n

)
: f ∈ W

 .

In [16] it was shown that the sequences of models Pn and Fn are asymptotically equivalent
in the sense that their Le Cam distance converges to zero as n → ∞ when W = Λα(L) ∩ Dε
with α > 1/2; in [3], a similar result was established for Rn and Fn (more precisely, with
f1/2 any real valued function f1/2 ∈ Λα(L)). Later, [20] showed that models Fn and Nn are
asymptotically equivalent over periodic Sobolev classes f1/2 ∈ Sα(L) with smoothness α >
1/2. Among many other results [8] considered generalized linear models, [2] regression models
with random design and [18] multivariate and random design, [7] compared the stationary
Gaussian process with the Gaussian white noise model Fn. In [17] sharp rates of convergence
are obtained for the equivalence of Pn and Fn, including also Poisson process models.

In all classical results, the underlying nonparametric function was assumed to belong to
a smoothness class in order to establish asymptotic equivalence of models. In the quantum
setup of pure states and Gaussian states that we discuss in Section 4, no such smoothness
assumption is needed.

A.2. Quadratic Functionals
. The elbow phenomenon. The change of regime which occurs in the optimal MSE rate η2

n

in (26) has been described as the elbow phenomenon in the literature [4]. In the classical
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Gaussian sequence model, it takes the following shape. Consider observations introduced in
(15):

yj = ϑj + n−1/2ξj , j = 1, 2, . . . ,

where {ξj} are i.i.d. standard normal, and the parameter ϑ = (ϑj)
∞
j=1 satisfies a restric-

tion
∑∞

j=1 j
2αϑ2

j ≤ L for some α > 0. For estimation of the quadratic functional F̃ (ϑ) =∑∞
j=1 j

2βϑ2
j with β < α, the minimax MSE rate of convergence is

η̃2
n =

{
n−1 if α ≥ 2β + 1/4

n−2
4(α−β)
4α+1 if β < α < 2β + 1/4

= n−2r̃ for r̃ = min

(
1

2
,
4 (α− β)

4α+ 1

)
(cf [15] and references cited therein). The same rate holds for estimation of the squared L2-
norm of the β-th derivative of a density in an α-Hölder class, cf. [1]. Comparing with our rate
η2
n in (26) which can be written η2

n = n−2r for r = min
(

1
2 ,

4(α−β)
4α

)
, we see that both rates

exhibit the elbow phenomenon, but at different critical values for (α, β), and the rate for the
quantum case is slightly faster in the region α < 2β + 1/4.

A tail functional of a discrete distribution. Our method of proof for the optimal rate η2
n =

n−2r shows that it is also the optimal rate in the following non-quantum problem: suppose
P = {pj}∞j=0 is a probability measure on the nonnegative integers, satisfying a restriction∑∞

j=0 j
2αpj ≤ L, and the aim is to estimate the linear functional F0 (P ) =

∑∞
j=0 j

2βpj on
the basis of n i.i.d. observations X1, . . . , Xn having law P . Indeed, Theorem 5.4 shows that
the estimator F̂n =

∑N
j=0 j

2β p̂j with p̂j = n−1
∑n

i=1 I (Xi = j) attains the rate η2
n for mean

square error, for an appropriate choice of N . On the other hand, the observations X1, . . . , Xn

are obtained from one specific measurement in the quantum model (18), in such a way that
pj = |ψj |2 for j ≥ 0 and F0 (P ) = F (ψ). If the rate η2

n is unimprovable in the quantum model
then it certainly is in the present derived (less informative) classical model. In the latter model,
we note that since F0 (P ) is linear and the law P is restricted to a convex body, optimality of
the rate η2

n can be confirmed by standard methods, e.g. based on the concept of modulus of
continuity [5]. The current problem is thus an example where the elbow phenomenon is present
for estimation of a linear functional; a specific feature here is that the probability measure P
is discrete.

Fuzzy quantum hypotheses. Our method of proof of the lower bound for quadratic func-
tionals, which works in the approximating quantum Gaussian model, utilizes the well-known
idea of setting up two prior distributions and then invoking a testing bound between simple
hypotheses. This has been described as the method of fuzzy hypotheses in the literature [21].
A summary of the present quantum variant could be as follows. First, the Gaussian quantum
model is represented in a fashion analogous to the classical sequence model (15) where the ϑj
correspond to the displacement parameter uj in certain Gaussian pure states (the coherent
states). These displacement parameters are then assumed to be random as independent, non-
identically distributed normal, for j = 1, . . . , N where N = o(n). Now Gaussian averaging
over the displacements uj leads to certain non-pure Gaussian states, i.e. the thermal states
as the alternative, which happen to commute with the vacuum pure state (corresponding to
uj = 0) as the null hypothesis. Even though both are again Gaussian states, by commuta-
tion the problem is reduced to testing between two ordinary discrete probability distributions,
i.e. the point mass at 0 and a certain geometric distribution with parameter rj , depending
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on j = 1, . . . , N . The combined error probability for this classical testing problem with N
independent observations gives the lower risk bound.

A.3. Nonparametric Testing
. The separation rate n−1/2. Recall that for the classical Gaussian sequence model (15), for
the testing problem

(A.3)
H0 : ϑ = 0
H1(ϕn) :

∑∞
j=1 j

2αϑ2
j ≤ L and ‖ϑ‖2 ≥ ϕn

(Sobolev ellipsoid with an L2-ball removed), the separation rate is ϕn = n−2α/(4α+1) [13].
We established that ϕn = n−1/2 is the separation rate for the quantum nonparametric test-
ing problem (28) involving a pure state ρ. While this “parametric” rate for a nonparametric
problem is somewhat surprising, it should be noted that there also exist testing problems for
classical i.i.d. data with nonparametric alternative where that separation rate applies; cf [13],
sec. 2.6.2.

In our case, the rate n−1/2 appears to be related to the fast rate ϕ2
n = n−1 in the fol-

lowing nonparametric classical problem: given n i.i.d. observations X1, . . . , Xn having law
P = {pj}∞j=0 on the nonnegative integers, the hypotheses are

(A.4) H0 : P = δ0 (the degenerate law at 0)
H1(ϕn) : ‖P − δ0‖1 ≥ ϕ2

n.

For that, note first that

‖P − δ0‖1 = 1− p0 +
∞∑
j=1

pj = 2 (1− p0) .

The likelihood ratio test for δ0 against any P ∈ H1(ϕn) rejects if max1≤j≤nXj > 0, thus it
does not depend on P . The pertaining sum of error probabilities is

P

(
max

1≤j≤n
Xj = 0

)
= pn0 =

(
1− 1

2
‖P − δ0‖1

)n
≤
(

1− 1

2
ϕ2
n

)n
and with a supremum over P ∈ H1(ϕn), the upper bound is attained. This means that for
ϕn = cn−1/2, the minimax sum of error probabilities tends to exp

(
−c2/2

)
, so that ϕ2

n = n−1

is the separation rate here as claimed.
In fact there is a direct connection to the quantum nonparametric testing problem (28):

in the latter, for n = 1, consider a measurement defined as follows. Let {|ẽj〉}∞j=0 be an
orthonormal basis in H such that ρ0 = |ẽ0〉 〈ẽ0| and consider the POVM {|ẽj〉 〈ẽj |}∞j=0; the
corresponding measurement yields a probability measure P on the nonnegative integers. Here
the state ρ0 is mapped into δ0 and an alternative state ρ is mapped into P = {pj}∞j=0 such
that p0 = Tr (ρ0ρ). Condition (27) on the distance of the two states implies (cp (10))

ϕn ≤ ‖ρ− ρ0‖1 = 2
√

1− Tr (ρ0ρ) = 2
√

1− p0 =
√

2 ‖P − δ0‖1

so that up to a constant, the testing problem (A.4) is obtained.
In the quantum problem (28), we noted that the optimal test between ρ0 and a specific

alternative ρ depends on ρ, but found that the test (binary POVM) Mn =
{
ρ⊗n0 , I − ρ⊗n0

}
is
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minimax optimal in the sense of the rate and also in the sense of a sharp risk asymptotics.
The sharp minimax optimality seems to be a specific result for the quantum case. We note
that the optimal test Mn can be realized via a measurement {|ẽj〉 〈ẽj |}∞j=0 as described above,
applied separately to each component of ρ⊗n, resulting in independent identically distributed
r.v.’s X1, . . . , Xn. The test Mn then amounts to rejecting H0 if max1≤j≤nXj > 0. Note that
this measurement is incompatible with the one (B.8) providing the optimal rate for state
estimation.

Other separation rates. In our proof of the lower bound for quadratic functionals, we formu-
late the nonparametric testing problem for pure states (B.17) where the alternative includes
the restriction

∑
j≥0 |ψj |

2 j2β ≥ ηn, and establish that the rate ηn = n−1+β/α is unimprovable
there. Introduce a seminorm

‖ψ‖2,β =

∑
j≥1

|ψj |2 j2β

1/2

(excluding the term for j = 0) and write the restriction as

(A.5) ‖ψ‖2,β ≥ ϕn = η1/2
n ;

then the case β = 0 gives (cp (10))

ϕ2
n ≤

∑
j≥1

|ψj |2 = 1− |ψ0|2 = 1− |〈ψ|e0〉|2 =
1

4
‖|e0〉 〈e0| − |ψ〉 〈ψ|‖21 ,

in other words, for ρ0 = |e0〉 〈e0| and ρ = |ψ〉 〈ψ|, the restriction (A.5) is equivalent to
‖ρ− ρ0‖1 ≥ 2ϕn. In that sense, the testing problems (28) and (B.17) in are equivalent up to
a constant, if β = 0 and ρ0 = |e0〉 〈e0|. For β > 0, the testing problem (B.17) in is a quantum
pure state analog of the generalization of the classical problem (A.3) where ‖ϑ‖2 ≥ ϕn is re-
placed by ‖ϑ‖2,β ≥ ϕn (α-ellipsoid with a β-ellipsoid removed); the separation rate in the latter
is ϕn = n−2(α−β)/(4α+1) , cf. [13], sec. 6.2.1. In (B.17) the separation rate is ϕn = n−1/2+β/2α,
i.e. of the more typical nonparametric form as well.

APPENDIX B: PROOFS

Proof of Theorem 4.1. The direct map channel Tn is defined as an isometric embedding

Tn : T1(H⊗sn) → T1(F(H0))

ρ 7→ VnρV
∗
n .

where Vn : H⊗sn → F(H0) is an isometry defined below. Since we deal with pure states, it
suffices to prove that

(B.1) lim sup
n→∞

sup
|ψ0〉∈H

sup
‖u‖≤γn

∥∥Vnψ⊗nu −G(
√
nu)
∥∥ = 0.

We now define the isometric embedding Vn by showing its explicit action on the vectors of an
ONB. For any permutation σ ∈ Sn, let

Uσ : |u1〉 ⊗ · · · ⊗ |un〉 7→ |uσ−1(1)〉 ⊗ · · · ⊗ |uσ−1(n)〉
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be the unitary action on H⊗n by tensor permutations. Then Ps := 1
n!

∑
σ∈Sn Uσ is the orthog-

onal projector onto the subspace of symmetric tensors H⊗sn. We construct an orthonormal
basis in H⊗sn as follows.

Let B0 := {|e1〉, |e2〉, . . . } be an orthonormal basis in H0. Let ñ = (n0,n) = (n0, n1, . . . ) be
an infinite sequence of integers such that

∑
i≥0 ni = n, and note that only a finite number of

nis are different from zero. Then the symmetric vectors

|ñ〉 = |n0, n1, n2, . . . 〉 :=

√
n!

n0! · n1! · . . .
Ps

|ψ0〉⊗n0 ⊗
⊗
i≥1

|ei〉⊗ni


form an ONB of H⊗sn.

As discussed in section 2.2.2 the Fock space F(H0) can be identified with the infinite tensor
product of one-mode Fock spaces

⊗
i≥1F(C|ei〉) which has an orthonormal number basis (or

Fock basis) consisting of products of number basis vectors of individual modes

|n〉 :=
⊗
i≥1

|ni〉

where ni 6= 0 only for a finite number of indices. We define Vn : H⊗sn → F(H0) as follows

Vn : |ñ〉 7→ |n〉.

Its image consists of states with at most n “excitations”, with |ψ0〉⊗n being mapped to the
vacuum state |0〉. We would like to show that the embedded state Vn|ψu〉⊗n are well approxi-
mated by the coherent states |G(

√
nu)〉 uniformly over the local neighbourhood ‖u‖ ≤ γn. For

this we will make use of the covariance and functorial properties of the second quantisation
construction in order to reduce the non-parametric LAE statement to the corresponding one
for 2-dimensional systems.

Let |u〉 ∈ H0 be a fixed unit vector. Let j : C2 7→ H be the isometric embedding

j : |0〉 7→ |ψ0〉, j : |1〉 7→ |u〉

and let j0 : C|1〉 → H0 be the restriction of j to the one dimensional subspace C|1〉. Since
second quantisation is functorial under contractive maps, there is a corresponding isometric
embedding J0 = Γ(j0) satisfying

J0 : F(C|1〉) → F(H0)

|G(α)〉 7→ |G(j0(α))〉 = |G(αu)〉.(B.2)

Let Ṽn :
(
C2
)⊗sn → F(C|1〉) be the isometry constructed in the same way as Vn, where |0〉

plays the role of |ψ0〉 and C|1〉 is the analogue of H0. As before, let |ψ̃α〉 =
√

1− |α|2|0〉+α|1〉,
with |α| ≤ 1. Then by the properties of the embedding map Vn we have

(B.3) J0Ṽn|ψ̃α〉⊗n = Vn|ψαu〉⊗n.

From equations (B.2) and (B.3) we find

sup
|α|≤γn

∥∥Vnψ⊗nαu −G(
√
nαu)

∥∥ = sup
|α|≤γn

∥∥∥Ṽnψ̃⊗nα −G(
√
nα)

∥∥∥
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Since the right-hand side of the above equality is independent of |u〉 the same equality holds
with supremum on the left side taken over all |u〉 ∈ H0 with ‖u‖ = 1, which is the same as
the supremum in equation (B.1). Therefore the LAE for the non-parametric models has been
reduced to that of a two-dimensional (qubit) model. This approximation has been established
in the more general case of mixed states in [10, 9], but the current case of pure states allows
an improvement in rate. The product state |ψ̃α〉⊗n is mapped into the following pure state on
the Fock space F(C|1〉)

Ṽn|ψ̃α〉⊗n =
n∑
k=0

ck,n(α)|k〉, ck,n(α) = αk(1− |α|2)(n−k)/2

√(
n

k

)
.

On the other hand, in view of (2) the coherent state can be written as

G(
√
nα) =

∑
k

ck(
√
nα)|k〉, ck(

√
nα) := exp(−n|α|2/2)

(
√
nα)k√
k!

.

Set α = φα |α| where φα is a phase; then it follows that ck,n (α) = φkα ck,n (|α|) and ck (
√
nα) =

φkα ck (
√
n |α|). With this we have∥∥∥Ṽnψ̃⊗nα −G

(√
nα
)∥∥∥2

=
∞∑
k=0

∣∣ck,n (α)− ck
(√
nα
)∣∣2

=
∞∑
k=0

∣∣ck,n (|α|)− ck
(√
n |α|

)∣∣2 .(B.4)

Let X be a binomial r.v. with parameters n, |α|2 and Y be a Poisson r.v. with parameter
n |α|2. Note that ck,n (|α|) = P (X = k)1/2 and ck (

√
n |α|) = P (Y = k)1/2, and that therefore

(B.4) is the squared Hellinger distance between these two laws. According to Theorem 1.3.1
(ii) in [19] we have

∞∑
k=0

∣∣ck,n (|α|)− ck
(√
n |α|

)∣∣2 ≤ 3 |α|4 .

Since |α| ≤ γn = o(1), we have shown the first part of LAE in which the i.i.d. and Gaussian
models are expressed in terms of the local parameter |u〉

(B.5) lim sup
n→∞

sup
|ψ0〉∈H

sup
‖u‖≤γn

∥∥Vnψ⊗nu −G(
√
nu)
∥∥ = 0.

Conversely, we define the reverse channel Sn : T1(F(H0)) → T1 (H⊗sn) as follows. Let Pn
denote the orthogonal projection in F(H0) onto the image space of Vn, i.e. the subspace with
total excitation number at most n

F≤n(H0) := Lin{|n1, n2, . . . 〉 :
∑
i≥1

ni ≤ n}.

Let Rn : F(H0)→ H⊗sn be a right inverse of Vn, i.e. RnVn = 1. Then the reverse channel is
defined as

Sn(ρ) = RnPnρPnR
∗
n + Tr(ρ(1− Pn))|ψ0〉〈ψ0|⊗n.
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Operationally, the action of Sn consists of two steps. We first perform a projection mea-
surement with projections Pn and (1 − Pn); if the first outcome occurs the conditional
state of the system is PnρPn/Tr(Pnρ) , while if the second outcome occurs the state is
(1 − Pn)ρ(1 − Pn)/Tr((1 − Pn)ρ). In the second stage, if the first outcome was obtained
we map the projected state through the map Rn into a state in H⊗sn, while if the second
outcome was obtained, we prepare the fixed state |ψ0〉〈ψ0|⊗n.

When applied to the pure Gaussian states |G(
√
nu)〉, the output of Sn is the mixed state

Sn(|G(
√
nu)〉〈G(

√
nu)|) = pnu|φnu〉〈φnu|+ (1− pnu)|ψ0〉〈ψ0|⊗n

where
|φnu〉 :=

RnPn|G(
√
nu)〉√

pnu
, pnu = ‖PnG(

√
nu)‖2.

The key observation is that the Gaussian states are almost completely supported by the
subspace F≤n(H0), uniformly with respect to the ball ‖u‖ ≤ γn. Indeed, since Vnψ⊗nu is in
F≤n (H0), from (B.5) and the properties of projections it follows

lim sup
n→∞

sup
|ψ0〉

sup
‖u‖≤γn

∥∥PnG (√nu)−G (√nu)∥∥ = 0,

so that

(B.6) lim sup
n→∞

sup
|ψ0〉

sup
‖u‖≤γn

(1− pnu) = 0.

Now again from (B.5) and the fact that Rn is the inverse of Vn it follows

lim sup
n→∞

sup
|ψ0〉

sup
‖u‖≤γn

∥∥ψ⊗nu −RnPnG
(√
nu
)∥∥ = 0,

which in conjunction with (B.6) implies

lim sup
n→∞

sup
|ψ0〉

sup
‖u‖≤γn

∥∥Sn(|G(
√
nu)〉〈G(

√
nu)|)− |ψu〉〈ψu|⊗n

∥∥
1

= 0.

This completes the proof of (23).

Proof of Theorem 5.1. According to inequalities (12) and (13) the two distances are
equivalent on pure states, so it suffices to prove the upper bound for the trace-norm distance.

Firstly, a projective operation is applied to each of the n copies separately, whose aim is to
truncate the state to a finite dimensional subspace of dimension dn = [n1/(2α+1)]+1. Let Pn be
the projection onto the subspace Hn spanned by the first dn basis vectors {|e0〉, . . . , |edn−1〉}.
For a given state |ψ〉 the operation consists of randomly projecting the state with Pn or
(1 − Pn), which produces i.i.d. outcomes Oi ∈ {0, 1} with P(Oi = 1) = pn = ‖Pnψ‖2. The
posterior state conditioned on the measurement outcome is

|ψ〉〈ψ| 7→


|ψ(n)〉〈ψ(n)| := Pn|ψ〉〈ψ|Pn

pn
with probability pn

(1−Pn)|ψ〉〈ψ|(1−Pn)
1−pn with probability 1− pn
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Since |ψ〉〈ψ| ∈ Sα(L), the probability 1− pn is bounded as

(B.7) 1− pn =
∞∑
i=dn

|ψi|2 =
∞∑
i=dn

i−2αi2α|ψi|2 ≤ d−2α
n

∞∑
i=1

i2α|ψi|2 = n−2α/(2α+1)L.

Let ñ =
∑n

i=1Oi be the number of systems for which the outcome was equal to 1, so that ñ has
binomial distribution Bin(n, pn). Then E(ñ/n) = pn and Var(ñ/n) = pn(1−pn)/n = O(1/n).
Therefore ñ/n→1 in probability.

In the second step we discard the systems for which the outcome was 0, and we collect those
with outcome 1, so that the joint state is |ψ(n)〉〈ψ(n)|⊗ñ which is supported by the symmetric
subspace H⊗sñn . In order to estimate the truncated state |ψ(n)〉 (and by implication |ψ〉), we
perform a covariant measurementMn [11] whose space of outcomes is the space of pure states
ρ̂n = |ψ̂n〉〈ψ̂n| over Hn, and the infinitesimal POVM element is

(B.8) Mn(dρ̂) =

(
ñ+ dn − 1

dn − 1

)
ρ̂⊗n dρ̂.

The covariance property means that the unitary group has a covariant action on states and
their corresponding probability distributions

PMn
UρU∗(dρ̂) = Tr(UρU∗ · dρ̂) = PMn

ρ (d(U∗ρ̂U)).

Recall that the trace-norm distance squared for pure states is given by d2
1(ρ, ρ′) := ‖ρ−ρ′‖21 =

4(1 − |〈ψ|ψ′〉|2). In [11] it has been shown that, conditionally on ñ, the risk of the estimator
ρ̂ with respect to the trace-norm square distance is1

Eñ
[
d2

1(ρ̂n, ρ
(n))
]

=
4(dn − 1)

dn + ñ
.

Using the triangle inequality we have d2
1(ρ̂n, ρ) ≤ 2(d2

1(ρ̂n, ρ
(n)) + d2

1(ρ, ρ(n))). Since |ψ(n)〉 =
Pn|ψ〉/

√
pn, the bias term is d2

1(ρ, ρ(n)) = 4(1−pn), which by (B.7) is bounded by 4n−2α/(2α+1)L.
Therefore

E
[
d2
b(ρ̂n, ρ)

]
≤ 8E

[
(dn − 1)

dn + ñ

]
+ 8n−2α/(2α+1)L.

For an arbitrary small ε > 0, we have

E
[

(dn − 1)

dn + ñ

]
≤ P

[
ñ

n
< 1− ε

]
+ E

[
(dn − 1)

dn + n · ñ/n
· I(

ñ

n
≥ 1− ε)

]
≤ O

(
1

n

)
+ C

dn
n
.

Putting together the last two upper bounds concludes the proof.

Proof of Theorem 5.2. Let us denote by REn = inf
ψ̂n

supψ∈Sα(L) Eψ
[
‖ψ̂n − ψ‖22

]
the

minimax risk.
The first step is to reduce the set of states Sα(L) to a finite hypercube denoted Sα1:N (L)

consisting of certain “truncated” vectors |ψ〉 =
∑

1≤i≤N ψi|ei〉 which have N � n1/(2α+1) non-
zero coefficients with respect to the standard basis. This will provide a lower bound to the
minimax risk. The coefficients are chosen as

ψj = ± σj√
n
, σ2

j = λ(1− (j/N)2α), j = 1, . . . , N, for some fixed λ > 0

1Reference [11] uses a fidelity distance erroneously called “Bures distance" , which for pure states coincides
with the trace-norm distance up to a constant
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and we check that they satisfy the ellipsoid constraint

∑
j≥1

|ψj |2j2α =
λ

n

N∑
j=1

(j2α − j4αN−2α) ≤ N2α+1

n

2αλ

(2α+ 1)(4α+ 1)
(1 + o(1)) ≤ L

for an appropriate choice of λ > 0.
Using the factorisation property (8) we can identify the corresponding Gaussian states with

the N -mode state defined by |φ〉 = ⊗Nj=1|G(
√
nψj)〉, where the remaining modes are in the

vacuum state and can be ignored.
Thus

REn ≥ inf
ψ̂

sup
ψ∈Sα1:N (L)

Eψ
[
‖ψ̂ − ψ‖22

]

= inf
ψ̂

sup
ψ∈Sα1:N (L)

Eψ

 N∑
j=1

|ψ̂j − ψj |2
 .

The supremum over the finite hypercube Sα1:N (L) is bounded from below by the average over
all its elements. This turns the previous maximal risk into a Bayesian risk, that we can further
bound from below as follows:

REn ≥ inf
ψ̂

1

2N

∑
ψ∈Sα1:N (L)

N∑
j=1

Eψ
[
|ψ̂j − ψj |2

]

= inf
ψ̂

N∑
j=1

1

2N

∑
ψ∈Sα1:N (L)

Eψ
[
|ψ̂j − ψj |2

]

≥
N∑
j=1

inf
ψ̂j

1

2N

∑
ψ∈Sα1:N (L)

Eψ
[
|ψ̂j − ψj |2

]
.(B.9)

In the second line ψ̂ is the result of an arbitrary measurement and estimation procedure of
the state |G(

√
nψ)〉. In the third line each infimum is over procedures for estimating the

component ψj only; since such procedure may not be compatible with a single measurement,
the third line is upper bounded by the second.

The second major step in the proof of the lower bounds is to reduce the risk over all
measurements, to testing two simple hypotheses. Let us bound from below the term (B.9) for
arbitrary fixed j between 1 and N :

1

2N

∑
ψ∈Sα1:N (L)

Eψ
[
|ψ̂j − ψj |2

]

=
1

2

 1

2N−1

∑
ψ∈Sα

(j+)
(L)

Eψ
[
|ψ̂j − σj/

√
n|2
]

+
1

2N−1

∑
ψ∈Sα

(j−)
(L)

Eψ
[
|ψ̂j − (−σj/

√
n)|2

]
(B.10) =

1

2

{
Eρ+j

[
|ψ̂j − σj/

√
n|2
]

+ Eρ−j

[
|ψ̂j − (−σj/

√
n)|2

]}
,
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where the sum over ψ ∈ Sα(j±)(L) means that the jth coordinate is fixed to ±σj/
√
n and all

kth coordinates, for k 6= j, take values in {σk/
√
n,−σk/

√
n}. In the third line, we denote by

ρ±j the average state over states in Sα(j±)(L).
Let us define the testing problem of the two hypotheses H0 : ρ = ρ+

j against H1 : ρ = ρ−j .
For a given estimator ψ̂j we construct the test

∆ = I

(∣∣∣∣ψ̂j − σj√
n

∣∣∣∣ > ∣∣∣∣ψ̂j − (− σj√
n

)

∣∣∣∣) ,
and decide H1 or H0, if ∆ equals 1 or 0, respectively. By the Markov inequality, we get that

Eρ±j

[∣∣∣∣ψ̂j − (± σj√
n

)

∣∣∣∣2
]
≥

σ2
j

n
Pρ±j

(∣∣∣∣ψ̂j − (± σj√
n

)

∣∣∣∣ ≥ σj√
n

)
.

On the one hand,

(B.11) Pρ+j

(
|ψ̂j − σj/

√
n| ≥ σj√

n

)
≥ Pρ+j (∆ = 1).

Indeed, under Pρ+j , the event ∆ = 1 implies that |ψ̂j − σj√
n
| > |ψ̂j +

σj√
n
|, which further implies

by the triangular inequality that∣∣∣∣ψ̂j − σj√
n

∣∣∣∣ ≥ 2σj√
n
−
∣∣∣∣ψ̂j +

σj√
n

∣∣∣∣ ≥ 2σj√
n
−
∣∣∣∣ψ̂j − σj√

n

∣∣∣∣ ,
giving |ψ̂j − ψj | ≥ σj√

n
. By a similar reasoning for the Pρ−j distribution we get

(B.12) Pρ−j

(
|ψ̂j + σj/

√
n| ≥ σj√

n

)
≥ Pρ−j (∆ = 0).

By using (B.11) and (B.12) in (B.10)

1

2

{
Eρ+j

[∣∣∣ψ̂j − σj/√n∣∣∣2]+ Eρ−j

[∣∣∣ψ̂j − (−σj/
√
n)
∣∣∣2]} ≥ σ2

j

2n

(
Pρ+j (∆ = 1) + Pρ−j (∆ = 0)

)
.

To summarise, we have lower bounded the MSE by the probability of error for testing be-
tween the states ρ±j . At closer inspection, these states are of the form |G(σj)〉〈G(σj)| ⊗ ρ and
|G(−σj)〉〈G(−σj)|⊗ρ where ρ is a fixed state obtained by averaging the coherent states of all
the modes except j. Recall that the optimal testing error in (9) gives a further bound from
below

Pρ+j (∆ = 1) + Pρ−j (∆ = 0) ≥ 1− 1

2
‖ρ+

j − ρ
−
j ‖1.

Moreover, the state ρ can be dropped without changing the optimal testing error

‖ρ+
j − ρ

−
j ‖1 = ‖|G(σj)〉〈G(σj)| − |G(−σj)〉〈G(−σj)|‖1 = 2(1− exp(−2σ2

j )).

We conclude that

inf
ψ̂j

1

2

{
Eρ+j

[∣∣∣ψ̂j − σj/√n∣∣∣2]+ Eρ−j

[∣∣∣ψ̂j − (−σj/
√
n)
∣∣∣2]} ≥ σ2

j

2n
· exp(−2σ2

j )
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and we further use this in (B.10) to get

REn ≥
N∑
j=1

σ2
j

2n
· exp(−2σ2

j ) =
N

n
· λ

2N

N∑
j=1

(
1− (

j

N
)2α

)
exp

(
−2 · λ(1− (

j

N
)2α)

)
≥ cN

n
.

Indeed, the average over j is the Riemann sum associated to the integral of a positive function
and can be bounded from below by some constant c > 0 depending on α. Moreover, N/n �
n−2α/(2α+1) and thus we finish the proof of the theorem.

Proof of Theorem 5.3. Let R̃En = inf |ψ̂n〉 sup|ψ〉∈Sα(L) Eρ
[
d(ρ̂n, ρ)2

]
be the minimax

risk for Qn.
We bound from below the risk by restricting to (pure) states in a neigbourhood Σn(e0) of

the basis vector |e0〉 defined as follows. As in (20) we write the state and the estimator in
terms of their corresponding local vectors

|ψ〉 =
√

1− ‖u‖2|e0〉+ |u〉, |ψ̂〉 =
√

1− ‖û‖2|e0〉+ |û〉, |u〉, |û〉 ⊥ |e0〉.

Then the neighbourhood is given by Σn(e0) := {|ψu〉 : ‖u‖ ≤ γn}; we choose γn = (log n)−1.
Such states are described by the local model Qn(e0, γn), cf. equation (21). The risk is bounded
from below by

R̃En ≥ inf
|ψ̂n〉

sup
|ψ〉∈Sα(L)∩Σn(e0)

Eρ
[
d(ρ̂n, ρ)2

]
.

By using the triangle inequality we can assume that ψ̂ ∈ Σn(e0), while incurring at most a
factor 2 in the risk. By using the quadratic approximation (24) we find that

(B.13) d2(ρ̂n, ρ) = k‖u− û‖2 + o(n−1)

where k = 1 or k = 4 depending on which distance we use. Since n−1 decreases faster than
n−2α/(2α+1), the second term does not contribute to the asymptotic rate and can be neglected,
so that the problem has been reduced to that of estimating the local parameter u with respect
to the Hilbert space distance. To study the latter, we further restrict the set of states to
a hypercube similar to the one in the proof of Theorem 5.2, consisting of states |ψu〉 with
“truncated” local vectors |u〉 =

∑
1≤i≤N ui|ei〉 belonging to Sα1:N (L). As before, there are

N � n1/(2α+1) non-zero coefficients of the form

uj = ± σj√
n
, σ2

j = λ(1− (j/N)2α), j = 1, . . . , N.

It has been already shown that such vectors belong to the ellipsoid Sα(L). Additionally, we
show that they also belong to the local ball Σn(e0). Indeed

‖u‖2 =

N∑
j=1

|uj |2 =
1

n

N∑
j=1

σ2
j =

1

n

N∑
j=1

λ
(

1− (j/N)2α
)

=
N

n

 1

N

N∑
j=1

λ
(

1− (j/N)2α
) ≤ C1

N

n
,
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where we used that as N →∞ the expression between the parentheses tens to a finite integral.
As N scales as n1/(2α+1), the upper bound becomes

‖e0 − ψu‖2 ≤ C2n
−2α/(2α+1) = o(γ2

n)

and the state |ψu〉 belongs to the local ball Σn(e0). Taking into account (B.13) the risk is
therefore lower bounded as

R̃En ≥ inf
û

sup
u∈Sα1:N (L)

Eρu
[
‖u− û‖2

]
+ o(n−1).

where ρu = |ψu〉〈ψu|, and the infimum is now taken over the local component |û〉 of an
estimator |ψ̂〉 =

√
1− ‖û‖2|e0〉 + |û〉. The first term is further lower bounded by passing to

the Bayes risk for the uniform distribution over Sα1:N (L), similarly to the proof of Theorem
5.2

R̃En ≥
N∑
j=1

inf
ûj

1

2N

∑
u∈Sα1:N (L)

Eψu
[
|ûj − uj |2

]
+ o(n−1).

By following the same steps we get

1

2N

∑
u∈Sα1:N (L)

Eρu
[
|ûj − uj |2

]
=

1

2

{
Eτ+j

[
|ψ̂j − σj/

√
n|2
]

+ Eτ−j

[
|ψ̂j − (−σj/

√
n)|2

]}
,

≥
σ2
j

2n

(
Pτ+j (∆ = 1) + Pτ−(∆ = 0)

)
≥
σ2
j

2n
· (1− 1

2
‖τ+
j − τ

−
j ‖1),(B.14)

where we denote by τ±j the average state over states |ψu〉〈ψu|⊗n with u ∈ Sα(j±)(L), and ∆

is a test for the hypotheses H0 : τ = τ+
j and H1 : τ = τ−j . In the last inequality we used

the Helstrom bound [12] which expresses the optimal average error probability for two states
discrimination in terms of the norm-one distance between states.

We now make use of the local asymptotic equivalence result in Theorem 4.1. From (23) we
know that there exist quantum channels Sn such that

δn := max
u∈Sα1:N (L)

∥∥|ψu〉〈ψu|⊗n − Sn (|G(
√
nu)〉〈G(

√
nu)|

)∥∥
1
≤ ∆(Qn,Gn) = o(1).

By Lemma 3.1 we get
‖τ+
j − τ

−
j ‖1 ≤ ‖ρ

+
j − ρ

−
j ‖1 + 2δn

where ρ±j are the corresponding mixtures in the Gaussian model as defined in the proof of
Theorem 5.2. From (B.14) we then get

1

2N

∑
u∈Sα1:N (L)

Eρu
[
|ûj − uj |2

]
≥
σ2
j

2n
· (1− 1

2
‖ρ+

j − ρ
−
j ‖1 − δn) ≥

σ2
j

2n
· (exp(−2σ2

j )− δn)

The rest of the proof follows as in the proof of Theorem 5.2, with the additional remark that

min
j

exp(−2σ2
j ) = λ(1−N−α) � λ

and infinitely larger than δn, for n large enough.
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Proof of Theorem 5.4. The usual bias-variance decomposition yields

Eψ
(
F̂n − F (ψ)

)2
=
(
EψF̂n − F (ψ)

)2
+ V arψ

(
F̂n

)
.

The bias can be upper bounded as

∣∣∣F (ψ)− EψF̂n
∣∣∣ =

∣∣∣∣∣∣F (ψ)−
N∑
j=1

pj · j2β

∣∣∣∣∣∣ =
∑

j≥N+1

pj · j2β ≤ N−2(α−β)
∑

j≥N+1

pj · j2α ≤ LN−2(α−β).

For the variance, let us note that the vector

V̂ = n · (p̂1, . . . , p̂N , p̂
∗
N+1), with p̂∗N+1 = n−1

n∑
k=1

I(Xk ≥ N + 1),

has a multinomial distribution with parameters n and probability vector V := (p1, . . . , pN , p
∗
N+1 =∑

j≥N+1 pj)
>. The covariance matrix of a multinomial vector writes n · (Diag(V ) − V · V >),

where Diag(V ) denotes the diagonal matrix with entries from V . In particular, if p̂ :=
(p̂1, ..., p̂N )>, p := (p1, ..., pN )> and B := (1, 22β, ..., N2β)> then

Covψ(F̂n) = Covψ(B> · p̂) = B> · Covψ(p̂) ·B =
1

n
·B> · (Diag(p)− p · p>) ·B.

This gives

Covψ(F̂n) ≤ 1

n
·B> ·Diag(p) ·B =

1

n

N∑
j=1

pj · j4β.

The bound of this last term and the resulting bound of the risk is treated separately for the
two cases.

a) Case α ≥ 2β. In that case,

N∑
j=1

pj · j4β ≤
N∑
j=1

pj · j2α ≤ L implying that V ar(F̂n) ≤ L

n
.

The upper bound of the risk is, in this case,

Eψ
(
F̂n − F (ψ)

)2
≤ L2N−4(α−β) +

L

n
.

If we choose N � n1/(4(α−β)) or larger, then the parametric rate is attained for the risk:

Eψ
(
F̂n − F (ψ)

)2
= O(1) · n−1.

b) Case β < α < 2β. Here we have,

Covψ(F̂n) ≤ 1

n

N∑
j=1

pj · j4β ≤ 1

n

N∑
j=1

pj · j4β−2αj2αpj ≤
N4β−2α

n
L.

The upper bound of the risk becomes

Eψ
(
F̂n − F (ψ)

)2
≤ L2N−4(α−β) +

N4β−2α

n
L.



LAE OF PURE STATES ENSEMBLES AND QUANTUM GAUSSIAN WHITE NOISE 15

The optimal choice of the parameter N that balances the two previous terms is N � n1/(2α),
giving the attainable rate for the quadratic risk

Eψ
(
F̂n − F (ψ)

)2
= O(1) · n−2(1−β/α).

Cases a) and b) together prove that the rate η2
n is attainable.

Proof of Theorem 5.5. Denote by RFn = inf
F̂n

supψ∈Sα(L) η
−2
n · Eψ

(
F̂n − F (ψ)

)2
the

minimax risk.
The case a) where α ≥ 2β reduces to the Cramér-Rao bound that proves that the parametric

rate 1/n is always a lower bound for the mean square error for estimating F (ψ).
We prove that in the case b) where β < α < 2β, this bound from below increases to

n−2(1−β/α) (up to constants). By the Markov inequality,

(B.15) η−2
n · Eψ

(
F̂n − F (ψ)

)2
≥ 1

4
· Pψ

(
|F̂n − F (ψ)| ≥ ηn

2

)
.

Let us restrict the set of pure states Sα(L) to its intersection with the local model Qn(e0, γn)
(see equation (21)) where |ψu〉 =

√
1− ‖u‖2 · |e0〉 + |u〉 is such that ‖u‖ ≤ γn, with γn =

(log n)−1. In other words, u belongs to the set

sα(L, γn) =

u ∈ `2(N∗) :
∑
j≥1

|uj |2j2α ≤ L and ‖u‖ ≤ γn

 .

Using the fact that F (e0) = 0, we have

sup
ψ∈Sα(L)

1

4
· Pψ

(
|F̂n − F (ψ)| ≥ ηn

2

)
≥ 1

4
max

{
Pe0
(
|F̂n| ≥

ηn
2

)
, sup
u∈sα(L,γn),F (ψu)≥ηn

Pψu
(
|F̂n − F (ψu)| ≥ ηn

2

)}

≥ 1

8

{
Pe0
(
|F̂n| ≥

ηn
2

)
+ sup
u∈sα(L,γn),F (ψu)≥ηn

Pψu
(
|F̂n − F (ψu)| ≥ ηn

2

)}

≥ 1

8

{
Pe0
(
|F̂n| ≥

ηn
2

)
+ sup
u∈sα(L,γn),F (ψu)≥ηn

Pψu
(
|F̂n| <

ηn
2

)}
(B.16)

where in the last inequality we used that |F̂n| < ηn/2 and F (ψu) ≥ ηn imply |F̂n − F (ψu)| ≥
ηn/2. Note also that F (ψu) = F (u) for |u〉 ∈ H0; we now consider the testing problem with
hypotheses

(B.17)
{
H0 : |u〉 = |0〉
H1(α,L, γn, ηn) : |u〉, with u ∈ sα(L, γn) and F (u) ≥ ηn.

Let ∆ = ∆(ηn) = I(|F̂n| ≥ ηn/2) be the test that accepts the null hypothesis when ∆ = 0
and rejects the null hypothesis when ∆ = 1. Then the right-hand side of (B.16) is lower
bounded by the sum of the error probability of type I and of the maximal error probability
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of type II of ∆. We can describe ∆ as a binary POVM M = (M0,M1), depending on ηn:
M(ηn) = (M0(ηn),M1(ηn)). Thus,

(B.18) Pe0
(
|F̂n| ≥

ηn
2

)
= Tr(|e0〉〈e0|⊗n ·M1)

and

(B.19) Pψu
(
|F̂n| <

ηn
2

)
= Tr(|ψu〉〈ψu|⊗n ·M0).

By putting together (B.15)-(B.19), we get that the minimax risk has the lower bound

RFn ≥
1

8
inf
M

(
〈e⊗n0 |M1|e⊗n0 〉+ sup

u∈sα(L,γn),F (u)≥ηn
〈ψ⊗nu |M0|ψ⊗nu 〉

)
.

Now, using the local asymptotic equivalence Theorem 4.1 with respect to the state |ψ0〉 :=
|e0〉 we map the i.i.d. ensemble |ψu〉⊗n to the Gaussian state |G(u)〉 ∈ F(H0). The lower
bound becomes

(B.20) RFn ≥
1

8
inf
M

(
〈0|M1|0〉+ sup

u∈sα(L,γn),F (u)≥ηn
〈G(
√
nu)|M0|G(

√
nu)〉

)
+ o(1)

where the infimum is taken over tests M = (M0,M1) and the o(1) terms stems from the
vanishing Le Cam distance ∆(Qn(e0, γn),Gn(e0, γn)). The lower bound has been transformed
into a testing problem for the Gaussian model.

In order to bound from below the maximal error probability of type II, we define a prior
distribution on the set of alternatives and average over the whole set with respect to this a
priori distribution. Similarly to the classical proofs of lower bounds, our construction will lead
to a test of simple hypotheses: the former null and the constructed averaged state. Assume that
{uj}j≥1 are all independently distributed, such that uj has a complex (bivariate) Gaussian
distribution N2(0, 1

2σ
2
j · I2) for all j from 1 to N , and that uj = 0 for all j > N , where I2 is

the 2× 2 identity matrix. The σ2
j are defined as

(B.21) σ2
j = λ

(
1−

(
j

N

)2α
)

+

,

where λ,N > 0 are selected such that

(B.22)
∑
j≥1

j2ασ2
j = L(1− ε) and

∑
j≥1

j2βσ2
j = n−1+β/α(1 + ε),

for an arbitrary ε > 0. Let us denote by Π the joint prior distribution of {uj}j≥1.
Such a choice of the prior distribution was first introduced in [6] for establishing sharp

minimax risk bounds for nonparametric testing in the Gaussian white noise model. This con-
struction represents an analog of the prior distribution used in Pinsker’s theory for sharp
estimation of functions. In our case, using a Gaussian prior as an alternative hypothesis leads
to the well-known Gaussian thermal state.

The essence of this construction is that the random vectors u = {uj}j≥1 concentrate asymp-
totically, with probability tending to 1, on the spherical segment

{u ∈ `2(N) : C n−1 ≤ ‖u‖2 ≤ C n−1(1 + 2ε′)},
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for ε′ > 0 depending on ε and some constant C > 0 depending on α and β described later
on, and on the alternative set of hypothesis, H1(α,L, γn, ηn). Note that the spherical segment
is included in the set ‖u‖ ≤ γn, as γn = (log n)−1 � n−1/2. The asymptotic concentration is
proved by the following lemma.

Lemma B.1. A unique solution (λ,N) of (B.21), (B.22), exists for n large enough and
admits an asymptotic expansion with respect to n

λ ∼ n−1−1/2αCλ
(1 + ε)(α+1/2)/(α−β)

(1− ε)(β+1/2)/(α−β)
, Cλ =

((2β + 1)(2β + 2α+ 1))(α+1/2)/(α−β)

2α(L(2α+ 1)(4α+ 1))(β+1/2)/(α−β)

N ∼ n1/2αCN

(
1− ε
1 + ε

)1/(2(α−β))

, CN =

(
L(2α+ 1)(4α+ 1)

(2β + 1)(2β + 2α+ 1)

)1/(2(α−β))

.

The independent complex Gaussian random variables uj ∼ N2(0, 1
2σ

2
j I2), with σj’s and (λ,N)

given in (B.21), (B.22), are such that, for an arbitrary ε > 0,

P

C n−1 ≤
N∑
j=1

|uj |2 ≤ C n−1(1 + 2ε′)

→ 1,(B.23)

P

 N∑
j=1

j2α |uj |2 ≤ L

→ 1,(B.24)

P

 N∑
j=1

j2β |uj |2 ≥ n−1+β/α

→ 1,(B.25)

where C = Cλ · CN · 2α/(2α + 1) is a positive constant depending on α and β, and ε′ > 0
depends only on ε.

Proof of Lemma B.1. The solution of the problem (B.21), (B.22) can be found in [6]
(see also [14], Lemma A.1 ) for β = 0; a similar reasoning applies here. Let us prove that the
random variables {uj}j=1,...,N satisfy (B.23) to (B.25). We have

N∑
j=1

σ2
j = λ

N∑
j=1

(
1−

(
j

N

)2α
)
∼ λN 2α

2α+ 1

∼ CλCN
2α

2α+ 1
n−1(1 + ε)α/(α−β)(1− ε)−β/(α−β) = C n−1(1 + ε′),(B.26)

where we denote ε′ = (1 + ε)α/(α−β)(1− ε)−β/(α−β) − 1 which is positive for all ε ∈ (0, 1).
Note that E |uj |2 = σ2

j and V ar
(
|uj |2

)
= σ4

j . We have

P

C n−1 ≤
N∑
j=1

|uj |2 ≤ C n−1(1 + 2ε′)

 = 1−P

 N∑
j=1

|uj |2 < C n−1

−P(|uj |2 > C n−1(1 + 2ε′)
)
.
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Now, by the Markov inequality,

P

 N∑
j=1

|uj |2 < C n−1

 = P

 N∑
j=1

(|uj |2 − σ2
j ) < C n−1 − C n−1(1 + ε′ + o(1))


≤ P

 N∑
j=1

(σ2
j − |uj |

2) > C n−1(ε′ + o(1))


≤
∑N

j=1 V ar(|uj |
2)

C2 n−2ε′2/2
≤

2
∑N

j=1 σ
4
j

C2 n−2ε′2

� λ2N

C2 n−2ε′2
� n−1/2α = o(1).

Moreover,

P

 N∑
j=1

|uj |2 > C n−1(1 + 2ε′)

 = P

 N∑
j=1

(|uj |2 − σ2
j ) > C n−1(ε′ + o(1))

 = o(1),

which finishes the proof of (B.23).
Also, in view of (B.22), we have

P

 N∑
j=1

j2α |uj |2 > L

 = P

 N∑
j=1

j2α(|uj |2 − σ2
j ) > Lε


≤

∑N
j=1 j

4αV ar
(
|uj |2

)
L2 ε2

=

∑N
j=1 j

4ασ4
j

L2 ε2

� λ2N4α+1

L2 ε2
� n−1/2α = o(1),

proving (B.24). Also,

P

 N∑
j=1

j2β |uj |2 < n−1+β/α

 ≤ P

 N∑
j=1

j2β(|uj |2 − σ2
j ) < −n−1+β/αε


≤
∑N

j=1 j
4βV ar(|uj |2)

n−2+2β/α ε2
=

∑N
j=1 j

4βσ4
j

n−2+2β/α ε2

� λ2N4β+1

n−2+2β/α ε2
� n−1/2α = o(1),

proving (B.25).

Let us go back to (B.20) and bound from below the maximal error probability of type II
by the averaged risk, with respect to our prior measure Π:

sup
u∈sα(L),F (u)≥ηn

〈G(
√
nu)|M0|G(

√
nu)〉 ≥

∫
H1(α,L,γn,ηn)

Tr(|G(
√
nu)〉〈G(

√
nu)| ·M0)Π(du)

= Tr

(∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) ·M0

)
−
∫
H1(α,L,γn,ηn)C

Tr(|G(
√
nu)〉〈G(

√
nu)| ·M0)Π(du)

≥ Tr

(∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) ·M0

)
−Π(H1(α,L, γn, ηn)C).
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In the last inequality we used that Tr(|G(
√
nu)〉〈G(

√
nu)| ·M0) ≤ 1. By Lemma B.1,

Π(H1(α,L, γn, ηn)C) = o(1) and thus we deduce from (B.20) that

RFn ≥
1

8
inf
M

(
Tr (|G(0)〉〈G(0)| ·M1) + Tr

(∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) ·M0

))
+ o(1).

We recognize in the previous line the sum of error probabilities of type I and II for testing two
simple quantum hypotheses, i.e. the underlying state is either |G(0)〉 or the mixed state

Φ :=

∫
|G(
√
nu)〉〈G(

√
nu)|Π(du).

As a last step of the proof, we characterize more precisely the previous mixed Gaussian state as
a thermal state and use classical results from quantum testing of two simple hypotheses to give
the bound from below of the testing risk. Recall from Section 2.2.2, equation (8) that coherent
states |G(

√
nu)〉 factorize as tensor product of one-mode coherent states with displacements

uj , i.e. ⊗j≥1|G(
√
nuj)〉. A coherent state with displacement z = x+ iy with x, y ∈ R is fully

characterized by its Wigner function given by equation (3). Since the prior is Gaussian, our
mixed state Φ is Gaussian and can be written∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) =

 N⊗
j=1

∫
|G(
√
nuj)〉〈G(

√
nuj)|Πj(duj)

⊗
 ⊗
j≥N+1

|0〉〈0|


:=

N⊗
j=1

Φj ⊗

 ⊗
j≥N+1

|0〉〈0|


where Πj represents the bivariate centred Gaussian distribution with covariance matrix σ2

j /2·I2

over the complex plane uj = xj+iyj . Using equation (5), and setting σ2 = nσ2
j /2 there, we find

that the individual modes with index j ≤ N are centred Gaussian thermal states Φj = Φ(rj)
(cf. definition (4)) with rj = nσ2

j /(nσ
2
j + 1).

In order to bound from below the right-hand side term in (B.20) we use the theory of
quantum testing of two simple hypotheses

H0 : ⊗j≥1Φ(0) against H1 : ⊗Nj=1Φ(rj)⊗j≥N+1 Φ(0).

Using (9), it is easy to see that this testing problem is equivalent to

H0 : (Φ(0))⊗N against H1 : ⊗Nj=1Φ(rj).

As the vacuum and the thermal state are both diagonalized by the Fock basis, they commute,
which reduces the problem to a classical test between the N -fold products of discrete distri-
butions H0 : {G(0)}⊗N and H1 : {⊗Nj=1G(rj)}. In view of the form (4) of the thermal state,

G(rj) is the geometric distribution
{

(1− rj)rkj
}∞
k=0

and G(0) is the degenerate distribution
concentrated at 0. The optimal testing error is given by the maximum likelihood test which
decides H0 if and only if all observations are 0. The type I error is 0 and the type II error is

N∏
j=1

(1− rj) =

N∏
j=1

1

nσ2
j + 1

≥ exp

−n N∑
j=1

σ2
j

 ≥ exp(−c),
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for some c > 0, where in the last inequality we used (B.26). Using this in (B.20), we get as a
lower bound

RFn ≥ exp(−c) + o(1) ≥ c0,

where c0 > 0 is some constant depending on c. This finishes the proof.

Proof of Theorem 5.6. Let ϕn = cnn
−1/2 for a positive sequence cn. LetMn = (ρ⊗n0 , I−

ρ⊗n0 ) be the well-known projection test for the problem (28). Then

RTn (Mn) = Tr(ρ⊗n · ρ⊗n0 ) + Tr(ρ⊗n0 · (I − ρ⊗n0 ))

= (Tr(ρ · ρ0))n = |〈ψ|ψ0〉|2n.

Let us recall that for any pure states ρ = |ψ〉〈ψ| and ρ0 = |ψ0〉〈ψ0|, we have

(B.27) ‖ρ− ρ0‖1 = 2
√

1− |〈ψ|ψ0〉|2 ,

thus |〈ψ|ψ0〉|2 = 1− 1
4‖ρ− ρ0‖21 and hence

RTn (Mn) =

(
1− 1

4
‖ρ− ρ0‖21

)n
.

For any ρ satisfying the alternative hypothesis H1(ϕn), we have ‖ρ − ρ0‖1 ≥ ϕn and conse-
quently

PMn
e (ϕn) ≤

(
1− 1

4
ϕ2
n

)n
=

(
1− c2

n

4
n−1

)n
≤
(

exp

(
−c

2
n

4
n−1

))n
= exp

(
−c

2
n

4

)
.

If now ϕn/ϕ
∗
n → ∞ then cn → ∞ and PMn

e (ϕn) → 0, so that the second relation in (29) is
fulfilled.

Consider now the case ϕn/ϕ∗n → 0 so that cn → 0. For any vector v ∈ H define

(B.28) ‖v‖2α =

∞∑
j=0

|〈ej |v〉|2 j2α;

then ‖v‖α is a seminorm on the space of v fulfilling ‖v‖2α < ∞. The assumption that ρ0 =
|ψ0〉〈ψ0| ∈ Sα (L′) means that ‖ψ0‖2α ≤ L′ < L. For some N > 0, consider the linear space

H0,N = {u ∈ H : 〈u|ψ0〉 = 0, 〈u|ej〉 = 0, j > N} ;

it is nonempty if N ≥ 1. Let u ∈ H0,N , ‖u‖ = 1 be an unit vector; and for ε > 0 consider

(B.29) ψu,ε = ψ0

√
1− ε2 + εu.

Then ‖ψu,ε‖ = 1, ρu,ε = |ψu,ε〉〈ψu,ε| is a pure state, and

|〈ψu,ε|ψ0〉|2 = 1− ε2.
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According to (B.27) we then have

‖ρu,ε − ρ0‖1 = 2
√

1− |〈ψu,ε|ψ0〉|2 = 2ε

so for a choice ε = cnn
−1/2/2 it follows ‖ρu,ε − ρ0‖1 = ϕn and ρu,ε ∈ B (ϕn). On the other

hand, by (B.29) and the triangle inequality

‖ψu,ε‖α ≤
√

1− ε2 ‖ψ0‖α + ε ‖u‖α .

Now ‖u‖α <∞ for u ∈ H0,N , and by assumption ‖ψ0‖α < L1/2, so for sufficiently large n

‖ψu,ε‖α ≤ L
1/2

and thus ρu,ε ∈ Sα (L). Thus ρu,ε ∈ Sα (L)∩B (ϕn) for sufficiently large n. By (9) the optimal
error probability for testing between states ρu,ε and ρ0 fulfills

inf
M binary POVM

RTn (ρ⊗n0 , ρ⊗nu,ε ,M) = 1− 1

2

∥∥ρ⊗n0 − ρ⊗nu,ε
∥∥

1

= 1−
√

1− |〈ψ⊗n0 |ψ
⊗n
u,ε 〉|2 = 1−

√
1− |〈ψ0|ψu,ε〉|2n

= 1−
√

1− (1− ε2)n = 1−
√

1− (1− c2
nn
−1/4)n.

Obviously if c2
n → 0 then

(
1− c2

nn
−1/4

)n → 1 so that

inf
M binary POVM

RTn (ρ⊗n0 , ρ⊗nu,ε ,M) ≥ 1 + o (1) .

But since ρu,ε ∈ Sα (L) ∩B (ϕn) we have

P∗e (ϕn) ≥ inf
M binary POVM

RTn (ρ⊗n0 , ρ⊗nu,ε ,M) ≥ 1 + o (1) ,

so that the first relation in (29) is shown.

Proof of Theorem 5.7. It suffices to prove that if ϕn = cnn
−1/2 with cn → c > 0 then

P∗e (ϕn)→ exp
(
−c2/4

)
. In view of the upper bound (30), if suffices to prove

(B.30) P∗e (ϕn) ≥ exp
(
−c2/4

)
(1 + o (1)) .

Recall (cf. (B.27)) that for any pure states ρ = |ψ〉〈ψ| and ρ0 = |ψ0〉〈ψ0|, the condition
‖ρ− ρ0‖1 ≥ ϕn in H1(ϕn) is equivalent to a condition for the fidelity F 2(ρ, ρ0) = |〈ψ|ψ0〉|2 ≤
1− ϕ2

n/4.
Let H0 ⊂ H be the orthogonal complement of C|ψ0〉 in H. Consider the vector

ψu =
√

1− ‖u‖2 · ψ0 + u, u ∈ H0

and the corresponding pure state |ψu〉〈ψu| defined in terms of the local vector u. We restrict
the alternative hypothesis to a smaller set of states such that ‖u‖ ≤ γn, with γn = (log n)−1.
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Since the fidelity is given by F 2(ρ0, |ψu〉〈ψu|) = |〈ψu|ψ0〉|2 = 1−‖u‖2, the restricted hypothesis
is characterised by

1− γ2
n ≤ F 2(ρ0, |ψu〉〈ψu|) ≤ 1− ϕ2

n/4, or ϕ2
n/4 ≤ ‖u‖2 ≤ γ2

n.

and additionally by ‖ψu‖2α ≤ L where ‖·‖α is given by (B.28).
Consider again the linear space H0,N defined in the proof of Theorem 5.7 for a choice

N = Nn ∼ log log n. Since H0,N ⊂ H0, we can further restrict the local vector u to u ∈ H0,N .
Note that for u ∈ H0,N and ‖u‖ ≤ γn we have

‖u‖2α =
N∑
j=0

|〈ej |u〉|2 j2α ≤ N2α‖u‖2 ≤ N2αγ2
n

∼ (log log n)2α(log n)−2 = o (1) .

It follows that
‖ψu‖α ≤

√
1− ‖u‖2 ‖ψ0‖α + ‖u‖α ≤ L

1/2

for sufficiently large n, thus ψu ∈ Sα (L). We can now write the test problem with restricted
alternative as

H0 : ρ = ρ0

H ′1(ϕn) : ρ = |ψu〉〈ψu|: u ∈ H0,N , ϕn/2 ≤ ‖u‖ ≤ γn.

By the strong approximation proven in Theorem 4.1 we get that the models

{|ψu〉〈ψu|⊗n, ‖u‖ ≤ γn} and {|G(
√
nu)〉〈G(

√
nu)|, ‖u‖ ≤ γn}

are asymptotically equivalent, where G(
√
nu) is the coherent vector in the Fock space Γs(H0)

pertaining to
√
nu. Note that this proof is very similar to the previous proofs of lower bounds,

with a major difference: the reduced set of states under the alternative hypothesis is defined
with repect to ρ0 given by the null hypothesis H0 instead of an arbitrary state previously.

In the asymptotically equivalent Gaussian white noise model, the modified hypotheses con-
cern Gaussian states which can be written in terms of their coherent vectors as

H0 : |G(0)〉
H1(ϕn) : |G(

√
nu)〉: u ∈ H0,N , ϕn/2 ≤ ‖u‖ ≤ γn.

In order to prove the theorem it is sufficient to prove that

inf
Mn

sup
ϕn/2≤‖u‖≤γn, u∈H0,N

RTn (|G(0)〉〈G(0)|, |G(
√
nu)〉〈G(

√
nu)|,Mn)(B.31)

≥ exp
(
−c2/4

)
+ o (1)(B.32)

as n→∞.
Note that dimH0,N = N ; let {gj , j = 1, . . . , N} be an orthogonal basis ofH0,N and let |u〉 =∑N
j=1 uj |gj〉. The quantum Gaussian white noise model {|G(

√
nu)〉, u ∈ H0,N , ‖u‖ ≤ γn} is

then equivalent to the quantum Gaussian sequence model {⊗Nj=1|G(
√
nuj)〉, ‖u‖ ≤ γn}. From

now on |G(z)〉 denotes the coherent vector in the Fock space F(C) pertaining to z := x+iy ∈ C.
Recall that such a state is fully characterized by its Wigner function WG(z), which in the case
of coherent states is the density fuction of a bivariate Gaussian distribution.



LAE OF PURE STATES ENSEMBLES AND QUANTUM GAUSSIAN WHITE NOISE 23

We shall bound from below the maximal type 2 error probability in the risk RTn (Mn) in
(B.31)

(B.33) sup
ϕn/2≤‖u‖≤γn, u∈H0,N

Tr
(
|G(
√
nu)〉〈G(

√
nu)| ·Mn,0

)
by an average over u, where the average is taken with respect to a prior distribution defined
as follows. Assume that uj , j = 1, . . . , N are independently distributed following a complex
centered Gaussian law with variance σ2

2 I2, where σ2 = c2

4n
1+ε
N , for some fixed and arbitrary

small ε > 0, and I2 is the 2 by 2 identity matrix.

Lemma B.2. Let Π be the distribution of independent complex random variables uj, for
j = 1, ..., N , each one distributed as

N

(
0,
σ2

2
I2

)
, σ2 =

c2

4n

1 + ε

N
,

for fixed ε > 0 and N ∼ log logn. Then as n→∞

P
(
c2
n

4n
≤ ‖u‖2 ≤ c2

n

4n
(1 + ε)2

)
→ 1, as n→∞,

and in particular if γn = (log n)−1 then P (ϕn/2 ≤ ‖u‖ ≤ γn)→ 1, as n→∞.

Proof. We have

P
(
‖u‖2 < c2

n

4n

)
= P

 N∑
j=1

(|uj |2 − σ2) <
c2
n

4n
−N c2

4n

1 + ε

N


≤

Var(
∑N

j=1 |uj |2)

(c2
n − c2 (1 + ε))2 /16n2

=
Nσ4

(c2ε+ o(1))2 /16n2

=
Nc4(1 + ε)2/16n2N2

(c2ε+ o(1))2 /16n2
=

(
1 + ε

ε+ o(1)

)2 1

N
= o(1),

since N ∼ log log n→∞. Similarly, as (1 + ε)2 > 1 + ε, one shows that

P
(
‖u‖2 > c2

n

4n
(1 + ε)2

)
→ 0,

as n→∞ and thus we get

P
(
c2
n

4n
≤ ‖u‖2 ≤ c2

n

4n
(1 + ε)2

)
→ 1.

As γ2
n = (log n)−2 decays slower than c2

n/n, and ϕn/2 = cnn
−1/2/2, we deduce that

P (ϕn/2 ≤ ‖u‖ ≤ γn)→ 1

as n→∞ which ends the proof of the lemma.
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Let us denote by Π the prior distribution introduced in Lemma B.2. Let us go back to
(B.33) and bound the expression from below as follows:

sup
ϕn/2≤‖u‖≤γn, u∈H0,N

Tr
(
|G(
√
nu)〉〈G(

√
nu)| ·Mn,0

)
≥
∫
ϕn/2≤‖u‖≤γn

Tr(|G(
√
nu)〉〈G(

√
nu)|Mn,0)Π(du)

≥
∫

Tr(|G(
√
nu)〉〈G(

√
nu)|Mn,0)Π(du)−

∫
{ϕn/2≤‖u‖≤γn}c

Tr(|G(
√
nu)〉〈G(

√
nu)|Mn,0)Π(du)

≥
∫

Tr(|G(
√
nu)〉〈G(

√
nu)|Mn,0)Π(du)−Π ({ϕn/2 ≤ ‖u‖ ≤ γn}c) .

By Lemma B.2, we get for (B.31)

sup
ϕn/2≤‖u‖≤γn, u∈H0,N

RTn (G(0), G(
√
nu),Mn)

(B.34) ≥ Tr(|G(0)〉〈G(0)|Mn,1) + Tr

(∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) ·Mn,0

)
+ o(1).

The integral on the right side is a mixed state which can be written as

Φ :=

∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) =

N⊗
j=1

∫
|G(
√
nuj)〉〈G(

√
nuj)| ·Πj(duj).

Similarly to the proof of Theorem 5.5 we use equation (5) to show that each of the Gaussian
integrals above produces a thermal (Gaussian) state

Φ(r) = (1− r)
∞∑
k=0

rk|k〉〈k|, r =
nσ2

nσ2 + 1
.

Since |G(0)〉〈G(0)| = Φ(0), the main terms in (B.34) are the sum of error probabilities for
testing two simple hypothesis H0 : Φ(0)⊗N against H1 : Φ(r)⊗N . Moreover, we have two
commuting product states under the two simple hypotheses, which reduces the problem to
a classical test between the N -fold products of discrete distributions H0 : {G(0)}⊗N and
H1 : {G(r)}⊗N . Here G(r) is the geometric distribution

{
(1− r)rk

}∞
k=0

; in particular s G(0)
is the degenerate distribution concentrated at 0. The optimal testing error is given by the
maximum likelihood test which decides H0 if and only if all observations are 0. The type 1
error is 0 and the type 2 error is

(1− r)N = (nσ2 + 1)−N ≥ exp(−N · nσ2)

= exp

(
−Nn c

2

4n

1 + ε

N

)
= exp

(
−c

2 (1 + ε)

4

)
.

Since ε > 0 was arbitrary, this establishes the lower bound (B.32) and thus (B.30).
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