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The concept of antidistinguishability of quantum states has been studied to investigate
foundational questions in quantum mechanics. It is also called quantum state elimination,
because the goal of such a protocol is to guess which state, among finitely many chosen
at random, the system is not prepared in (that is, it can be thought of as the first step
in a process of elimination). Antidistinguishability has been used to investigate the real-
ity of quantum states, ruling out 𝜓-epistemic ontological models of quantum mechanics
[Pusey et al., Nat. Phys., 8(6):475-478, 2012]. Thus, due to the established importance of
antidistinguishability in quantum mechanics, exploring it further is warranted.

In this paper, we provide a comprehensive study of the optimal error exponent—the
rate at which the optimal error probability vanishes to zero asymptotically—for classical
and quantum antidistinguishability. We derive an exact expression for the optimal error
exponent in the classical case and show that it is given by the multivariate classical Chernoff
divergence. Our work thus provides this divergence with a meaningful operational interpre-
tation as the optimal error exponent for antidistinguishing a set of probability measures.
For the quantum case, we provide several bounds on the optimal error exponent: a lower
bound given by the best pairwise Chernoff divergence of the states, an upper bound in
terms of max-relative entropy, and lower and upper bounds in terms of minimal and maximal
multivariate quantum Chernoff divergences. It remains an open problem to obtain an explicit
expression for the optimal error exponent for quantum antidistinguishability.

Dedicated to the memory of Mary Beth Ruskai. She was an important foundational figure in the field of
quantum information, and her numerous seminal research contributions and reviews, including [LR73,
Rus02, HSR03], have inspired many quantum information scientists.
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I. INTRODUCTION

Quantum state discrimination is a fundamental component of quantum information science,
which plays a key role in quantum computing [BCDvD06], quantum communication [Hel69,
BC09], and quantum key distribution [BK15]. The state discrimination or distinguishability task is
to infer the actual state of a quantum system by applying a quantum measurement to the system.
More formally, consider a quantum system prepared in one of the quantum states 𝜌1 , . . . , 𝜌𝑟 .
A quantum measurement is specified by a positive operator-valued measure {𝑀1 , . . . , 𝑀𝑟} with
output 𝑖 indicating 𝜌𝑖 as the true state of the system with success probability Tr[𝑀𝑖𝜌𝑖], as given
by the Born rule [Bor26].

The task that we consider here is in a sense opposite to the aforementioned task of distin-
guishability, and it is thus called antidistinguishability of quantum states or quantum state elimination
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[CFS02, PBR12, BCLM14, Lei14, BJOP14, HB20, LD20, RS23]. In particular, for the task of antidis-
tinguishability, we are interested in designing a measurement whose outcome corresponds to a
state that is not the actual state of the quantum system. In the classical version of the antidistin-
guishability problem, quantum states are replaced by probability measures on a measurable space,
and the task is to rule out one of the probability measures upon observing i.i.d. (independent and
identically distributed) data that is not produced by the probability measure.

As an illustrative example in the classical case, suppose that one of three possible dice is tossed,
a red one with probability distribution 𝑝𝑅, a green one with probability distribution 𝑝𝐺, or a blue
one with probability distribution 𝑝𝐵. The task is then, after observing a sample, to output “not
red” if the green or blue die is tossed, “not green” if the red or blue die is tossed, and “not blue” if
the red or green die is tossed. It is also of interest to consider the antidistinguishability task when
the same colored die is tossed multiple times, leading to several samples that one can use to arrive
at a conclusion.

To the best of our knowledge, an analysis of the asymptotics of the error probability of antidis-
tinguishability is missing in the literature for both cases, classical as well as quantum, and it is this
scenario that we consider in our paper.

A. Contributions

In this paper, we provide a comprehensive study of the optimal error exponent—the rate at
which the optimal error probability vanishes to zero asymptotically—for classical and quantum
antidistinguishability.

• We derive an exact expression for the optimal error exponent in the classical case and show
that it is given by the multivariate classical Chernoff divergence (Theorem 7). Our work thus
provides this multivariate divergence with a meaningful operational interpretation as the
optimal error exponent for antidistinguishing a set of probability measures.

• We provide several bounds on the optimal error exponent in the quantum case:

◦ lower bound given by the best pairwise Chernoff divergence of the states (Theorem 12),

◦ upper bound in terms of max-relative entropy (Theorem 20), and

◦ lower and upper bounds in terms of minimal and maximal multivariate quantum Chernoff
divergences (Theorem 18).

• Some other interesting consequences of our analysis are as follows:

◦ We provide an upper bound on the optimal error probability of antidistinguishing
an ensemble of quantum states in terms of the pairwise optimal error probabilities of
the states, and consequently, we deduce that the given quantum states are perfectly
antidistinguishable if at least two of them are orthogonal to each other (Theorem 9);

◦ We derive a lower bound on the optimal quantum antidistinguishability error probabil-
ity in terms of an exponentiated and optimized max-relative entropy (Proposition 19).

It remains an open problem to determine an explicit expression for the optimal error exponent in
the quantum case.
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B. Literature review

Let us briefly review some prior contributions to the topic of antidistinguishability. We note
here that quantum state discrimination is equivalent to finding a size-(𝑟 − 1) subset of {𝜌1 , . . . , 𝜌𝑟}
such that none of the states in the subset is the true state of the system; thus, the task is equivalent
to what is called quantum (𝑟 − 1)-state exclusion. A generalization of this task is quantum 𝑚-state
exclusion for 1 ≤ 𝑚 ≤ 𝑟 − 1, which aims at detecting a size-𝑚 subset of {𝜌1 , . . . , 𝜌𝑟} such that none
of the states in the subset is the true state of the system [RS23]. Quantum 1-state exclusion is
therefore the same as antidistinguishability of quantum states.

The concept of antidistinguishability has been studied to investigate foundational questions
in quantum mechanics [CFS02, PBR12, BCLM14, Lei14]. For example, it was used in [PBR12] to
investigate the reality of quantum states, ruling out 𝜓-epistemic ontological models of quantum
mechanics. It was also used in studying quantum communication complexity [HB20] and in
deriving noncontextuality inequalities [LD20]. Thus, due to the established importance of an-
tidistinguishability in quantum mechanics, exploring it further is warranted. There have been a
number of works that determine algebraic conditions on a set of quantum states such that perfect
antidistinguishability is possible. A sufficient condition for perfect antidistinguishability of pure
states [HK18] is that if some positive linear combination of the pure states is a projection with a
“special” kernel, then the states are antidistinguishable. In the same paper, a necessary and sufficient
condition for antidistinguishability of pure states was given, which demands the existence of pro-
jections satisfying three non-trivial conditions. Very recently, a necessary and sufficient condition
for non-antidistinguishability of general quantum states was given in [RS23], which also demands
the existence of a Hermitian matrix with positive trace satisfying a set of non-trivial inequalities.
Even though the conditions given in the aforementioned works are interesting and insightful,
verifying them is not straightforward. One of the consequences of our work is that we provide a
simple sufficient condition for perfect antidistinguishability of quantum states (Theorem 9).

C. Paper organization

The organization of our paper is as follows. In Section II, we state some definitions and provide
a brief mathematical background of relevant topics covered in our paper. We start Section III by
building a theory of classical antidistinguishability, where we introduce the notions of optimal
error probability and optimal error exponent. We then derive an explicit expression for the
optimal error exponent in the classical case, and we show that it is given by the multivariate classical
Chernoff divergence (Theorem 7). The following sections deal with the optimal error exponent
in the quantum case. We begin Section IV by providing an upper bound on the optimal error
probability of antidistinguishing an ensemble of quantum states in terms of the pairwise optimal
error probabilities of the states (Theorem 9), and we then use this result to derive a lower bound
on the optimal error exponent (Theorem 12). Next, we provide both lower and upper bounds
on the optimal error exponent in terms of minimal and maximal multivariate quantum Chernoff
divergences in Section V B (Theorem 18). Lastly, in Section VI, we derive a lower bound on the
optimal error probability in terms of an exponentiated and optimized max-relative entropy of the
states (Proposition 19), and we then use this result to provide an upper bound on the optimal error
exponent in terms of the max-relative entropy (Theorem 20). Appendices B through I contain
mathematical proofs of various claims made throughout the paper.
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II. MATHEMATICAL BACKGROUND

A. Antidistinguishability of probability measures

Let 𝑃1 , . . . , 𝑃𝑟 be probability measures on a measurable space (Ω,𝒜), where 𝒜 is a 𝜎-algebra
on the set Ω. Let 𝜂1 , . . . , 𝜂𝑟 be positive real numbers such that

∑
𝑖∈[𝑟] 𝜂𝑖 = 1. Set [𝑟] B {1, . . . , 𝑟}.

Throughout the paper, we call

ℰcl B {(𝜂𝑖 , 𝑃𝑖) : 𝑖 ∈ [𝑟]} (1)

an ensemble of probability measures on the measurable space (Ω,𝒜). Let 𝜇 be the dominating
measure

𝜇 B
∑
𝑖∈[𝑟]

𝜂𝑖𝑃𝑖 , (2)

and 𝑝1 , . . . , 𝑝𝑟 the induced densities

𝑝𝑖 B
d𝑃𝑖
d𝜇

, 𝑖 ∈ [𝑟], (3)

which are given by the Radon–Nikodým theorem [Bil95].
The problem of distinguishability, i.e., identifying the correct probability density 𝑝𝑖 based on

i.i.d. (independent and identically distributed) data, has been well studied. This problem is as
follows: Suppose that 𝑖 is sampled with probability 𝜂𝑖 , and then 𝑛 i.i.d. samples are selected
according to the product measure 𝑃⊗𝑛

𝑖
. The task is to identify the correct value of 𝑖 based on the

𝑛 i.i.d. samples observed. It is known that the maximum likelihood method is optimal, and the
optimal asymptotic error exponent is equal to the Chernoff divergence for the least favorable pair
(𝑝𝑖 , 𝑝 𝑗), for 𝑖 ≠ 𝑗 [Sal73, Tor81, LJ97, Sal99, Sal03]. The total success probability for the identification
task, in the case that 𝑛 = 1, is given by∫

d𝜇 (𝜂1𝑝1 ∨ · · · ∨ 𝜂𝑟𝑝𝑟) B
∫

d𝜇(𝜔) max{𝜂1𝑝1(𝜔), . . . , 𝜂𝑟𝑝𝑟(𝜔)}. (4)

For the antidistinguishability problem in the classical case, the task is to guess a probability
density that is not represented by the observed data. For this problem, no literature is available to
the best of our knowledge. A reasonable first idea for selecting a density that is unlikely to be the
true one is to choose the one such that 𝜂𝑖𝑝𝑖(𝜔) is minimum if 𝜔 is observed. This corresponds to
a minimum likelihood principle. In what follows, we discuss this idea more formally.

A deterministic decision rule for the antidistinguishability problem is a function

𝛿 : Ω → {e𝑖 : 𝑖 ∈ [𝑟]}, (5)

where e𝑖 is the 𝑖th standard unit vector in R𝑟 , such that 𝛿(𝜔) = e𝑖 means that we indicate 𝑝𝑖 to
be our guess for the density that is not the true one. More generally, we can admit a randomized
decision rule, along the following lines:

𝛿 : Ω → [0, 1]𝑟 ,
∑
𝑖∈[𝑟]

𝛿𝑖(𝜔) = 1. (6)

If 𝑝𝑖 is the true density, then the antidistinguishability error probability is given by∫
d𝜇(𝜔) 𝛿𝑖(𝜔)𝑝𝑖(𝜔), (7)
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and the total error probability is

Errcl(𝛿;ℰcl) B
∑
𝑖∈[𝑟]

𝜂𝑖

∫
d𝜇(𝜔) 𝛿𝑖(𝜔)𝑝𝑖(𝜔) =

∫
d𝜇(𝜔)

∑
𝑖∈[𝑟]

𝛿𝑖(𝜔)𝜂𝑖𝑝𝑖(𝜔). (8)

To minimize the above expression, we can minimize the integrand for every 𝜔. Since 𝛿𝑖(𝜔) is a
weight, we should place maximum weight on the smallest of 𝜂𝑖𝑝𝑖(𝜔). So, the optimal decision for
given 𝜔 corresponds to the minimum likelihood rule: 𝛿∗(𝜔) = e𝑖 , if 𝑖 ∈ [𝑟] is the minimum index such
that 𝜂𝑖𝑝𝑖(𝜔) = min{𝜂1𝑝1(𝜔), . . . , 𝜂𝑟𝑝𝑟(𝜔)}. The total error probability when using the decision rule
𝛿∗ is the optimal error probability, given by

Errcl(ℰcl) B Errcl(𝛿∗;ℰcl) =
∫

d𝜇(𝜔) min{𝜂1𝑝1(𝜔), . . . , 𝜂𝑟𝑝𝑟(𝜔)} =
∫

d𝜇 (𝜂1𝑝1 ∧ · · · ∧ 𝜂𝑟𝑝𝑟) . (9)

In the asymptotic treatment of the problem, we consider the 𝑛-fold ensemble ℰ𝑛cl B {(𝜂𝑖 , 𝑃⊗𝑛
𝑖

) :
𝑖 ∈ [𝑟]} on the 𝑛-fold measurable space (Ω𝑛 ,𝒜(𝑛)), where Ω𝑛 is the 𝑛-fold Cartesian product of Ω
and 𝒜(𝑛) is the 𝜎-algebra on Ω𝑛 generated by the 𝑛-fold Cartesian product of 𝒜. It then follows
that the optimal antidistinguishability error probability, in this case, is

Errcl(ℰ𝑛cl) =
∫

d𝜇⊗𝑛 (
𝜂1𝑝

⊗𝑛
1 ∧ · · · ∧ 𝜂𝑟𝑝

⊗𝑛
𝑟

)
. (10)

Set 𝜂min B min{𝜂1 , . . . , 𝜂𝑟} and 𝜂max B max{𝜂1 , . . . , 𝜂𝑟}. It is easy to see that for all 𝑛 ∈ N, we
have

𝜂min

∫
d𝜇⊗𝑛 (

𝑝⊗𝑛1 ∧ · · · ∧ 𝑝⊗𝑛𝑟
)
≤ Errcl(ℰ𝑛cl) ≤ 𝜂max

∫
d𝜇⊗𝑛 (

𝑝⊗𝑛1 ∧ · · · ∧ 𝑝⊗𝑛𝑟
)
. (11)

This implies

lim inf
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl) = lim inf
𝑛→∞

− 1
𝑛

ln
∫

d𝜇⊗𝑛 (
𝑝⊗𝑛1 ∧ · · · ∧ 𝑝⊗𝑛𝑟

)
, (12)

which is independent of 𝜂1 , . . . , 𝜂𝑟 .

Definition 1. The optimal error exponent for antidistinguishing the probability measures of a given
ensemble ℰcl = {(𝜂𝑖 , 𝑃𝑖) : 𝑖 ∈ [𝑟]} is defined by

Ecl(𝑃1 , . . . , 𝑃𝑟) B lim inf
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl). (13)

Remark 1. We note that the above definition of the optimal error exponent is independent of the
choice of the dominating measure 𝜇. This is because the development in (4)–(12) is independent
of the choice of the probability measure 𝜇 dominating 𝑃1 , . . . , 𝑃𝑟 . Indeed, if 𝜇′ is an arbitrary
probability measure dominating 𝑃1 , . . . , 𝑃𝑟 , then 𝜇′ also dominates 𝜇. Let 𝜈 B d𝜇

d𝜇′ . We then have

𝑝′𝑖 B
d𝑃𝑖
d𝜇′ =

d𝑃𝑖
d𝜇

· d𝜇
d𝜇′ = 𝑝𝑖𝜈, for all 𝑖 ∈ [𝑟]. (14)

Consequently, the quantity in (4) is given by∫
d𝜇 (𝜂1𝑝1 ∨ · · · ∨ 𝜂𝑟𝑝𝑟) =

∫
d𝜇′ (𝜂1𝑝1 ∨ · · · ∨ 𝜂𝑟𝑝𝑟) 𝜈 (15)
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=

∫
d𝜇′ (𝜂1𝑝1𝜈 ∨ · · · ∨ 𝜂𝑟𝑝𝑟𝜈) (16)

=

∫
d𝜇′ (

𝜂1𝑝
′
1 ∨ · · · ∨ 𝜂𝑟𝑝

′
𝑟

)
. (17)

Similarly, the remaining quantities in (4)–(12) can be shown to be independent of the choice of 𝜇.
See [Shi16, p. 233].

B. Multivariate classical Chernoff divergence

In 1909, Hellinger introduced a function of multiple probability distributions [Hel09]. Known
as the Hellinger transform in the literature on probability and statistics, this quantity plays an
important role in our work. We recall its definition below. Let ℰcl = {(𝜂𝑖 , 𝑃𝑖) : 𝑖 ∈ [𝑟]} be
an ensemble of probability measures on a measurable space (Ω,𝒜). Let 𝜇 be the dominating
measure defined by (2), and let 𝑝1 , . . . , 𝑝𝑟 be the induced probability densities given by (3). Denote
by S𝑟 the unit simplex in R𝑟 :

S𝑟 B

{
s ∈ [0, 1]𝑟 : s = (𝑠1 , . . . , 𝑠𝑟),

∑
𝑖∈[𝑟]

𝑠𝑖 = 1
}
. (18)

Definition 2. The Hellinger transform of the probability measures 𝑃1 , . . . , 𝑃𝑟 is a function on the
unit simplex, defined as

Hs(𝑃1 , . . . , 𝑃𝑟) B
∫

d𝜇 𝑝𝑠11 · · · 𝑝𝑠𝑟𝑟 , for s B (𝑠1 , . . . , 𝑠𝑟) ∈ S𝑟 . (19)

Here we use the convention 00 = 1 of [Str11, Definition 5.10].

The term “Hellinger transform” was perhaps first used in [LeC70], followed by several works
in the area of probability and statistics. See [Tor81, Jac89, Tor91, Gri93, FL96, LM10, Str11] and
references therein.

Remark 2. We emphasize that the Hellinger transform given in Definition 2, and hence our further
analysis of the classical antidistinguishability error probability, is independent of the choice of the
dominating measure 𝜇. This easily follows by similar arguments as in Remark 1. See [Shi16,
Chapter 3, Section 9, Lemma 3] for a proof in the case of 𝑟 = 2.

If 𝑃1 , . . . , 𝑃𝑟 are mutually absolutely continuous, i.e., for all 𝐴 ⊆ Ω, 𝑃1(𝐴) = 0 if and only
if 𝑃𝑖(𝐴) = 0 for all 𝑖 ∈ [𝑟], then the Hellinger transform is continuous on S𝑟 . Indeed, we have
𝑃𝑖 ≤ 𝜂−1

𝑖
𝜇, implying that 𝑝𝑖 ≤ 𝜂−1

𝑖
for all 𝑖 ∈ [𝑟]. This gives

∏
𝑖∈[𝑟](𝑝𝑖 + 1) as an integrable upper

bound on
∏

𝑖∈[𝑟] 𝑝
𝑠𝑖
𝑖

for all (𝑠1 , . . . , 𝑠𝑟) ∈ S𝑟 . If the probability measures are mutually absolutely
continuous, then

𝜇({𝜔 ∈ Ω : 𝑝𝑖(𝜔) > 0 ∀𝑖 ∈ [𝑟]}) = 1. (20)

Without loss of generality, we can then assume that 𝑝𝑖(𝜔) > 0 for all 𝜔 ∈ Ω and 𝑖 ∈ [𝑟]. Thus,
for every s B (𝑠1 , . . . , 𝑠𝑟) ∈ S𝑟 and for all 𝑛 ∈ N and every sequence s(𝑛) B (𝑠(𝑛)1 , . . . , 𝑠

(𝑛)
𝑟 ) in the

interior of S𝑟 such that lim𝑛→∞ s(𝑛) = s, we have

lim
𝑛→∞

∏
𝑖∈[𝑟]

(𝑝𝑖(𝜔))𝑠
(𝑛)
𝑖 =

∏
𝑖∈[𝑟]

(𝑝𝑖(𝜔))𝑠𝑖 , for 𝜔 ∈ Ω. (21)
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By the Lebesgue dominated convergence theorem, we then have lim𝑛→∞Hs(𝑛)(𝑃1 , . . . , 𝑃𝑟) =

Hs(𝑃1 , . . . , 𝑃𝑟), thereby proving continuity of the Hellinger transform on S𝑟 .
In general, the Hellinger transform is a measure of “closeness” among several probability

distributions. It is easy to see that

0 ≤ Hs(𝑃1 , . . . , 𝑃𝑟) ≤ 1, (22)

which follows from Hölder’s inequality [Str11, Lemma 53.3]. As the value of Hs(𝑃1 , . . . , 𝑃𝑟) gets
close to 0, the distance among the measures increases in some sense [FL96].

The following quantity plays an important role in our paper.

Definition 3. We define the multivariate Chernoff divergence of the probability measures 𝑃1 , . . . , 𝑃𝑟
by

𝜉cl(𝑃1 , . . . , 𝑃𝑟) B − ln inf
s∈S𝑟
Hs(𝑃1 , . . . , 𝑃𝑟), (23)

where Hs is defined in (19).

The divergence can be viewed as a generalization of the classical Chernoff divergence, the latter
being a special case of the former for 𝑟 = 2 [Che52]. One of the main results of our paper is that
the optimal error exponent for antidistinguishing an ensemble of probability measures is equal to
their multivariate Chernoff divergence (Theorem 7).

C. Quantum states, channels, and measurements

A quantum system is associated with a complex Hilbert space ℋ . We focus exclusively on
systems with finite-dimensional Hilbert spaces in this paper. Let dim(ℋ) denote the dimension
of ℋ . We denote every element of ℋ using the ket notation as |𝜓⟩, |𝜙⟩, etc., and every element of
its dual using the bra notation as ⟨𝜓 |, ⟨𝜙 |, etc. The notations go well with the natural action of a
dual element ⟨𝜓 | on a vector |𝜙⟩ in terms of the inner product of the two vectors: ⟨𝜓 |(|𝜙⟩) = ⟨𝜓 |𝜙⟩.

A quantum state of a system is identified by a density operator 𝜌, which is a self-adjoint, positive
semidefinite operator of unit trace acting on ℋ . A pure state is given by a state vector |𝜓⟩ ∈ ℋ
whose corresponding density operator is |𝜓⟩⟨𝜓 |. The set of density operators forms a convex set
with pure states as the extreme points. Let 𝒟(ℋ) denote the set of density operators and ℒ(ℋ)
the space of linear operators acting on ℋ . We shall use the notation 𝒟 for the set of density
operators whenever the underlying Hilbert space is clear from the context. A quantum channel 𝒩 ,
between two quantum systems represented by Hilbert spaces ℋ and 𝒦 , is a completely positive,
trace-preserving linear map from ℒ(ℋ) to ℒ(𝒦). In particular, for all 𝜌 ∈ 𝒟(ℋ), we have that
𝒩(𝜌) ∈ 𝒟(𝒦).

A quantum measurement is described by a positive operator-valued measure (POVM) ℳ =

{𝑀1 , . . . , 𝑀𝑟}, which is a finite set of positive semi-definite operators whose sum is the identity
operator, i.e.,

𝑀𝑖 ≥ 0 for all 𝑖 ∈ [𝑟],
∑
𝑖∈[𝑟]

𝑀𝑖 = I, (24)

where I is the identity operator acting on ℋ .
The projection onto the support of an operator 𝐴 is denoted by Supp(𝐴), its absolute value is

denoted by |𝐴| B
√
𝐴†𝐴, and its positive part by 𝐴+ B

1
2 (𝐴+ |𝐴|). For two Hermitian operators 𝐴
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and 𝐵, we use the notation

𝐴 ∧ 𝐵 B 1
2 (𝐴 + 𝐵 − |𝐴 − 𝐵|), (25)

in analogy with min(𝑎, 𝑏) = 1
2 (𝑎 + 𝑏 − |𝑎 − 𝑏 |) ≡ 𝑎 ∧ 𝑏 for 𝑎, 𝑏 ∈ R.

D. Antidistinguishability of quantum states

Suppose that a quantum system is prepared in one of the quantum states 𝜌1 , . . . , 𝜌𝑟 with a
priori probability distribution 𝜂1 , . . . , 𝜂𝑟 such that 𝜂𝑖 > 0 for all 𝑖 ∈ [𝑟]. Throughout the paper, we
call {(𝜂𝑖 , 𝜌𝑖) : 𝑖 ∈ [𝑟]} an ensemble of quantum states over a Hilbert space ℋ and denote it by ℰ.
Antidistinguishability of the states performed by a POVM ℳ = {𝑀1 , . . . , 𝑀𝑟} can be described as
follows: “the measurement outcome 𝑖 occurring corresponds to a guess that the true state of the
system is not 𝜌𝑖 .” Thus, if 𝜌𝑖 is the true state of the system, then Tr[𝑀𝑖𝜌𝑖] is the error probability
for making an incorrect guess. The average error probability of antidistinguishability, for a fixed
POVM ℳ, is then given by

Err(ℳ;ℰ) B
∑
𝑖∈[𝑟]

𝜂𝑖 Tr[𝑀𝑖𝜌𝑖]. (26)

We are interested in determining the optimal antidistinguishability error probability, which is
optimized over all possible measurements:

Err(ℰ) B inf
ℳ

Err(ℳ;ℰ), (27)

where the infimum is taken over all POVMs of the form ℳ = {𝑀1 , . . . , 𝑀𝑟} acting on ℋ .
The quantum states are said to be perfectly antidistinguishable if there exists a quantum

measurement whose outputs always correspond to a false state of the system; i.e., there exists
a POVM ℳ such that Err(ℳ;ℰ) = 0. In general, an ensemble of quantum states may not be
antidistinguishable, which means, for such an ensemble ℰ, that Err(ℳ;ℰ) > 0 for every POVM ℳ.
For instance, two non-orthogonal quantum states are not perfectly antidistinguishable [Lei14].

In the asymptotic treatment of the antidistinguishability problem for a given ensemble ℰ =

{(𝜂𝑖 , 𝜌𝑖) : 𝑖 ∈ [𝑟]}, we consider the 𝑛-fold ensemble ℰ𝑛 B {(𝜂𝑖 , 𝜌⊗𝑛
𝑖

) : 𝑖 ∈ [𝑟]}. The optimal error
probability of antidistinguishability for ℰ𝑛 is by definition given as

Err(ℰ𝑛) = inf
ℳ(𝑛)

∑
𝑖∈[𝑟]

Tr
[
𝜂𝑖𝑀

(𝑛)
𝑖

𝜌⊗𝑛
𝑖

]
, (28)

where the infimum is taken over the set of POVMs ℳ
(𝑛) = {𝑀(𝑛)

1 , . . . , 𝑀
(𝑛)
𝑟 } acting on the 𝑛-fold

tensor product Hilbert space ℋ⊗𝑛 . This gives for all 𝑛 ∈ N,

𝜂min inf
ℳ(𝑛)

∑
𝑖∈[𝑟]

Tr
[
𝑀

(𝑛)
𝑖

𝜌⊗𝑛
𝑖

]
≤ Err(ℰ𝑛) ≤ 𝜂max inf

ℳ(𝑛)

∑
𝑖∈[𝑟]

Tr
[
𝑀

(𝑛)
𝑖

𝜌⊗𝑛
𝑖

]
, (29)

which implies that

lim inf
𝑛→∞

− 1
𝑛

ln Err(ℰ𝑛) = lim inf
𝑛→∞

− 1
𝑛

ln inf
ℳ(𝑛)

∑
𝑖∈[𝑟]

Tr
[
𝑀

(𝑛)
𝑖

𝜌⊗𝑛
𝑖

]
, (30)

the latter being independent of 𝜂1 , . . . , 𝜂𝑟 .
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Definition 4. The optimal error exponent for antidistinguishing the states of a quantum ensemble
ℰ = {(𝜂𝑖 , 𝜌𝑖) : 𝑖 ∈ [𝑟]} is defined by

E(𝜌1 , . . . , 𝜌𝑟) B lim inf
𝑛→∞

− 1
𝑛

ln Err(ℰ𝑛). (31)

E. Quantum Chernoff divergence

Here we briefly recall known results for distinguishability of two or more states; a key quantity
for this purpose is as follows:

Definition 5. The quantum Chernoff divergence between two states 𝜌1 and 𝜌2 is defined as

𝜉(𝜌1 , 𝜌2) B − ln inf
𝑠∈[0,1]

Tr[𝜌𝑠1𝜌
1−𝑠
2 ]. (32)

If 𝜌1 = |𝜓⟩⟨𝜓 | and 𝜌2 = |𝜙⟩⟨𝜙 | are pure states, then

𝜉(𝜌1 , 𝜌2) = − ln |⟨𝜓 |𝜙⟩|2. (33)

The quantum Chernoff divergence between two states is known to be the optimal error exponent in
distinguishing them [ACMT+07, NS09]; i.e.,

lim
𝑛→∞

− 1
𝑛

ln
(
Tr[𝜂1𝜌

⊗𝑛
1 ∧ 𝜂2𝜌

⊗𝑛
2 ]

)
= lim
𝑛→∞

− 1
𝑛

ln
(
1
2
[
1 −



𝜂1𝜌
⊗𝑛
1 − 𝜂2𝜌

⊗𝑛
2




1
] )

= 𝜉(𝜌1 , 𝜌2), (34)

where we have used the well known fact that the optimal error probability in distinguishing 𝜌⊗𝑛
1

from 𝜌⊗𝑛
2 is equal to

Tr[𝜂1𝜌
⊗𝑛
1 ∧ 𝜂2𝜌

⊗𝑛
2 ] = 1

2
[
1 −



𝜂1𝜌
⊗𝑛
1 − 𝜂2𝜌

⊗𝑛
2




1
]
, (35)

with 𝜌⊗𝑛
1 prepared with probability 𝜂1 and 𝜌⊗𝑛

2 with probability 𝜂2 [Hel69, Hol72].
It is known more generally that the optimal error exponent in distinguishing the ensemble

{(𝜂𝑖 , 𝜌⊗𝑛
𝑖

) : 𝑖 ∈ [𝑟]} is equal to the minimum pairwise Chernoff divergence [Li16].

III. MULTIVARIATE CHERNOFF DIVERGENCE AS THE OPTIMAL ERROR EXPONENT FOR
CLASSICAL ANTIDISTINGUISHABILITY

In this section, we prove that the optimal error exponent for antidistinguishing an ensemble
of probability measures (13) is equal to the multivariate Chernoff divergence of the probability
measures. We first prove this result for mutually absolutely continuous probability measures
because the proof in this case is more readable. The proof in the general case is similar, albeit more
technical, and so we present it separately in Appendix B. Some aspects of the proof presented here
follow the development in the appendix of [NS09].

Theorem 6. Consider an ensemble ℰcl = {(𝜂𝑖 , 𝑃𝑖) : 𝑖 ∈ [𝑟]} of mutually absolutely continuous
probability measures on a measurable space (Ω,𝒜). The optimal error exponent for antidistinguish-



11

ing the probability measures is given by their multivariate Chernoff divergence, i.e.,

Ecl(𝑃1 , . . . , 𝑃𝑟) = lim
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl) = 𝜉cl(𝑃1 , . . . , 𝑃𝑟), (36)

where, recalling (18), (19), and (23), the multivariate classical Chernoff divergence 𝜉cl is defined as

𝜉cl(𝑃1 , . . . , 𝑃𝑟) B − ln inf
s∈S𝑟

∫
d𝜇 𝑝𝑠11 · · · 𝑝𝑠𝑟𝑟 . (37)

Proof. Let 𝜇 be the dominating measure given by (2) and 𝑝1 , . . . , 𝑝𝑟 the induced densities defined
in (3). The assumption that the probability measures are mutually absolutely continuous implies
that

𝜇({𝜔 ∈ Ω : 𝑝𝑖(𝜔) > 0 ∀𝑖 ∈ [𝑟]}) = 1. (38)

So, without loss of generality, we assume that 𝑝𝑖(𝜔) > 0 for all 𝜔 ∈ Ω and 𝑖 ∈ [𝑟].
We have from (10) that

Errcl(ℰ𝑛cl) =
∫

d𝜇⊗𝑛 (
𝜂1𝑝

⊗𝑛
1 ∧ · · · ∧ 𝜂𝑟𝑝

⊗𝑛
𝑟

)
≤
∫

d𝜇⊗𝑛 (
𝑝⊗𝑛1 ∧ · · · ∧ 𝑝⊗𝑛𝑟

)
. (39)

Let s ∈ S𝑟 be arbitrary. We can write the right-hand side of (39) as∫
d𝜇⊗𝑛 (

𝑝⊗𝑛1 ∧ · · · ∧ 𝑝⊗𝑛𝑟
)
=

∫
d𝜇⊗𝑛 (𝑝⊗𝑛1 ∧ · · · ∧ 𝑝⊗𝑛𝑟 )𝑠1 · · · (𝑝⊗𝑛1 ∧ · · · ∧ 𝑝⊗𝑛𝑟 )𝑠𝑟 (40)

≤
∫

d𝜇⊗𝑛 (𝑝⊗𝑛1 )𝑠1 · · · (𝑝⊗𝑛𝑟 )𝑠𝑟 . (41)

The expression on the right-hand side of (41) has a product structure. Indeed, for every generic
𝜔𝑛 B (𝜔1 , . . . , 𝜔𝑛) ∈ Ω𝑛 , we have that∫

d𝜇⊗𝑛(𝜔𝑛) (𝑝⊗𝑛1 (𝜔𝑛))𝑠1 · · · (𝑝⊗𝑛𝑟 (𝜔𝑛))𝑠𝑟 =
∫ ∏

𝑘∈[𝑛]
d𝜇(𝜔𝑘) ©­«

∏
𝑘∈[𝑛]

𝑝1(𝜔𝑘)ª®¬
𝑠1

· · · ©­«
∏
𝑘∈[𝑛]

𝑝𝑟(𝜔𝑘)ª®¬
𝑠𝑟

(42)

=

∫ ∏
𝑘∈[𝑛]

d𝜇(𝜔𝑘)
∏
𝑘∈[𝑛]

𝑝
𝑠1
1 (𝜔𝑘) · · · 𝑝𝑠𝑟𝑟 (𝜔𝑘) (43)

=

∫ ∏
𝑘∈[𝑛]

(
d𝜇(𝜔𝑘) 𝑝𝑠11 (𝜔𝑘) · · · 𝑝𝑠𝑟𝑟 (𝜔𝑘)

)
(44)

=
∏
𝑘∈[𝑛]

∫
d𝜇(𝜔𝑘) (𝑝𝑠11 · · · 𝑝𝑠𝑟𝑟 )(𝜔𝑘) (45)

=

(∫
d𝜇 𝑝𝑠11 · · · 𝑝𝑠𝑟𝑟

)𝑛
(46)

= Hs(𝑃1 , . . . , 𝑃𝑟)𝑛 . (47)

From (39), (41), and (47), we thus get

Errcl(ℰ𝑛cl) ≤ Hs(𝑃1 , . . . , 𝑃𝑟)𝑛 , for all s ∈ S𝑟 . (48)
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This implies, for all 𝑛 ∈ N, that

− 1
𝑛

ln Errcl(ℰ𝑛cl) ≥ − ln inf
s∈S𝑟
Hs(𝑃1 , . . . , 𝑃𝑟) = 𝜉cl(𝑃1 , . . . , 𝑃𝑟). (49)

Therefore, we get

lim inf
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl) ≥ 𝜉cl(𝑃1 , . . . , 𝑃𝑟). (50)

This proves the achievability part of the optimal error exponent.
To prove the optimality part, we apply multivariable calculus and the law of large numbers.

For this purpose, let us parameterize the unit simplex ofR𝑟 by the corner of the standard unit cube
of R𝑟−1, defined as

T𝑟 B

{
t ∈ [0, 1]𝑟−1 : t B (𝑡1 , . . . , 𝑡𝑟−1),

∑
𝑖∈[𝑟−1]

𝑡𝑖 ≤ 1
}
. (51)

The unit simplex (18) can be expressed as

S𝑟 =

{
(𝑡1 , . . . , 𝑡𝑟−1 , 1 −

∑
𝑖∈[𝑟−1]

𝑡𝑖) : (𝑡1 , . . . , 𝑡𝑟−1) ∈ T𝑟
}
. (52)

Using the new parameterization, let us denote the elements ofS𝑟 by st B (𝑡1 , . . . , 𝑡𝑟−1 , 1−
∑
𝑖∈[𝑟−1] 𝑡𝑖)

for t B (𝑡1 , . . . , 𝑡𝑟−1) ∈ T𝑟 . The Hellinger transform of 𝑃1 , . . . , 𝑃𝑟 can then be expressed as the
following function on T𝑟 :

H(t) B Hst(𝑃1 , . . . , 𝑃𝑟), for t ∈ T𝑟 . (53)

Thus, the multivariate Chernoff divergence of 𝑃1 , . . . , 𝑃𝑟 has the form

𝜉cl(𝑃1 , . . . , 𝑃𝑟) = sup
t∈T𝑟

− ln H(t). (54)

In what follows, using the reparametrized Hellinger transform (53), we define an exponential
family of densities 𝑝t, as given in (59) and with t ∈ T𝑟 , which enables us to express each 𝑝⊗𝑛

𝑖
in terms

of 𝑝⊗𝑛t for all 𝑛 ∈ N. This then allows for the use of the law of large numbers to deduce a family
of upper bounds on the asymptotic error exponent, given by −min1≤𝑖≤𝑟 𝛾𝑖(t) for the non-corner
points in T𝑟 , as defined later on in (76). Lastly, we use multivariable calculus to prove that there
exists a non-corner point t∗ such that ln H(t∗) = min1≤𝑖≤𝑟 𝛾𝑖(t∗). This implies that the multivariate
Chernoff divergence is the optimal bound for the asymptotic error rate.

For every t ∈ T𝑟 , let us express H(t) in an exponential-integral form as follows:

H(t) =
∫

d𝜇 𝑝𝑡11 · · · 𝑝𝑡𝑟−1
𝑟−1𝑝

1−∑𝑖∈[𝑟−1] 𝑡𝑖
𝑟 (55)

=

∫
d𝜇 (𝑝1/𝑝𝑟)𝑡1 · · · (𝑝𝑟−1/𝑝𝑟)𝑡𝑟−1𝑝𝑟 (56)

=

∫
d𝜇 𝑝𝑟 exp©­«

∑
𝑖∈[𝑟−1]

𝑡𝑖 ln (𝑝𝑖/𝑝𝑟)ª®¬ (57)

=

∫
d𝜇 𝑝𝑟 exp©­«

∑
𝑖∈[𝑟−1]

𝑡𝑖𝑞𝑖
ª®¬ , (58)
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where 𝑞𝑖 B ln(𝑝𝑖/𝑝𝑟). Consider the following exponential family of densities with respect to 𝜇 given
by

𝑝t B
1

H(t)𝑝𝑟 exp©­«
∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗
ª®¬ , t ∈ T𝑟 . (59)

Also, define a function K : T𝑟 → R by

K(t) B ln H(t). (60)

Let e1 , . . . , e𝑟−1 denote the standard unit vectors in R𝑟−1, and let T◦𝑟 denote the interior of T𝑟 which
is given by

T◦𝑟 B

{
(𝑡1 , . . . , 𝑡𝑟−1) ∈ (0, 1)𝑟−1 :

∑
𝑖∈[𝑟−1]

𝑡𝑖 < 1
}
. (61)

By Theorem 2.64 of [Sch12] we know that H is a smooth function on T◦𝑟 ; also its partial derivatives
are given for t ∈ T◦𝑟 and 𝑖 ∈ [𝑟 − 1] by

𝜕𝑖H(t) B lim
ℎ→0

H(t + ℎe𝑖) − H(t)
ℎ

(62)

=

∫
d𝜇 𝑞𝑖𝑝𝑟 exp©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗
ª®¬ (63)

= H(t)Et [𝑞𝑖] , (64)

where Et is the expectation under the density 𝑝t. We know that the Hellinger transform is a
continuous function taking only positive values on S𝑟 . This implies that K is a real-valued
continuous function on T𝑟 . Additionally, the smoothness of H on T◦𝑟 implies the smoothness of K
on T◦𝑟 . From (64) we have that

𝜕𝑖K(t) = 1
H(t)𝜕𝑖H(t) = Et [𝑞𝑖] , 𝑖 ∈ [𝑟 − 1], t ∈ T◦𝑟 . (65)

By Theorem 18.7 of [Das11], the Hessian matrix of K at t ∈ T◦𝑟 is the covariance matrix of the
random vector 𝑋 B (𝑞1 , . . . , 𝑞𝑟−1) with the probability density 𝑝t, whence the Hessian matrix of
K is positive semidefinite at each point in T◦𝑟 . This implies that K is a convex function on T◦𝑟 . By
continuity, K is convex on T𝑟 . Let T1

𝑟 denote the set

T1
𝑟 B

(𝑡1 , . . . , 𝑡𝑟−1) ∈ T𝑟 :
∑
𝑖∈[𝑟−1]

𝑡𝑖 < 1
 . (66)

We call T1
𝑟 the set of non-corner points of T𝑟 . It is easy to see that T◦𝑟 ⊂ T1

𝑟 . For any t ∈ T1
𝑟 and

𝑖 ∈ [𝑟 − 1], the limit

𝜕+𝑖 K(t) B lim
ℎ↘0

K(t + ℎe𝑖) − K(t)
ℎ

(67)

exists in R∪ {−∞} (Lemma 21). Observe that for t ∈ T◦
𝑟 , we have 𝜕𝑖K(t) = 𝜕+

𝑖
K(t) for all 𝑖 ∈ [𝑟 − 1].

It is shown in Appendix A that for t ∈ T1
𝑟 and 𝑖 ∈ [𝑟 − 1], the expectation value Et[𝑞𝑖] exists in

R ∪ {−∞} and satisfies

𝜕+𝑖 K(t) = Et[𝑞𝑖]. (68)
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Define a set

T1
𝑟, 𝑓
B

{
t ∈ T1

𝑟 : 𝜕+𝑖 K(t) ≠ −∞, ∀𝑖 ∈ [𝑟 − 1]
}
. (69)

Note that T◦𝑟 ⊂ T1
𝑟, 𝑓

.
Using the definition (59) of the density 𝑝t for t B (𝑡1 , . . . , 𝑡𝑟−1) ∈ T1

𝑟, 𝑓
and 𝑖 ∈ [𝑟], we have

ln
𝑝𝑖

𝑝t
= ln 𝑝𝑖 − ln 𝑝t (70)

= ln 𝑝𝑖 −
∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 − ln 𝑝𝑟 + ln H(t) (71)

= ln
𝑝𝑖

𝑝𝑟
−

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 + K(t) (72)

= 𝑞𝑖 −
∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 + K(t), (73)

where 𝑞𝑟 is the zero function on Ω. We write (73) in a more compact form as

ln
𝑝𝑖

𝑝t
=

∑
𝑗∈[𝑟−1]

(𝛿𝑖 𝑗 − 𝑡 𝑗)𝑞 𝑗 + K(t), for 𝑖 ∈ [𝑟], t ∈ T1
𝑟, 𝑓
. (74)

Here 𝛿𝑖 𝑗 is the Kronecker delta (taking the value 1 if 𝑖 = 𝑗, and 0 otherwise). By taking the
expectation on both sides of (74) under the density 𝑝t, and then using (68), we get

𝛾𝑖(t) B Et

[
ln
𝑝𝑖

𝑝t

]
=

∑
𝑗∈[𝑟−1]

(𝛿𝑖 𝑗 − 𝑡 𝑗)Et[𝑞 𝑗] + K(t) (75)

=
∑
𝑗∈[𝑟−1]

(𝛿𝑖 𝑗 − 𝑡 𝑗)𝜕+𝑖 K(t) + K(t) (76)

for all 𝑖 ∈ [𝑟] and t ∈ T1
𝑟, 𝑓

. We can write (76) in a more compact form as

𝛾𝑖(t) =
{
𝜕+
𝑖
K(t) − t𝑇∇+K(t) + K(t), 𝑖 ∈ [𝑟 − 1],

−t𝑇∇+K(t) + K(t), 𝑖 = 𝑟,
for t ∈ T1

𝑟, 𝑓
, (77)

where ∇+K(t) B (𝜕+1 K(t), . . . , 𝜕+
𝑟−1K(t))𝑇 .

Let 𝜔𝑛 B (𝜔1 , . . . , 𝜔𝑛) ∈ Ω𝑛 and t ∈ T1
𝑟, 𝑓

be arbitrary. We have that

𝑝⊗𝑛
𝑖

(𝜔𝑛) = ©­«
∏
𝑗∈[𝑛]

𝑝𝑖

𝑝t
(𝜔 𝑗)ª®¬ 𝑝⊗𝑛t (𝜔𝑛) = exp

(
𝑛𝐺

(𝑖)
t,𝑛(𝜔𝑛)

)
𝑝⊗𝑛t (𝜔𝑛), (78)

where

𝐺
(𝑖)
t,𝑛(𝜔𝑛) B 1

𝑛

∑
𝑗∈[𝑛]

ln
𝑝𝑖

𝑝t
(𝜔 𝑗), for 𝑖 ∈ [𝑟]. (79)

Let 𝑃⊗𝑛
t be the product measure corresponding to the density 𝑝⊗𝑛t , and let E𝑛t be the pertaining

expectation. By the definition in (75), we then have that

E𝑛t

[
𝐺

(𝑖)
t,𝑛

]
= 𝛾𝑖(t), for 𝑖 ∈ [𝑟]. (80)
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Since 𝐺(𝑖)
t,𝑛 is an i.i.d. average, the law of large numbers [Bil95] implies that for arbitrary 𝛿 > 0,

there exists 𝑛𝛿 ∈ N such that the probability of the event

𝑈𝑛,𝛿 B {𝜔𝑛 ∈ Ω𝑛 : ∀𝑖 ∈ [𝑟], 𝐺(𝑖)
t,𝑛(𝜔𝑛) ≥ 𝛾𝑖(t) − 𝛿} (81)

satisfies

𝑃⊗𝑛
t (𝑈𝑛,𝛿) ≥ 1 − 𝛿, for 𝑛 ≥ 𝑛𝛿 . (82)

The development in (78)–(82) implies that, for all 𝑛 ≥ 𝑛𝛿,

Errcl(ℰ𝑛cl) =
∫

d𝜇⊗𝑛 (
𝜂1𝑝

⊗𝑛
1 ∧ · · · ∧ 𝜂𝑟𝑝

⊗𝑛
𝑟

)
(83)

≥ 𝜂min

∫
d𝜇⊗𝑛 (

𝑝⊗𝑛1 ∧ · · · ∧ 𝑝⊗𝑛𝑟
)

(84)

= 𝜂min

∫
d𝜇⊗𝑛

(
exp

(
𝑛𝐺

(1)
t,𝑛

)
∧ · · · ∧ exp

(
𝑛𝐺

(𝑟)
t,𝑛

))
𝑝⊗𝑛t (85)

= 𝜂min E
𝑛
t

[
exp

(
𝑛𝐺

(1)
t,𝑛

)
∧ · · · ∧ exp

(
𝑛𝐺

(𝑟)
t,𝑛

)]
(86)

≥ 𝜂min E
𝑛
t

[
1𝑈𝑛,𝛿

(
exp

(
𝑛𝐺

(1)
t,𝑛

)
∧ · · · ∧ exp

(
𝑛𝐺

(𝑟)
t,𝑛

))]
(87)

≥ 𝜂min 𝑃
⊗𝑛
t (𝑈𝑛,𝛿) exp

(
𝑛 min

1≤𝑖≤𝑟
(𝛾𝑖(t) − 𝛿)

)
(88)

≥ 𝜂min(1 − 𝛿) exp
(
𝑛 min

1≤𝑖≤𝑟
𝛾𝑖(t) − 𝑛𝛿

)
. (89)

Here 1𝑈𝑛,𝛿 denotes the indicator function of the set𝑈𝑛,𝛿. Therefore, we have that

− 1
𝑛

ln Errcl(ℰ𝑛cl) ≤ −
ln(𝜂min(1 − 𝛿))

𝑛
−
(
min
1≤𝑖≤𝑟

𝛾𝑖(t) − 𝛿

)
, for 𝑛 ≥ 𝑛𝛿 . (90)

By taking the limit superior as 𝑛 → ∞ on both sides of (90) and then the limit 𝛿 → 0, we thus get

lim sup
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl) ≤ − min
1≤𝑖≤𝑟

𝛾𝑖(t), for t ∈ T1
𝑟, 𝑓
. (91)

Recall from (54) and the fact K(t) = ln H(t), our goal is to show that

lim sup
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl) ≤ sup
t∈T𝑟

−K(t). (92)

In view of (91), it suffices to show that for some t∗ ∈ T1
𝑟, 𝑓

, the following holds

min
1≤𝑖≤𝑟

𝛾𝑖(t∗) ≥ K(t∗). (93)

We now argue that such a t∗ exists. Since K is a continuous function on the compact set T𝑟 , there
exists t∗ B (𝑡∗1 , . . . , 𝑡

∗
𝑟−1) ∈ T𝑟 that minimizes K over T𝑟 , i.e.,

K(t∗) = min
t∈T𝑟

K(t). (94)

Consider the following two cases.
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Case A: Suppose t∗ ∈ T1
𝑟 . Choose arbitrary 𝑖 ∈ [𝑟 − 1]. If 𝑡∗

𝑖
= 0, then by convexity, continuity of K,

and the fact that t∗ is a minimizer, we have 𝜕+
𝑖
K(t∗) ≥ 0. (see Lemma 21). Else we have 0 < 𝑡∗

𝑖
< 1

and the first order necessary condition for a minimizer implies 𝜕+
𝑖
K(t∗) = 0. Combining these, we

get 𝜕+
𝑖
K(t∗) ≥ 0 for all 𝑖 ∈ [𝑟 − 1] and hence t∗ ∈ T1

𝑟, 𝑓
, and t∗𝑇∇+K(t∗) = 0. From (77), we thus get

𝛾𝑖(t∗) =
{
𝜕+
𝑖
K(t∗) + K(t∗), 𝑖 ∈ [𝑟 − 1],

K(t∗), 𝑖 = 𝑟.
(95)

This implies that the inequality (93) holds for the minimizer t∗.

Case B: Suppose t∗ ∈ T𝑟\T1
𝑟 , i.e., 𝑡∗1 + · · · + 𝑡∗

𝑟−1 = 1. For some 𝑖 ∈ [𝑟 − 1], we have 𝑡∗
𝑖
> 0. According

to the current parameterization of the unit simplex given in (52), t∗ corresponds to the vector
(𝑡∗1 , . . . , 𝑡

∗
𝑟−1 , 0) in S𝑟 . We reparameterize the unit simplex S𝑟 as

su =
©­«𝑢1 , . . . , 𝑢𝑖 , 1 −

∑
𝑗∈[𝑟−1]

𝑢𝑗 , 𝑢𝑖+1 , . . . , 𝑢𝑟−1
ª®¬ , u ∈ T𝑟 . (96)

In the reparameterized problem, the corresponding minimizer u∗ of K satisfies su∗ = (𝑡∗1 , . . . , 𝑡
∗
𝑟−1 , 0),

which implies

1 −
∑
𝑗∈[𝑟−1]

𝑢∗𝑗 = 𝑡
∗
𝑖 > 0. (97)

This reduces the problem to Case A, which implies that (93) holds.

Combining the above two cases, we conclude that (93) holds for the minimizer t∗ and this
completes the proof.

Theorem 7. Consider an ensemble ℰcl = {(𝜂𝑖 , 𝑃𝑖) : 𝑖 ∈ [𝑟]} of probability measures, with possibly
unequal supports, on a measurable space (Ω,𝒜). The optimal error exponent for antidistinguishing
the probability measures is given by their multivariate Chernoff divergence, i.e.,

Ecl(𝑃1 , . . . , 𝑃𝑟) = lim
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl) = 𝜉cl(𝑃1 , . . . , 𝑃𝑟), (98)

where, recalling (18), (19), and (23), the multivariate classical Chernoff divergence 𝜉cl is defined as

𝜉cl(𝑃1 , . . . , 𝑃𝑟) B − ln inf
s∈S𝑟

∫
d𝜇 𝑝𝑠11 · · · 𝑝𝑠𝑟𝑟 . (99)

Proof. See Appendix B for a detailed proof.

A. Multivariate Chernoff divergence versus pairwise Chernoff divergences

Identifying the true probability measure out of the given 𝑟 probability measures is the same
as eliminating all the remaining 𝑟 − 1 false probability measures. As such, general intuition
says that, upon observing i.i.d. data, it is easier to eliminate a false probability measure than to
identify the true probability measure. This also means that the optimal error exponent of classical
antidistinguishability should be greater than that of multiple classical hypothesis testing, the
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former being the multivariate classical Chernoff divergence and the latter being the minimum of the
pairwise Chernoff divergences of the probability measures [Sal73] (see also [Tor81, Theorem 4.2]
and [LJ97, Sal99, Sal03]). Indeed, for any two indices 𝑖 , 𝑗 ∈ [𝑟] define a subset of S𝑟 :

S
(𝑖 , 𝑗)
𝑟 = {s ∈ S𝑟 : s B (𝑠1 , . . . , 𝑠𝑟), 𝑠𝑖 + 𝑠 𝑗 = 1}. (100)

By definition, we have

𝜉cl(𝑃1 , . . . , 𝑃𝑟) ≥ − ln inf
s∈S(𝑖 , 𝑗)𝑟

Hs(𝑃1 , . . . , 𝑃𝑟) (101)

= − ln inf
𝑠∈[0,1]

∫
d𝜇 𝑝𝑠𝑖 𝑝

(1−𝑠)
𝑗

(102)

= 𝜉cl(𝑃𝑖 , 𝑃𝑗), (103)

where 𝜉cl(𝑃𝑖 , 𝑃𝑗) is the Chernoff divergence of the probability measures 𝑃𝑖 and 𝑃𝑗 . This gives

𝜉cl(𝑃1 , . . . , 𝑃𝑟) ≥ max
𝑖< 𝑗

𝜉cl(𝑃𝑖 , 𝑃𝑗) ≥ min
𝑖< 𝑗

𝜉cl(𝑃𝑖 , 𝑃𝑗). (104)

The following example illustrates an instance for which the first inequality in (104) is strict.

Example 8. Consider a uniform ensemble ℰcl = {(1/3, 𝑃1), (1/3, 𝑃2), (1/3, 𝑃3)} of probability
measures on a discrete space Ω = {𝑥, 𝑦, 𝑧} whose densities with respect to the counting
measure 𝜇 are given by

𝑝1 =
1
21{𝑥,𝑦} , 𝑝2 =

1
21{𝑥,𝑧} , 𝑝3 =

1
31Ω. (105)

We have for 𝜔𝑛 ∈ Ω𝑛 ,

(𝑝⊗𝑛1 ∧ 𝑝⊗𝑛2 ∧ 𝑝⊗𝑛3 )(𝜔𝑛) =


1
3𝑛 , if 𝜔𝑛 = (𝑥, . . . , 𝑥︸   ︷︷   ︸

𝑛 times

),

0, otherwise.
(106)

By the minimum likelihood principle, we thus get

Errcl(ℰ𝑛cl) =
1
3

∫
d𝜇⊗𝑛 (

𝑝⊗𝑛1 ∧ 𝑝⊗𝑛2 ∧ 𝑝⊗𝑛3
)

(107)

=
1
3 · 𝜇⊗𝑛({(𝑥, . . . , 𝑥︸   ︷︷   ︸

𝑛 times

)}) · 1
3𝑛 (108)

=
1
3 · 𝜇({𝑥})𝑛 · 1

3𝑛 (109)

=
1
3 · 1 · 1

3𝑛 (110)

=
1

3𝑛+1 . (111)

This gives the optimal error exponent

Ecl(𝑃1 , 𝑃2 , 𝑃3) = lim inf
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl) = ln 3. (112)
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We now compute the pairwise Chernoff divergences of the probability measures as follows.

𝜉cl(𝑃1 , 𝑃2) = − ln inf
𝑠∈[0,1]

∫
d𝜇 𝑝𝑠1𝑝

(1−𝑠)
2 (113)

= − ln inf
𝑠∈[0,1]

∫
{𝑥}

d𝜇 1
2𝑠

1
2(1−𝑠)

(114)

= − ln inf
𝑠∈[0,1]

1
2𝑠

1
2(1−𝑠)

(115)

= − ln
(
1
2

)
(116)

= ln 2. (117)

Also,

𝜉cl(𝑃1 , 𝑃3) = − ln inf
𝑠∈[0,1]

∫
d𝜇 𝑝𝑠1𝑝

(1−𝑠)
3 (118)

= − ln inf
𝑠∈[0,1]

∫
{𝑥,𝑦}

d𝜇 1
2𝑠

1
3(1−𝑠)

(119)

= − ln
[
𝜇({𝑥, 𝑦}) · 1

3 · inf
𝑠∈[0,1]

(
3
2

) 𝑠]
(120)

= − ln
[
2 · 1

3 · 1
]

(121)

= ln(3/2). (122)

By similar arguments, we get 𝜉cl(𝑃2 , 𝑃3) = ln(3/2). This implies

max{𝜉cl(𝑃1 , 𝑃2), 𝜉cl(𝑃1 , 𝑃3), 𝜉cl(𝑃2 , 𝑃3)} = ln 2. (123)
min{𝜉cl(𝑃1 , 𝑃2), 𝜉cl(𝑃1 , 𝑃3), 𝜉cl(𝑃2 , 𝑃3)} = ln(3/2). (124)

From (112), (123), and (124), we have

Ecl(𝑃1 , 𝑃2 , 𝑃3) > max{𝜉cl(𝑃1 , 𝑃2), 𝜉cl(𝑃1 , 𝑃3), 𝜉cl(𝑃2 , 𝑃3)} (125)
> min{𝜉cl(𝑃1 , 𝑃2), 𝜉cl(𝑃1 , 𝑃3), 𝜉cl(𝑃2 , 𝑃3)}. (126)

IV. ACHIEVABLE ERROR EXPONENT FOR QUANTUM ANTIDISTINGUISHABILITY

A. One-shot case

Observe that the “antidistinguishability problem” between any two states 𝜌1 and 𝜌2 is the same
as the state discrimination problem. Indeed, if we say that “𝜌1 is not the true state,” then we are
saying “𝜌2 is the true state.” Using this observation, we obtain an upper bound on the optimal
error probability of antidistinguishing the states of a given quantum ensemble by considering
“special” POVMs that focus on pairs of states, as expounded upon in the proof of the following
theorem:
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Theorem 9. Consider a quantum ensemble ℰ = {(𝜂𝑖 , 𝜌𝑖) : 𝑖 ∈ [𝑟]}. An upper bound on the
optimal error probability of antidistinguishing the states of the ensemble is given by

Err(ℰ) ≤ min
1≤𝑖< 𝑗≤𝑟

Tr[𝜂𝑖𝜌𝑖 ∧ 𝜂 𝑗𝜌 𝑗] (127)

= min
1≤𝑖< 𝑗≤𝑟

1
2

(
𝜂𝑖 + 𝜂 𝑗 −



𝜂𝑖𝜌𝑖 − 𝜂 𝑗𝜌 𝑗




1

)
. (128)

In particular, if at least two states in 𝜌1 , . . . , 𝜌𝑟 are mutually orthogonal then Err(ℰ) = 0.

Proof. Given two fixed indices 𝑖 , 𝑗 ∈ [𝑟], let Ξ(𝑖 , 𝑗)
𝑟 denote the set of POVMs ℳ = {𝑀1 , . . . , 𝑀𝑟}

such that 𝑀𝑘 = 0 if 𝑘 ∉ {𝑖 , 𝑗}. For such POVMs, we have 𝑀𝑖 +𝑀 𝑗 = I and

Err(ℳ;ℰ) = 𝜂𝑖 Tr[𝑀𝑖𝜌𝑖] + 𝜂 𝑗 Tr
[
(I −𝑀𝑖)𝜌 𝑗

]
(129)

= 𝜂𝑖 Tr[𝑀𝑖𝜌𝑖] + 𝜂 𝑗 − 𝜂 𝑗 Tr
[
𝑀𝑖𝜌 𝑗

]
(130)

= 𝜂 𝑗 − Tr
[
𝑀𝑖

(
𝜂 𝑗𝜌 𝑗 − 𝜂𝑖𝜌𝑖

) ]
. (131)

By taking the infimum over Ξ(𝑖 , 𝑗)
𝑟 on both sides of (131), we get

inf
ℳ∈Ξ(𝑖 , 𝑗)

𝑟

Err(ℳ;ℰ) = 𝜂 𝑗 − sup
0≤𝑀𝑖≤I

Tr
[
𝑀𝑖

(
𝜂 𝑗𝜌 𝑗 − 𝜂𝑖𝜌𝑖

) ]
, (132)

where the supremum on the right-hand side of (132) is taken over every positive semi-definite
operator 𝑀𝑖 such that 0 ≤ 𝑀𝑖 ≤ I. The supremum is attained by the Helstrom–Holevo measurement
[Hel69, Hol72] given by 𝑀𝑖 = Supp(𝜂 𝑗𝜌 𝑗 − 𝜂𝑖𝜌𝑖)+ (note the order of 𝑖 and 𝑗). We thus get

inf
ℳ∈Ξ(𝑖 , 𝑗)

𝑟

Err(ℳ;ℰ) = 𝜂 𝑗 − Tr
[ (
𝜂 𝑗𝜌 𝑗 − 𝜂𝑖𝜌𝑖

)
+
]

(133)

= Tr
[
𝜂 𝑗𝜌 𝑗

]
− Tr

[ (
𝜂 𝑗𝜌 𝑗 − 𝜂𝑖𝜌𝑖 + |𝜂 𝑗𝜌 𝑗 − 𝜂𝑖𝜌𝑖 |

)
/2
]

(134)
= Tr

[ (
𝜂𝑖𝜌𝑖 + 𝜂 𝑗𝜌 𝑗 − |𝜂𝑖𝜌𝑖 − 𝜂 𝑗𝜌 𝑗 |

)
/2
]

(135)
= Tr

[
𝜂𝑖𝜌𝑖 ∧ 𝜂 𝑗𝜌 𝑗

]
(136)

=
1
2

(
𝜂𝑖 + 𝜂 𝑗 −



𝜂𝑖𝜌𝑖 − 𝜂 𝑗𝜌 𝑗




1

)
. (137)

It is clear that the optimal antidistinguishability error probability satisfies

Err(ℰ) ≤ inf
ℳ∈Ξ(𝑖 , 𝑗)

𝑟

Err(ℳ;ℰ) = Tr
[
𝜂𝑖𝜌𝑖 ∧ 𝜂 𝑗𝜌 𝑗

]
, for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑟. (138)

By combining (136)–(138), we thus get the upper bound on the optimal antidistinguishability error
probability stated in the theorem.

The expression on the right-hand side of (127) can be further simplified for pure states. This is
a consequence of the following identity (see Proposition 22 in Appendix C):

∥|𝜑⟩⟨𝜑 | − |𝜁⟩⟨𝜁 |∥2
1 = (⟨𝜑 |𝜑⟩ + ⟨𝜁 |𝜁⟩)2 − 4 |⟨𝜁 |𝜑⟩|2 , (139)

which holds for vectors |𝜑⟩ and |𝜁⟩, as well as Theorem 1 of [ACMT+07] which states that for all
positive semi-definite operators 𝐴, 𝐵 and all 0 ≤ 𝑠 ≤ 1, we have

Tr[𝐴 ∧ 𝐵] ≤ Tr𝐴𝑠𝐵1−𝑠 . (140)
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Corollary 10. If the quantum states in Theorem 9 are pure, i.e., given by 𝜌𝑖 = |𝜓𝑖⟩⟨𝜓𝑖 |, then we
have

Err(ℰ) ≤ min
1≤𝑖< 𝑗≤𝑟

𝜂𝑖 + 𝜂 𝑗
2

©­«1 −

√
1 −

4𝜂𝑖𝜂 𝑗 |⟨𝜓𝑖 |𝜓 𝑗⟩|2
(𝜂𝑖 + 𝜂 𝑗)2

ª®¬ (141)

≤ 1
2 min

1≤𝑖< 𝑗≤𝑟
|⟨𝜓𝑖 |𝜓 𝑗⟩|2. (142)

Proof. Applying (128) and (139), we find that for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑟,

Err(ℰ) ≤ 1
2

(
𝜂𝑖 + 𝜂 𝑗 −



𝜂𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | − 𝜂 𝑗 |𝜓 𝑗⟩⟨𝜓 𝑗 |




1

)
(143)

=
1
2

(
𝜂𝑖 + 𝜂 𝑗 −

√
(𝜂𝑖 + 𝜂 𝑗)2 − 4𝜂𝑖𝜂 𝑗 |⟨𝜓𝑖 |𝜓 𝑗⟩|2

)
(144)

=
𝜂𝑖 + 𝜂 𝑗

2
©­«1 −

√
1 −

4𝜂𝑖𝜂 𝑗 |⟨𝜓𝑖 |𝜓 𝑗⟩|2
(𝜂𝑖 + 𝜂 𝑗)2

ª®¬ . (145)

This proves the inequality (141). By (140), we get that for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 and 0 ≤ 𝑠 ≤ 1,

Tr
[
𝜂𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | ∧ 𝜂 𝑗 |𝜓 𝑗⟩⟨𝜓 𝑗 |

]
≤ 𝜂𝑠𝑖 𝜂

1−𝑠
𝑗 Tr

[
|𝜓𝑖⟩⟨𝜓𝑖 |𝜓 𝑗⟩⟨𝜓 𝑗 |

]
= 𝜂𝑠𝑖 𝜂

1−𝑠
𝑗 |⟨𝜓𝑖 |𝜓 𝑗⟩|2. (146)

Since (146) holds for all 𝑠 ∈ [0, 1], we get

Tr
[
𝜂𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | ∧ 𝜂 𝑗 |𝜓 𝑗⟩⟨𝜓 𝑗 |

]
≤ (𝜂𝑖 ∧ 𝜂 𝑗)|⟨𝜓𝑖 |𝜓 𝑗⟩|2 ≤ 1

2 |⟨𝜓𝑖 |𝜓 𝑗⟩|2. (147)

The desired inequality (142) thus follows by using the inequality (147) in (127).

The sufficient condition for perfect antidistinguishability given in Theorem 9 is not a necessary
condition, even in the simple case of commuting states. This is illustrated in the following example.

Example 11. Consider states 𝜌1, 𝜌2, and 𝜌3 diagonalizable in a common eigenbasis
{|1⟩⟨1|, |2⟩⟨2|, |3⟩⟨3|}, given by

𝜌1 =
1
2 (|1⟩⟨1| + |2⟩⟨2|) , (148)

𝜌2 =
1
2 (|1⟩⟨1| + |3⟩⟨3|) , (149)

𝜌3 =
1
2 (|2⟩⟨2| + |3⟩⟨3|) . (150)

Consider a POVM ℳ = {𝑀1 , 𝑀2 , 𝑀3} given by

𝑀1 = |3⟩⟨3|, (151)
𝑀2 = |2⟩⟨2|, (152)
𝑀3 = |1⟩⟨1|. (153)

The POVM ℳ antidistinguishes the states perfectly because Tr[𝑀𝑖𝜌𝑖] = 0 for 𝑖 ∈ [3].
However, no pair of states are mutually orthogonal to each other.
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B. Asymptotic case

As a consequence of Theorem 9, we arrive at a lower bound on the optimal error exponent, as
stated in the following theorem.

Theorem 12. Consider a quantum ensemble ℰ = {(𝜂𝑖 , 𝜌𝑖) : 𝑖 ∈ [𝑟]}. A lower bound on the
optimal error exponent for antidistinguishing the states of the ensemble is given by the maximum of
the pairwise Chernoff divergence of the states; i.e., we have

E(𝜌1 , . . . , 𝜌𝑟) ≥ max
1≤𝑖< 𝑗≤𝑟

𝜉(𝜌𝑖 , 𝜌 𝑗). (154)

Proof. By Theorem 9, we have

Err(ℰ𝑛) ≤ min
1≤𝑖< 𝑗≤𝑟

Tr[𝜂𝑖𝜌⊗𝑛
𝑖

∧ 𝜂 𝑗𝜌
⊗𝑛
𝑗
]. (155)

By combining (155) with (34), we get the desired inequality in (154).

Let us recall from Example 8 that the inequality in (154) can be strict in some cases.

Corollary 13. If the quantum states in Theorem 12 are pure, given by 𝜌𝑖 = |𝜓𝑖⟩⟨𝜓𝑖 |, then we have

E(|𝜓1⟩⟨𝜓1 |, . . . , |𝜓𝑟⟩⟨𝜓𝑟 |) ≥ max
1≤𝑖< 𝑗≤𝑟

− ln |⟨𝜓𝑖 |𝜓 𝑗⟩|2. (156)

Proof. It follows directly from (154) and the representation (33) of the quantum Chernoff diver-
gence for pure states.

V. BOUNDS ON THE OPTIMAL ERROR EXPONENT FOR QUANTUM
ANTIDISTINGUISHABILITY FROM MULTIVARIATE QUANTUM CHERNOFF DIVERGENCES

In this section, we begin by introducing the general concept of multivariate quantum Chernoff
divergences, and after that, we employ this concept in order to obtain bounds on the optimal
error exponent for quantum antidistinguishability. The reasoning used here is inspired by similar
reasoning used for distinguishability problems between two states [Mat13, Mat14, MO15, HT16,
HM17, Mat18].

A. Multivariate quantum Chernoff divergences

Definition 14. Let 𝑟 ≥ 2 be an integer. We call a function ξ : 𝒟𝑟 → [0,∞] a multivariate quantum
Chernoff divergence if it satisfies the following properties:

1. Data processing: for states 𝜌1 , . . . , 𝜌𝑟 and a channel 𝒩 ,

ξ(𝜌1 , . . . , 𝜌𝑟) ≥ ξ(𝒩(𝜌1), . . . ,𝒩(𝜌𝑟)), (157)

2. Reduction to the multivariate classical Chernoff divergence for commuting states: if the states
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𝜌1 , . . . , 𝜌𝑟 commute, then

ξ(𝜌1 , . . . , 𝜌𝑟) = 𝜉cl(𝑃1 , . . . , 𝑃𝑟), (158)

where 𝜉cl is defined in (23), 𝑃1 , . . . , 𝑃𝑟 are probability measures on [dim(ℋ)],

𝑃ℓ (𝑋) B
∑
𝑖∈𝑋

𝜆ℓ ,𝑖 , for 𝑋 ⊆ [dim(ℋ)], (159)

given by a spectral decomposition of the states in a common eigenbasis

𝜌ℓ =
∑

𝑖∈[dim(ℋ)]
𝜆ℓ ,𝑖 |𝑖⟩⟨𝑖 |, for ℓ ∈ [𝑟]. (160)

As stated above, all multivariate quantum Chernoff divergences agree on commuting states
and are equal to the multivariate classical Chernoff divergence of the corresponding probability
measures induced by the states in a common eigenbasis. If 𝜌1 , . . . , 𝜌𝑟 are commuting states, then
we denote their divergence by 𝜉cl(𝜌1 , . . . , 𝜌𝑟). In this case, it is easy to verify that

𝜉cl(𝜌1 , . . . , 𝜌𝑟) = − ln inf
s∈S𝑟

∑
𝑖∈[dim(ℋ)]

©­«
∏
ℓ∈[𝑟]

𝜆𝑠ℓ
ℓ ,𝑖

ª®¬ . (161)

As a first starting point, let us explicitly note that the optimal error exponent in (31) is itself a
multivariate quantum Chernoff divergence.

Proposition 15. The optimal error exponent E : 𝒟𝑟 → [0,∞] defined by (31) is a multivariate
quantum Chernoff divergence.

Proof. See Appendix D.

Let us note that other multivariate quantum Chernoff divergences can be constructed from the
multivariate log-Euclidean divergence, as discussed in Remark 4 below, as well as by means of
the multivariate quantum Rényi divergences proposed in [FLO23, MBV22]. In what follows, we
discuss some other constructions of multivariate quantum Chernoff divergences.

We say that a multivariate quantum Chernoff divergence 𝜉min is minimal if it is a lower bound to
any other multivariate quantum Chernoff divergence; i.e., for any multivariate quantum Chernoff
divergence ξ, we have

𝜉min(𝜌1 , . . . , 𝜌𝑟) ≤ ξ(𝜌1 , . . . , 𝜌𝑟), for (𝜌1 , . . . , 𝜌𝑟) ∈ 𝒟𝑟 . (162)

A minimal multivariate quantum Chernoff divergence is unique by definition, and it can be
obtained as an optimization over quantum-to-classical or measurement channels as presented in
Proposition 16 below.

Let 𝒦 be a complex Hilbert space of dimension 𝑡 with an orthonormal basis {|1⟩, . . . , |𝑡⟩}.
Associated with a POVM {𝑀1 , . . . , 𝑀𝑡} acting on the Hilbert space ℋ is a channel ℳ, called
measurement channel, which has the following action on an input state 𝜌 ∈ 𝒟(ℋ):

ℳ(𝜌) =
∑
𝜔∈[𝑡]

Tr[𝑀𝜔𝜌]|𝜔⟩⟨𝜔 |. (163)
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The action of the measurement channel on any given states 𝜌1 , . . . , 𝜌𝑟 produces commuting states
ℳ(𝜌1), . . . ,ℳ(𝜌𝑟). This induces probability measures 𝑃ℳ

1 , . . . , 𝑃ℳ
𝑟 on the discrete space Ω = [𝑡],

defined by

𝑃ℳ
𝑖
(𝑋) B

∑
𝑥∈𝑋

Tr[𝑀𝑥𝜌𝑖], for 𝑋 ⊆ Ω. (164)

It can be easily verified that the optimal error probability of antidistinguishing the commuting
states ℳ(𝜌1), . . . ,ℳ(𝜌𝑟) is equal to that of antidistinguishing the corresponding probability mea-
sures 𝑃ℳ

1 , . . . , 𝑃ℳ
𝑟 . See (D7)–(D14) in Appendix D.

Proposition 16. The minimal multivariate quantum Chernoff divergence is given by

𝜉min(𝜌1 , . . . , 𝜌𝑟) = sup
ℳ

𝜉cl(𝑃ℳ
1 , . . . , 𝑃ℳ

𝑟 ), (165)

where the supremum is taken over all measurement channelsℳ with a 𝑡-dimensional classical output
space for all 𝑡 ∈ N and each probability measure 𝑃ℳ

𝑖
is defined in (164).

Proof. See Appendix E.

Similar to the definition of minimal multivariate quantum Chernoff divergence, we can define
the maximal multivariate quantum Chernoff divergence. We say that a multivariate quantum
Chernoff divergence 𝜉max is maximal if it is an upper bound to any other multivariate quantum
Chernoff divergence; i.e., for any multivariate quantum Chernoff divergence ξ, we have

𝜉max(𝜌1 , . . . , 𝜌𝑟) ≥ ξ(𝜌1 , . . . , 𝜌𝑟), for (𝜌1 , . . . , 𝜌𝑟) ∈ 𝒟𝑟 . (166)

A maximal multivariate quantum Chernoff divergence is unique by definition, and it can be ob-
tained as an optimization over classical-to-quantum or preparation channels as given in Proposition 17
below.

We can view any probability measure 𝑃 on the discrete space Ω = [𝑡] as a quantum state in 𝒦
with the fixed eigenbasis {|1⟩⟨1|, . . . , |𝑡⟩⟨𝑡 |}, i.e.,

𝑃 ≡
∑
𝜔∈Ω

𝑃({𝜔})|𝜔⟩⟨𝜔 |. (167)

A quantum channel 𝒫 : ℒ(𝒦) → ℒ(ℋ) is said to prepare a state 𝜌 ∈ 𝒟(ℋ) from a probability
measure 𝑃 if it satisfies 𝒫(𝑃) = 𝜌 and is called a preparation channel or classical–to–quantum
channel (see [Wil17, Section 4.6.5] for a review of classical–to–quantum channels).

Proposition 17. The maximal multivariate quantum Chernoff divergence is given by

𝜉max(𝜌1 , . . . , 𝜌𝑟) = inf
(𝒫 ,{𝑃𝑖}𝑖∈[𝑟])

{𝜉cl(𝑃1 , . . . , 𝑃𝑟) : 𝒫(𝑃𝑖) = 𝜌𝑖 for all 𝑖 ∈ [𝑟]} , (168)

where the infimum involves preparation channels 𝒫 with 𝑡-dimensional classical input system, for
all 𝑡 ∈ N, as well as probability measures {𝑃1 , . . . , 𝑃𝑟} of the form in (167).

Proof. See Appendix F.
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B. Bounds on the optimal error exponent for quantum antidistinguishability

The optimal error exponent for quantum antidistinguishability can be bounded from above and
below by the minimal and the maximal multivariate quantum Chernoff divergences, respectively,
as stated in the following theorem.

Theorem 18. Let ℰ = {(𝜂𝑖 , 𝜌𝑖) : 𝑖 ∈ [𝑟]} be a quantum ensemble. We have

𝜉min(𝜌1 , . . . , 𝜌𝑟) ≤ E(𝜌1 , . . . , 𝜌𝑟) ≤ 𝜉max(𝜌1 , . . . , 𝜌𝑟), (169)

where 𝜉min and 𝜉max are given by (165) and (168), respectively. Additionally, the bounds in (169)
can be strengthened through regularization as

sup
ℓ∈N

1
ℓ
𝜉min(𝜌⊗ℓ

1 , . . . , 𝜌⊗ℓ
𝑟 ) ≤ E(𝜌1 , . . . , 𝜌𝑟) ≤ inf

ℓ∈N

1
ℓ
𝜉max(𝜌⊗ℓ

1 , . . . , 𝜌⊗ℓ
𝑟 ). (170)

Proof. We know from Proposition 15 that the optimal error exponent is a multivariate quantum
Chernoff divergence, which, along with (162) and (166), justifies the inequalities in (169).

We know from Lemma 23 in Appendix G that

E(𝜌1 , . . . , 𝜌𝑟) =
1
ℓ

E(𝜌⊗ℓ
1 , . . . , 𝜌⊗ℓ

𝑟 ) for all ℓ ∈ N. (171)

Substituting the above equality into (169) gives

1
ℓ
𝜉min(𝜌⊗ℓ

1 , . . . , 𝜌⊗ℓ
𝑟 ) ≤ E(𝜌1 , . . . , 𝜌𝑟) ≤

1
ℓ
𝜉max(𝜌⊗ℓ

1 , . . . , 𝜌⊗ℓ
𝑟 ) for all ℓ ∈ N, (172)

which implies the inequalities (170).

We note that in the upper bound in (170), the infimum over ℓ ∈ N can be replaced with the
limit ℓ → ∞:

inf
ℓ∈N

1
ℓ
𝜉max(𝜌⊗ℓ

1 , . . . , 𝜌⊗ℓ
𝑟 ) = lim

ℓ→∞

1
ℓ
𝜉max(𝜌⊗ℓ

1 , . . . , 𝜌⊗ℓ
𝑟 ). (173)

See Appendix H. It is open to determine whether the supremum over ℓ ∈ N in the lower bound in
(170) can be replaced with the limit ℓ → ∞, if the limit exists.

It is known from [MO15, Corollary III.8] and [HT16, Corollary 4] (see also [Mat14, Section 9.3])
that when 𝑟 = 2, the following equality holds

sup
ℓ∈N

1
ℓ
𝜉min(𝜌⊗ℓ

1 , 𝜌⊗ℓ
2 ) = 𝜉̃(𝜌1 , 𝜌2) B sup

𝑠∈(0,1)

[
− ln𝑄𝑠(𝜌1 , 𝜌2)

]
, (174)

where

𝑄𝑠(𝜌1 , 𝜌2) B


Tr
[(
𝜌(1−𝑠)/2𝑠

2 𝜌1𝜌
(1−𝑠)/2𝑠
2

) 𝑠 ]
: 𝑠 ∈ [1/2, 1)

Tr
[(
𝜌𝑠/2(1−𝑠)

1 𝜌2𝜌
𝑠/2(1−𝑠)
1

)1−𝑠
]

: 𝑠 ∈ (0, 1/2)
. (175)

Since the optimal error exponent is known in this case to be 𝜉(𝜌1 , 𝜌2), which is defined in (32), and
it is also known from [DL14, Lemma 3] that

𝜉(𝜌1 , 𝜌2) ≥ 𝜉̃(𝜌1 , 𝜌2), (176)
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where the inequality is strict if 𝜌1 and 𝜌2 are invertible and do not commute (see [Hia94, Theo-
rem 2.1]), it follows that the lower bound in (170) cannot be optimal in general.

It is also known from [Mat13, Mat18], that when 𝑟 = 2, we have

inf
ℓ∈N

1
ℓ
𝜉max(𝜌⊗ℓ

1 , 𝜌⊗ℓ
2 ) ≥ 𝜉̂(𝜌1 , 𝜌2) B sup

𝑠∈(0,1)
− ln𝑄𝑠(𝜌1 , 𝜌2), (177)

where

𝑄𝑠(𝜌1 , 𝜌2) B Tr
[
𝜌2

(
𝜌−1/2

2 𝜌̃1𝜌
−1/2
2

) 𝑠 ]
. (178)

Here 𝜌̃1 is the absolutely continuous part of 𝜌1 with respect to 𝜌2 [And76], and the negative power
of 𝜌2 is taken in on its support. Since the optimal error exponent is known in this case to be
𝜉(𝜌1 , 𝜌2) given in (32), and it is also known from [Mat13, Mat18] that

𝜉(𝜌1 , 𝜌2) ≤ 𝜉̂(𝜌1 , 𝜌2), (179)

where the inequality is strict if 𝜌1 and 𝜌2 are invertible and do not commute (see [HM17, Theo-
rem 4.3]), it follows that the upper bound in (170) cannot be the tightest possible upper bound in
general.

VI. MAX-RELATIVE ENTROPY BOUNDS ON THE ERROR PROBABILITY AND OPTIMAL
ERROR EXPONENT

In this section, we provide a lower bound on the minimum error probability of antidistinguisha-
bility (Proposition 19), as well as a corresponding upper bound on the optimal error exponent
(Theorem 20). To begin with, let us recall the definition of the max-relative entropy of two positive
semi-definite operators 𝐴 and 𝐵 with Tr𝐴 ≤ 1 [Dat09]:

𝐷max(𝐴∥𝐵) B ln inf
𝜆≥0

{𝜆 : 𝐴 ≤ 𝜆𝐵} . (180)

We have that 𝐷max(𝐴∥𝐵) = +∞ if the support of 𝐴 is not contained in the support of 𝐵. Also,
whenever the support of 𝐴 is contained in the support of 𝐵, we have 𝐷max(𝐴∥𝐵) < +∞ and

𝐷max(𝐴∥𝐵) = ln



𝐵− 1

2𝐴𝐵− 1
2





∞
, (181)

where the inverse is understood to be taken on the support of 𝐵. Let us also recall that the
minimum error probability of antidistinguishability of an ensemble ℰ B {(𝜂𝑖 , 𝜌𝑖) : 𝑖 ∈ [𝑟]} can
also be expressed in terms of the following primal and dual semi-definite programs [BJOP14,
Section II] (see, also [YKL75, (III.15)]):

Err(ℰ) = inf
{𝑀𝑖}𝑖∈[𝑟]


∑
𝑖∈[𝑟]

𝜂𝑖 Tr[𝑀𝑖𝜌𝑖] : 𝑀𝑖 ≥ 0 for all 𝑖 ∈ [𝑟] ,
∑
𝑖∈[𝑟]

𝑀𝑖 = I

 (182)

= sup
𝑌∈Herm

{Tr[𝑌] : 𝑌 ≤ 𝜂𝑖𝜌𝑖 for all 𝑖 ∈ [𝑟]} , (183)

where Herm denotes the set of Hermitian operators. The equality holds as a consequence of
Slater’s condition; indeed we see this by noting that 𝑀𝑖 = 𝐼/𝑟 is strictly feasible for the primal, and
𝑌 = 0 is feasible for the dual.
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Proposition 19. For an ensemble ℰ B {(𝜂𝑖 , 𝜌𝑖) : 𝑖 ∈ [𝑟]}, the following lower bound holds:

Err(ℰ) ≥ exp
(
− inf

𝜔∈𝒟
max
𝑖∈[𝑟]

𝐷max(𝜔∥𝜂𝑖𝜌𝑖)
)
. (184)

Proof. By applying (182)–(183) and restricting the optimization over Hermitian operators to be
over positive semi-definite operators, we conclude that

Err(ℰ) ≥ sup
𝑌≥0

{Tr[𝑌] : 𝑌 ≤ 𝜂𝑖𝜌𝑖 , ∀𝑖 ∈ [𝑟]} (185)

= sup
𝜆≥0,𝜔∈𝒟

{Tr[𝜆𝜔] : 𝜆𝜔 ≤ 𝜂𝑖𝜌𝑖 , ∀𝑖 ∈ [𝑟]} (186)

= sup
𝜆≥0,𝜔∈𝒟

{𝜆 : 𝜆𝜔 ≤ 𝜂𝑖𝜌𝑖 , ∀𝑖 ∈ [𝑟]} (187)

≥ sup
𝜆>0,𝜔∈𝒟

{𝜆 : 𝜆𝜔 ≤ 𝜂𝑖𝜌𝑖 , ∀𝑖 ∈ [𝑟]} (188)

= sup
𝜆>0,𝜔∈𝒟

{
𝜆 : 𝜔 ≤ 1

𝜆
𝜂𝑖𝜌𝑖 , ∀𝑖 ∈ [𝑟]

}
(189)

= sup
𝜆′>0,𝜔∈𝒟

{
1
𝜆′ : 𝜔 ≤ 𝜆′𝜂𝑖𝜌𝑖 , ∀𝑖 ∈ [𝑟]

}
(190)

=

[
inf

𝜆′>0,𝜔∈𝒟
{𝜆′ : 𝜔 ≤ 𝜆′𝜂𝑖𝜌𝑖 , ∀𝑖 ∈ [𝑟]}

]−1
(191)

=

[
inf
𝜔∈𝒟

exp
(
max
𝑖∈[𝑟]

𝐷max (𝜔∥𝜂𝑖𝜌𝑖)
)]−1

(192)

=

[
exp

(
inf
𝜔∈𝒟

max
𝑖∈[𝑟]

𝐷max(𝜔∥𝜂𝑖𝜌𝑖)
)]−1

(193)

= exp
(
− inf

𝜔∈𝒟
max
𝑖∈[𝑟]

𝐷max(𝜔∥𝜂𝑖𝜌𝑖)
)
. (194)

The equality (186) follows from the substitution 𝑌 = 𝜆𝜔, which is possible because every positive
semi-definite operator can be written as a scaled density operator. The equality (190) follows from
the substitution 𝜆 = 1

𝜆′ .

Remark 3. Observe that

inf
𝜔∈𝒟

max
𝑖∈[𝑟]

𝐷max(𝜔∥𝜂𝑖𝜌𝑖) = inf
𝜔∈𝒟

max
{𝑠𝑖}𝑖∈[𝑟]

∑
𝑖∈[𝑟]

𝑠𝑖𝐷max(𝜔∥𝜂𝑖𝜌𝑖) (195)

= max
{𝑠𝑖}𝑖∈[𝑟]

inf
𝜔∈𝒟

∑
𝑖∈[𝑟]

𝑠𝑖𝐷max(𝜔∥𝜂𝑖𝜌𝑖), (196)

where {𝑠𝑖}𝑖∈[𝑟] is a probability distribution. The first equality follows because the maximum over a
finite set can be replaced with a maximum of the expected value of the elements of the set, with the
maximum taken over all possible distributions. The second equality follows from an application
of the Sion minimax theorem [Sio58]: indeed, the objective function

∑
𝑖∈[𝑟] 𝑠𝑖𝐷max(𝜔∥𝜂𝑖𝜌𝑖) is linear

and continuous in the probability distribution {𝑠𝑖}𝑖∈[𝑟] and it is lower semi-continuous and quasi-
convex in 𝜔 ∈ 𝒟.
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Theorem 20. The following upper bound holds for the optimal error exponent:

E(𝜌1 , . . . , 𝜌𝑟) ≤ inf
𝜔∈𝒟

max
𝑖∈[𝑟]

𝐷max(𝜔∥𝜌𝑖) (197)

= max
{𝑠𝑖}𝑖∈[𝑟]

inf
𝜔∈𝒟

∑
𝑖∈[𝑟]

𝑠𝑖𝐷max(𝜔∥𝜌𝑖). (198)

Proof. Consider that

E(𝜌1 , . . . , 𝜌𝑟) = lim inf
𝑛→∞

− 1
𝑛

ln Err(ℰ𝑛) (199)

≤ lim inf
𝑛→∞

1
𝑛

inf
𝜔(𝑛)∈𝒟⊗𝑛

max
𝑖∈[𝑟]

𝐷max(𝜔(𝑛)∥𝜂𝑖𝜌⊗𝑛
𝑖

) (200)

= lim inf
𝑛→∞

1
𝑛

inf
𝜔(𝑛)∈𝒟⊗𝑛

max
𝑖∈[𝑟]

𝐷max(𝜔(𝑛)∥𝜌⊗𝑛
𝑖

) (201)

≤ lim inf
𝑛→∞

1
𝑛

inf
𝜔∈𝒟

max
𝑖∈[𝑟]

𝐷max(𝜔⊗𝑛 ∥𝜌⊗𝑛
𝑖

) (202)

= inf
𝜔∈𝒟

max
𝑖∈[𝑟]

𝐷max(𝜔∥𝜌𝑖). (203)

The first inequality follows by applying Proposition 19. The second equality is justified at the end
of the proof. The second inequality follows by choosing 𝜔(𝑛) = 𝜔⊗𝑛 . The final equality follows
because the max-relative entropy is additive for tensor-power states. This establishes (197), and
(198) follows by the same reasoning as in Remark 3.

We now justify the second equality. Using the fact that, for 𝑐 > 0,

𝐷max(𝐴∥𝑐𝐵) = 𝐷max(𝐴∥𝐵) − ln 𝑐, (204)

it follows that

lim inf
𝑛→∞

1
𝑛

inf
𝜔(𝑛)∈𝒟⊗𝑛

max
𝑖∈[𝑟]

𝐷max(𝜔(𝑛)∥𝜂𝑖𝜌⊗𝑛
𝑖

)

= lim inf
𝑛→∞

1
𝑛

inf
𝜔(𝑛)∈𝒟⊗𝑛

max
𝑖∈[𝑟]

[
𝐷max(𝜔(𝑛)∥𝜌⊗𝑛

𝑖
) − ln𝜂𝑖

]
(205)

= lim inf
𝑛→∞

1
𝑛

inf
𝜔(𝑛)∈𝒟⊗𝑛

max
𝑖∈[𝑟]

𝐷max(𝜔(𝑛)∥𝜌⊗𝑛
𝑖

) (206)

because

𝐷max(𝜔(𝑛)∥𝜌⊗𝑛
𝑖

) − ln𝜂min ≥ 𝐷max(𝜔(𝑛)∥𝜌⊗𝑛
𝑖

) − ln𝜂𝑖 ≥ 𝐷max(𝜔(𝑛)∥𝜌⊗𝑛
𝑖

), (207)

where 𝜂min B min𝑖∈[𝑟] 𝜂𝑖 .

Remark 4. The upper bound in Theorem 20 bears a resemblance to the following divergence:

max
{𝑠𝑖}𝑖∈[𝑟]

inf
𝜔∈𝒟

∑
𝑖∈[𝑟]

𝑠𝑖𝐷(𝜔∥𝜌𝑖) = max
{𝑠𝑖}𝑖∈[𝑟]

©­«− ln Tr
exp ©­«

∑
𝑖∈[𝑟]

𝑠𝑖 ln 𝜌𝑖
ª®¬
ª®¬ , (208)

where the equality follows whenever each 𝜌𝑖 is positive definite. Indeed, the only difference
between (198) and (208) is the substitution 𝐷max(𝜌∥𝜎) → 𝐷(𝜌∥𝜎) B Tr[𝜌(ln 𝜌 − ln 𝜎)], where
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the latter denotes the standard quantum relative entropy [Ume62]. The equality in (208) was
established in Eq. (V.121) and Example V.25 of [MBV22]. See Appendix I for a review of the proof
of (208). Finally, note that (208) reduces to the multivariate classical Chernoff divergence when
the states in the set {𝜌𝑖}𝑖∈[𝑟] commute (have a common eigenbasis). As such, this quantity is a
multivariate quantum Chernoff divergence according to Definition 14.

VII. CONCLUSION

Summary. We have solved the classical antidistinguishability problem of finding the optimal
error exponent, which we proved to be equal to the multivariate classical Chernoff divergence
of the given probability measures. To the best of our knowledge, this result constitutes the first
operational interpretation of the divergence involving three or more states. We have also given
various upper and lower bounds on the optimal error exponent in the quantum case, while it still
remains an open problem to compute its exact expression. In analogy with the classical case, we
believe that the quantity that gives the exact error exponent in the quantum case should be called
the multivariate quantum Chernoff divergence.

Future directions. Recall from [BJOP14] that quantum 𝑚-state exclusion can be thought of as
antidistinguishability of a set of states related to the original set. We leave it as an intriguing open
question to determine the optimal asymptotic error exponent for quantum 𝑚-state exclusion.

Analogous to the task of antidistinguishing quantum states, one may consider the problem
of antidistinguishing an ensemble of quantum channels. In this problem, a quantum channel is
chosen randomly from a finite set of quantum channels, with known a priori probability distri-
bution. The antidistinguisher is allowed to pass one share of a bipartite quantum state through
the channel, after which both the reference system and the channel output system are measured.
Based on the measurement outcome, the antidistinguisher’s goal is to rule out a quantum channel
other than the selected one. It would be an interesting future work to study the asymptotics of the
error rates for antidistinguishing an ensemble of quantum channels.
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Appendix A: Expectation values at non-corner points

We begin by stating a known property of convex functions in the lemma below. We include a
proof of the statement for the sake of completeness.

Lemma 21. Let 𝑎 > 0 be arbitrary. Let 𝑓 : [0, 𝑎] → R be a convex and continuous function on [0, 𝑎], and
suppose 𝑓 is differentiable on (0, 𝑎). Then the one-sided derivative

𝑓 ′+ (0) B lim
𝑡↘0

𝑓 (𝑡) − 𝑓 (0)
𝑡

(A1)

exists and fulfills

𝑓 ′+ (0) = lim
𝑡↘0

𝑓 ′ (𝑡) . (A2)

Here 𝑓 ′+ (0) is either finite or takes the value −∞; if 𝑓 takes its minimum value at 0, then 𝑓 ′+ (0) is finite and
𝑓 ′+ (0) ≥ 0.

Proof. The map 𝑡 ↦→ ( 𝑓 (𝑡) − 𝑓 (0))/𝑡 defined on (0, 𝑎) is non-decreasing. See [BL06, Section 2.1,
Exercise 7]). Also, the limit in (A1) exists in R ∪ {−∞} [BL06, Proposition 3.1.2]. By the Lagrange
mean-value theorem, for any 𝑡 ∈ (0, 𝑎) there exists 𝑢𝑡 ∈ (0, 𝑡) such that

𝑓 (𝑡) − 𝑓 (0)
𝑡

= 𝑓 ′(𝑢𝑡). (A3)

This implies

𝑓 ′+(0) = lim
𝑡↘0

𝑓 (𝑡) − 𝑓 (0)
𝑡

= lim
𝑡↘0

𝑓 ′(𝑢𝑡). (A4)

The derivative of 𝑓 is a non-decreasing function on (0, 𝑎). Indeed, let 𝑡1 , 𝑡2 ∈ (0, 𝑎) such that 𝑡1 < 𝑡2.
Let ℎ ∈ (𝑡1 , 𝑡2) be arbitrary. We have

ℎ =

(
ℎ − 𝑡1
𝑡2 − 𝑡1

)
𝑡2 +

(
1 − ℎ − 𝑡1

𝑡2 − 𝑡1

)
𝑡1. (A5)

By convexity of 𝑓 , we get

𝑓 (ℎ) ≤
(
ℎ − 𝑡1
𝑡2 − 𝑡1

)
𝑓 (𝑡2) +

(
1 − ℎ − 𝑡1

𝑡2 − 𝑡1

)
𝑓 (𝑡1), (A6)
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which implies

𝑓 (ℎ) − 𝑓 (𝑡1)
ℎ − 𝑡1

≤ 𝑓 (𝑡2) − 𝑓 (𝑡1)
𝑡2 − 𝑡1

. (A7)

By taking the limit ℎ ↘ 𝑡1 in the above inequality, we get

𝑓 ′(𝑡1) ≤
𝑓 (𝑡2) − 𝑓 (𝑡1)
𝑡2 − 𝑡1

. (A8)

A similar argument shows that

𝑓 (𝑡2) − 𝑓 (𝑡1)
𝑡2 − 𝑡1

≤ 𝑓 ′(𝑡2). (A9)

By (A8) and (A9), we thus get 𝑓 ′(𝑡1) ≤ 𝑓 ′(𝑡2) and hence 𝑓 ′ is non-decreasing on (0, 𝑎). From (A4)
and the fact that 𝑓 ′ is non-decreasing, we thus get

𝑓 ′+(0) = lim
𝑡↘0

𝑓 ′(𝑡), (A10)

with a possible value −∞. If 𝑓 is minimized at 0, then we have 𝑓 (𝑡) − 𝑓 (0) ≥ 0 for all 𝑡 ∈ (0, 𝑎). It
then directly follows from the definition (A1) that 𝑓 ′+(0) ≥ 0.

Recall that T1
𝑟 is the set of non-corner points of T𝑟 given by (66). Let t ∈ T1

𝑟 . Define a set

𝐵t B {𝑖 ∈ [𝑟 − 1] : 𝑡𝑖 > 0} , (A11)

and let 𝐵𝑐t B [𝑟−1]\𝐵t. Let 𝛽 denote the cardinality of the set 𝐵t so that 1 ≤ 𝛽 ≤ 𝑟−1. We emphasize
that t corresponds to an interior point of T𝛽+1, which is the 𝛽-vector obtained by discarding the
zero entries of t. This allows us to use the properties of exponential family of densities given in
(59). So, by the similar arguments as given for (65), it follows that for any 𝑖 ∈ 𝐵t, the expectation
value Et[𝑞𝑖] exists, and it satisfies 𝜕𝑖K(t) = Et[𝑞𝑖]. It remains to show for 𝑖 ∈ 𝐵𝑐t that Et[𝑞𝑖] exists,
and it is equal to 𝜕+

𝑖
K(t). Let us fix an arbitrary index 𝑖 ∈ 𝐵𝑐t . Choose a small number 𝜀 > 0 such

that t + ℎe𝑖 ∈ T1
𝑟 for all ℎ ∈ [0, 𝜀]. The function ℎ ↦→ K(t + ℎe𝑖) is continuous, convex on [0, 𝜀], and

it is differentiable on (0, 𝜀). Lemma 21 thus implies that

𝜕+𝑖 K(t) = lim
ℎ↘0

𝜕𝑖K(t + ℎe𝑖) = lim
ℎ↘0
Et+ℎe𝑖 [𝑞𝑖]. (A12)

Here we used the relation 𝜕𝑖K(t + ℎe𝑖) = Et+ℎe𝑖 [𝑞𝑖] proved earlier. We now claim that Et[𝑞𝑖] exists
and satisfies

lim
ℎ↘0
Et+ℎe𝑖 [𝑞𝑖] = Et[𝑞𝑖] (A13)

with a possible value −∞. Indeed, we have

Et+ℎe𝑖 [𝑞𝑖] =
1

H (t + ℎe𝑖)

∫
d𝜇 𝑞𝑖𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 + ℎ𝑞𝑖ª®¬ . (A14)

By continuity of H, we have H (t + ℎe𝑖) → H (t) as ℎ ↘ 0. Thus, for (A13) to hold, it suffices to
prove

lim
ℎ↘0

∫
d𝜇 𝑞𝑖𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 + ℎ𝑞𝑖ª®¬ =
∫

d𝜇 𝑞𝑖𝑝𝑟 exp ©­«
∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗
ª®¬ . (A15)
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Let 𝑞𝑖 = 𝑞+
𝑖
− 𝑞−

𝑖
, where 𝑞+

𝑖
and 𝑞−

𝑖
are non-negative functions with mutually disjoint supports.

This gives∫
d𝜇 𝑞𝑖𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 + ℎ𝑞𝑖ª®¬
=

∫
d𝜇 𝑞+𝑖 𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 + ℎ𝑞+𝑖
ª®¬ −

∫
d𝜇 𝑞−𝑖 𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 − ℎ𝑞−𝑖
ª®¬ . (A16)

The first integral term in the right-hand side of (A16) is finite. Indeed, since ℎ ∈ (0, 𝜀), we have

𝑞+𝑖 𝑝𝑟 exp ©­«
∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 + ℎ𝑞+𝑖
ª®¬ ≤ 𝑞+𝑖 𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 + 𝜀𝑞+𝑖
ª®¬ . (A17)

The function in the right-hand side of (A17) is𝜇-integrable, because t+𝜀e𝑖 corresponds to an interior
point of T𝑟−𝛽+1 so that the properties of an exponential family of densities apply. Moreover, we
have pointwise convergence

𝑞+𝑖 𝑝𝑟 exp ©­«
∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 + ℎ𝑞+𝑖
ª®¬ → 𝑞+𝑖 𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗
ª®¬ as ℎ ↘ 0. (A18)

By the Lebesgue dominated convergence theorem, we have

lim
ℎ↘0

∫
d𝜇 𝑞+𝑖 𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 + ℎ𝑞+𝑖
ª®¬ =

∫
d𝜇 𝑞+𝑖 𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗
ª®¬ < ∞. (A19)

We now consider the second integral term in the right-hand side of (A16). We have the pointwise
monotone convergence

𝑞−𝑖 𝑝𝑟 exp ©­«
∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 − ℎ𝑞−𝑖
ª®¬ ↗ 𝑞−𝑖 𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗
ª®¬ , as ℎ ↘ 0. (A20)

By the monotone convergence theorem, we get

lim
ℎ↘0

∫
d𝜇 𝑞−𝑖 𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗 − ℎ𝑞−𝑖
ª®¬ =

∫
d𝜇 𝑞−𝑖 𝑝𝑟 exp ©­«

∑
𝑗∈[𝑟−1]

𝑡 𝑗𝑞 𝑗
ª®¬ (A21)

regardless of whether the right-hand integral in (A21) is finite or infinite. The latter point is
explicitly stressed in Theorem 16.2 of [Bil95]. By taking the limit ℎ ↘ 0 in (A16), and then using
(A12), (A19) and (A21), we get

𝜕+𝑖𝐾(t) = Et[𝑞+𝑖 ] − Et[𝑞−𝑖 ] = Et[𝑞𝑖]. (A22)

Since Et[𝑞+𝑖 ] is a real number, Et[𝑞𝑖] takes a value in R ∪ {−∞}. If t is a minimizer of K then by
Lemma 21 we have 𝜕+

𝑖
𝐾(t) ≥ 0, and hence Et[𝑞𝑖] is finite. We have thus accomplished that if t ∈ T1

𝑟

is a minimizer of K and 𝑖 ∈ [𝑟 − 1], then the expectation value Et[𝑞𝑖] exists, is finite, and satisfies
𝜕+
𝑖
K(t) = Et[𝑞𝑖].
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Appendix B: Proof of Theorem 7

One of the major differences between the special case of mutually absolutely continuous prob-
ability measures and the general case of probability measures with unequal supports is that, the
Hellinger transform is continuous on the entire unit simplex in the special case, but only in the
interior of the unit simplex in the general case. As it turns out, in the definition (23), restricting the
infimum to be over the interior of the unit simplex does not change the value of the multivariate
classical Chernoff divergence.

Define

𝜉◦cl (𝑃1 , . . . , 𝑃𝑟) B − ln inf
s∈S◦𝑟
Hs (𝑃1 , . . . , 𝑃𝑟) , (B1)

where S◦𝑟 denotes the interior of the unit simplex S𝑟 . We will show that 𝜉◦cl (𝑃1 , . . . , 𝑃𝑟) coincides
with the multivariate classical Chernoff divergence 𝜉cl (𝑃1 , . . . , 𝑃𝑟) defined in (23), and also that it
is the optimal error exponent for antidistinguishing the given probability measures.

As a first step towards showing 𝜉◦cl (𝑃1 , . . . , 𝑃𝑟) = 𝜉cl (𝑃1 , . . . , 𝑃𝑟), we discuss a continuous
extension of the Hellinger transform defined in the interior of the unit simplex to its boundary.
Recall that 𝜇 is the dominating measure given by (2) and 𝑝1 , . . . , 𝑝𝑟 are the induced densities
defined in (3). Define

𝐷 B {𝜔 ∈ Ω : 𝑝𝑖(𝜔) > 0, ∀𝑖 ∈ [𝑟]}. (B2)

For any s B (𝑠1 , . . . , 𝑠𝑟) ∈ S𝑟 , define

H−
s (𝑃1 , . . . , 𝑃𝑟) B

∫
𝐷

d𝜇 𝑝𝑠11 · · · 𝑝𝑠𝑟𝑟 . (B3)

We note that H−
s (𝑃1 , . . . , 𝑃𝑟) = Hs(𝑃1 , . . . , 𝑃𝑟) for all s ∈ S◦𝑟 , which implies that the map s ↦→

H−
s (𝑃1 , . . . , 𝑃𝑟) in continuous in the interior of the unit simplex S𝑟 . Also, its continuity on the

boundary of the unit simplex follows by the Lebesgue dominated convergence theorem. It is easy
to see that H−

s (𝑃1 , . . . , 𝑃𝑟) ≤ Hs(𝑃1 , . . . , 𝑃𝑟) for all s ∈ S𝑟 . Indeed, let s B (𝑠1 , . . . , 𝑠𝑟) ∈ S𝑟 be
arbitrary, set 𝐽 B { 𝑗 ∈ [𝑟] : 𝑠 𝑗 > 0} and 𝐷𝐽 B {𝜔 ∈ Ω : 𝑝 𝑗(𝜔) > 0, ∀𝑗 ∈ 𝐽}. Since 𝐷 ⊂ 𝐷𝐽 , we get

H−
s (𝑃1 , . . . , 𝑃𝑟) =

∫
𝐷

d𝜇
∏
𝑗∈𝐽
𝑝
𝑠 𝑗

𝑗
(B4)

≤
∫
𝐷𝐽

d𝜇
∏
𝑗∈𝐽
𝑝
𝑠 𝑗

𝑗
(B5)

= Hs(𝑃1 , . . . , 𝑃𝑟). (B6)

It should be noted that the last equality follows from the convention 00 = 1 in the definition (19)
of the Hellinger transform. We thus get from (B1) that

𝜉◦cl (𝑃1 , . . . , 𝑃𝑟) = − ln inf
s∈S◦𝑟
H−

s (𝑃1 , . . . , 𝑃𝑟) (B7)

= − ln inf
s∈S𝑟
H−

s (𝑃1 , . . . , 𝑃𝑟) (B8)

= − ln inf
s∈S𝑟
Hs (𝑃1 , . . . , 𝑃𝑟) (B9)

= 𝜉cl (𝑃1 , . . . , 𝑃𝑟) , (B10)

as was claimed earlier.
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For an achievable bound on the optimal error exponent, we follow the same arguments as in
the development (39)–(48) to get

Errcl
(
ℰ𝑛cl

)
≤ Hs (𝑃1 , . . . , 𝑃𝑟)𝑛 , for all s ∈ S◦𝑟 . (B11)

This gives

lim inf
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl) ≥ − ln inf
s∈S◦𝑟
Hs(𝑃1 , . . . , 𝑃𝑟) = 𝜉◦cl(𝑃1 , . . . , 𝑃𝑟) = 𝜉cl(𝑃1 , . . . , 𝑃𝑟). (B12)

We now present an optimality bound on the optimal error exponent. The case 𝜇(𝐷) = 0 is
trivial, since the antidistinguishability error probability is equal to zero in this case. So, we assume
𝜇 (𝐷) > 0. Define

𝛼𝑖 B 𝑃𝑖(𝐷) > 0, 𝑖 ∈ [𝑟] (B13)

and conditional probability densities on the set 𝐷 as

𝑝̃𝑖 B
𝑝𝑖

𝛼𝑖
, 𝑖 ∈ [𝑟]. (B14)

Observe that the conditional probability densities 𝑝̃1 , . . . , 𝑝̃𝑟 correspond to mutually abso-
lutely continuous probability measures 𝑃1/𝛼1 , . . . , 𝑃𝑟/𝛼𝑟 on the set 𝐷. Let us define for
t B (𝑡1 , . . . , 𝑡𝑟−1) ∈ T𝑟 and st = (𝑡1 , . . . , 𝑡𝑟−1 , 1 −∑

𝑖∈[𝑟−1] 𝑡𝑖) ∈ S𝑟 ,

H−(t) B H−
st(𝑃1 , . . . , 𝑃𝑟), (B15)

K−(t) B ln H−(t). (B16)

From (B14) we get,

H−(t) =
∫
𝐷

d𝜇 𝑝𝑡11 · · · 𝑝𝑡𝑟−1
𝑟−1𝑝

1−∑𝑖∈[𝑟−1] 𝑡𝑖
𝑟 (B17)

= 𝛼𝑡11 · · · 𝛼𝑡𝑟−1
𝑟−1𝛼

1−∑𝑖∈[𝑟−1] 𝑡𝑖
𝑟

∫
𝐷

d𝜇 𝑝̃𝑡11 · · · 𝑝̃𝑡𝑟−1
𝑟−1 𝑝̃

1−∑𝑖∈[𝑟−1] 𝑡𝑖
𝑟 . (B18)

Define

H̃(t) B
∫
𝐷

d𝜇 𝑝̃𝑡11 · · · 𝑝̃𝑡𝑟−1
𝑟−1 𝑝̃

1−∑𝑖∈[𝑟−1] 𝑡𝑖
𝑟 , (B19)

K̃(t) B ln H̃(t). (B20)

From the above development (B15)–(B20), we get

K−(t) = K̃(t) + L(t), for all t ∈ T𝑟 , (B21)

where L is a linear map defined on T𝑟 as

L(t) B ln 𝛼𝑟 +
∑
𝑖∈[𝑟−1]

𝑡𝑖 ln
(
𝛼𝑖
𝛼𝑟

)
. (B22)

Analogous to (59), we define an exponential family of densities on 𝐷 as

𝑝̃t B
1

H̃(t)
𝑝̃
𝑡1
1 · · · 𝑝̃𝑡𝑟−1

𝑟−1 𝑝̃
1−∑𝑖∈[𝑟−1] 𝑡𝑖
𝑟 . (B23)
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Recall from the definition of the antidistinguishability error probability (9) that we only need to
work with the probability densities 𝑝1 , . . . , 𝑝𝑟 restricted to the set 𝐷; i.e., we have for all positive
integers 𝑛,

Errcl(ℰ𝑛cl) =
∫
𝐷

d𝜇⊗𝑛 (
𝜂1𝑝

⊗𝑛
1 ∧ · · · ∧ 𝜂𝑟𝑝

⊗𝑛
𝑟

)
. (B24)

Define

T̃1
𝑟, 𝑓
B

{
t ∈ T1

𝑟 : 𝜕+𝑖 K̃(t) ≠ −∞, ∀𝑖 ∈ [𝑟 − 1]
}

(B25)

analogous to (69). Let 𝜔𝑛 B (𝜔1 , . . . , 𝜔𝑛) ∈ 𝐷𝑛 and t ∈ T̃1
𝑟, 𝑓

be arbitrary. We have that

𝑝⊗𝑛
𝑖

(𝜔𝑛) = exp
(
𝑛𝐺̃

(𝑖)
t,𝑛(𝜔𝑛)

)
𝑝̃⊗𝑛t (𝜔𝑛), (B26)

where

𝐺̃
(𝑖)
t,𝑛(𝜔𝑛) B 1

𝑛

∑
𝑗∈[𝑛]

ln
𝑝̃𝑖

𝑝̃t
(𝜔 𝑗) + ln 𝛼𝑖 for 𝑖 ∈ [𝑟]. (B27)

By following similar arguments as given in the development (78)–(91), we get

lim sup
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl) ≤ − min
1≤𝑖≤𝑟

(𝛾̃𝑖(t) + ln 𝛼𝑖) , (B28)

such that, similar to (77),

𝛾̃𝑖(t) =
{
𝜕+
𝑖
K̃(t) − t𝑇∇+K̃(t) + K̃(t), 𝑖 ∈ [𝑟 − 1],

−t𝑇∇+K̃(t) + K̃(t), 𝑖 = 𝑟,
for t ∈ T̃1

𝑟, 𝑓
. (B29)

From (B21), we have for t ∈ T1
𝑟 ,

𝜕+𝑖 K̃(t) = 𝜕+𝑖 K−(t) − ln
(
𝛼𝑖
𝛼𝑟

)
(B30)

and hence

t𝑇∇+K̃(t) = t𝑇∇+ K−(t) − L(t) + ln 𝛼𝑟 . (B31)

Substituting the relations (B30) and (B31) in (B29), we obtain

𝛾̃𝑖 (t) + ln 𝛼𝑖 =

{
𝜕+
𝑖

K−(t) − t𝑇∇+ K−(t) + K−(t) , 𝑖 ∈ [𝑟 − 1],
−t𝑇∇+K−(t) + K−(t) , 𝑖 = 𝑟,

for t ∈ T̃1
𝑟, 𝑓
. (B32)

As the function L in (B21) is linear and K̃ is convex on T𝑟 , we conclude that K− is convex as well,
and it inherits the smoothness properties of K̃. One can now essentially follow the steps described
in the development (93)–(97) to show that there is no loss in assuming that there exists a minimizer
t∗ ∈ T̃1

𝑟, 𝑓
of K−, and that it satisfies

− min
1≤𝑖≤𝑟

(𝛾̃𝑖(t∗) + ln 𝛼𝑖) ≤ −K−(t∗). (B33)

Combining (B28) and (B33), we thus get

lim sup
𝑛→∞

− 1
𝑛

ln Errcl(ℰ𝑛cl) ≤ sup
t∈T𝑟

−K−(t) = 𝜉◦cl(𝑃1 , . . . , 𝑃𝑟) = 𝜉cl(𝑃1 , . . . , 𝑃𝑟). (B34)

This completes the optimality part. It follows from (B12) and (B34) that the limit
lim𝑛→∞ − 1

𝑛 ln Errcl(ℰ𝑛cl) exists and the desired equality (98) holds.
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Appendix C: Proof of Equation (139)

Proposition 22. For arbitrary (not necessarily normalized) vectors |𝜑⟩, |𝜁⟩ ∈ ℋ , the following equality
holds:

∥|𝜑⟩⟨𝜑 | − |𝜁⟩⟨𝜁 |∥2
1 = (⟨𝜑 |𝜑⟩ + ⟨𝜁 |𝜁⟩)2 − 4 |⟨𝜁 |𝜑⟩|2 . (C1)

Proof. The equality (C1) trivially holds if one of the vectors is zero. So, we assume that both |𝜑⟩
and |𝜁⟩ are non-zero vectors. Define

|𝜑′⟩ B
|𝜑⟩

∥|𝜑⟩∥ , |𝜁′⟩ B |𝜁⟩
∥|𝜁⟩∥ . (C2)

Then the desired equality is equivalent to

∥𝑐 |𝜑′⟩⟨𝜑′ | − 𝑑 |𝜁′⟩⟨𝜁′ |∥2
1 = (𝑐 + 𝑑)2 − 4𝑐𝑑 |⟨𝜁′ |𝜑′⟩|2 , (C3)

where

𝑐 B ∥|𝜑⟩∥2 , 𝑑 B ∥|𝜁⟩∥2 . (C4)

Defining |𝜑⊥⟩ to be the unit vector orthogonal to |𝜑′⟩ in span {|𝜑′⟩, |𝜁′⟩}, we find that

|𝜁′⟩ = cos(𝜃)|𝜑′⟩ + sin(𝜃)|𝜑⊥⟩, (C5)

where

cos(𝜃) = ⟨𝜑′ |𝜁′⟩. (C6)

Then it follows that

𝑐 |𝜑′⟩⟨𝜑′ | − 𝑑 |𝜁′⟩⟨𝜁′ |
= 𝑐 |𝜑′⟩⟨𝜑′ | − 𝑑

(
cos(𝜃)|𝜑′⟩ + sin(𝜃)|𝜑⊥⟩

) (
cos(𝜃)⟨𝜑′ | + sin(𝜃)⟨𝜑⊥ |

)
(C7)

=
[
𝑐 − 𝑑 cos2(𝜃)

]
|𝜑′⟩⟨𝜑′ | − 𝑑 sin(𝜃) cos(𝜃)|𝜑⊥⟩⟨𝜑′ |

− 𝑑 sin(𝜃) cos(𝜃)|𝜑′⟩⟨𝜑⊥ | − 𝑑 sin2(𝜃)|𝜑⊥⟩⟨𝜑⊥ |. (C8)

As a matrix with respect to the basis {|𝜑′⟩, |𝜑⊥⟩}, the last line has the following form:[
𝑐 − 𝑑 cos2(𝜃) −𝑑 sin(𝜃) cos(𝜃)

−𝑑 sin(𝜃) cos(𝜃) −𝑑 sin2(𝜃)

]
, (C9)

and this matrix has the following eigenvalues:

𝜆1 =
1
2

(
𝑐 − 𝑑 +

√
(𝑐 + 𝑑)2 − 4𝑐𝑑 cos2(𝜃)

)
, (C10)

𝜆2 =
1
2

(
𝑐 − 𝑑 −

√
(𝑐 + 𝑑)2 − 4𝑐𝑑 cos2(𝜃)

)
. (C11)

Note that 𝑐 ≥ 0 and 𝑑 ≥ 0. Without loss of generality, suppose that 𝑐 ≥ 𝑑. Then

0 ≤ 4𝑐𝑑 sin2(𝜃) (C12)

= 4𝑐𝑑
(
1 − cos2(𝜃)

)
(C13)
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⇒ −2𝑐𝑑 ≤ 2𝑐𝑑 − 4𝑐𝑑 cos2(𝜃) (C14)
⇒ 𝑐2 − 2𝑐𝑑 + 𝑑2 ≤ 𝑐2 + 2𝑐𝑑 + 𝑑2 − 4𝑐𝑑 cos2(𝜃) (C15)

⇒ (𝑐 − 𝑑)2 ≤ (𝑐 + 𝑑)2 − 4𝑐𝑑 cos2(𝜃) (C16)

⇒ 𝑐 − 𝑑 ≤
√
(𝑐 + 𝑑)2 − 4𝑐𝑑 cos2(𝜃). (C17)

Then it follows that the square of the trace norm of 𝑐 |𝜑′⟩⟨𝜑′ | − 𝑑 |𝜁′⟩⟨𝜁′ | is given by

∥𝑐 |𝜑′⟩⟨𝜑′ | − 𝑑 |𝜁′⟩⟨𝜁′ |∥2
1

= (|𝜆1 | + |𝜆2 |)2 (C18)

=

(
1
2

(
𝑐 − 𝑑 +

√
(𝑐 + 𝑑)2 − 4𝑐𝑑 cos2(𝜃)

)
− 1

2

(
𝑐 − 𝑑 −

√
(𝑐 + 𝑑)2 − 4𝑐𝑑 cos2(𝜃)

))2
(C19)

= (𝑐 + 𝑑)2 − 4𝑐𝑑 cos2(𝜃), (C20)

concluding the proof.

Appendix D: Proof of Proposition 15

To prove the data-processing inequality, let 𝒩 be any quantum channel. We denote by 𝒩(ℰ)
the ensemble {(𝜂𝑖 ,𝒩(𝜌𝑖)) : 𝑖 ∈ [𝑟]}, which results from applying the channel 𝒩 to each state in ℰ.
The optimal antidistinguishability error probability for the ensemble Err(ℰ) is not more than that
for the ensemble 𝒩(ℰ). To see this, let ℳ = {𝑀1 , . . . , 𝑀𝑟} be any POVM. We have

Err(ℳ;𝒩(ℰ)) =
∑
𝑖∈[𝑟]

𝜂𝑖 Tr[𝑀𝑖𝒩(𝜌𝑖)] (D1)

=
∑
𝑖∈[𝑟]

𝜂𝑖 Tr[𝒩†(𝑀𝑖)𝜌𝑖] (D2)

≥ Err(ℰ). (D3)

The inequality (D3) follows because {𝒩†(𝑀1), . . . ,𝒩†(𝑀𝑟)} is a POVM. Since (D3) holds for every
POVM ℳ, we have

Err(ℰ) ≤ Err(𝒩(ℰ)). (D4)

Therefore, for all 𝑛 ∈ N, we get

− 1
𝑛

ln Err(ℰ𝑛) ≥ − 1
𝑛

ln Err(𝒩(ℰ)𝑛), (D5)

which implies

E(𝜌1 , . . . , 𝜌𝑟) ≥ E(𝒩(𝜌1), . . . ,𝒩(𝜌𝑟)). (D6)

Now, assume that the states in the given ensemble commute with each other. The following
arguments show that the optimal error of antidistinguishing the given states is equal to that of
the induced probability measures. Let 𝑃1 , . . . , 𝑃𝑟 be the probability measures on the discrete
space [dim(ℋ)] induced by the states in a common eigenbasis as defined in (159), and let ℰcl
be the classical ensemble {(𝜂𝑖 , 𝑃𝑖) : 𝑖 ∈ [𝑟]}. Suppose 𝑝1 , . . . , 𝑝𝑟 are the corresponding densities
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of the probability measures with respect to the counting measure 𝜇. This gives the following
representation of each state

𝜌𝑖 =

∫
[dim(ℋ)]

d𝜇(𝜔) 𝑝𝑖(𝜔)|𝜔⟩⟨𝜔 |, 𝑖 ∈ [𝑟]. (D7)

We have

Err(ℳ;ℰ) =
∑
𝑖∈[𝑟]

𝜂𝑖 Tr[𝑀𝑖𝜌𝑖] (D8)

=
∑
𝑖∈[𝑟]

𝜂𝑖 Tr
[
𝑀𝑖

(∫
[dim(ℋ)]

d𝜇(𝜔) 𝑝𝑖(𝜔)|𝜔⟩⟨𝜔 |
)]

(D9)

=

∫
[dim(ℋ)]

d𝜇(𝜔)
∑
𝑖∈[𝑟]

⟨𝜔 |𝑀𝑖 |𝜔⟩𝜂𝑖𝑝𝑖(𝜔) (D10)

= Errcl(𝛿;ℰcl), (D11)

where 𝛿 is the decision rule given by 𝛿(𝜔) B (⟨𝜔 |𝑀1 |𝜔⟩, . . . , ⟨𝜔 |𝑀𝑟 |𝜔⟩). We note here that for
any POVM ℳ, there corresponds a decision rule 𝛿 that satisfies (D8)–(D11). Conversely, given
any decision rule 𝛿 for antidistinguishing the classical ensemble ℰcl there corresponds a POVM
ℳ = {𝑀1 , . . . , 𝑀𝑟}, given by

𝑀𝑖 B

∫
[dim(ℋ)]

d𝜇(𝜔) 𝛿𝑖(𝜔)|𝜔⟩⟨𝜔 |, (D12)

that satisfies (D8)–(D11). This then implies

inf
ℳ

Err(ℳ;ℰ) = inf
𝛿

Err(𝛿;ℰcl), (D13)

where the infima are taken over all POVMs ℳ and decision rules 𝛿 corresponding to the given
quantum and classical ensembles, respectively. We have thus proved that

Err(ℰ) = Errcl(ℰcl), (D14)

which directly implies

E(𝜌1 , . . . , 𝜌𝑟) = Ecl(𝑃1 , . . . , 𝑃𝑟). (D15)

Appendix E: Proof of Proposition 16

Define a map 𝜉′ : 𝒟𝑟 → [0,∞] by

𝜉′(𝜌1 , . . . , 𝜌𝑟) B sup
ℳ

𝜉cl(𝑃ℳ
1 , . . . , 𝑃ℳ

𝑟 ) (E1)

as given in the right-hand side of (165). We first show that 𝜉′ is a lower bound on any multivariate
Chernoff divergence. Let 𝜉 : 𝒟𝑟 → [0,∞] be any multivariate quantum Chernoff divergence and
𝜌1 , . . . , 𝜌𝑟 be arbitrary quantum states. For any measurement channel ℳ, we have

𝜉(𝜌1 , . . . , 𝜌𝑟) ≥ 𝜉(ℳ(𝜌1), . . . ,ℳ(𝜌𝑟)) = 𝜉cl(𝑃ℳ
1 , . . . , 𝑃ℳ

𝑟 ). (E2)
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Here we used the assumptions that 𝜉 satisfies the data-processing inequality and reduces to the
multivariate classical Chernoff divergence for commuting states. Since the inequality (E2) holds
for an arbitrary measurement channel ℳ, taking the supremum over ℳ gives

𝜉(𝜌1 , . . . , 𝜌𝑟) ≥ 𝜉′(𝜌1 , . . . , 𝜌𝑟). (E3)

We now show that 𝜉′ is a multivariate quantum Chernoff divergence; i.e., it satisfies the data
processing inequality and reduces to the multivariate classical Chernoff divergence for commut-
ing states. Consider a quantum channel 𝒩 and any measurement channel ℳ corresponding to
a POVM {𝑀1 , . . . , 𝑀𝑡} on the output Hilbert space of the channel 𝒩 . Let ℳ𝒩 be the measure-
ment channel corresponding to the POVM {𝒩†(𝑀1), . . . ,𝒩†(𝑀𝑡)}. Let 𝑃ℳ𝒩

1 , . . . , 𝑃
ℳ𝒩
𝑟 denote

the probability measures induced by ℳ𝒩 corresponding to the states 𝜌1 , . . . , 𝜌𝑟 as given in the
development (163)–(164). Similarly, let 𝑄ℳ

1 , . . . , 𝑄ℳ
𝑟 denote the probability measures induced by

ℳ corresponding to the states 𝒩(𝜌1), . . . ,𝒩(𝜌𝑟). Since Tr[𝑀 𝑗𝒩(𝜌𝑖)] = Tr[𝒩†(𝑀 𝑗)(𝜌𝑖)] for all 𝑖 , 𝑗,
it follows that 𝑄ℳ

𝑖
= 𝑃

ℳ𝒩
𝑖

for 𝑖 ∈ [𝑟]. This implies

𝜉′(𝒩(𝜌1), . . . ,𝒩(𝜌𝑟)) = sup
ℳ

𝜉cl(𝑄ℳ
1 , . . . , 𝑄ℳ

𝑟 ) (E4)

= sup
ℳ

𝜉cl(𝑃ℳ𝒩
1 , . . . , 𝑃

ℳ𝒩
𝑟 ) (E5)

≤ 𝜉′(𝜌1 , . . . , 𝜌𝑟), (E6)

which means that 𝜉′ satisfies the data-processing inequality. In the case when the states 𝜌1 , . . . , 𝜌𝑟
commute, Theorem 7 and Proposition 15 give the following classical data-processing inequality

𝜉cl(𝜌1 , . . . , 𝜌𝑟) ≥ 𝜉cl(𝑃ℳ
1 , . . . , 𝑃ℳ

𝑟 ). (E7)

Also, the inequality in (E7) is saturated for the measurement channel corresponding to a common
eigenbasis of the commuting states. Therefore, we get

𝜉′(𝜌1 , . . . , 𝜌𝑟) = 𝜉cl(𝜌1 , . . . , 𝜌𝑟). (E8)

We thus conclude that 𝜉′ is the minimal multivariate quantum Chernoff divergence.

Appendix F: Proof of Proposition 17

Define a map 𝜉′′ : 𝒟𝑟 → [0,∞] by

𝜉′′(𝜌1 , . . . , 𝜌𝑟) B inf
(𝒫 ,{𝑃𝑖}𝑖∈[𝑟])

{𝜉cl(𝑃1 , . . . , 𝑃𝑟) : 𝒫(𝑃𝑖) = 𝜌𝑖 for all 𝑖 ∈ [𝑟]} , (F1)

as given in the right-hand side of (168). We first show that 𝜉′′ is an upper bound on any multivariate
Chernoff divergence. Let 𝜉 : 𝒟𝑟 → [0,∞] be any multivariate quantum Chernoff divergence and
𝜌1 , . . . , 𝜌𝑟 be arbitrary quantum states. Given a preparation channel 𝒫 and probability measures
𝑃1 , . . . , 𝑃𝑟 satisfying

𝒫(𝑃𝑖) = 𝜌𝑖 , for 𝑖 ∈ [𝑟], (F2)

we have

𝜉(𝜌1 , . . . , 𝜌𝑟) = 𝜉(𝒫(𝑃1), . . . ,𝒫(𝑃𝑟)) ≤ 𝜉cl(𝑃1 , . . . , 𝑃𝑟). (F3)
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In (F3), we used the assumptions that 𝜉 satisfies the data-processing inequality and reduces to the
multivariate classical Chernoff divergence for commuting states. By taking the infimum in (F3)
over preparation channels and probability measures satisfying (F2), we thus get

𝜉(𝜌1 , . . . , 𝜌𝑟) ≤ 𝜉′′(𝜌1 , . . . , 𝜌𝑟). (F4)

We now show that 𝜉′′ is a multivariate quantum Chernoff divergence; i.e., it satisfies the data
processing inequality and reduces to the multivariate classical Chernoff divergence for commuting
states. Let 𝒩 be any quantum channel. We have

𝜉′′(𝒩(𝜌1), . . . ,𝒩(𝜌𝑟)) = inf
(𝒫 ,{𝑃𝑖}𝑖∈[𝑟])
𝒫(𝑃𝑖)=𝒩(𝜌𝑖)

𝜉cl(𝑃1 , . . . , 𝑃𝑟) (F5)

≤ inf
(𝒫 ,{𝑃𝑖}𝑖∈[𝑟])
𝒫(𝑃𝑖)=𝜌𝑖

𝜉cl(𝑃1 , . . . , 𝑃𝑟) (F6)

= 𝜉′′(𝜌1 , . . . , 𝜌𝑟), (F7)

where the inequality follows because for every preparation channel𝒫 satisfying𝒫(𝑃𝑖) = 𝜌𝑖 , its con-
catenation with 𝒩 gives another preparation channel 𝒩◦𝒫 that satisfies (𝒩 ◦𝒫)(𝑃𝑖) = 𝒩(𝒫(𝑃𝑖)) =
𝒩(𝜌𝑖). If the states 𝜌1 , . . . , 𝜌𝑟 commute, then by the classical data-processing inequality, for any
preparation channel 𝒫 and probability measures 𝑃1 , . . . , 𝑃𝑟 satisfying (F2), we get

𝜉cl(𝜌1 , . . . , 𝜌𝑟) = 𝜉cl(𝒫(𝑃1), . . . ,𝒫(𝑃𝑟)) ≤ 𝜉cl(𝑃1 , . . . , 𝑃𝑟). (F8)

Also, the last inequality is equality for probability distributions prepared from a spectral decom-
position of the commuting states in a common orthonormal basis. Therefore, we get

𝜉′′(𝜌1 , . . . , 𝜌𝑟) = 𝜉cl(𝜌1 , . . . , 𝜌𝑟). (F9)

We thus conclude that 𝜉′′ is the maximal multivariate quantum Chernoff divergence.

Appendix G: Additivity of the optimal error exponent

Lemma 23. Let ℰ = {(𝜂𝑖 , 𝜌𝑖) : 𝑖 ∈ [𝑟]} be an ensemble of states. The following equality holds

E(𝜌1 , . . . , 𝜌𝑟) =
1
ℓ

E(𝜌⊗ℓ
1 , . . . , 𝜌⊗ℓ

𝑟 ) for all ℓ ∈ N, (G1)

where E(𝜌1 , . . . , 𝜌𝑟) is the optimal error exponent defined in (31).

Proof. First, we have that

E(𝜌1 , . . . , 𝜌𝑟) ≤
1
ℓ

E(𝜌⊗ℓ
1 , . . . , 𝜌⊗ℓ

𝑟 ) for all ℓ ∈ N, (G2)

because
{
− 1
𝑛ℓ ln Err(ℰ𝑛ℓ )

}
𝑛∈N is a subsequence of

{
− 1
𝑛 ln Err(ℰ𝑛)

}
𝑛∈N. We now prove the converse

inequality to (G2). Let {𝑀𝑘,ℓ (1), . . . , 𝑀𝑘,ℓ (𝑟)} be a POVM attaining Err(ℰ 𝑘ℓ ) for all 𝑘, ℓ ∈ N. Then
for any 𝑛 ∈ Nwith 𝑛 ≥ ℓ , we have

Err(ℰ𝑛) ≤
∑
𝑖∈[𝑟]

𝜂𝑖 Tr
[
𝜌⊗𝑛
𝑖

(
𝑀⌊ 𝑛ℓ ⌋ ,ℓ (𝑖) ⊗ I

⊗(𝑛−⌊ 𝑛ℓ ⌋)
)]

(G3)
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=
∑
𝑖∈[𝑟]

𝜂𝑖 Tr
[
𝜌
⊗⌊ 𝑛ℓ ⌋ℓ
𝑖

𝑀⌊ 𝑛ℓ ⌋ ,ℓ (𝑖)
]

(G4)

= Err(ℰ ⌊ 𝑛ℓ ⌋ℓ ). (G5)

This implies

lim inf
𝑛→∞

− 1
𝑛

ln Err(ℰ𝑛) ≥ lim inf
𝑛→∞

− 1
⌊ 𝑛ℓ ⌋ℓ

ln Err(ℰ ⌊ 𝑛ℓ ⌋ℓ ) = 1
ℓ

lim inf
𝑘→∞

−1
𝑘

ln Err(ℰ 𝑘ℓ ). (G6)

This completes the proof.

Appendix H: Limit of the regularized maximal multivariate quantum Chernoff divergence

Here we provide a proof of equation (173). We first observe that the multivariate classical
Chernoff divergence is subadditive; i.e.,

𝜉cl(𝑃1 ⊗ 𝑄1 , . . . , 𝑃𝑟 ⊗ 𝑄𝑟) ≤ 𝜉cl(𝑃1 , . . . , 𝑃𝑟) + 𝜉cl(𝑄1 , . . . , 𝑄𝑟) (H1)

for any sets of probability densities {𝑃1 , . . . , 𝑃𝑟} and {𝑄1 , . . . , 𝑄𝑟} on a measureable space (Ω,𝒜).
This follows easily from the definitions of the Hellinger transform (19) and multivariate Chernoff
divergence (23). So, from the definition (168), we have for ℓ , 𝑚 ∈ N that

𝜉max(𝜌⊗(ℓ+𝑚)
1 , . . . , 𝜌⊗(ℓ+𝑚)

𝑟 )
= inf

(𝒫(ℓ+𝑚) ,{𝑃(ℓ+𝑚)
𝑖

}𝑖∈[𝑟])
𝒫(ℓ+𝑚)(𝑃(ℓ+𝑚)

𝑖
)=𝜌⊗ℓ

𝑖
⊗𝜌⊗𝑚

𝑖

𝜉cl(𝑃(ℓ+𝑚)
1 , . . . , 𝑃

(ℓ+𝑚)
𝑟 ) (H2)

≤ inf
(𝒫(ℓ )⊗𝒫(𝑚) ,{𝑃(ℓ )

𝑖
⊗𝑃(𝑚)

𝑖
}𝑖∈[𝑟])

𝒫(ℓ )(𝑃(ℓ )
𝑖
)=𝜌⊗ℓ

𝑖
,𝒫(𝑚)(𝑃(𝑚)

𝑖
)=𝜌⊗𝑚

𝑖

𝜉cl(𝑃(ℓ )
1 ⊗ 𝑃(𝑚)

1 , . . . , 𝑃
(ℓ )
𝑟 ⊗ 𝑃(𝑚)

𝑟 ) (H3)

≤ inf
(𝒫(ℓ )⊗𝒫(𝑚) ,{𝑃(ℓ )

𝑖
⊗𝑃(𝑚)

𝑖
}𝑖∈[𝑟])

𝒫(ℓ )(𝑃(ℓ )
𝑖
)=𝜌⊗ℓ

𝑖
,𝒫(𝑚)(𝑃(𝑚)

𝑖
)=𝜌⊗𝑚

𝑖

(
𝜉cl(𝑃(ℓ )

1 , . . . , 𝑃
(ℓ )
𝑟 ) + 𝜉cl(𝑃(𝑚)

1 , . . . , 𝑃
(𝑚)
𝑟 )

)
(H4)

= inf
(𝒫(ℓ ) ,{𝑃(ℓ )

𝑖
}𝑖∈[𝑟])

𝒫(ℓ )(𝑃(ℓ )
𝑖
)=𝜌⊗ℓ

𝑖

(
𝜉cl(𝑃(ℓ )

1 , . . . , 𝑃
(ℓ )
𝑟 )

)
+ inf

(𝒫(𝑚) ,{𝑃(𝑚)
𝑖

}𝑖∈[𝑟])
𝒫(𝑚)(𝑃(𝑚)

𝑖
)=𝜌⊗𝑚

𝑖

(
𝜉cl(𝑃(𝑚)

1 , . . . , 𝑃
(𝑚)
𝑟 )

)
(H5)

= 𝜉max(𝜌⊗ℓ
1 , . . . , 𝜌⊗ℓ

𝑟 ) + 𝜉max(𝜌⊗𝑚
1 , . . . , 𝜌⊗𝑚

𝑟 ). (H6)

We have thus proved that the sequence
(
𝜉max(𝜌⊗ℓ

1 , . . . , 𝜌⊗ℓ
𝑟 )

)
ℓ∈N is subadditive. It then follows from

Fekete’s subadditive lemma [Fek23] that the limit limℓ→∞ 𝜉max(𝜌⊗ℓ
1 , . . . , 𝜌⊗ℓ

𝑟 )/ℓ exists and is given
by

lim
ℓ→∞

1
ℓ
𝜉max(𝜌⊗ℓ

1 , . . . , 𝜌⊗ℓ
𝑟 ) = inf

ℓ∈N

1
ℓ
𝜉max(𝜌⊗ℓ

1 , . . . , 𝜌⊗ℓ
𝑟 ). (H7)

Appendix I: Proof of Equation (208)

Let 𝜔 ∈ 𝒟 be arbitrary and (𝑠1 , . . . , 𝑠𝑟) ∈ R𝑟 be any probability vector. Since the quantum states
𝜌1 , . . . , 𝜌𝑟 have full support, we have∑

𝑖∈[𝑟]
𝑠𝑖𝐷(𝜔∥𝜌𝑖)
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=
∑
𝑖∈[𝑟]

𝑠𝑖 Tr[𝜔(ln 𝜔 − ln 𝜌𝑖)] (I1)

= Tr[𝜔 ln 𝜔] − Tr
𝜔 ©­«

∑
𝑖∈[𝑟]

𝑠𝑖 ln 𝜌𝑖
ª®¬
 (I2)

= Tr[𝜔 ln 𝜔] − Tr
𝜔 ln exp ©­«

∑
𝑖∈[𝑟]

𝑠𝑖 ln 𝜌𝑖
ª®¬
 (I3)

= Tr[𝜔 ln 𝜔] − Tr

𝜔 ln
©­­«

exp
(∑

𝑖∈[𝑟] 𝑠𝑖 ln 𝜌𝑖
)

Tr
[
exp

(∑
𝑖∈[𝑟] 𝑠𝑖 ln 𝜌𝑖

)] · Tr
exp ©­«

∑
𝑖∈[𝑟]

𝑠𝑖 ln 𝜌𝑖
ª®¬

ª®®¬
 (I4)

= Tr[𝜔 ln 𝜔] − Tr

𝜔 ln
©­­«

exp
(∑

𝑖∈[𝑟] 𝑠𝑖 ln 𝜌𝑖
)

Tr
[
exp

(∑
𝑖∈[𝑟] 𝑠𝑖 ln 𝜌𝑖

)] ª®®¬
 − ln Tr

exp ©­«
∑
𝑖∈[𝑟]

𝑠𝑖 ln 𝜌𝑖
ª®¬
 (I5)

= 𝐷
©­­«𝜔









exp

(∑
𝑖∈[𝑟] 𝑠𝑖 ln 𝜌𝑖

)
Tr
[
exp

(∑
𝑖∈[𝑟] 𝑠𝑖 ln 𝜌𝑖

)] ª®®¬ − ln Tr
exp ©­«

∑
𝑖∈[𝑟]

𝑠𝑖 ln 𝜌𝑖
ª®¬
 (I6)

≥ − ln Tr
exp ©­«

∑
𝑖∈[𝑟]

𝑠𝑖 ln 𝜌𝑖
ª®¬
 , (I7)

where the inequality follows from the non-negativity of quantum relative entropy for quantum
states. The lower bound is achieved by picking 𝜔 =

exp(∑𝑖∈[𝑟] 𝑠𝑖 ln 𝜌𝑖)
Tr[exp(∑𝑖∈[𝑟] 𝑠𝑖 ln 𝜌𝑖)] , so that

inf
𝜔∈𝒟

∑
𝑖∈[𝑟]

𝑠𝑖𝐷(𝜔∥𝜌𝑖)

= inf
𝜔∈𝒟

𝐷
©­­«𝜔









exp

(∑
𝑖∈[𝑟] 𝑠𝑖 ln 𝜌𝑖

)
Tr
[
exp

(∑
𝑖∈[𝑟] 𝑠𝑖 ln 𝜌𝑖

)] ª®®¬ − ln Tr
exp ©­«

∑
𝑖∈[𝑟]

𝑠𝑖 ln 𝜌𝑖
ª®¬
 (I8)

= − ln Tr
exp ©­«

∑
𝑖∈[𝑟]

𝑠𝑖 ln 𝜌𝑖
ª®¬
 . (I9)

This directly gives (208).
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