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I. Consider the problem of estimating a regression function f(x) E L2(0, 1) under obser-
vations

(1) y--f(x)+ i, i--l, n, xi E (0, 1),

where the are independent standart Gaussian random variables, while the regressors x
are deterministic and equally spaced, i.e., x (2i- 1)/(2n). We suppose that the unknown
function f(.) is sufficiently smooth; more precisely, it belongs to some Sobolev space W
{f L2(0, 1): Dqf L2(0, 1)}. Here and henceforth Dqf stands for the qth derivative of the
function f.

One question arises immediately. Namely, which estimate of the regression is the best
one? We should note that the question we deal with is completely different from finite-
dimensional parametric estimation problems. For these problems the maximal likelihood
estimate or the Bayes estimates are plausible candidates for the role of good ones. Usually
these estimates are simultaneously asymptotically minimax for a sufficiently wide class of
loss functions (see, e.g., [1]). In our problem a quadratic loss function

n
i--1

plays the key role. Here (x, Y) is an estimate of the regression f(x), which is based upon
observations of the vector Yn (y, y) in (1).

Consider the subset W(P, V)= (f W. IIDqfll 2 <= P, Ilfll 2 <= V} of W; here and
henceforth I1" stands for the norm in 52(0, 1). Then an asymptotically minimax (a.m.)
estimate on the set W(P, V) is defined as an estimate such that the following relation holds:

(2) lim sup E.frn(f, f) inf sup Elrn(I ) 1.
feW(P,V) feW(P,V)

Here EI(. stands for average with respect to the measure P I(’) induced by observations y
in (1) for fixed $, while the inf is taken over all estimates of the regression function.

The paper [2] has played a very significant role in the construction of a.m. estimates. It
was shown there that for a quadratic loss function one can search for a.m. estimates among
linear ones on ellipsoids in Hilbert space. A definitive solution of the problem is given in [3].

At first sight the linear a.m. estimates seem to be good candidates for nonparametric
estimates corresponding to quadratic loss functions. However, it is not entirely true since
these estimates depend explicitly on P and q [3]. Unfortunately, this pair is almost never
known and it cannot be estimated via observations. Thus, the linear estimates prove to be not
too attractive in practice. It should be said that an important step toward constructing good
a.m. estimates was taken in [4]. That paper constructed an a.m. P-independent estimate for
known q. More precisely it was shown that the estimate is an a.m. one provided a range of
values of P/a2 is a priori known. The estimate is obtained on the basis of the GCV-criterion
[5] and naturally it is nonlinear.

The dependence of the estimate on q, although not as critical as that on P, is nevertheless
undesirable since q determines the order of the asymptotically minimax risk (n-2q/(2q+l)).

*Received by the editors June 5, 1989.
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The aim of this paper is to construct a.m. estimates that depend neither on P nor q. In
what follows such estimates are called adaptive.

II. The space Snq of splines is intimately related to the Sobolev space W22. Recall that
the former is defined as the set of real functions s, subject to the following conditions with
n>q:

i) s is a polynomial of degree 2q- 1 in each subinterval (x,xi+1’ ), 1,...,
n-l;

ii) s is a polynomial of degree q- 1 in [0, x) and (x, 1];
iii) D2q-2s is continuous in [0, 1].
It is convenient to introduce the Demmler-Reinsch basis {(x)}, which is defined

uniquely by the relations [6]

1 o(x)Oqm(x) ikm
n

i=1

nqo(x)nqoqm(x) km),
0

0--- q < q+l <’’" < Ann,

where 5m is the Kronecker symbol.
We observe that if f(x) =c(x) e Snq, then IIDqfll 2 = Anc2k. Therefore, the

asymptotics behavior of the eigenvalues A (n o) plays an important part in what follows.
This behavior is well known (see [4, Thm. 2.2])"

(3) Aqn+k (1
where o(1) denotes a term that tends to zero uniformly in k E [kn, k2,] for arbitrary sequences
k, and k2 o(n2/(2q+)).

The construction of a.m. estimates relies essentially on a result pertaining to the asymp-
totically minimax property for linear estimates. Write

yi (x)
i=l

and define a linear estimate by

(, , )=(, )(Y,
k--1

where

(5)
1,

hi(f, w) 1 -[(i )]f,
0,

iE[1, /],
[/+ 1, w +/],

i>w+.

We define also a functional Lqn[h, s] -k=l{ll hl=<, Z)= / =h/), (h) e/2(1, ),
seSq.

LEMMA 1. The following relations hold (as n c)

(6)

inf sup Eirn (f, ) (1 g- o(1)) sup Eyrn (f, fo)
lw(P,V) Iew(P,y)

(1-F 0(1)) sup Lqn[h,s]- (1 -o(1))A(q)[Pn/(r2qa2)] -2q/(2q+1)

Iw(P,v)
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where A(q) q/(q + 1)[(2q + 1)(q + 1)/q] 1/(2q+l) the linear estimate I(x, Y=) Is(x,
/, wan), the sequence h hi(q, w), and

(7) w [Pnl(,:qa)] /(:q+)[(2q + )(q + 1)/q]
This result, which implies in particular that the estimate f(x, , w) is ymptotically

minim, can be eily proved by using (3) together with the lower bound in (2) (see also [3]).
Thus, it is plausible that the adaptive estimate should take the form (4). To determine

it completely one h to form the pair (, w) via observations y. The heuristic reoning
that allows one to do this is follows.

One must try to choose the pair (, w) to minimize the loss r(f, f). Observe that

i=1 i=1

It is clear that one h to minimize only the first sum on the right-hand side with respect
to and w. We note, however, that the terms (Y, )(f, ) involved in the sum do depend
on the unknown function f(.). The only way to overcome this unpleant fact is to replace
these terms by their unbied estimates (Y, )2_ a2/n.

Thus, we arrive at the following construction of an adaptive estimate. Define the func-
tional

i=1

where h(, w) is given by (g), and find a pair of ingegers (, N) such

(, ) arg rain l[Y, ,
,e[,l

Then he adaptive esgimage is (, Y) ](, , N).
The main resul of he paper is follows.
o 1. The etimte (, Y) i mptoticll minim for n q nd P > 0 (ee

(.
Ig should be noged gha he esgimae (, Y) depends explicitly on ghe noise variance. In many circumsgances his dependence is apparengly undesirable. To avoid ig one can

consgruc an esgimage of from the observagions Y. his can be done in a variety of ways.
Here we presen only one of ghem. Pu

i=1

This quangigy is an estimate for he noise variance , which involves ghe linear esgimage ](.)
for he function I(’) (see (4)). If we subsigue for in he funcgional l[Y, , w] a new
funcgional

i=1

x 1 + 2n- hm(, w) + 2n-2 hk(, w) (yr)2

m=l k=l i=l

is obtained.
We then proceed to construct the estimate (.) analogously. Define a pair of integers

(q*, w*) arg min l [Yn, , w], 7 > O,
q, E[1,n1-’)’]
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and the estimate f(x, Yn) fn (x,/3", w*).
THEOREM 2. If 7 E (0, 1/2), then the estimate f (x, Y,) is asymptotically minimax for any

fixed P > 0 and q.

III. The proofs of Theorems 1 and 2 rest on rather simple properties of monotone se-
quences. Denote by H the set of all sequences in/2[1, c) subject to the following constraints:

i) hi 1, ht E [0, 1],
ii) h+l =< h,

iii) hk=0, k> n.

Let I[iml[, i, m e [1, z), be a matrix of standard Gaussian random variables such that
for fixed m the random variables i,, [1, o), are independent. Moreover, let there be given
a random sequence {h} and an integer-valued random variable u such that P {{h}
H}=land P{u [1, n]}=l.

These random quantities can depend arbitrarily on the Gaussian matrix IIi-ll. Let there
also be given a deterministic matrix Ilaimll, i, m [1, o), such that Y]i=l aim2 1, m E [1, x)).

LEMMA 2. For any r > 0 the following inequalities hold:

(8)

(9) E

k=l

E(1 hk)kuaku
k=l

< C(r)n E h2k
k=l

<= C(r)nrF E (1- hk)2aku
k=l

where C(r) is a constant and F(x) [xlog(x-1 + 4) loglog(x-1 + 16)] 1/2.
Proof. Define random variables

max
t__>l

k=l

where F1 (x) [x log log(x + 16)] 1/2 satisfies that simple inequalities

E IF1 (k) F1 (k 1)]2< v/log log (16) TE IF1 (k) F1 (k 1)] 2

kl k2

n--1

5 CTE [F(k-1)]2<= CT (log log(n-1) T1)E k-1
k:2 k=l

< C log (n) log log (n).

Here and henceforth C stands for a constant whose value is inessential. Then, by using
summation by parts and the monotonicity of F1 (t), we obtain

(10)

Z hk [u -1

k=l

E(hk hk+l)E[s2u 1]
k:l s=l

=< max km E(hk hk+l)F1 (k) max kmE hk [F1 (k)- F1 (k 1)]m<=n m<=n
k--1 k--1

[ ]1/[[ ]1/22=< max km h F1 (k) Fl(k 1)
m<=n

k=l k=l

=< C max km h log (n) log log (n)]l/2.m<=n
k=l
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A standard technique employed in the proof of the law of the iterated logarithm (see,
e.g., [7]) can readily be used to show that E Ik,lR <= C(R) for any R >= 1. Therefore, by
Jensen’s inequality, we have for R > 2

<= E Iksl <= C(R)n2/.
s’--I

From this, (10) and the Cauchy-Bunyakovsky inequality we obtain (8).
The proof of (9) is a accomplished in a similar way. Introduce the following notation:

akin

m<=n t>=l

Fo(x,) [x log log (x-1 -- 16)] 1/2

Zasmsm /Fo(En).

Again by summation by parts, we obtain (hi 1)

(11)

Z(1- hk)kvakv Z(hk-1 hk)Z
k=l k=2 s=k

5, Z(hk-1 hk)Fo(E:):, Z(1 hk)[Fo(E)- Fo(E+I)].
k=2 k:l

Introduce now a linear functional [v] y]k= vk[Fo(E)- Fo(E+)]; we find its maxi-
mum over the set

2 2AD vs" vs(su <= D, vl <= Vl+l, Vl E [0, 1]
s--1

D_<I.

Since AD is convex, there exists an extremal sequence (v$} for which the functional attains
its maximum.

Therefore, since Fo(t) is a convex monotone function of E [0, 1], we find that

v ----min {1, /[F0(E) Fo(E+)]a-2

where is a root of the equation

ck [Fo(E)- Fo(Ek+)] 2akv-4 } D.
k--1

Introduce an integer N(u) as follows:

Then

N(/)- max {k > 0: /z [Fo(E)- Fo(E+I)] a-2<ku 1}.

(12)

[Fo(E) Fo(E/I
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It follows from the latter equality that Ev()+ =< D and

N()

ak,
k=l

Thus, we have

(N() )
1/2

(13) [.*] D Fo() F0(+) a + Fo(D).

We note next that the definition of the number N(p) immediately implies the inequality

E()+ Cp. rthermore, by definition of Fo(.), the following inequalities hold:

N()

io(:)- o(:) - (1 1)ak 5 Clog log
kl

N() N()

as/Ek= Clog log (1/EN(,>+ + 16) (1- Ek+I/E)
sl sl

()

/E) ]< 1 16)
s=l

< 1),o (/(,)+ + ).(a) Co o ( /E(,)+, +
Thus, we find kom (13) that

()+1 +clo ,o (/(.)+. + 1)
Hence, E()+ CD[loglog(1/D + 16)log(1/D + 4)]- Therefore, we obtain from (14) the
inequality [v*] 5 CF(D). This means that the following inequality holds:

k=l =1

Thus, since F() is convex for p < 2 and [0, 1], ig follows from (11) and he H61der
and Jensen inequalities ghag

(1 h s c[n]1/ (1 hl

The resg of he calculagions are similar go ghose already employed in ghe proof of (8). One
should only observe ghag he disgribugion of ghe random variables t( coincides
wigh ghag of b(N), where b(t), t O, is he sandard Wiener process.

Proof of Theorem 1. In view of Lemma 1 ig suites go establish an upper bound for ghe

minimax risk of he esgimae ](, Y)"

feW(P,V)

Since r(f, ) depends only on the values of f(x), 1, n, the equality
E Irn(f, n) E srn(sn, n) holds, where s S is the interpolating spline through the
points x. The extremal property ]Dqs]] ]]DqI]] of the spline is well known. Moreover, it
is clear that lsll llll 2 + cn-l[lll2 + lIDq12], Hence, from some n > no(P, V) onward,

() up E(, ),
seS(P,Y)
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where S(P, V) {s E S. IIDqsII 2 <__ P, 118112
Now we use relations connecting rn(s,/n(.,f,w)), l,[Y,,,w] and Ln[h(, w), s]. For

brevity we write n-1/2 =1(x ). Then

(16)

"n(8, fn(’, , W)) -’-ln[Yn, f, w] -- --i 82()
i=l-Z hi(, w)[2rs <s,o>-1/2 + (2 (()2 1)/hi

i-1

and

(17)

ln[Yn, , w] in [h(, w), 8] -1Z82()
i:1

+ [h(, w)- 2hi(, w)] [2a<s, o>n-1/2 -}-a2 (()2- 1)/n].
i=l

We need an estimate of the last sums in (16), (17). By Lemma 2, for any r > 0 we have

(18)

(19)

In deriving these inequalities, we used monotonicity of the function F(.) as well as the simple
inequality L[h(, w), 8] >= a2/n. From (16) and (18) we arrive at the relations

(20)

Srn(8, n)"- Sln[Yn, , ] nt-n-1 -82()nt-C(?’)nr-1/2[Ssin[h(, ), 8]] 1/2

i-1

<= In [Yn, q, wqn] - n-1 82(xr)-- C(r)nr-l/2 [Ssin[h(), , 8]] 1,2

i-1

<= iqn In(q, wqn), 8] - C(?’)nr-l/2 [Ssin[h(, ), 8]] 1/2.

Now we estimate the value of E sLn[h(, ), 8]. Again, by virtue of relations (16)-(19), we
find

(21)

EsLn[h(, ), s]--Eln[Yn, , ]+n-1 -s2(x)
i=l

-C(r)nr-1/2[Ssin[h( ), 8]] 1/2

2t-C(’)nr-1/2[Ssin[h( ), 8]] 1/2

2t-C(’)nr-1/2[Ssin[h( ), 8]] 1/2

<= Lqn [h(q, wqn), s]
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This yields immediately

Therefore, by inserting this inequality into (20), we arrive at the following relation:

+C(r)n2r-1

Thus, (see (15))

Rn <= u, [(q, ), ]
seSn(P,V)

+ c().-l/ u [(q, ), ]
sesqn(P,V)

+ C(r)n-
Hence, if we take r to be sufficiently small (r < 1/(2q / 1)) and apply Lemma 1, we arrive

at the inequality (n o)

sesq(P,Y)

This relation just means that the estimate I,(’) is asymptotically minimax

(ee (6)).
The proof of Theorem 2 goes through almost verbatim as that of Theorem 1. One should

only observe the following relation:

(22)

[r., , ] =.[., , ]+.- ,(z, ) .(f, f.(., z, ))
i=l

+n-( 1 +,-y, +,-1/
k--1 k--1

]x (1- hk(, w))J’, oC, + 2a2n-1 hk(, w)(( 1)
k=l k=l

The last pair of terms in the relation can be estimated by means of Lemma 2:

k--1 k=l

(23) <= C(r) nr-l [EsLn[h(, w), s]] 1/2,
where r is an arbitrary positive number.

We also observe that hk(, w) 0 for k __> a sC=l h(, w). This implies in particular
that

k=l k--1

and

i--1 k--1

We note also that by virtue of the hypothesis the theorem,

n-1 hk(, w) o(1),
k=l
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uniformly in f, w [1, nl-].
These relations allow one to rewrite (20) in the following way:

f.
1/2

Esrn(s, f)--(1+ o(1))Lqn [h(q, wqn), s] + C(r)nr-1/2 [EsLn [h(f*, w’), s]]
f*+ o(1)Esrn (s, f:) q- o(1)E.Ln [h(f’, w’), s].

The inequality (21) takes in turn the following form:

EsLn [h(f’, w’), s]<__ (1 q-o(1))Lqn [h(q, wqn), s] q- C(r)nr-l

f. ]1/2X EsLn [h(3*, w*), s] +o(1)Esrn(s,

q- o(1)EsLn" [h(f*, w*), s].
Then, in the same way as in the proof of Theorem 1 one can easily obtain the required

result.
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PRESERVATION OF TYPE UNDER MIXING*

S. JANKOVIC

Abstract. We give a short survey on the characterizations of probability distributions
that satisfy the property that the sum of a random number of independent identically dis-
tributed (i.i.d.) random variables is of the same type as one random variable from that sum,
together with some related new results.

Let X1, X2, be a sequence of i.i.d, random variables,

(1) Sn Xj, P (Xl < x)= F(x),
j--1

where positive integer-valued random variable p, p (0, 1), does not depend on X1, X2,...,
P {p n} pn, n=l Pn 1. The problems we deal with are connected with characteri-
zations of distributions satisfing the following condition: for each 0 < p < 1 there exist real
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