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Abstract

Signal recovery in Gaussian white noise with variance tending to zero has served for
some time as a representative model for nonparametric curve estimation, having all the
essential traits in a pure form. The equivalence has mostly been stated informally, but
an approximation in the sense of Le Cam’s deficiency distance ∆ would make it precise.
The models are then asymptotically equivalent for all purposes of statistical decision with
bounded loss. In nonparametrics, a first result of this kind has recently been established
for Gaussian regression (Brown and Low, 1993). We consider the analogous problem for
the experiment given by n i. i. d. observations having density f on the unit interval. Our
basic result concerns the parameter space of densities which are in a Hölder ball with
exponent α > 1

2 and which are uniformly bounded away from zero. We show that an
i. i. d. sample of size n with density f is globally asymptotically equivalent to a white
noise experiment with drift f1/2 and variance 1

4n
−1. This represents a nonparametric

analog of Le Cam’s heteroscedastic Gaussian approximation in the finite dimensional case.
The proof utilizes empirical process techniques related to the Hungarian construction.
White noise models on f and log f are also considered, allowing for various ”automatic”
asymptotic risk bounds in the i. i. d. model from white noise. As first applications we
discuss exact constants for L2 and Hellinger loss.

1 Introduction and main result

One of the basic principles of Le Cam’s (1986) asymptotic decision theory is to approximate
general experiments by simple ones. In particular, weak convergence to Gaussian shift exper-
iments has now become a standard tool for establishing asymptotic risk bounds. The risk
bounds implied by weak convergence are generally estimates from below, and in most of the
literature the efficiency of procedures is more or less shown on an ad hoc basis. However, a
systematic approach to the attainment problem is also made possible by Le Cam’s theory,
based on the notion of strong convergence of experiments which means proximity in the sense
of the full deficiency distance. But due to the inherent technical difficulties of handling the
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deficiency concept, this possibility is rarely made use of, even in root-n consistent parametric
problems.

In nonparametric curve estimation models of the ”ill posed” class where there is no root-n
consistency, research has focused for a long time on optimal rates of convergence. In these
problems, limits of experiments for n−1/2-localized parameter are not directly useful for risk
bounds. But now a theory of exact asymptotic risk constants is also developing in the context
of slower rates of convergence. Such an exact risk bound was first discovered by Pinsker
(1980) in the problem of signal recovery in Gaussian white noise, which is by now recognized
as the basic or ”typical” nonparametric curve estimation problem. The cognitive value of this
model had already been realized by Ibragimov and Khasminski (1977). These risk bounds
have been established since then in a variety of other problems, e. g. density, nonparametric
regression, spectral density, see Efroimovich and Pinsker (1982), Golubev (1984), Nussbaum
(1985), and they have also been substantially extended conceptually (Korostelev (1993),
Donoho, Johnstone, Kerkyacharian, Picard (1995)). The theory is now at a stage where the
approximation of the various particular curve estimation problems by the white noise model
could be made formal. An important step in this direction has been made by Brown and
Low (1993) by relating Gaussian regression to the signal recovery problem. These models
are essentially the continuous and discrete versions of each other. The aim of this paper is
to establish the formal approximation by the white noise model for the problem of density
estimation from an i. i. d. sample.
To formulate our main result, define a basic parameter space Σ of densities as follows. Let
for α ∈ (0, 1) and M > 0

Λα(M) = {f : |f(x)− f(y)| ≤M |x− y|α , x, y ∈ [0, 1]}

be a Hölder ball of functions with exponent α . Define for ε > 0 a set F≥ε as the set of
densities on [0, 1] bounded below by ε:

F≥ε =
{
f :

∫ 1

0
f = 1, f(x) ≥ ε, x ∈ [0, 1]

}
.(1)

Define an a priori set, for given α > 1
2 , M > 0, ε > 0,

Σα,M,ε = Λα(M) ∩ F≥ε.(2)

Let ∆ be Le Cam’s deficiency pseudodistance between experiments having the same param-
eter space. For the convenience of the reader a formal definition is given in section 10 below.
For two sequences of experiments En and Fn we shall say that they are asymptotically equiv-
alent if ∆(En,Fn)→ 0 as n→∞. Let dW denote the standard Gaussian white noise process
on the unit interval.

1.1 Theorem. Let Σ be a set of densities contained in Σα,M,ε for some ε > 0, M > 0 and
α > 1

2 . Then the experiments given by observations

yi, i = 1, . . . , n i. i. d. with density f(3)

dy(t) = f1/2(t)dt+
1
2
n−1/2dW (t), t ∈ [0, 1](4)

with f ∈ Σ are asymptotically equivalent.
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This result is closely related to Le Cam’s global asymptotic normality for parametric models.
Let in the i. i. d. model f be in a parametric family (fϑ, ϑ ∈ Θ) where Θ ⊂ Rk, which is
sufficiently regular and has Fisher information matrix I(ϑ) at point ϑ. Then the i. i. d. model
may be approximated by a heteroscedastic Gaussian experiment

y = ϑ+ n−1/2I(ϑ)−1/2η(5)

where η is a standard normal vector and ϑ ∈ Θ. We see that (4) is a nonparametric analog
of (5) when ϑ is identified with f1/2. Indeed, consider the identity for the Fisher information
matrix in the parametric case∥∥∥f1/2

ϑ′ − f
1/2
ϑ

∥∥∥2

2
= 4−1〈 ϑ′ − ϑ, I(ϑ)(ϑ′ − ϑ) 〉+ o

(∥∥ϑ′ − ϑ∥∥2

2

)
.

Regarding formally f1/2 itself as a parameter, we find the corresponding Fisher information to
be 4 times the unit operator. But even for parametric families (4) seems to be an interesting
form of a global approximation: if f1/2

ϑ is taken as parameter then the resulting Gaussian
model has a simple form. One recognizes that the heteroscedastic nature of (5) derives only
from the ”curved” nature of a general parametric family within the space of roots of densities.
This observation was in fact made earlier by Le Cam (1985). In his theorem 4.3 there he
established the homoscedastic global Gaussian approximation for i. i. d. models in the finite
dimensional case. We give a paraphrase of that result in a specialized form. A set Θ′ in
L2(0, 1) is said to be of finite metric dimension if there is a number D such that every subset
of Θ′ which can be covered by an ε-ball can be covered by no more than 2D balls of radius
ε/2, where D does not depend on ε. A set of densities f has this property in Hellinger metric
if the corresponding set of f1/2 has it in L2(0, 1).

1.2 Proposition (Le Cam). Let Σ be a set of densities on [0, 1] having finite dimension
in Hellinger metric and fulfilling a further regularity condition (see section 12). Then the
experiments given by observations (3), (4) with f ∈ Σ are asymptotically equivalent.

The actual formulation in Le Cam (1985) is more abstract and general giving a global asymp-
totic normality in the i. i. d. case for arbitrary random variables, in particular without
assumed existence of densities; but finite dimensionality is essential. This result in its con-
ceptual clarity and potential impact seems not to have been well appreciated by researchers;
the heteroscedastic form (5) under classical regularity conditions is somewhat better known
(cp. Mammen (1986)).
Our main result can thus be viewed as an extension of Le Cam’s proposition 1.2 to a non-
parametric setting. The value 1/2 of the Hölder exponent α is a critical one, according to a
recent result of Brown and Zhang (1995).
White noise models with fixed variance do occur as local limits of experiments in root-n
consistent nonparametric problems (Millar (1979)), and, via specific renormalizations, also in
non root-n consistent curve estimation (Low (1992), Donoho and Low (1992)). Thus various
central limit theorems for i. i. d. experiments can be embedded in a relatively simple and
closed form approximation by (4). Moreover, for the density f itself and for log f we also
give Gaussian approximations which are ”heteroscedastic” in analogy to (5), see remark 2.9,
corollary 3.3 below.
The paper is organized as follows. The basic results are developed in an overview fashion in
sections 2-4 which may suffice for a first reading. By default, proofs or technical comments
for all statements are to be found in part II, i. e. the proof sections 5-12.
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In section 2 we develop the basic approximation of likelihood ratios over shrinking neighbor-
hoods of a given density f0. These neighborhoods Σn(f0) are already ”nonparametric”, in
the sense of shrinking slower than n−1/2. For proving this, we partition the sample space
[0, 1] into small intervals and obtain a product experiment structure via poissonization. The
Gaussian approximation is then argued via the ”space local” empirical process on the small
intervals; piecing this together on [0, 1] yields the basic parameter-local Gaussian approxi-
mation over f ∈ Σn(f0). Once in a Gaussian framework, we manipulate likelihood ratios to
obtain other approximations, in particular the one with trend f1/2. For these experiments
which are all Gaussian we use the methodology of Brown and Low (1993), who did compare
the white noise model with its discrete version (the Gaussian regression model).
It remains to piece together the parameter-local approximations by means of a preliminary
estimator; this is the subject of section 3. Our method of globalization is somewhat different
from Le Cam’s which works in the parametric case; the concept of metric entropy or dimension
and related theory are not utilized. But obviously these methods which already proved fruitful
in nonparametrics (Birgé (1983), Van de Geer (1990)) have a potential application also here.
Some statistical consequences are discussed in section 4; here we focus on exact constants
for L2-loss. As an exercise we derive the result of Efroimovich and Pinsker (1982) on density
estimation from the white noise model; simultaneously we extend it and give a variant for
Hellinger loss.
As a basic text for the asymptotic theory of experiments we refer to Strasser (1985). We use
C as a generic notation for positive constants; for sequences the symbol an � bn means the
usual equivalence in rate, while an ∼ bn means an = bn(1 + o(1)).

2 The local approximation

Our first Gaussian approximation will be established in a parameter local framework. Supp-
pose we have i. i. d. observations yi, i = 1, . . . , n with distribution Pf having Lebesgue
density f on the interval [0, 1], and it is known a priori that f belongs to a set of densities
Σ. Henceforth in the paper we will set Σ = Σα,M,ε for some ε > 0, M > 0 and α > 1/2.
Let ‖ · ‖p denote the norm in the space Lp(0, 1), 1 ≤ p ≤ ∞. Let γn be the sequence

γn = n−1/4(logn)−1,(6)

and for any f0 ∈ Σ define a class Σn(f0) by

Σn(f0) =
{
f ∈ Σ :

∥∥∥∥ ff0
− 1
∥∥∥∥
∞
≤ γn

}
.(7)

For given f0 ∈ Σ we define a local (around f0) product experiment

E0,n(f0) =
(

[0, 1]n,Bn[0,1], (P
⊗n
f , f ∈ Σn(f0))

)
.(8)

Let F0 be the distribution function corresponding to f0 and let

K(f0 ‖ f) = −
∫

log
f

f0
dF0

be the Kullback-Leibler relative entropy. Let W be the standard Wiener process on [0, 1] and
consider an observed process

y(t) =
∫ t

0
log

f

f0
(F−1

0 (u))du+ tK(f0‖f) + n−1/2W (t), t ∈ [0, 1].(9)
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Let Qn,f,f0 be the distribution of this process on the function space C[0,1] equipped with its
Borel σ-algebra BC[0,1]

, and

E1,n(f0) =
(
C[0,1],BC[0,1]

, (Qn,f,f0 , f ∈ Σn(f0))
)

(10)

be the corresponding experiment when f varies in the neighborhood Σn(f0).

2.1 Theorem. Define Σn(f0) as in (7), (6). Then

∆(E0,n(f0),E1,n(f0)) −→ 0 as n −→∞

uniformly over f0 ∈ Σ.

The proof is based upon the following principle, described in Le Cam and Yang (1991), p. 16.
Consider two experiments Ei = (Ωi,Ai, (Pi,ϑ, ϑ ∈ Θ)), i = 0, 1 having the same parameter set
Θ. Assume there is some point ϑ0 ∈ Θ such that all the Pi,ϑ are dominated by Pi,ϑ0 , i = 0, 1
and form Λi(ϑ) = dPi,ϑ/dPi,ϑ0 . Consider Λi = (Λi(ϑ), ϑ ∈ Θ) as stochastic processes indexed
by ϑ given on the probability space (Ωi,Ai, Pi,ϑ0). By a slight abuse of language, we call
these the likelihood processes of the experiments Ei (note that the distribution is taken under
Pi,ϑ0 here). Suppose also that there are versions Λ∗i of these likelihood processes defined on
a common probability space (Ω,A,P).

2.2 Proposition. The deficiency distance ∆(E1,E2) satisfies

∆(E0,E1) ≤ sup
ϑ∈Θ

EP|Λ∗0(ϑ)− Λ∗1(ϑ)|.

Proof. It is one of the basic facts of Le Cam’s theory that for dominated experiments, the
equivalence class is determined by the distribution of the likelihood processes under Pi,ϑ0when
ϑ0 is assumed fixed. This means that in the above framework, we have ∆(E0,E1) = 0 iff
L(Λ0|P0,ϑ0) = L(Λ1|P1,ϑ0). Thus, if we construct an experiment E∗i with likelihood process
Λ∗i , we obtain equivalence: ∆(Ei,E∗i ) = 0. The random variables Λ∗i (ϑ) on (Ω,A,P) have
the same distributions as Λi(ϑ) on (Ωi,Ai, Pi,ϑ0), for all ϑ ∈ Θ; hence they are positive and
integrate to one. They may hence be considered as P-densities on (Ω,A), indexed by ϑ.
These densities define measures P ∗i,ϑ on (Ω,A), and experiments E∗i = (Ω,A, (P ∗i,ϑ, ϑ ∈ Θ)),
i = 0, 1. By construction, the likelihood process for E∗i is Λ∗i (ϑ), so ∆(Ei,E∗i ) = 0, i = 0, 1.
Hence ∆(E0,E1) = ∆(E∗0,E

∗
1), and E∗0,E

∗
1 are given on the same measurable space (Ω,A). In

this case, an upper bound for the deficiency distance is

∆(E∗0,E
∗
1) ≤ sup

ϑ∈Θ

∥∥P ∗0,ϑ − P ∗1,ϑ∥∥
where ‖·‖ is the total variation distance between measures (in section 10, (72) take the identity
map as a transition M). But

∥∥∥P ∗0,ϑ − P ∗1,ϑ∥∥∥ coincides with EP|Λ∗0(ϑ)− Λ∗1(ϑ)| which is just a
L1-distance between densities. 2

The argument may be summarized as follows: versions Λ∗i of the likelihood processes on a
common probability space generate (equivalent) versions of the experiments on a common
measurable space for which Λ∗i (ϑ) are densities. Their L1-distance bounds the deficiency.
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When Λ∗i (ϑ) are considered as densities it is natural to employ also their Hellinger distance
H(·, ·); extending notation we will write

H2(Λ∗0(ϑ),Λ∗1(ϑ)) = EP

(
(Λ∗0(ϑ))1/2 − (Λ∗1(ϑ))1/2

)2
.(11)

Making use of the general relation of Hellinger to L1-distance we obtain

∆2(E∗0,E
∗
1) ≤ sup

ϑ∈Θ
H2(Λ∗0(ϑ),Λ∗1(ϑ)).(12)

In the sequel we will work basically with this relation to establish asymptotic equivalence.
For our problem, we identify ϑ = f, ϑ0 = f0, Θ = Σn(f0), P0,ϑ = P⊗nf , P1,ϑ = Qn,f,f0 .
Furthermore, we represent the observations yi as yi = F−1(zi), where zi are i. i. d. uniform
(0,1) random variables and F is the distribution function for the density f (note that F is
strictly monotone for f ∈ Σ). Let Un be the empirical process of z1, . . . , zn, i. e.

Un(t) =
1√
n

n∑
i=1

(χ[0,t](zi)− t), t ∈ [0, 1].

Note that E0,n(f0) is dominated by P⊗nf0
; then the likelihood process is

Λ0,n(f, f0) = exp
n∑
i=1

log
{
f

f0
(F−1

0 (zi))
}
.

Defining

λf,f0(t) = log
{
f

f0
(F−1

0 (t))
}

(13)

and observing that ∫
λf,f0(t)dt = −K(f0‖f)

we then have the following representation:

Λ0,n(f, f0) = exp
{
n

∫
λf,f0(t)

1√
n
Un(dt)− nK(f0‖f)

}
.(14)

This suggests a corresponding Gaussian likelihood process: substitute Un by a Brownian
bridge B and renormalize to obtain integral one. We thus form for a uniform (0, 1) random
variable Z

Λ1,n(f, f0) = exp
{
n

∫
λf,f0(t)

1√
n
B(dt)− n

2
Var (λf,f0(Z))

}
.(15)

For an appropriate standard Wiener process W we have∫
λf,f0(t) B(dt) =

∫
(λf,f0(t) +K(f0 ‖ f)) W (dt).

By rewriting the likelihood process Λ1,n(f, f0) accordingly we see that it corresponds to
observations (9) or equivalently to

dy(t) = (λf,f0(t) +K(f0‖f))dt+ n−1/2dW (t), t ∈ [0, 1],(16)

6



at least when the parameter space is Σ. Thus Λ1,n(f, f0) is in fact the likelihood process for
E1,n(f0) in (10).

To find nearby versions of these likelihood processes, fulfilling

sup
f∈Σn(f0)

H2
(
Λ∗0,n(f, f0),Λ∗1,n(f, f0)

)
→ 0(17)

it would be natural to look for versions of Un and B on a common probability space (Un and
Bn, say) which are close, such as in the classical Hungarian construction (see Shorack, Wellner
(1986), chap. 12, section 1, theor. 2). However the classical Hungarian construction (Komlos-
Major-Tusnady inequality) gives an estimate of the uniform distance ‖Un − Bn‖∞ which for
our purpose is not optimal. The reason is that the uniform distance may be construed as

‖Un − Bn‖∞ = sup
g∈G
|Un(g)− Bn(g)|

where G is a class of indicators of subintervals of [0, 1]. Considering more general classes of
functions G leads to functional KMT type results (see Koltchinskii (1994), Rio (1994)). But
for an estimate (17) we need to control the random difference Un(g) − Bn(g) only for one
given function (λf,f0 in this case), with a supremum over a function class only after taking
expectations (cp the remark on p. 16 of Le Cam and Yang (1991)). Thus for our purpose we
ought to use a functional KMT type inequality for a one element function class G = {g}, but
where the same constants and one Brownian bridge are still available over a class of smooth
g. Such a result is provided by Koltchinskii (1994), theorem 3.5. We present a version
slightly adapted for our purpose. Let L2[0, 1] be the space of all square integrable measurable
functions on [0, 1] and let ‖·‖

H
1/2
2

be the seminorm associated with a Hölder condition with

exponent 1/2 in the L2-sense (see section 6 for details).

2.3 Proposition. There are a probability space (Ω,A,P) and a number C such that for all n,
there are versions of the uniform empirical process Un(g) and of the Brownian bridge Bn(g),
g ∈ L2[0, 1] such that for all g with ‖g‖∞ <∞, ‖g‖

H
1/2
2

<∞ and for all t ≥ 0

P(n1/2 |Un(g)− Bn(g)| ≥ C (‖g‖∞ + ‖g‖
H

1/2
2

)(t+ logn) log1/2 n) ≤ C exp(−t).

Specializing g = λf,f0 −
∫
λf,f0 we come close to establishing the relation (17) for the likeli-

hood processes, but we need an assumption that the neighborhoods Σn(f0) shrink with rate
o(n−1/3). Comparing with the usual nonparametric rates of convergence, we see that such
a result is useful only for smoothness α > 1. To treat the case α > 1/2 however we need
neighborhoods of size o(n−1/4).
To obtain such a result, it is convenient, rather than using the Hungarian construction globally
on [0, 1], to subdivide the interval and use a corresponding independence structure (approx-
imate or exact) of both experiments. In this connection the following result is useful (see
Strasser (1985), lemma 2.19).

2.4 Lemma. Suppose that Pi, Qi are probability measures on a measurable space (Ωi,Ai),
for i = 1, . . . , k. Then

H2(
k⊗
i=1

Pi,
k⊗
i=1

Qi) ≤ 2
k∑
i=1

H2(Pi, Qi).

7



Consider a partition of [0, 1] into subintervals Dj . The Gaussian experiment E1,n(f0) has
a convenient independence structure: in the representation (16), observations on the signal
λf,f0(t) + K(f0‖f) are independent on different pieces Dj . A corresponding approximate
product structure for the iid experiment E0,n(f0) will be established by Poissonization. Let
E0,j,n(f0) be the experiment given by observing ”interval censored” observations

yiχDj (yi), yi i. i. d. with density f, i = 1, . . . , n(18)

with f ∈ Σn(f0). We use the symbol
⊗

for products of experiments having the same
parameter space.

2.5 Proposition. Let kn be a sequence with kn → ∞, and consider a partition Dj =
[(j − 1)/kn, j/kn), j = 1, . . . , kn. Then

∆(E0,n(f0),
kn⊗
j=1

E0,j,n(f0))→ 0

uniformly over f0 ∈ Σ.

Our choice of kn will be
kn ∼ n1/2/(logn)2.(19)

For each Dj we form a local likelihood process Λ0,j,n(f, f0), as the likelihood process for
observations in (18) for given j, and establish a Gaussian approximation like (17) with a
rate. Let Aj = F0(Dj) and let E1,j,n(f0) be the Gaussian experiment

dy(t) = χAj (t) (λf,f0(t) +K(f0‖f))dt+ n−1/2dW (t), t ∈ [0, 1](20)

with parameter space Σn(f0). Let Λ1,j,n(f, f0) be the corresponding likelihood process.

2.6 Proposition. On the probability space (Ω,A,P) of proposition 2.3, there are versions
Λ∗i,j,n(f, f0), i = 0, 1 such that

sup
f∈Σn(f0)

H2
(
Λ∗0,j,n(f, f0),Λ∗1,j,n(f, f0)

)
= O(γ2

n(logn)3)(21)

uniformly over j = 1, . . . , kn and f0 ∈ Σ.

This admits the following interpretation. Define mn = n/kn; in our setting this is the
stochastic order of magnitude of the number of observations yi falling into Dj . Thus for the
local likelihood process Λ0,j,n(f, f0) the number mn represents an ”effective sample size” in a
rate sense. In view of (6) and (19) we have γn ∼ m−1/2

n , and since this is the shrinking rate of
Σn(f0) in the uniform norm, it is also the shrinking rate of this set of densities restricted to
Dj , and of the corresponding set of conditional densities. Thus in a sense we are in a classical
setting with sample size mn and a root-mn shrinking neighborhood. The result (21) implies

∆(E0,j,n(f0),E1,j,n(f0)) = O(m−1/2
n (logn)3/2),(22)

i. e. we have a root-mn rate up to a log-term. Note that here we have introduced a ”space
local” aspect in addition to the already present parameter local one. In piecing together these
space local approximations, we will crucially use the product measure estimate of lemma 2.4.
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This motivates our choice to work with the Hellinger distance, for the likelihood processes
construed as densities.

Proof of theorem 2.1. The Gaussian experiment E1,n(f0) decomposes exactly:

∆(E1,n(f0),
kn⊗
j=1

E1,j,n(f0)) = 0.

According to (12) and lemma 2.4 we have

∆2(
kn⊗
j=1

E0,j,n(f0),
kn⊗
j=1

E1,j,n(f0)) ≤ 2 sup
f∈Σn(f0)

kn∑
j=1

H2
(
Λ∗0,j,n(f, f0),Λ∗1,j,n(f, f0)

)
By proposition 2.6 this is bounded by

O
(
knγ

2
n(logn)3

)
= O

(
(logn)−1

)
= o(1),

and these estimates hold uniformly over f0 ∈ Σ. 2

Low (1992) considered experiments given by local (on Dj) perturbations of a fixed density
f0 and applied a local asymptotic normality argument to obtain strong convergence to a
Gaussian experiment. This amounts to having (22) without a rate, and it is already useful
for a number of nonparametric decision problems, like estimating the density at a point.
Golubev (1991) used a similar argument for treating estimation in L2-loss.
We are now able to identify several more asymptotically equivalent models. This is based on
the following reasoning, applied by Brown and Low (1993) to compare Gaussian white noise
models. Consider the measure of the process n−1/2 W (t), t ∈ [0, 1] shifted by a function

∫ t
0 gi,

i = 1, 2, where gi ∈ L2[0, 1]; call these measures Pi. Then

H2(P1, P2) = 2
(

1− exp
{
−n

8
‖g1 − g2‖22

})
.(23)

If (gi,ϑ, ϑ ∈ Θ) , i = 1, 2 are two parametric families then the respective experiments are
asymptotically equivalent if ‖g1,ϑ − g2,ϑ‖2 = o(n−1/2) uniformly over ϑ ∈ Θ. In the Gaus-
sian experiment E1,n(f0) of (16), the shift is essentially a log-density ratio. We know that
log(f/f0) is small over f ∈ Σn(f0); expanding the logarithm we get asymptotically equivalent
experiments with parameter space Σn(f0).
Accordingly, let E2,n(f0) be the experiment given by observations

dy(t) = (f(t)− f0(t))dt+ n−1/2f
1/2
0 (t)dW (t), t ∈ [0, 1](24)

with parameter space Σn(f0), and let E3,n(f0) correspondingly be given by

dy(t) = (f1/2(t)− f1/2
0 (t))dt+

1
2
n−1/2dW (t), t ∈ [0, 1].(25)

2.8 Theorem. The experiments Ei,n(f0), i = 1, 2, 3 are asymptotically equivalent, uniformly
over f0 ∈ Σ.
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2.9 Remark. The equivalence class of E1,n(f0) is not changed when the additive term
−f0(t)dt in (24) is omitted, since this term does not depend on the parameter f , and omitting
it amounts to a translation of the observed process y by a known quantity. Moreover, in the
proof below it will be seen that in the representation (16) of E1,n(f0) the term K(f0‖f)dt is
asymptotically negligible. Analogous statements are true for the other variants; hence locally
asymptotically equivalent experiments for f ∈ Σn(f0) (with uniformity over f0 ∈ Σ) are also
given by

yi, i = 1, . . . , n i. i. d. with density f(26)
dy(t) = log f(F−1

0 (t))dt+ n−1/2dW (t), t ∈ [0, 1](27)

dy(t) = f(t)dt+ n−1/2f
1/2
0 (t)dW (t), t ∈ [0, 1](28)

dy(t) = f1/2(t)dt+
1
2
n−1/2dW (t), t ∈ [0, 1].(29)

2

Note that (28) is related to the weak convergence of the empirical distribution function F̄n

n1/2
(
F̄n − F

)
⇒ B ◦ F.

Indeed, arguing heuristically, when F is in a shrinking neighborhood of F0 we have B ◦ F ≈
B ◦ F0, while F̄n is a sufficient statistic. We obtain

F̄n ≈ F + n−1/2B ◦ F0

which suggests a Gaussian accompanying experiment (28). This reasoning is familiar as
a heuristic introduction to limiting Gaussian shift experiments, when neighborhoods are
shrinking with rate n−1/2. However our neighborhoods f ∈ Σn(f0) are larger (recall γn =
n−1/4(logn)−1).

3 From local to global results

The local result concerning a shrinking neighborhood of some f0 is of limited value for sta-
tistical inference since in general such prior information cannot be assumed. Following Le
Cam’s general principles, we shall construct an experiment where the prior information is
furnished by a preliminary estimator, and subsequently the local Gaussian approximation is
built around the estimated parameter value.
To formalize this approach, let Nn define a ”fraction of the sample size”, i. e. Nn is a sequence
Nn → ∞, Nn < n, and consider the corresponding fraction of the sample y1, . . . , yNn . Let
then f̂n be an estimator of f based on this fraction, fulfilling (with Pn,f the pertaining
measure)

inf
f∈Σ

Pn,f (f̂n ∈ Σn(f)) −→ 1.(30)

The set Σ must be such that the shrinking rate of Σn(f) is an attainable rate for estimators.
If f has a bounded derivative of order α, we have for f an attainable rate in sup-norm
(n/ log n)−α/(2α+1) (see Woodrofe (1967)). The required sup norm rate is γn = o(n−1/4); this
corresponds to α > 1/2. Thus we may expect for the Hölder smoothness classes assumed
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here that the rate γn is attainable if the size Nn of the fraction is sufficiently large. We will
allow for a range of choices:

n/ log n ≤ Nn ≤ n/2.(31)

Define E0,n to be the original i. i. d. experiment (3) with global parameter space Σ.

3.1 Lemma. Suppose (31) holds. Then in E0,n there exists a sequence of estimators f̂n
depending only on y1, . . . , yNn fulfilling (30). One may assume that for each n, the estimator
takes values in a finite set of functions in Σ.

The following construction of a global approximating experiment assumes such an estimator
sequence fixed. The idea is to substitute f̂n for f0 in the local Gaussian approximation and to
retain the first fraction of the i. i. d. sample. Recall that our local Gaussian approximations
were given by families (Qn,f,f0 , f ∈ Σn(f0)), cp. (10). Note that f ∈ Σn(f0) is essentially
the same as f0 ∈ Σn(f). Accordingly we now consider the event f̂n ∈ Σn(f), and let
f range in the unrestricted parameter space Σ. We look at the second sample part, of size
n − Nn, with its initial i. i. d. family (P⊗(n−Nn)

f , f ∈ Σ). Based on the results of the
previous section, we can hope that this family will be close, in the experiment sense, to
the conditionally Gaussian family (Qn−Nn,f,f̂n , f ∈ Σ), on the event f̂n ∈ Σn(f). The

measures Qn,f,f̂n , which now depend on f̂n, have to be interpreted as conditional measures,
and we form a joint distribution with the first sample fraction.
This idea is especially appealing when the locally approximating Gaussian measure Qn,f,f0

does not depend on the ”center” f0. In this case the resulting global experiment will have a
convenient product structure, as we shall see. This is the case with the variant (29) in remark
2.9, when we parametrize with f1/2.
To be more precise, define Qi,n,f,f0 , i = 1, 2, 3 to be the distributions of (y(t), t ∈ [0, 1]) in
(27), (28), (29). Consider a ”compound experiment” given by joint observations y1, . . . , yNn
and y = (y(t), t ∈ [0, 1]), where

y1, . . . , yNn i. i. d. with density f(32)
L(y|y1, . . . , yNn) = Qi,n−Nn,f,f̂n .(33)

Here (33) describes the conditional distribution of y given y1, . . . , yNn . Define Ri,n,f (f̂)
to be the joint distribution of y1, . . . , yNn and y in this setup, for i = 1, 2, 3; the notation
signifies dependence on the sequence of decision functions f̂ = {f̂n}n≥1 (not dependence on
the estimator value). Then the compound experiment is

Ei,n(f̂) =
(

[0, 1]n × C[0,1],Bn[0,1] ⊗ BC[0,1]
, (Ri,n,f (f̂), f ∈ Σ)

)
.

Since Q3,n,f,f0 = Q3,n,f does not depend on f0, the measure R3,n,f (f̂) = R3,n,f does not
depend on f̂ either, and is just the product measure of P⊗nf ⊗ Q3,n−Nn,f . We also write
E3,n(f̂) = E3,n. The technical implementation of the above heuristic reasoning (see section
10) gives the following result.

3.2 Theorem. Suppose (31) holds and let f̂n be a sequence of estimators as in lemma 3.1.
Then for i = 1, 2, 3,

∆(E0,n,Ei,n(f̂)) −→ 0.

11



To restate this in a more transparent fashion, we refer to y1, . . . , yNn and y = (y(t), t ∈ [0, 1])
in (32), (33) as the first and second parts of the compound experiment, respectively. Let F̂n
be the distribution function corresponding to the realized density estimator f̂n.

3.3 Corollary. Under the conditions of theorem 3.3, the compound experiments with first
part

yi, i = 1, . . . , Nn i. i. d. with density f(34)

and respective second parts

yi, i = Nn + 1, . . . , n i. i. d. with density f(35)
dy(t) = log f(F̂−1

n (t)) + (n−Nn)−1/2dW (t), t ∈ [0, 1](36)
dy(t) = f(t)dt+ (n−Nn)−1/2f̂1/2

n (t)dW (t), t ∈ [0, 1](37)

dy(t) = f1/2(t)dt+
1
2

(n−Nn)−1/2dW (t), t ∈ [0, 1](38)

with f ∈ Σ are all asymptotically equivalent.

For obtaining a closed form global approximation, the compound experiment E3,n, i. e. (34),
(38), is the most interesting one, in view of its product structure and independence of f̂ .
Here the estimator sequence f̂ only serves to show asymptotic equivalence to E0,n; it does
not show up in the target experiment E3,n itself. This structure of E3,n suggests to employ
an estimator based on the second part to move on.

3.4 Lemma. Suppose (31) holds. Then in E3,n there exists a sequence of estimators f̌n
depending only on y in (38) fulfilling (30). The second statement of lemma 3.1 also applies.

Note the symmetry to lemma 3.1. Here we exploit the well known parallelism of density
estimation and white noise on the rate of convergence level.

Proof of theorem 1.1. We choose Nn = [n/2]. On the resulting compound experiment
E3,n we may then operate again, reversing the roles of first and second part. We may in turn
substitute y1, . . . , yNn by a white noise model, using a preliminary estimator based on (38).
The existence of such an estimator is guaranteed by the previous lemma. Thus substituting
y1, . . . , yNn by white noise leads to an experiment with joint observations

dy1(t) = f1/2(t)dt+
1
2
N−1/2
n dW1(t), t ∈ [0, 1]

dy2(t) = f1/2(t)dt+
1
2

(n−Nn)−1/2dW2(t), t ∈ [0, 1].

where W1,W2 are independent Wiener processes. A sufficiency argument shows this equiva-
lent to observing n i. i. d. processes, each distributed as

dy(t) = f1/2(t)dt+
1
2
dW (t), t ∈ [0, 1],

which in turn is equivalent to (4). 2
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4 An application: exact constants for L2-risk

Let Fn ⊂ Σ be any a priori set for the density f , and ln be a bounded loss function in an
estimation problem:

ln(g, f) ≤ C for f ∈ Fn and for all possible estimator values g.

Let as before E0,n be the density experiment with full parameter space Σ, and let ρ0,n(ln,Fn)
be the minimax risk there for restricted parameter space Fn and loss function ln. Let E∼,n be
another experiment with parameter space Σ, and let ρ∼,n(ln,Fn) be the analogous minimax
risk there.

4.1 Proposition. Let ln be a uniformly bounded sequence of loss functions. Suppose that
∆(E0,n,E∼,n) → 0. Then for any sequence of parameter spaces Fn ⊂ Σ the minimax risks
fulfill

ρ0,n(ln,Fn)− ρ∼,n(ln,Fn)→ 0.

In particular one may consider loss functions ln such as

ln(g, f) = l
(
n1−r‖g − f‖22

)
(39)

where nr−1 is the optimal rate of convergence for squared L2-loss and l is a bounded function.
Let L be the class of continuous nondecreasing functions on [0,∞) such that 0 ≤ l(x) ≤ x,
x ∈ [0,∞), and let Lb be the class of bounded l ∈ L.
The exact risk asymptotics over Sobolev classes for squared L2-risk (i.e. for an unbounded
l(x) = x) was found by Pinsker (1980) for white noise; it was subsequently carried over
to density estimation by Efroimovich and Pinsker (1982). Tsybakov (1994) generalized the
Pinsker result to bounded l; this is particularly suitable for an argument via equivalence.
As an exercise let us deduce the density case result for bounded loss from the white noise
approximation.
We begin by stating Pinsker’s minimax risk bound in a very simple Gaussian model, which
is instructive for understanding the general case. Consider observations

yj = f(j) + ξj , j = 1, . . . , n(40)

where ξj are independent standard normal, and the vector f = (f(j))j=1,...,n is in a set

Wn =
{
f ∈ Rn : n−1 ‖f‖2 ≤ 1

}
.

where ‖·‖ is euclidean norm. Denote this experiment by E0
∼,n. Consider a loss function

ln(g, f) = l
(
n−1 ‖g − f‖2

)
(41)

and let ρ∼,n(ln,Wn) be the minimax risk over all estimators, for parameter space Wn.

4.2 Proposition. Consider l ∈ L and let the loss ln be defined by (41). Then in the
Gaussian experiment E0

∼,n the minimax risk fulfills

ρ∼,n(ln,Wn)→ l(1/2) as n→∞.
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Proof. For the lower bound, assume that l is bounded and consider a prior distribution
where f(j) are independent N(0, 1− δ), where δ > 0. By the law of large numbers, this prior
concentrates on Wn as n → ∞, so that the Bayes risk is an asymptotic lower bound for
ρ˜,n(ln,Wn). The loss ln(g, f) is subconvex, hence the posterior expectation of f is the Bayes
estimator. This Bayes estimator is f̂(j) = 1−δ

1+1−δyj , so that the Bayes risk is

E l(n−1
n∑
j=1

((1− δ)yj/2− δ − f(j))
2)(42)

Here 1−δ
2−δyj − f(j) are i. i. d. normal random variables with variance vδ = 2(1− δ2)/(2− δ)2,

so that (42) converges to l(vδ). For δ → 0 we get l(vδ)→ l(1/2).
For attainment of this bound, consider first the case l ∈ Lb and the estimator f̂(j) = yj/2,
j = 1, . . . , n. We have for f ∈Wn

n−1
n∑
j=1

(f̂(j) − f(j))
2 =

1
4
n−1

n∑
j=1

ξ2
j +

1
4
n−1

n∑
j=1

ξjf(j) +
1
4
n−1

n∑
j=1

f2
(j) ≤

1
2

+ op(1).

The extension to general l ∈ L takes a few more lines of standard reasoning. 2

Pinker‘s result for Sobolev smoothness classes of functions can be construed as a generaliza-
tion to infinite dimensional ellipsoids which are ”oblique” in the sense of being nonsymmetric
in the indices. Let ϕj(x) =

√
2 cos(2πjx), j ≥ 1, ϕj(x) =

√
2 sin(2πjx), j ≤ −1, ϕ0 ≡ 1 be

the Fourier basis in L2(0, 1), and f(j) = 〈f, ϕj〉 be the Fourier coefficients of a function f .
Consider a periodic Sobolev class

W̃ β
2 (K) =

f ∈ L2(0, 1) :
∑
j

(2πj)2βf2
(j) ≤ K

 .

and write W̃ β
2 (1) = W̃ β

2 . We state Pinsker’s minimax risk bound in the white noise model,
in the variant for bounded l according to Tsybakov (1994). Further discussion of the decison
theoretic background can be found in Donoho, Liu and MacGibbon (1990). Let E∼,n be the
experiment given by observations

yj = f(j) + n−1/2ξj , j = 1, 2, . . .(43)

where ξj are independent standard normal and f ∈ W̃ β
2 .

4.3 Proposition (Pinsker, Tsybakov). Suppose β > 0 and let r = 1
2β+1 . Consider l ∈ L and

let the loss ln be defined by (39). Then in the Gaussian experiment E∼,n the minimax risk
fulfills

ρ∼,n(ln, W̃
β
2 )→ l(γ(β)) as n→∞,

where γ(β) = (2β + 1)r (β/π(β + 1))1−r is the Pinsker constant.

Note that (43) is equivalent to the Gaussian white noise model

dy(t) = f(t)dt+ n−1/2dW (t), t ∈ [0, 1].
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For application to density estimation, we consider a more general ”heteroscedastic” form as
in (28)

dy(t) = f(t)dt+ n−1/2f
1/2
0 (t)dW (t), t ∈ [0, 1](44)

where f0 is a fixed probability density from the parameter space Σ = Σα,M,ε defined in
(2). Recall that the distributions of y in (44) were called Q2,n,f,f0 in section 3; let E∼,n,f,f0

be the respective expectation. Let E∼,n(f0) be the experiment formed by these measures
when f0 is fixed, with parameter space f ∈ W̃ β

2 , and let ρ∼,n,f0(·, ·) be a minimax risk
there. Furthermore, we need a localized variant of the risk bound over shrinking uniform
neighborhoods. Denote

b0(τ) =
{
f :

∫ 1

0
f = 0, ‖f‖∞ ≤ τ

}
.

It turns out that the Pinsker bound holds also in this heteroscedastic case, and in the localized
setting. Let 1 be the uniform density on [0, 1]. We restrict ourselves to natural β in order to
keep the proof simple (section 11).

4.4 Proposition. Suppose β is natural and let r = 1/(2β + 1). Consider l ∈ L and let the
loss ln be defined by (39).
(i) In the Gaussian experiment E∼,n(1), for any sequence: τn → 0, τnnβ/(2β+1) → ∞ we
have

lim inf
n

ρ∼,n,1(ln, W̃
β
2 ∩ b0(τn)) ≥ l(γ(β)).

(ii) In the Gaussian experiments E∼,n(f0), there is a sequence of estimators f̂∗n, not depending
on f0, such that

lim sup
n

sup
f∈W̃β

2 , f0∈Σ

E∼,n,f,f0 ln(f̂∗n, f) ≤ l(γ(β)).

We are now ready for application to density estimation. Consider the set of densities

Wβ
ε = W̃ β

2 ∩ F≥ε.

In conjunction with proposition 4.1 this already allows to state a risk convergence in the
density model. We first use the local asymptotic equivalence of remark 2.9 for a lower
asymptotic risk bound. Now have to assume β > 1, since the Sobolev class W̃ β

2 (K) is
embedded in a Hölder class Λβ−1/2(K ′). Consider the experiment given by (28) with f ∈
Σn(f0) for f0 = 1.

4.5 Proposition. Suppose β is natural, β > 1 and let r = 1/(2β+ 1). Consider l ∈ Lb and
let the loss ln be defined by (39). Then in the density experiment E0,n the minimax risk over
Wβ
ε fulfills

lim inf
n

ρ0,n(ln,Wβ
ε ) ≥ l(γ(β)).

For the converse upper bound we shall invoke the global result of corollary 3.3. Take the
model (37) for a choice Nn = n/ log n and look what risk bounds are attainable there.
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4.6 Proposition. Under the conditions of the previous proposition, in the density experiment
E0,n the minimax risk over Wβ

ε fulfills

lim sup
n

ρ0,n(ln,Wβ
ε ) ≤ l(γ(β)).

We have seen that transferring the Pinsker bound to the density case (cp. the details in
section 11) is still somewhat cumbersome; the reason is that a white noise approximation
with f as signal is not available in a closed global form. A more direct reasoning is possible
for the Hellinger risk of a density, in view of the white noise approximation of theorem 1.1
where f1/2 is the signal. This presupposes an adapted a priori class

Wβ
ε =
{
f, f ∈ F≥ε, f1/2 ∈ W̃ β

2

}
.

Define a squared Hellinger loss as

lHn (g, f) = l
(
n1−r‖g1/2 − f1/2‖22

)
4.7 Proposition. Suppose β is natural, β > 1 and let r = 1/(2β+ 1). Consider l ∈ Lb and
let the loss lHn be defined as above (Hellinger loss). Then in the density experiment E0,n the
minimax risk over Wβ

ε fulfills

ρ0,n(lHn ,W
β
ε )→ l

(
22(r−1)γ(β)

)
as n→∞.

Another natural application of asymptotic equivalence is minimax nonparametric hypothesis
testing, where a theory of optimal rates and constants is also developing (cp. Ingster (1993)).

Part II: Technical sections

5 Poissonization and Product Structure

For the proof of proposition 2.5 we need some basic concepts from the theory of point pro-
cesses, see Reiss (1993). A point measure on (R,B) is a measure µ : B 7→ [0,∞] of form
µ =

∑
i∈I µxi , where I ⊂ N, xi are points in R and µx is Dirac measure at x. A point

process is a random variable on a probability space (Ω,A,P) with values in the space of
point measures M equipped with the appropriate σ-algebra M, see Reiss (1993), p. 6. If
Y = {yi, i = 1, 2, . . .} is a sequence of i. i. d. r. v.’s then the random measure µ0,n =

∑n
i=1 µyi

is called an empirical point process. More generally if ν is a random natural number inde-
pendent of Y then µ =

∑ν
i=1 µyi is a mixed empirical point process. In particular if ν = πn

is Poisson(n) then µ∗,n =
∑πn

i=1 µyi is a Poisson process which has intensity function nf if y1

has density f . If f and f0 are two densities for y1 such that Pf � Pf0 and the law of ν is
given then it is possible to write down densities for the distributions Πf := L(µ | Pf ) of the
mixed empirical point process µ. For the case of the empirical and the Poisson point process
(ν = n or ν = πn) we shall denote these distributions respectively by Π0,n,f and Π∗,n,f . For
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observations (ν, yi, i = 1, . . . , ν) write the likelihood ratio for hypotheses (Pf ,L(ν)) versus
(Pf0 ,L(ν))

ν∏
i=1

(f/f0)(yi) = exp
∫

log(f/f0)dµ.(45)

This is a function of µ which can be construed as a density of the point process law Πf on
(M,M,Πf0), or as a likelihood process when f varies. Note that for different L(ν) these den-
sities are defined on different probability spaces, since the respective laws Πf0 differ. However
let (Ω,A,P) = ([0, 1]∞,B∞[0,1], λ

⊗∞) where λ is Lebesgue measure on [0, 1] and let Y and ν

be defined on that space (as independent r. v.’s). Then (45) also describes versions on the
probability space (Ω,A,P) which is common for different L(ν). For the case of the empirical
and the Poisson point process (ν = n or ν = πn) we shall denote these likelihood processes
respectively by Λ0,n(f, f0)(ω) and Λ∗,n(f, f0)(ω). The experiments defined by these versions
construed as P-densities are then equivalent to the respective point process experiments, for
any parameter space. In particular the empirical point process experiment (with laws Π0,n,f )
is equivalent to the original i. i. d. experiment with n observations; µ0,n =

∑n
i=1 µyi is a

sufficient statistic.
For our particular parameter space Σn(f0) define the Poisson process experiment

E∗,n(f0) = (M,M, (Π∗,n,f , f ∈ Σn(f0))

and recall the definition (8) of the i. i. d. experiment E0,n(f0).

5.1 Proposition. We have
∆ (E0,n(f0),E∗,n(f0))→ 0

uniformly over f0 ∈ Σ.

Proof. We use an argument adapted from Le Cam (1985). It suffices to establish that

H2 (Λ0,n(f, f0),Λ∗,n(f, f0)) = O(n1/2γ2
n)

uniformly over f ∈ Σn(f0), f0 ∈ Σ. With νmin = min(πn, n), νmax = max(πn, n) we get

H2 (Λ0,n(f, f0),Λ∗,n(f, f0)) = EP

∣∣∣∣∣
n∏
i=1

(f/f0)1/2(yi)−
πn∏
i=1

(f/f0)1/2(yi)

∣∣∣∣∣
2

= EP

νmin∏
i=1

(f/f0)(yi)

∣∣∣∣∣∣
νmax∏

i=νmin+1

(f/f0)1/2(yi)− 1

∣∣∣∣∣∣
2

.

Consider first the conditional expectation when πn is given; since yi are independent it is

EP

∣∣∣∣∣∣
νmax∏

i=νmin+1

(f/f0)1/2(yi)− 1

∣∣∣∣∣∣
2

| πn

 .

This can be construed as the squared Hellinger distance of two product densities, one of
which has νmax − νmin = |πn − n| factors and the other has as many factors equal to unity.
Applying lemma 2.4 we get an upper bound

2
νmax∑

i=νmin+1

EP

(∣∣∣(f/f0)1/2(yi)− 1
∣∣∣2 | πn) ≤ 2 |πn − n| γ2

n.
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Taking an expectation and observing E|πn − n| ≤ Cn1/2 completes the proof.2

If µ is a point process and D a measurable set then define the truncated point process

µD(B) = µ(B ∩D), B ∈ B.

Let µ0,n,D, µ∗,n,D be truncated empirical and Poisson point process on [0, 1], respectively.
The following Hellinger distance estimate is due to Falk and Reiss (1992); see also Reiss
(1993), theorem 1.4.2:

H (L(µ0,n,D | f),L(µ∗,n,D | f)) ≤
√

3Pf (D).(46)

Proof of proposition 2.5. By the previous proposition it suffices to establish that

∆(E∗,n(f0),
kn⊗
j=1

E0,j,n(f0))→ 0(47)

uniformly over f0 ∈ Σ. In E0,j,n(f0) we observe n i. i. d. truncated random variables (18);
their empirical point process is a sufficient statistic. Hence µ0,n,Dj (the truncated empirical
point process for the original yi) is a sufficient statistic also; let Π0,j,n,f = L(µ0,n,Dj | f) be
the corresponding law. It follows that each E0,j,n(f0) is equivalent to an experiment

E
∗
0,j,n(f0) = (M,M, (Π0,j,n,f , f ∈ Σn(f0)) .

Let Π∗,j,n,f = L(µ∗,n,Dj | f) be the law of the truncated Poisson point process and

E∗,j,n(f0) = (M,M, (Π∗,j,n,f , f ∈ Σn(f0)) ;

then by the properties of the Poisson process E∗,n(f0) is equivalent to ⊗knj=1E∗,j,n(f0). It now
suffices to show that

∆(
kn⊗
j=1

E∗,j,n(f0),
kn⊗
j=1

E
∗
0,j,n(f0))→ 0

uniformly over f0 ∈ Σ. From lemma 2.4 and (46) we obtain

H2(
kn⊗
j=1

Π∗,j,n,f ,
kn⊗
j=1

Π0,j,n,f ) ≤ 2
kn∑
j=1

H2(Π∗,j,n,f ,Π0,j,n,f ) ≤ 6
kn∑
j=1

P 2
f (Dj)

≤ 6 sup
1≤j≤kn

Pf (Dj).

The functions f ∈ Σ are uniformly bounded, in view of the uniform Hölder condition and∫
f = 1. Hence Pf (Dj)→ 0 uniformly in f ∈ Σ and j.2

6 Empirical Processes and Function Classes

From the point process framework we now return to the traditional notion of the empiri-
cal process as a normalized and centered random function. However we consider processes
indexed by functions. Let zi, i = 1, . . . , n be i. i. d. uniform random variables on [0, 1]. Then

Un(f) = n1/2

(
n−1

n∑
i=1

f(zi)−
∫
f

)
, f ∈ L2[0, 1]
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is the uniform empirical process. The corresponding Brownian bridge process is defined as a
centered Gaussian random function B(f), f ∈ L2[0, 1] with covariance

EB(f)B(g) =
∫
fg −

(∫
f

)(∫
g

)
, f, g ∈ L2[0, 1].

For any natural i, consider the subspace of L2[0, 1] consisting of piecewise constant functions
on [0, 1] for a partition [(j−1)2−i, j2−i), j = 1, . . . , 2i. Let g〈i〉 be the projection of a function
g onto that subspace, and define for natural K

qM (g) =

(
K∑
i=0

2i
∥∥g − g〈i〉∥∥2

2

)1/2

The following version of a KMT inequality is due to Koltchinskii (1994), theorem 3.5 (spe-
cialized to a single element function class F there and to K = log2 n)

6.1 Proposition. There are a probability space (Ω,A,P) and numbers C1, C2 such that for
all n, there are versions Un and Bn of the empirical process and of the Brownian bridge such
that for all g ∈ L2[0, 1] with ‖g‖∞ ≤ 1 and for all x, y ≥ 0

P(n1/2 |Un(g)− Bn(g)| ≥ x+ x1/2y1/2(qlog2 n(g) + 1))

≤ C1(exp(−C2x) + n exp(−C2y)).(48)

To set qK(g) in relation to a smoothness measure, consider functions g ∈L2[0, 1] satisfying
for some C ∫ 1−h

h
(g(u+ h)− g(u))2du ≤ Ch for all h > 0.(49)

For a given g, define ‖g‖2
H

1/2
2

as the the infimum of all numbers C for such that (49) holds; it is

easy to see that ‖·‖
H

1/2
2

is a seminorm. The corresponding spaceH1/2
2 with norm ‖·‖2+‖·‖

H
1/2
2

coincides with the Besov space B1/2
2,∞ on [0, 1] (see Nikolskij (1975), 4.3.3, 6.2). Furthermore

(cf. Koltchinskii (1994), relation (4.5))

q2
K(g) ≤ 4K ‖g‖2

H
1/2
2

.

Proof of proposition 2.3. If g fulfills ‖g‖∞ < ∞ we divide by ‖g‖∞ and apply (48);
furthermore we put y = x+ C−1

2 log n, x = C−1
2 t and obtain from (48)

2C1 exp(−t) ≥

P(n1/2 |Un(g)− Bn(g)| ≥ ‖g‖∞ x+ x1/2y1/2(qlog2 n(g) + ‖g‖∞))

≥ P(n1/2 |Un(g)− Bn(g)| ≥ ‖g‖∞ x+ x1/2y1/2(2 ‖g‖
H

1/2
2

(log2 n)1/2 + ‖g‖∞))

≥ P(n1/2 |Un(g)− Bn(g)| ≥ C(‖g‖∞ + ‖g‖
H

1/2
2

)(t+ log n)(log n)1/2).

2
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6.3 Lemma. There is a C such that for all f ∈ Σn(f0), f0 ∈ Σ

‖λf,f0‖∞ ≤ Cγn, λf,f0 ∈ Λα(C).

Proof. The first relation is obvious. For the second, note that F−1
0 has derivative

1/f(F−1
0 (·)), and since f ≥ ε, we have F−1

0 ∈ Λ1(C). Now write λf,f0 as a difference of
logarithms and invoke again f ≥ ε. 2

Next we have to consider the likelihood ratio for interval censored observations (18). We shall
do this for a generic interval D ⊂ [0, 1] of length k−1

n . We wish to represent the observations
via the quantile function F−1

0 in the usual fashion; we therefore assume D = F−1
0 (A) where

A ⊂ [0, 1]. Consider a class of intervals, for given C1, C2 > 0,

An = {A : A = [a1, a2) ⊂ [0, 1], C1 ≤ knmes(A) ≤ C2}(50)

The assumption f0 ∈ Σ implies that f0 is uniformly bounded and bounded away from zero.
Hence mes(D) = k−1

n implies that A = F0(D) ∈ An for all f0 ∈ Σ and appropriately chosen
C1, C2. The technical development will now be carried out uniformly over all intervals
A ∈ An. We shall put Pf (F−1

0 (A)) = p, Pf0(F−1
0 (A)) = p0. The corresponding log-likelihood

ratio under f0, expressed as a function of a uniform [0, 1] variable z, is then λf,f0,A(z), where

λf,f0,A(t) = χA(t) log
f

f0
(F−1

0 (t)) + (1− χA(t)) log
1− p
1− p0

.(51)

Since λf,f0,A has jumps at the endpoints of A, it is not in a Hölder class Λα(M) but it
is in an L2-Hölder class, so that we can ultimately estimate ‖λf,f0,A‖H1/2

2

and apply the
KMT-inequality of proposition 2.3. We first need some technical lemmas.

6.4 Lemma. There is a C such that for all f ∈ Σn(f0), f0 ∈ Σ, A ∈ An

sup
t∈A
|λf,f0,A(t)| ≤ Cγn, sup

t∈Ac
|λf,f0,A(t)| ≤ Ck−1

n γn.

Proof. For t ∈ A we invoke the previous lemma. For t ∈ Ac we estimate

∣∣∣∣1− p

p0

∣∣∣∣ ≤
∫
D |f − f0|∫

D f0
≤

∫
D

∣∣∣ ff0
− 1
∣∣∣ f0∫

D f0
≤ γn.

In view of (50) we also have p0 � k−1
n ≤ 1/2, hence∣∣∣∣1− 1− p

1− p0

∣∣∣∣ =
p0

1− p0

∣∣∣∣1− p

p0

∣∣∣∣ ≤ Ck−1
n γn.(52)

This implies a similar estimate for | log ((1− p)/(1− p0)) | and thus yields the estimate for
t ∈ Ac. 2
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6.5 Lemma. There is a constant C such that for all f ∈ Σn(f0), f0 ∈ Σ, A ∈ An∫
λ2
f,f0,A ≤ C n−1, −

∫
λf,f0,A ≤ C n−1.

Proof. From the previous lemma and (50) we obtain∫
λ2
f,f0,A =

∫
A
λ2
f,f0,A +

∫
Ac
λ2
f,f0,A ≤ Ck

−1
n γ2

n + Ck−2
n γ2

n ≤ Ck−1
n γ2

n,(53)

hence in view of (6) and (19)

n

∫
λ2
f,f0,A ≤ Cnk

−1
n γ2

n ≤ C.

To prove the second relation, define ϕ(t) = expλf,f0,A(t); then
∫
ϕ = 1, and lemma 6.4

implies |ϕ(t)− 1| ≤ Cγn uniformly. Hence

−n
∫
λf,f0,A = −n

∫
logϕ ≤ n

∫
(1− ϕ+ C(ϕ− 1)2) = Cn

∫
(ϕ− 1)2

Here we treat the r. h. s. analogously to (53), using the fact that lemma 6.4 remains true
with ϕ− 1 in place of λ, so that

n

∫
(ϕ− 1)2 ≤ C.(54)

2

6.6 Lemma. There is a C such that for all f ∈ Σn(f0), f0 ∈ Σ, A ∈ An

‖λf,f0,A‖H1/2
2

≤ Cγn.

Proof. It suffices to show∫ 1−h

h
(λf,f0,A(x+ h)− λf,f0,A(x))2 dx ≤ Cγ2

nh for 0 < h < 1/2.(55)

Let A = [a1, a2) and define A1,h = [a1 + h, a2 − h), A2,h = [a1 + h, a2 − h) ∩ [h, 1 − h] (here
A1,h is empty for h > kn/2). The integral above over [h, 1 − h] will be split into integrals
over A1,h, A2,h \ A1,h and [h, 1 − h] \ A2,h. According to lemma 6.3, λf,f0,A fulfills a Hölder
condition on A, so that∫

A1,h

(λf,f0,A(x+ h)− λf,f0,A(x))2 dx ≤ Ch2αk−1
n

We have k−1
n ∼ γ2

n(log n)4 in view of (6) and (19), so that α > 1/2 implies Ch2αk−1
n ≤ Chγ2

n.
For the second integral, we use the estimate ‖λf,f0,A‖∞ ≤ Cγn implied by lemma 6.4, and
obtain ∫

A2,h\A1,h

(λf,f0,A(x+ h)− λf,f0,A(x))2 dx ≤ Cγ2
nh.

Finally, note that λf,f0,A is constant on [0, 1] \A2,h, so that∫
[h,1−h]\A2,h

(λf,f0,A(x+ h)− λf,f0,A(x))2 dx = 0.

Thus (55) is established.2
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7 The local likelihood processes

Consider now the likelihood process for n observations (18) when Dj is replaced by the generic
subinterval D = F−1

0 (A) with A ∈ An from (50). With n i. i. d. uniform (0, 1)-variables zi
we get an expression for the likelihood process

Λ0,n(f, f0, A) = exp

{
n∑
i=1

λf,f0,A(zi)

}
;(56)

for A = F0(Dj) this is the same as Λ0,j,n(f, f0) as defined after (19). Denote

K(f0 ‖ f,A) = −
∫
λf,f0,A(t)dt

the pertaining Kullback information number. We assume that Un and Bn are sequences
of uniform empirical processes and Brownian bridges which both come from the Hungarian
construction of proposition 2.3. We obtain the representation (cp. (14) and proposition 2.6,
suppressing the notational distinction of versions)

Λ0,n(f, f0, A) = exp
{
n1/2

Un(λf,f0,A)− n K(f0 ‖ f,A)
}
.(57)

The corresponding Gaussian likelihood ratio is (cp. (15))

Λ1,n(f, f0, A) = exp
{
n1/2

Bn(λf,f0,A)− n

2
Var(λf,f0,A(Z))

}
.(58)

Consider also an intermediary expression

Λ#,n(f, f0, A) = exp
{
n1/2

Bn(λf,f0,A)− n K(f0 ‖ f,A))
}
.

The expression Λ#,n(f, f0, A) is not normalized to expectation one, but we consider it as
the density of a positive measure on the probability space (Ω,A,P). The Hellinger distance
H2(·, ·) is then naturally extended to these positive measures.

7.1 Lemma. There is a C such that for all f ∈ Σn(f0), f0 ∈ Σ, A ∈ An

EP (Λi,n(f, f0, A))2 ≤ C, i = 0, 1, EP (Λ#,n(f, f0, A))2 ≤ C.

Proof. Define (for a uniform (0, 1)-variable Z)

T11 = n K(f0 ‖ f,A), T12 =
n

2
Var(λf,f0,A(Z)),(59)

T21 = n1/2
Un(λf,f0,A), T22 = n1/2

Bn(λf,f0,A).(60)

Since T22 is a zero mean Gaussian r. v., we have

EP exp(2T22) = exp (4T12) .

Hence

EPΛ2
1,n = EP exp (2 (T22 − T12)) = exp (2T12) ≤ exp

(
n

∫
λ2
f,f0,A

)
.
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Now from lemma 6.5 we obtain the assertion for i = 1. For the case i = 0, we get from (56)

EPΛ2
0,n = EP exp

{
2

n∑
i=1

λf,f0,A(zi)

}
= (E exp (2λf,f0,A(Z)))n .

Now we have for ϕ(t) = expλf,f0,A(t)

E exp 2λf,f0,A(Z) =
∫

(ϕ(t))2dt = 1 +
∫

(ϕ(t)− 1)2 dt ≤ 1 + Cn−1

as a consequence of (54). Hence

EPΛ2
0,n ≤

(
1 + Cn−1

)n ≤ 2 expC

so that the lemma is established for i = 0. Finally, to treat EPΛ2
#,n, observe that lemma 6.5

implies that T11 and T12 are uniformly bounded. Hence

EPΛ2
#,n = EPΛ2

1,n exp (2(T12 − T11)) ≤ C.

2.
The next lemma is the key technical step, bringing in the Hungarian construction estimate
of proposition 2.3.

7.2 Lemma. There is a C such that for all f ∈ Σn(f0), f0 ∈ Σ, A ∈ An

H (Λ0,n(f, f0, A),Λ#,n(f, f0, A)) ≤ C γn(logn)3/2.

Proof. Define
T0 = n1/2(Bn − Un)(λf,f0,A).

Combining proposition 2.3 with lemmas 6.4 and 6.6, we obtain

P(|T0| ≥ Cγn(t+ log n) log1/2 n) ≤ C exp(−t).

Put t = tn = 4 log n and for the above C

un = 5Cγn log3/2 n.

For an event

B = Bf,f0,A = {ω : |T0| ≤ un}

we obtain an estimate

P(Bc) ≤ Cn−4.(61)

To treat H2(Λ0,n,Λ#,n), split the expectation there into EPχB(·) and EPχBc(·), and observe

EPχBc(Λ
1/2
0,n − Λ1/2

#,n)2 ≤ 2EPχBc(Λ0,n + Λ#,n)

≤ 2
(
P(Bc)2EP(Λ2

0,n + Λ2
#,n)

)1/2
.
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According to the previous lemma EP(Λ2
0,n+ Λ2

#,n) is uniformly bounded, so that (61) implies

EPχBc(Λ
1/2
0,n − Λ1/2

#,n)2 ≤ Cn−2.(62)

For the other part, observe that on ω ∈ B, in view of un = o(1),

|1− exp(T0/2)| ≤ Cun,

so that on ω ∈ B

(Λ1/2
0,n − Λ1/2

#,n)2 = (1− exp(T0/2))2Λ0,n ≤ Cu2
nΛ0,n.

Since EPΛ0,n = 1, we obtain

EPχB(Λ1/2
0,n − Λ1/2

#,n)2 ≤ Cu2
n.

This completes the proof in view of (62) and n−2 = o(u2
n).2

7.3 Lemma. For all f ∈ Σn(f0), f0 ∈ Σ, A ∈ An

H(Λ0,n(f, f0, A),Λ1,n(f, f0, A)) ≤ 2H(Λ0,n(f, f0, A),Λ#,n(f, f0, A)).

Proof. Consider the space of random variables L2(Ω,A,P) and note that H(Λ#,n,Λ1,n) is
the distance of Λ1/2

#,n and Λ1/2
1,n in that space. Furthermore

Λ1/2
1,n = Λ1/2

#,n (EPΛ#,n)−1/2 .

is the element of the unit sphere of L2(Ω,A,P) closest to Λ1/2
#,n. Since Λ1/2

0,n is on the unit
sphere, we have

H(Λ#,n,Λ1,n) ≤ H(Λ#,n,Λ0,n)

and therefore

H(Λ0,n,Λ1,n) ≤ H(Λ0,n,Λ#,n) +H(Λ#,n,Λ1,n) ≤ 2H(Λ0,n,Λ#,n).

2

Let now A = Aj = F0(Dj) and consider also the likelihood process Λ1,j,n(f, f0) of the
Gaussian experiment E1,j,n(f0) of (20). Remind that this differs from Λ1,n(f, f0, Aj) (cp.
(58) and (51)). We consider versions of both likelihood processes which are functions of the
Brownian bridge version B.

7.4 Lemma. There is a C such that for all f ∈ Σn(f0), f0 ∈ Σ and j = 1, . . . , kn

H(Λ1,n(f, f0, Aj),Λ1,j,n(f, f0)) ≤ Cγn.

Proof. The likelihood process Λ1,n(f, f0, Aj) is Λ1,n(f, f0) from (15) with λf,f0 replaced by
λf,f0,Aj , so it corresponds to a Gaussian model

dy(t) = (λf,f0,Aj (t) +K(f0‖f,Aj))dt+ n−1/2dW (t), t ∈ [0, 1]
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with f ∈ Σn(f0) (cp. (16)). Moreover Λ1,j,n(f, f0) corresponds to the Gaussian model (20).
Hence the distance H(·, ·) between the likelihood processes on (Ω,A,P) equals the Hellinger
distance between the two respective shifted Wiener measures. We may apply formula (23),
putting

g1 = λf,f0,Aj −
∫
λf,f0,Aj , g2 = χAjλf,f0 −

∫
Aj

λf,f0 .

We obtain in accordance with (13) and (51)

‖g1 − g2‖22 =

∥∥∥∥∥χAcjλf,f0,Aj −
∫
Acj

λf,f0,Aj

∥∥∥∥∥
2

2

= p0(1− p0) log2 1− p
1− p0

where p = Pf (Dj), p0 = Pf0(Dj). Using p0 ≤ Ck−1
n and (52) we find

‖g1 − g2‖22 ≤ Ck
−3
n γ2

n.

By (23) the squared Hellinger distance is

2
(

1− exp
{
−n

8
‖g1 − g2‖22

})
≤ 2

(
1− exp

{
−Cnk−3

n γ2
n

})
and the lemma follows from nk−3

n = o(1).2

Proof of proposition 2.6. Consider Λ0,n(f, f0, A) for A = Aj and identify this to
Λ∗0,j,n(f, f0). Identify Λ1,j,n(f, f0) of lemma 5.3.4 to Λ∗1,j,n(f, f0). The result then follows from
lemmas 7.2-7.4.2

8 Further local approximations

Define functions

λ1,f,f0 = λf,f0 +K(f0‖f), λ2,f,f0 = (f/f0 − 1) ◦ F−1
0 ,

λ3,f,f0 = 2
(

(f/f0)1/2 − 1
)
◦ F−1

0

and experiments E#
i,n(f0) given by observations

dy(t) = λi,f,f0(t)dt+ n−1/2dW (t), t ∈ [0, 1],(63)

and parameter space f ∈ Σn(f0), for i = 1, 2, 3. We have seen that E#
1,n(f0) = E1,n(f0) (cp.

(16)).

8.1 Lemma. We have

∆
(
E

#
i,n(f0),Ei,n(f0)

)
= 0, i = 1, 2, 3.

Proof. The likelihood process for E#
i,n(f0) is

Λi,n(f, f0) = exp
{
n

∫
λi,f,f0

1√
n
dW − n

2
‖λi,f,f0‖22

}
, i = 1, 2, 3.
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Define a process

W ∗(t) =
∫ t

0
f
−1/2
0 d(W ◦ F0).

This is a centered Gaussian process with independent increments and variance at t given by∫ t
0 f
−1
0 dF0 = t. Hence W ∗ is a Wiener process, and we have for every continuous g on [0, 1]∫

gf
1/2
0 dW ∗ =

∫
gd(W ◦ F0).

Utilizing W ∗ in (24), we get a likelihood process for E2,n(f0)

exp
{
n

∫
(f − f0)f−1

0 n−1/2f
1/2
0 dW ∗ − n

2

∫
(f − f0)2f−1

0

}
= exp

{
n

∫
(f/f0 − 1)n−1/2d(W ◦ F0)− n

2

∫
(f/f0 − 1)2 dF0

}
= Λ2,n(f, f0).

Similarly for E3,n(f0) we obtain a likelihood process

exp
{

4n
∫

(f1/2 − f1/2
0 )

1
2
n−1/2dW ∗ − 4n

2

∫
(f1/2 − f1/2

0 )2

}
= exp

{
2n
∫ (

(f/f0)1/2 − 1
)
n−1/2d(W ◦ F0)− 4n

2

∫ (
(f/f0)1/2 − 1

)2
dF0

}
= Λ3,n(f, f0).

2

Proof of theorem 2.8. It now remains to apply formula (23) to the measures given by (63)
when f ∈ Σn(f0). We have to prove

sup
f∈Σn(f0)

‖λ1,f,f0 − λi,f,f0‖22 = o(n−1)(64)

for i = 2, 3, uniformly over f0 ∈ Σ. Using the expansion

log x = log(1 + x− 1) = x− 1− 1
2

(x− 1)2 + o((x− 1)2)(65)

and putting x = (f/f0) ◦ F−1
0 (t), we note that for f ∈ Σn(f0)

λf,f0(t) = λ2,f,f0(t) +O(γ2
n)(66)

uniformly. Since
∫
λ2,f,f0 = 0, we obtain

K(f0‖f) =
∫

(λ2,f,f0 − λf,f0) ≤ ‖λ2,f,f0 − λf,f0‖2 = O(γ2
n).(67)

Now (66) and (67) imply

‖λf,f0 +K(f0‖f)− λ2,f,f0‖
2
2 = O(γ4

n) = O(n−1(logn)−4)
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which proves (64) for i = 2. For i = 3, note first that for f ∈ Σn(f0) we have∥∥∥(f/f0)1/2 − 1
∥∥∥
∞

= O(γn),

and use (65) with x = (f/f0)1/2 ◦ F−1
0 (t) to obtain

λf,f0(t) = 2 log(f/f0)1/2 ◦ F−1
0 (t) = λ3,f,f0(t) +O(γ2

n)(68)

uniformly. Now (68) and (67) imply (64) for i = 3. 2

9 The preliminary estimator

Consider first a histogram estimator based on the whole sample. Let
ψn,κ = (κ log n/n)α/(2α+1) for a κ > 0 and sn = [ψ−1/α

n,κ ] + 1. Define intervals Jj,n = s−1
n [j −

1, j), j = 1, . . . , sn and let F̄n be the empirical distribution function of y1, . . . , yn. Define an
estimator

f̃n = sn

sn∑
j=1

χJj,n

∫
χJj,ndF̄n.

9.1 Lemma. In the experiment E0,n there is a κ such that

sup
f∈Σ

Pn,f

(∥∥∥f̃n − f∥∥∥
∞
≥ κ ψn,κ

)
→ 0.

Proof. Consider the usual decomposition∥∥∥f̃n − f∥∥∥
∞
≤
∥∥∥f̃n − Ef̃n∥∥∥

∞
+
∥∥∥Ef̃n − f∥∥∥

∞
.

Note that for t ∈ Jj,n∣∣∣Ef̃n(t)− f(t)
∣∣∣ =

∣∣∣∣∣f(t)− sn
∫
Jj,n

f(u)du

∣∣∣∣∣ ≤ sn
∫
Jj,n

|f(t)− f(u)| du

≤ Msn

∫
Jj,n

|t− u|α du ≤Ms−αn ≤Mψn,κ,

so that ∥∥∥Ef̃n − f∥∥∥
∞
≤Mψn,κ.

For the variance part, write for t ∈ Jj,n and observations yi having density f

f̃n(t)−Ef̃n(t) = sn

∫
χJj,nd(F̄n − F ) = snn

−1
n∑
i=1

ηij ,

where ηij = χJj,n(yi)− Pf (Jj,n).

Then |ηij | ≤ 1 and using notation vn =
∑n

i=1Var(ηij) consider Bernstein’s inequality

Pn,f

(∣∣∣∣∣
n∑
i=1

ηij

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−1

2
t2/(vn + t/3)

)
.
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It is easy to verify that the quantity

µΣ = sup
f∈Σ

‖f‖∞(69)

is finite; this is a consequence of Hölder continuity in conjunction with
∫
|f | = 1. We find

vn = nPf (Jj,n)(1− Pf (Jj,n)) ≤ ns−1
n µΣ.

Putting t = ψn,κs
−1
n n, we obtain vn + t/3 ≤ 2ns−1

n µΣ for large n and

Pn,f

(
snn

−1

∣∣∣∣∣
n∑
i=1

ηij

∣∣∣∣∣ ≥ ψn,κ
)
≤ 2 exp

(
−ψ2

n,κs
−1
n n(4µΣ)−1

)
≤ 3 exp

(
−κ(logn)(4µΣ)−1

)
.

Consequently for κ ≥ 4µΣ

Pn,f

(∥∥∥f̃n − Ef̃n∥∥∥
∞
≥ ψn,κ

)
≤

sn∑
j=1

Pn,f

(
snn

−1

∣∣∣∣∣
n∑
i=1

ηij

∣∣∣∣∣ ≥ ψn,κ
)

≤ 3snn−1 → 0.

For κ ≥ max(4µΣ, 2M, 2) we obtain the lemma.2

Proof of lemma 3.1. Consider the estimator applied to a sample fraction yi, i = 1, . . . , Nn;
call it f̃Nn . Then, since α > 1/2,

ψNn =
(
N−1
n κ logNn

)α/(2α+1) ≤
(
n−1κ log(n/2) log n

)α/(2α+1) = o(γn).

This immediately implies

sup
f∈Σ

Pn,f

(
sup
t∈[0,1]

∣∣∣f(t)− f̃Nn(t)
∣∣∣ > cγn

)
→ 0, for all c > 0.(70)

Note that the set Σ is compact in the uniform metric: indeed it is equicontinuous and
uniformly bounded according to (69), so compactness is implied by the Arzela-Ascoli theorem.
Now cover Σ by a finite set of uniform γn-balls with centers in Σ and define Σ0,n be the set
of the centers. Define f̂n as the element in Σ0,n closest to f̃Nn (or in case of nonuniqueness,
select an element measurably). Analogously, for f ∈ Σ select a closest element gf ∈ Σ0,n.
Then we have∥∥∥f̂n − f∥∥∥

∞
≤

∥∥∥f̂n − f̃Nn∥∥∥∞ +
∥∥∥f̃Nn − f∥∥∥∞

≤
∥∥∥gf − f̃Nn∥∥∥∞ +

∥∥∥f̃Nn − f∥∥∥∞
≤ ‖gf − f‖∞ + 2

∥∥∥f̃Nn − f∥∥∥∞ ≤ 2
∥∥∥f̃Nn − f∥∥∥∞ + γn.

Hence f̂n also satisfies (70), and it takes values in the finite set Σ0,n ⊂ Σ. From this we
obtain immediately

sup
f∈Σ

Pn,f

(
sup
t∈[0,1]

∣∣∣f(t)/f̃Nn(t)− 1
∣∣∣ > γn

)
→ 0
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in view of the uniform bound f(t) ≥ ε for f ∈ Σ. 2

For lemma 3.4, we first consider estimation of the signal (rather than its root) in the white
noise model. Let again ψn,κ = (κ log n/n)α/(2α+1).

9.3 Lemma. Consider an experiment given by observations

dy(t) = g(t)dt+ n−1/2dW (t), t ∈ [0, 1](71)

with g ∈ Λα(M). There one can find an estimator g̃n and a κ such that

sup
g∈Λα(M)

Pn,g (‖g̃n − g‖∞ ≥ κ ψn,κ)→ 0.

The proof could be analogous to lemma 9.1, with simplifications due to Gaussianity. Alterna-
tively, we may refer to theorem C in Donoho (1994) where sharper results (optimal constants)
are obtained.

Proof of lemma 3.4. If g = f1/2 with f ∈ Σ then since f ∈ F≥ε∣∣∣f1/2(t)− f1/2(u)
∣∣∣ ≤ ε−1/2 |f(t)− f(u)|

so we obtain g ∈ Λα(ε−1/2M). Also, by the previous argument we may assume that g̃n takes
values in a finite subset of {f1/2 : f ∈ Σ}. On the other hand, if f̌n = g̃2

n then∣∣f̌n(t)− f(t)
∣∣ ≤ |g̃n(t) + g(t)| |g̃n(t)− g(t)| .

Since both g̃n and g are in {f1/2 : f ∈ Σ} they are uniformly bounded by µ1/2
Σ (cf. (69)), so

that for some κ
sup
f∈Σ

Pn,f
(∥∥f̌n − f∥∥∞ ≥ κ ψn)→ 0.

Finally assume that f̌n is based on observations with noise intensity (n−Nn)−1/2 instead of
n−1/2, i. e. on (38). Then (n−Nn)−1/2 ≤ (n/2)−1/2 so that attainable rates are not worse.
As in lemma 3.1 we now infer that the estimator f̌n based on (38) fulfills (30).2

10 Experiments and globalization

We collect some basic facts about experiments and deficiencies following Strasser (1985)
([S] henceforth). Let E1 = (Ω1,A1, (P1,ϑ, ϑ ∈ Θ)) be an experiment and let L(E1) be
the corresponding L-space (see [S] 41.4); L(E1) is a certain subspace of the set of signed
measures on (Ω1,A1) which is a Banach lattice under the variational norm ‖·‖. Let E2 =
(Ω2,A2, (P2,ϑ, ϑ ∈ Θ)) be another experiment with the same parameter set Θ with L-space
L(E2). A transition from L(E1) to L(E2) is a positive linear map with norm one (i. e. a linear
map M : L(E1) 7−→ L(E2) such that for σ ∈ E1, σ ≥ 0 one has Mσ ≥ 0 and ‖Mσ‖ = ‖σ‖, cp.
[S] 55.2). Every Markov kernel K : Ω1 ×A2 7−→ [0, 1] defines a transition. For the definition
of the deficiency δ(E1,E2) of E1 with respect to E2 via decision problems see [S] section 59.
An equivalent characterization is ([S] 59.6)

δ(E1,E2) = inf
M

sup
ϑ∈Θ

‖MP1,ϑ − P2,ϑ‖(72)
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where the infimum extends over all transitions from L(E1) to L(E2). The two sided deficiency
is

∆(E1,E2) = max(δ(E1,E2), δ(E2,E1)).

This defines a pseudodistance on the set of all experiments with parameter space Θ; in
particular, the triangle inequality holds [S] 59.2). E1 and E2 are called equivalent (or of the
same type) if ∆(E1,E2) = 0.
We are interested in conditions under which every transition is given by a Markov kernel. [S]
55.6 (3) gives it for the case that E1 is dominated and Ω2 is a locally compact space with
countable base and A2 is its Borel σ-algebra. But spaces like C[0, 1] are not locally compact,
so we would like to have the result for a complete separable metric (Polish) space instead.
We briefly complete the argument.

10.1 Definition. An experiment E = (Ω,A, (Pϑ, ϑ ∈ Θ)) is called Polish if Ω is a Polish
space and A is the pertaining Borel σ-algebra.

10.2 Proposition. Suppose that E1 is a dominated experiment and E2 is Polish. Then every
transition from L(E1) to L(E2) is given by a Markov kernel.

Proof. It is well known that (Ω2,A2) is Borel isomorphic to a subset of the unit interval
(Dudley (1989), lemma 13.1.3, Parthasarathy (1980), Proposition 25.6). This means that
there is a one-to-one function ϕ from Ω2 onto a Borel subset S of the unit interval such
that ϕ and ϕ−1 are both measurable. It is clear that E2 is then equivalent to an experiment
E
∗
2 given on the measurable space (S,BS), and this equivalence is realized by Markov kernel

transitions given by the mappings ϕ and ϕ−1. Thus it suffices to prove the theorem for
E2 = E

∗
2. We now refer to remark 5.5.6 (3) in [S].2

For the proof of theorem 3.2 we formulate a lemma in an abstract framework. Let X =
(X,X , (Pϑ, ϑ ∈ Θ)) be an experiment. Suppose also that there are a system of subsets
Θ(φ) ⊂ Θ, φ ∈ Θ and experiments

Fi(φ) = (Ωi,Ai, (Qi,ϑ,φ, ϑ ∈ Θ(φ))), i = 1, 2, φ ∈ Θ.

Suppose further that there is a finite subset of Θ0 ⊂ Θ and an estimator φ̂ : (X,X ) 7→
(Θ0, 2Θ0) and form Markov kernels

Qi,ϑ(x,A′) = Qi,ϑ,φ̂(x)(A
′), x ∈ X, A′ ∈ Ai, i = 1, 2.

Let (X̄i, X̄i) = (X × Ωi,X × Ai) be a product measurable space. For any Markov kernel
K : X×Ai 7→ [0, 1] and a measure µ | X we shall form the usual composed measure µ⊗K | X̄i.
Define measures Pi,ϑ | X̄i = Pϑ ⊗ Qi,ϑ | X̄i and experiments Fi = (X̄i, X̄i, (Pi,ϑ, ϑ ∈ Θ)),
i = 1, 2.

10.3 Lemma. Suppose that for all φ ∈ Θ the experiments Fi(φ), i = 1, 2 are Polish and
dominated, and

sup
φ∈Θ

∆(F1(φ),F2(φ)) ≤ ε.(73)

Suppose also that the estimator φ̂ with values in Θ0 fulfills

inf
ϑ∈Θ

Pϑ(ϑ ∈ Θ(φ̂)) ≥ 1− ε.(74)
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Then
∆(F1,F2) ≤ 3ε.

Proof. Observe that since Θ0 is finite and φ̂ is 2Θ0- measurable, the set Vϑ = {x : ϑ ∈
Θ(φ̂(x))} is in X . In accordance with proposition 10.2, let Kφ(ω2, ·) be a Markov kernel
realizing

δ(F1(φ),F2(φ)) = sup
ϑ∈Θ(φ)

‖Q2,ϑ,φ −KφQ1,ϑ,φ‖ ≤ ε

and define

M(x̄, A) =
∫

Ω2

χA(x, ω2)Kφ̂(x)(ω1, dω2), x̄ = (x, ω1) ∈ X̄1, A ∈ X̄2.

It is easy to see that M is a Markov kernel. Indeed by standard arguments this claim is
reduced to the measurability of Kφ̂(x)(ω1, A

′) in x̄ = (x, ω1) for given A′ ∈ A2, which again

follows from the properties of φ̂. Now we have for A ∈ X̄2

MP1,ϑ(A) =
∫
X

∫
Ω1

M(x, ω1, A)Q1,ϑ(x, dω1)Pϑ(dx)

=
∫
X

∫
Ω2

χA(x, ω2)(Kφ̂(x)Q1,ϑ,φ̂(x))(dω2)Pϑ(dx).

Hence
|P2,ϑ(A)−MP1,ϑ(A)| ≤ 2Pϑ(V c

ϑ )

+
∫
Vϑ

∣∣∣∣∫
Ω2

χA(x, ω2)(Kφ̂(x)Q1,ϑ,φ̂(x) −Q2,ϑ,φ̂(x))(dω2)
∣∣∣∣Pϑ(dx)

≤ 2Pϑ(V c
ϑ ) + sup

φ∈Θ0

sup
ϑ∈Θ(φ)

‖KφQ1,ϑ,φ −Q2,ϑ,φ‖ ≤ 3ε

and we obtain
δ(F1,F2) ≤ sup

ϑ∈Θ
‖P2,ϑ −MP1,ϑ‖ ≤ 3ε.

The argument for δ(F2,F1) is symmetric.2

Proof of theorem 3.2. In the previous lemma we put ϑ = f , φ = f0, Θ = Σ, Θ(φ) = Σn(f0)
and identify the experiment X to the one given by the sample fraction y1, . . . , yNn (which
may be written E0,Nn). Furthermore F1(φ) is given by the second sample fraction with f
restricted to a neighborhood Σn(f0) (which may be written E0,n−Nn(f0), cp. (8)). F2(φ))
is given by one of the three local experiments (27), (28), (29) in remark 2.9 (we have seen
that those are asymptotically or exactly equivalent to the respective Ej,n(f0), j = 1, 2, 3 from
theorem 2.8). Note that both Fi(φ)), i = 1, 2 are then Polish and dominated; in particular,
C[0,1] is a Polish space (see Dudley (1989), Corollary 11.2.5). The estimator φ̂ is taken to be
f̂n according to lemma 3.1 and the finite set Θ0 is the range of this estimator. To identify
the global experiments Fi of the lemma, note that the measures in F1(φ) do not depend on φ
(indeed F1(φ) = E0,n−Nn(f0) is obtained by just restricting the parameter space in E0,n−Nn).
Therefore F1 coincides with the set of product measures P⊗Nnf ⊗P⊗(n−Nn)

f , f ∈ Σ, i. e. with
E0,n. The experiment F2 coincides with Ej,n(f̂) as constructed; for j = 3 this again is a set
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of product measures P⊗Nnf ⊗ Q3,n−Nn,f . Take ε arbitrary; then for sufficiently large n we
achieve (73) by theorems 2.1 and 2.8 (they were shown for sample size n; but since n −Nn

is of order n, the argument remains valid for the now relevant diminished sample size). We
achieve (74) by lemma 3.1. We have shown ∆(E0,n,Ej,n(f̂)) ≤ 3ε for sufficiently large n,
which proves the theorem. 2
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11 Exact constants for L2-risk

Proof of proposition 4.1. For this basic relation see Le Cam and Yang (1990), Strasser
(1985), 49.6. These authors consider a setup of lower semicontinuous loss functions on a
topological space of decisions. For our purpose it suffices to work with a measurable space
of decisions (G,G) and bounded loss functions ln(g, ϑ) which are measurable in g. If Ei =
(Ωi,Ai, (Pi,ϑ, ϑ ∈ Θ)) is an experiment then (randomized) decision functions are Markov
kernels K : Ωi × G 7→ [0, 1]. The minimax risk is

ρi(ln,Θ) = inf
K

sup
ϑ∈Θ

∫
ln(g, ϑ)K(ω, dg)Pi,ϑ(dω).

Proposition 4.1 is then immediate if both experiments Ei, i = 1, 2 are Polish and dominated.
Indeed, let M : L(E1) 7→ L(E2) be a transition attaining δ(E1,E2) + ε and K be a decision
function in E2. Since M is a Markov kernel (proposition 10.2), the composition K ◦M is a
decision function in E1, and we have for ϑ ∈ Θ∫

ln(g, ϑ)K(ω2, dg)P2,ϑ(dω2) ≥
∫
ln(g, ϑ)(K ◦M)(ω1, dg)P1,ϑ(dω1)− C (δ(E1,E2) + ε).

Taking a sup over ϑ ∈ Θ and then an inf over K, we obtain, since ε > 0 was arbitrary,

ρ2(ln,Θ) ≥ ρ1(ln,Θ)− C δ(E1,E2) ≥ ρ1(ln,Θ)− C ∆(E1,E2).

In proposition 4.1 both experiments are Polish and dominated. 2

Proof of proposition 4.4. For the Pinsker result many variants of proof have been given,
see Golubev and Nussbaum (1990) (GN henceforth) and the literature cited therein. Our
argument will therefore be extremely condensed.
(i): case l(x) = x. Set q = [(n/κ)r] for some κ > 0. Let

W̆ β
2 (κ) =

{
f ∈ W̃ β

2 (κ),
∫ 1

0
f = 0, f (k)(0) = f (k)(1) = 0, k = 0, . . . , β − 1.

}
Consider a probability measure ν on L2(0, 1) with finite support fulfilling Eν

∥∥Dβg
∥∥2

< κ.
Assume a prior distribution for f such that f(x) =

∑q
k=1 n

−1/2q1/2gk(qx − k + 1) where gk
are i. i. d. ν. By the law of large numbers, this prior asymptotically concentrates on W̆ β

2 (1)
(lemma 5 in GN). By lemma 6 in GN, the minimax risk over f ∈ W̃ β

2 (P ) with normed L2-loss

n1−r
∥∥∥f̂ − f∥∥∥2

2
is then lowerbounded by κ−r times the Bayes risk inf ĝ Eν ‖ĝ − g‖22 for prior ν

in a model
dy(t) = g(t)dt+ dW (t), t ∈ [0, 1](75)

(cp also Low (1993)). The set W̆ β
2 (κ) has an ellipsoid representation, see section 5.1 of GN.

Consider the Fourier coefficients g(j) of g wrt the pertaining orthonormal basis. Let ΓW̆ β
2 (κ)

the set of centered Gaussian distributions ν∗ on L2(0, 1) for which g(j) are independent and

which fulfill Eν∗
∥∥Dβg

∥∥2
< κ. Now ν may be selected to approximate such a ν∗, which yields

a lower bound as a least favorable Bayes risk in the model (75)

κ−r sup
v∗∈ΓW̆β

2 (κ)

inf
ĝ

∫
E ‖ĝ − g‖22 dν

∗(g).(76)
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The eigenvalue asymptotics of the ellipsoid W̆ β
2 (κ) is the same as for W̃ β

2 (κ); this implies that
for κ→∞ the risk (76) tends to

sup
{∫ ∞
−∞

h2(x)
(
1 + h2(x)

)−1
dx :

∫ ∞
−∞

h2(x)(2πx)2β ≤ 1
}
.

The value of the extremal problem is the Pinsker constant γ(β) (cp. Golubev (1982)).
In this argument, since ν initially is a measure with finite support, the corresponding prior
on f is such that almost surely

sup
x∈[0,1]

|f(x)| ≤ O((n−1q)1/2) = O(κ−rnr−1)1/2).

This proves that the lower bound remains valid with a restriction to b0(τn).
(i): general l ∈ L. Combine the method in the lower bound proof of proposition 4.2 with
the above argument.
(ii): case l(x) = x. Consider first the simple model of proposition 4.2, but assume now that
the noise in (40) is f1/2

0(j)ξj , where f0 ∈ Rn+ is a vector such that n−1 ‖f0‖2 = 1. Then for the

estimator f̂(j) = yj/2 we have for f ∈Wn

En,fn
−1

n∑
j=1

(f̂(j) − f(j))
2 = n−1

n∑
j=1

En,f (f1/2
0(j)ξj/2− f(j)/2)2

=
1
4
n−1

n∑
j=1

f2
0(j) +

1
4
n−1

n∑
j=1

f2
(j) ≤

1
2
.

i. e. risk performance of the optimal estimator f̂(j) is the same as before, in the more general
model with unequal f0(j). This phenomenon appears also in Pinker’s ellipsoid model (43). In
the more general model (44), consider the optimal estimator of proposition 4.3. It is known
to be the minimax linear estimator over W̃ β

2 in (43), of form

f̂∗ =
∑

j=0,±1,±2,...

cj f̂(j)ϕj

where f̂(j) =
∫
ϕjdy, for certain coefficients cj , such that cj = c−j . The latter property holds

since W̃ β
2 is symmetric wrt indices j and −j. For the risk of f̂∗ in (44) we have (for each n

only finitely many cj are nonzero)

En,f,f0

∥∥∥f̂∗ − f∥∥∥2

2
=
∑
j

(1− cj)2f2
(j) + n−1

∑
j

c2
j

∫
ϕ2
jf0.

Observe that
∫

(ϕ2
j + ϕ2

−j)f0 = 2
∫
f0 = 2. Then cj = c−j implies

En,f,f0

∥∥∥f̂∗ − f∥∥∥2

2
=
∑
j

(1− cj)2f2
(j) + n−1

∑
j

c2
j .

Thus we are back in the case of uniform variance function (f0 = 1), where f̂∗ attains the
bound γ(β) for l(x) = x.
(ii): general l ∈ L. Combine the method in the attainment proof of proposition 4.2 with
the above argument.2
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Proof of proposition 4.5. Consider the set

Fn = 1 + W̃ β
2 ∩B0(τn).

In proposition 4.4 (i) W̃ β
2 ∩B0(τn) may be replaced by Fn since observations (and estimators)

may be transformed by adding 1dt to the observations dy(t). Let β ≥ α + 1/2. We claim
that τn may be chosen such that for any n

Fn ⊂ Wβ
ε , Fn ⊂ Σn(1).(77)

Indeed, functions in Fn integrate to one. Furthermore they are eventually all ≥ ε if τn → 0,
so that Fn ⊂ F≥ε and the first inclusion is proved. By embedding theorems, W̃ β

2 (P ) is
contained in a Hölder class Λα(M) for β ≥ α+ 1/2. Furthermore we have∥∥∥∥ ff0

− 1
∥∥∥∥
∞

= ‖f − 1‖∞ ≤ τn = o(γn)

for a choice τn = n−β/(2β+1) log n and β > 1/2, so that Fn ⊂ Σn(1). Since by remark 2.9
asymptotic equivalence holds over the set Σn(1), the proof is complete. 2

Proof of proposition 4.6. For β > 1, by embedding theorems W̃ β
2 (P ) ⊂ Λα(M) for some

α > 1/2, M > 0. ThusWβ
ε ⊂ Σ, and by theorem 3.2 we may pass to the compound Gaussian

white noise experiment E2,n(f̂), for a choice Nn = n/ log n and a preliminary estimator f̂n.
Consider the measures R2,n,f (f̂) and Q2,n−Nn,f,f0 as introduced in section 3. Take δ > 0, and
define l(δ)(x) = l((1 + δ)x); then for sufficiently large n

ln(g, f) ≤ l((1 + δ)(n−Nn)1−r‖g − f‖22) = l(δ)((n−Nn)r−1‖g − f‖22) = l
(δ)
n−Nn(g, f),

say. For any estimator f̂#
n in E2,n(f̂) we have

sup
f∈Wβ

ε

∫
ln(f̂#

n , f)dR2,n,f (f̂) ≤ sup
f∈Wβ

ε

∫ (∫
l
(δ)
n−Nn (f̂#

n , f)dQ2,n−Nn,f,f̂n

)
dP⊗Nnf

≤ sup
f∈Wβ

ε

sup
f0∈Σ

∫
l
(δ)
n−Nn (f̂#

n , f)dQ2,n−Nn,f,f0 .

Now take f̂#
n to be the estimator f̂∗n−Nn of proposition 4.4 (ii), as a function of y in (37).

Then uniformly over f0 ∈ Σ

sup
f∈Wβ

ε

∫
l
(δ)
n−Nn (f̂#

n , f)dQ2,n−Nn,f,f0 → l(δ)(γ(β)).

according to proposition 4.4 (ii). Taking δ → 0 completes the proof. 2

Proof of proposition 4.7. We first have to show that Wβ
ε ⊂ Σ. By embedding theorems

we know that f1/2 is in a class Λα(M ′) for β ≥ α + 1/2. Furthermore, the embedding
inequality

‖g‖∞ ≤ C
(
‖g‖2 +

∥∥∥Dβg
∥∥∥

2

)
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for β > 1/2 ensures that that
∥∥f1/2

∥∥
∞ is uniformly bounded. Hence

|f(x)− f(t)| =
∣∣∣f1/2(x)− f1/2(t)

∣∣∣ ∣∣∣f1/2(x) + f1/2(t)
∣∣∣ ≤ 2CM |x− t|α ,

hence Wβ
ε ⊂ Σ. By theorem 1.1 it now suffices to consider risk bounds in the white noise

model (4). The attainability of the bound follows directly from proposition 4.3. Here it is to
be noted that the factor 1/2 of the noise appearing in (4) can be amalgamated into n−1/2, i.
e. into the normalizing n1−r in (39). For the lower bound in (4) we have to take into account
that f1/2 is now restricted to the unit sphere in L2. Let b(t) = {f ; ‖f‖∞ ≤ t}. We use
proposition 4.4 (i) and further restrict f1/2 to a set 1 + b(τn) where τn → 0, τnn(1−r)/2 →∞.
Let Π1(f1/2) be the L2-projection of f1/2 to the affine tangent hyperplane of the unit sphere
of L2 at point 1. Then obviously Π1(f1/2) = f1/2 + cf1 for some number cf , and

cf =
∥∥∥f1/2 −Π1(f1/2)

∥∥∥
∞

=
∥∥∥f1/2 −Π1(f1/2)

∥∥∥
2

= O

(∥∥∥f1/2 − 1
∥∥∥2

2

)
= O(τ2

n)(78)

uniformly over f1/2 ∈ 1 + b(τn). Since nr−1 = n−2β/(2β+1), and β > 1/2, τn may be chosen
such that the r. h. s. of (78) is o(n−1/2). We may then apply the reasoning in connection
with (23) to show that in the white noise model where f1/2 ∈ 1 + b(τn), the drift f1/2 may
be substituted by Π1(f1/2), with asympotic equivalence of the experiments. Then Π1(f1/2)
varies in an affine subspace of L2, and its derivative of order β for β ≥ 1 coincides with that
of f1/2. Also (78) implies that by further restricting f1/2, we can achieve that h = Π1(f1/2)
varies fully within W̃ β

2 ∩ (1 + b((1− δ)τn)) for some δ > 0. Subtracting 1dt from the model
yields a white noise experiment with parameter space W̃ β

2 ∩ b0((1 − δ)τn), i. e. the case
covered by proposition 4.4 (i).2

12 Addendum for proposition 1.2

Let Σ′ denote an arbitrary set of probability measures on [0, 1]. Define

Sn(Σ′) =
{

(P,Q) ∈ Σ′ × Σ′ : H2(P,Q) ≤ n−1, P,Q ∈ Σ′
}
.

and let dP
dQ be the R-N- derivative of the Q-continuous part of P . Le Cam’s second regularity

condition for proposition 1.2 on the set of densities Σ is: if Σ′ is the associated set of p. m.
then

sup
(P,Q)∈Sn(Σ′)

n(P +Q)
(∣∣∣∣dPdQ − 1

∣∣∣∣ ≤ ε)→ 0.

This is fulfilled in case Σ′ = (Pϑ, ϑ ∈ K) where K is a compact subset of an open set Θ ⊂ Rk
and the family (Pϑ, ϑ ∈ Θ) is differentiable in quadratic mean uniformly on compacts K ⊂ Θ
(see proposition 1, chap. 17.3 in Le Cam (1986)).
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