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ASYMPTOTIC EQUIVALENCE OF DENSITY ESTIMATION
AND GAUSSIAN WHITE NOISE

By Michael Nussbaum

Weierstrass Institute, Berlin

Signal recovery in Gaussian white noise with variance tending to zero
has served for some time as a representative model for nonparametric
curve estimation, having all the essential traits in a pure form. The equiv-
alence has mostly been stated informally, but an approximation in the
sense of Le Cam’s deficiency distance 1 would make it precise. The models
are then asymptotically equivalent for all purposes of statistical decision
with bounded loss. In nonparametrics, a first result of this kind has re-
cently been established for Gaussian regression. We consider the analogous
problem for the experiment given by n i.i.d. observations having density
f on the unit interval. Our basic result concerns the parameter space of
densities which are in a Hölder ball with exponent α > 1

2 and which are
uniformly bounded away from zero. We show that an i. i. d. sample of size n
with density f is globally asymptotically equivalent to a white noise exper-
iment with drift f1/2 and variance 1

4n
−1. This represents a nonparametric

analog of Le Cam’s heteroscedastic Gaussian approximation in the finite
dimensional case. The proof utilizes empirical process techniques related
to the Hungarian construction. White noise models on f and log f are also
considered, allowing for various “automatic” asymptotic risk bounds in the
i.i.d. model from white noise.

1. Introduction and main result. One of the basic principles of Le
Cam’s (1986) asymptotic decision theory is to approximate general experi-
ments by simple ones. In particular, weak convergence to Gaussian shift ex-
periments has now become a standard tool for establishing asymptotic risk
bounds. The risk bounds implied by weak convergence are generally estimates
from below, and in most of the literature the efficiency of procedures is more or
less shown on an ad hoc basis. However, a systematic approach to the attain-
ment problem is also made possible by Le Cam’s theory, based on the notion of
strong convergence of experiments, which means proximity in the sense of the
full deficiency distance. However, due to the inherent technical difficulties of
handling the deficiency concept, this possibility is rarely used, even in root-n
consistent parametric problems.

In nonparametric curve estimation models of the “ill posed” class where
there is no root-n consistency, research has focused for a long time on opti-
mal rates of convergence. In these problems, limits of experiments for n−1/2-
localized parameter are not directly useful for risk bounds. But now a theory
of exact asymptotic risk constants is also developing in the context of slower
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rates of convergence. Such an exact risk bound was first discovered by Pinsker
(1980) in the problem of signal recovery in Gaussian white noise, which is by
now recognized as the basic or “typical” nonparametric curve estimation prob-
lem. The cognitive value of this model had already been realized by Ibragimov
and Khasminski (1977). These risk bounds have been established since then
in a variety of other problems, for example, density, nonparametric regression
and spectral density [see Efroimovich and Pinsker (1982), Golubev (1984) and
Nussbaum (1985)], and they have also been substantially extended conceptu-
ally [(Korostelev (1993) and Donoho and Johnstone (1992)]. The theory is now
at a stage where the approximation of the various particular curve estimation
problems by the white noise model could be made formal. An important step
in this direction has been made by Brown and Low (1996) by relating Gaus-
sian regression to the signal recovery problem. These models are essentially
the continuous and discrete versions of each other. The aim of this paper is to
establish the formal approximation by the white noise model for the problem
of density estimation from an i.i.d. sample.

To formulate our main result, define a basic parameter space 6 of densities
as follows. For α ∈ �0;1� and M> 0, let

3α�M� =
{
fx

∣∣f�x� − f�y�
∣∣ ≤M |x− y|α ; x; y ∈ �0;1�

}

be a Hölder ball of functions with exponent α. For ε > 0 define a set F≥ε as
the set of densities on �0;1� bounded below by ε:

F≥ε =
{
fx

∫ 1

0
f = 1; f�x� ≥ ε; x ∈ �0;1�

}
:(1)

Define an a priori set, for given α ∈ �0;1�, M> 0, ε > 0;

6α;M;ε = 3α�M� ∩ F≥ε:(2)

Let 1 be Le Cam’s deficiency pseudodistance between experiments having the
same parameter space. For the convenience of the reader a formal definition
is given in Section 9. For two sequences of experiments En and Fn we shall
say that they are asymptotically equivalent if 1�En;Fn� → 0 as n → ∞. Let
dW denote the standard Gaussian white noise process on the unit interval.

Theorem 1.1. Let 6 be a set of densities contained in 6α;M;ε for some ε > 0;
M > 0 and α > 1

2 . Then the experiments given by observations

yi; i = 1; : : : ; n; i.i.d. with density f;(3)

dy�t� = f1/2�t�dt+ 1
2n
−1/2 dW�t�; t ∈ �0;1�;(4)

with f ∈ 6 are asymptotically equivalent.

This result is closely related to Le Cam’s global asymptotic normality for
parametric models. In the i.i.d. model let f be in a parametric family �fϑ; ϑ ∈
2�; where 2 ⊂ Rk, which is sufficiently regular and has Fisher information
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matrix I�ϑ� at point ϑ. Then the i.i.d. model may be approximated by a het-
eroscedastic Gaussian experiment

y = ϑ+ n−1/2I�ϑ�−1/2η;(5)

where η is a standard normal vector and ϑ ∈ 2. We see that (4) is a non-
parametric analog of (5) when ϑ is identified with f1/2. Indeed, consider the
identity for the Fisher information matrix in the parametric case

∥∥∥f1/2
ϑ′ − f

1/2
ϑ

∥∥∥
2
= 1

2

∥∥I1/2�ϑ��ϑ′ −ϑ�
∥∥+ o ��ϑ′ −ϑ�� :

Formally regarding f1/2 itself as a parameter, we find the corresponding Fisher
information to be 4 times the unit operator. However, even for parametric
families (4) seems to be an interesting form of a global approximation: if f1/2

ϑ

is taken as parameter, then the resulting Gaussian model has a simple form.
One recognizes that the heteroscedastic nature of (5) derives only from the
“curved” nature of a general parametric family within the space of roots of
densities.

This observation was in fact made earlier by Le Cam (1985). In his Theorem
4.3 he established the homoscedastic global Gaussian approximation for i.i.d.
models in the finite dimensional case. We give a paraphrase of that result in
a specialized form. A set 2′ in L2�0;1� is said to have finite metric dimension
if there is a number D such that every subset of 2′ which can be covered by
an ε-ball can be covered by no more than 2D balls of radius ε/2, where D does
not depend on ε. A set of densities f has this property in Hellinger metric if
the corresponding set of f1/2 has it in L2(0, 1).

Proposition 1.2 [Le Cam (1985)]. Let 6 be a set of densities on �0;1� hav-
ing finite dimension in Hellinger metric and fulfilling a further regularity con-
dition (see Section 10). Then the experiments given by observations (3) and (4)
with f ∈ 6 are asymptotically equivalent.

The actual formulation in Le Cam (1985) is more abstract and general, giv-
ing a global asymptotic normality in the i.i.d. case for arbitrary random vari-
ables, in particular without assumed existence of densities; but finite dimen-
sionality is essential. This result in its conceptual clarity and potential impact
seems not to have been well appreciated by researchers; the heteroscedastic
form (5) under classical regularity conditions is somewhat better known [cf.
Mammen (1986)].

Our main result can thus be viewed as an extension of Le Cam’s Proposition
1.2 to a nonparametric setting. The value 1

2 of the Hölder exponent α seems
to be a critical one; for discretization of Gaussian white noise, this has been
shown by Brown and Low (1996).

White noise models with fixed variance do occur as local limits of experi-
ments in root-n consistent nonparametric problems [Millar (1979)], and, via
specific renormalizations, also in non-root-n consistent curve estimation [Low
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(1992) and Donoho and Low (1992)]. Thus various central limit theorems for
i.i.d. experiments can be embedded in a relatively simple and closed-form ap-
proximation by (4). Moreover, for the density f itself and for log f we also give
Gaussian approximations which are “heteroscedastic” in analogy to (5); see
Remark 2.8 and Corollary 3.3.

The paper is organized as follows. The basic results are developed in an
overview fashion in Sections 2 and 3, which may suffice for a first reading.
By default, proofs or technical comments for all statements are to be found in
Sections 4–10.

In Section 2 we develop the basic approximation of likelihood ratios over
shrinking neighborhoods of a given density f0. These neighborhoods 6n�f0�
are already “nonparametric,” in the sense of shrinking slower than n−1/2. For
proving this, we partition the sample space �0;1� into small intervals and
obtain a product experiment structure via Poissonization. The Gaussian ap-
proximation is then argued via the “space-local” empirical process on the small
intervals; piecing this together on �0;1� yields the basic parameter-local Gaus-
sian approximation over f ∈ 6n�f0�. Once in a Gaussian framework, we ma-
nipulate likelihood ratios to obtain other approximations, in particular the one
with trend f1/2. For these experiments, which are all Gaussian, we use the
methodology of Brown and Low (1996), who compared the white noise model
with its discrete version (the Gaussian regression model).

It remains to piece together the parameter-local approximations using a
preliminary estimator; this is the subject of Section 3. Our method of global-
ization is somewhat different from Le Cam’s, which works in the parametric
case; the concept of metric entropy or dimension and related theory are not
utilized. But obviously these methods, which already have proved fruitful in
nonparametrics, have a potential application here as well.

Our results are nonconstructive in spirit; that is, they are estimates of the
1-distance which imply asymptotic risk bounds. The question of a constructive
recipe for procedures, as obtained by Brown and Low (1996), is more complex
to treat in the present case. Nevertheless, application to the theory of asymp-
totic minimax constants in nonparametrics is possible. We do not develop this
here, but a possible first exercise would be to derive the result of Efroimovich
and Pinsker (1982) on density estimation with L2-loss over Sobolev classes
from Pinsker’s (1980) result in the white noise model. Since the deficiency dis-
tance refers to loss functions which are uniformly bounded, one would use the
version of Pinsker’s result for bounded L2-related loss [cf. Tsybakov (1994)].
For a recent account of exact constants for L2-loss over ellipsoids see Belitser
and Levit (1995).

This application is limited in scope by the fact that our critical smooth-
ness 1/2 is for Hölder classes, so that for Sobolev classes it comes out as 1.
For Gaussian nonparametric regression [Brown and Low (1996)], the limit is
actually 1/2 in the Sobolev (or Besov B1/2

2;2) sense, but it is not clear if this
holds in the i.i.d. model. Another result which can be carried over to density
estimation is the L∞-analog of Pinsker’s constant, found by Korostelev (1993).
The details for this case, where the Hölder classes are natural, are developed
in Korostelev and Nussbaum (1996).
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As a basic text for the asymptotic theory of experiments we refer to Strasser
(1985). We use C as a generic notation for positive constants; for sequences
the symbol an � bn means the usual equivalence in rate, while an ∼ bn means
an = bn�1+ o�1��.

2. The local approximation. Our first Gaussian approximation will be
established in a parameter-local framework. Suppose we have i.i.d. observa-
tions yi, i = 1; : : : ; n; with distribution Pf having Lebesgue density f on the
interval �0;1�, and it is known a priori that f belongs to a set of densities 6.
Henceforth in the paper we will set 6 = 6α;M;ε for some ε > 0; M > 0 and
α > 1/2.

Let � · �p denote the norm in the space Lp(0, 1), 1 ≤ p ≤ ∞. Let γn be the
sequence

γn = n−1/4�log n�−1;(6)

and for any f0 ∈ 6 define a class 6n�f0� by

6n�f0� =
{
f ∈ 6x

∥∥∥∥
f

f0
− 1

∥∥∥∥
∞
≤ γn

}
:(7)

For given f0 ∈ 6 we define a local (around f0) product experiment

E0; n�f0� =
(
�0; 1�n;Bn

�0;1�; �P⊗nf ; f ∈ 6n�f0��
)
:(8)

Let F0 be the distribution function corresponding to f0, and let

K�f0�f� = −
∫

log
f

f0
dF0

be the Kullback–Leibler relative entropy. Let W be the standard Wiener pro-
cess on �0;1�, and consider an observed process

y�t� =
∫ t

0
log

f

f0
�F−1

0 �u��du+ tK�f0�f� + n−1/2W�t�; t ∈ �0; 1�:(9)

Let Qn;f;f0
be the distribution of this process on the function space C�0;1�

equipped with its Borel σ-algebra BC�0;1� , and let

E1; n�f0� =
(
C�0;1�;BC�0;1�; �Qn;f;f0

; f ∈ 6n�f0��
)

(10)

be the corresponding experiment when f varies in the neighborhood 6n�f0�.

Theorem 2.1. Define 6n�f0� as in (7) and (6). Then

1�E0;n�f0�;E1;n�f0�� → 0 as n→∞

uniformly over f0 ∈ 6.
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The proof is based upon the following principle, described in Le Cam and
Yang [(1990), page 16]. Consider two experiments Ei = ��i, Ai, �Pi;ϑ;ϑ ∈
2��, i = 0, 1, having the same parameter set 2. Assume there is some point
ϑ0 ∈ 2 such that all the Pi;ϑ are dominated by Pi;ϑ0

, i = 0, 1, and form
3i�ϑ� = dPi;ϑ/dPi;ϑ0

. Consider 3i = �3i�ϑ�, ϑ ∈ 2� as stochastic processes
indexed by ϑ given on the probability space ��i, Ai, Pi;ϑ0

�. By a slight abuse
of language, we call these the likelihood processes of the experiments Ei (note
that the distribution is taken under Pi;ϑ0

here). Suppose also that there are
versions 3∗i of these likelihood processes defined on a common probability
space (�, A , P).

Proposition 2.2. The deficiency distance 1(E0, E1) satisfies

1�E0;E1� ≤ sup
ϑ∈2

EP�3∗0�ϑ� − 3∗1�ϑ��:

Proof. It is one of the basic facts of Le Cam’s theory that, for dominated
experiments, the equivalence class is determined by the distribution of the
likelihood processes under Pi;ϑ0

when ϑ0 is assumed fixed. This means that
in the above framework we have 1�E0;E1� = 0 iff L �30�P0;ϑ0

� = L �31�P1;ϑ0
�.

Thus, if we construct an experiment E∗i with likelihood process 3∗i , we obtain
equivalence: 1�Ei, E∗i� = 0. The random variables 3∗i �ϑ� on ��;A ;P� have
the same distributions as 3i�ϑ� on ��i, Ai, Pi;ϑ0

�, for all ϑ ∈ 2; hence they
are positive and integrate to 1. They may hence be considered as P-densities
on ��;A �, indexed by ϑ. These densities define measures P∗i;ϑ on (�, A )
and experiments E∗i = ��, A , �P∗i;ϑ, ϑ ∈ 2��, i = 0, 1. By construction,
the likelihood process for E∗i is 3∗i �ϑ�, so 1�Ei, E∗i� = 0, i = 0, 1. Hence 1�E0,
E1� = 1�E∗0, E∗1�, and E∗0 and E∗1 are given on the same measurable space (�, A ).
In this case, an upper bound for the deficiency distance is

1�E∗0;E∗1� ≤ sup
ϑ∈2
�P∗0;ϑ −P∗1;ϑ�;

where �·� is the total variation distance between measures [in (68), Section
9, take the identity map as a transition M]. But �P∗0;ϑ −P∗1;ϑ� coincides with
EP�3∗0�ϑ� − 3∗1�ϑ��, which is just an L1-distance between densities. 2

The argument may be summarized as follows: versions 3∗i of the likelihood
processes on a common probability space generate (equivalent) versions of the
experiments on a common measurable space for which 3∗i �ϑ� are densities.
Their L1-distance bounds the deficiency.

When 3∗i �ϑ� are considered as densities it is natural to employ also their
Hellinger distance H�·; ·�; extending the notation we write

H2�3∗0�ϑ�; 3∗1�ϑ�� = EP
(
�3∗0�ϑ��1/2 − �3∗1�ϑ��1/2

)2
:(11)

Making use of the general relation of Hellinger distance to L1-distance, we
obtain

12�E∗0;E∗1� ≤ 4 sup
ϑ∈2

H2�3∗0�ϑ�; 3∗1�ϑ��:(12)
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In the sequel we will work basically with this relation to establish asymptotic
equivalence. For our problem, we identify ϑ = f;ϑ0 = f0, 2 = 6n�f0�, P0;ϑ =
P⊗nf and P1;ϑ = Qn;f;f0

. Furthermore, we represent the observations yi as
yi = F−1�zi�, where zi are i.i.d. uniform (0, 1) random variables and F is the
distribution function for the density f (note that F is strictly monotone for
f ∈ 6�. Let Un be the empirical process of z1; : : : ; zn, that is,

Un�t� =
1√
n

n∑
i=1

�χ�0; t��zi� − t�; t ∈ �0;1�:

Note that E0; n�f0� is dominated by P⊗nf0
; then the likelihood process is

30; n�f;f0� = exp
n∑
i=1

log
{
f

f0
�F−1

0 �zi��
}
:

Defining

λf;f0
�t� = log

{
f

f0
�F−1

0 �t��
}

(13)

and observing that
∫
λf;f0

�t�dt = −K�f0�f�;

we then have the following representation:

30; n�f; f0� = exp
{
n
∫
λf;f0

�t� 1√
n
dUn�t� − nK�f0�f�

}
:(14)

This suggests a corresponding Gaussian likelihood process: substitute Un by
a Brownian bridge B and renormalize to obtain integral 1. We thus form, for
a uniform(0, 1) random variable Z,

31; n�f;f0� = exp
{
n
∫
λf;f0

�t� 1√
n
dB�t� − n

2
Var�λf;f0

�Z��
}
:(15)

For an appropriate standard Wiener process W we have
∫
λf;f0
�t�dB�t� =

∫
�λf;f0

�t� +K�f0 � f��dW�t�:

By rewriting the likelihood process 31;n�f;f0� accordingly, we see that it cor-
responds to observations (9) or, equivalently, to

dy�t� = �λf;f0
�t� +K�f0�f��dt+ n−1/2 dW�t�; t ∈ �0;1�;(16)

at least when the parameter space is 6. Thus 31; n�f;f0� is in fact the likeli-
hood process for E1; n�f0� in (10).

To find nearby versions of these likelihood processes, fulfilling

sup
f∈6n�f0�

H2 (3∗0;n�f;f0�; 3∗1;n�f;f0�
)
→ 0;(17)
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it would be natural to look for versions of Un and B on a common proba-
bility space (Un and Bn, say) which are close, such as in the classical Hun-
garian construction [see Shorack and Wellner (1986), Chapter 12, Section 1,
Theorem 2]. However, the classical Hungarian construction [Komlós–Major–
Tusnady (KMT) inequality] gives an estimate of the uniform distance �Un −
Bn�∞ which for our purpose is not optimal. The reason is that the uniform
distance may be construed as

�Un − Bn�∞ = sup
g∈G

∣∣Un�g� − Bn�g�
∣∣ ;

where G is a class of indicators of subintervals of �0;1�. Considering more gen-
eral classes of functions G leads to functional KMT type results [see Koltchin-
skii (1994) and Rio (1994)]. However, for an estimate (17) we need to control
the random difference Un�g�−Bn�g� only for one given function (λf;f0

in this
case), with a supremum over a function class only after taking expectations
[cf. the remark of Le Cam and Yang (1990), page 16]. Thus for our purpose
we ought to use a functional KMT type inequality for a one-element function
class G = �g�, but where the same constants and one Brownian bridge are still
available over a class of smooth g. Such a result is provided by Koltchinskii
[(1994), Theorem 3.5]. We present a version slightly adapted for our purpose.
Let L2�0;1� be the space of all square integrable measurable functions on
�0;1�, and let �·�H1/2

2
be the seminorm associated with a Hölder condition with

exponent 1/2 in the L2-sense (see Section 5 for details).

Proposition 2.3. There are a probability space ��, A , P) and a number C
such that for all n there are versions of the uniform empirical process Un�g� and
of the Brownian bridge Bn�g�, g ∈ L2�0;1�, such that for all g with �g�∞ <∞,
�g�H1/2

2
<∞ and, for all t ≥ 0,

P
(
n1/2�Un�g� − Bn�g�� ≥ C��g�∞ + �g�H1/2

2
��t+ log n� log1/2 n

)
≤ C exp�−t�:

Specializing g = λf;f0
−
∫
λf;f0

, we come close to establishing relation (17)
for the likelihood processes, but we need an assumption that the neighbor-
hoods 6n�f0� shrink with rate o�n−1/3�. Comparing this with the usual non-
parametric rates of convergence, we see that such a result is useful only for
smoothness α > 1. To treat the case α > 1/2, however, we need neighborhoods
of size o�n−1/4�.

To obtain such a result, it is convenient, rather than using the Hungarian
construction globally on �0;1�, to subdivide the interval and use a correspond-
ing independence structure (approximate or exact) of both experiments. In this
connection the following result is useful [see Strasser (1985), Lemma 2.19].

Lemma 2.4. Suppose that Pi and Qi are probability measures on a mea-
surable space (�i, Ai�, for i = 1; : : : ; k. Then

H2
( k⊗
i=1

Pi;
k⊗
i=1

Qi

)
≤ 2

k∑
i=1

H2�Pi;Qi�:
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Consider a partition of �0;1� into subintervalsDj. The Gaussian experiment
E1; n�f0� has a convenient independence structure: in the representation (16),
observations on the signal λf;f0

�t� + K�f0�f� are independent on different
pieces Dj. A corresponding approximate product structure for the i.i.d. ex-
periment E0; n�f0� will be established by Poissonization. Let E0; j; n�f0� be the
experiment given by observing “interval censored” observations

yiχDj
�yi�; yi i. i. d. with density f, i = 1; : : : ; n;(18)

with f ∈ 6n�f0�. We use the symbol
⊗

for products of experiments having the
same parameter space.

Proposition 2.5. Let kn be a sequence with kn →∞, and consider a par-
tition Dj = ��j− 1�/kn; j/kn�; j = 1; : : : ; kn. Then

1

(
E0; n�f0�;

kn⊗
j=1

E0; j; n�f0�
)
→ 0

uniformly over f0 ∈ 6.

Our choice of kn will be

kn ∼ n1/2/ log3/2 n:(19)

For each Dj we form a local likelihood process 30; j; n�f;f0�, as the likeli-
hood process for observations in (18) for given j, and establish a Gaussian
approximation like (17) with a rate. Let Aj = F0�Dj� and let E1; j; n�f0� be
the Gaussian experiment

dy�t� = χAj
�t� �λf;f0

�t� +K�f0�f��dt+ n−1/2 dW�t�; t ∈ �0;1�;(20)

with parameter space 6n�f0�. Let 31; j; n�f;f0� be the corresponding likelihood
process.

Proposition 2.6. On the probability space ��;A ;P� of Proposition 2.3,
there are versions 3∗i; j; n�f;f0�, i = 0, 1, such that

sup
f∈6n�f0�

H2(3∗0; j; n�f;f0�; 3∗1; j; n�f;f0�
)
= O�γ2

n�log n�3�(21)

uniformly over j = 1; : : : ; kn and f0 ∈ 6.

This admits the following interpretation. Define mn = n/kn; in our setting
this is the stochastic order of magnitude of the number of observations yi
falling into Dj. Thus for the local likelihood process 30; j; n�f;f0� the number
mn represents an “effective sample size” in a rate sense. In view of (6) and (19)
we have γn ∼m−1/2

n �log n�−1/4, and since this is the shrinking rate of 6n�f0� in
the uniform norm, it is also the shrinking rate of this set of densities restricted
to Dj, and of the corresponding set of conditional densities. Thus in a sense
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we are “almost” in a classical setting with sample size mn and a root-mn

shrinking neighborhood. Result (21) implies

1�E0; j; n�f0�;E1; j; n�f0�� = O�m−1/2
n �log n�5/4�;(22)

that is, we have a root-mn rate up to a log term. Note that here we have intro-
duced a “space-local” aspect in addition to the already present parameter-local
one. In piecing together these space-local approximations, we will crucially
use the product measure estimate of Lemma 2.4. This motivates our choice
to work with the Hellinger distance for the likelihood processes construed as
densities.

Proof of Theorem 2.1. The Gaussian experiment E1; n�f0� decomposes
exactly:

1

(
E1; n�f0�;

kn⊗
j=1

E1; j; n�f0�
)
= 0:

According to (12) and Lemma 2.4 we have

12
( kn⊗
j=1

E0; j; n�f0�;
kn⊗
j=1

E1; j; n�f0�
)

≤ 4 supf∈6n�f0�
∑kn
j=1H

2
(
3∗0;j;n�f;f0�; 3∗1; j; n�f;f0�

)
:

By Proposition 2.6 this is bounded by

O

(
knγ

2
n�log n�3

)
= O

(
�log n�−1/2

)
= o�1�;

and these estimates hold uniformly over f0 ∈ 6. 2

Low (1992) considered experiments given by local (on Dj) perturbations
of a fixed density f0 and applied a local asymptotic normality argument to
obtain strong convergence to a Gaussian experiment. This amounts to having
(22) without a rate, and it is already useful for a number of nonparametric
decision problems, like estimating the density at a point. Golubev (1991) used
a similar argument for treating estimation with L2-loss.

We are now able to identify several more asymptotically equivalent models.
This is based on the following reasoning, applied by Brown and Low (1996) to
compare Gaussian white noise models. Consider the measure of the process
n−1/2 W�t�, t ∈ �0;1�, shifted by a function

∫ t
0 gi; i = 1, 2, where gi ∈ L2�0;1�;

call these measures Pi. Then

H2�P1;P2� = 2
(
1− exp

{
−n

8
�g1 − g2�22

})
:(23)

If (gi;ϑ, ϑ ∈ 2), i = 1, 2, are two parametric families, then the respective ex-
periments are asymptotically equivalent if �g1;ϑ−g2;ϑ�2 = o�n−1/2� uniformly
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over ϑ ∈ 2. In the Gaussian experiment E1;n�f0� of (16), the shift is essen-
tially a log-density ratio. We know that log�f/f0� is small over f ∈ 6n�f0�;
expanding the logarithm, we get asymptotically equivalent experiments with
parameter space 6n�f0�.

Accordingly, let E2;n�f0� be the experiment given by observations

dy�t� = �f�t� − f0�t��dt+ n−1/2f
1/2
0 �t�dW�t�; t ∈ �0;1�;(24)

with parameter space 6n�f0�, and let E3; n�f0� correspondingly be given by

dy�t� = �f1/2�t� − f1/2
0 �t��dt+ 1

2n
−1/2 dW�t�; t ∈ �0;1�:(25)

Theorem 2.7. The experiments Ei; n�f0�, i = 1, 2, 3, are asymptotically
equivalent, uniformly over f0 ∈ 6.

Remark 2.8. The equivalence class of E2; n�f0� is not changed when the
additive term −f0�t�dt in (24) is omitted, since this term does not depend
on the parameter f, and omitting it amounts to a translation of the observed
process y by a known quantity. Moreover, in the proof below it will be seen that
in the representation (16) of E1; n�f0� the term K�f0�f�dt is asymptotically
negligible. Analogous statements are true for the other variants; hence locally
asymptotically equivalent experiments for f ∈ 6n�f0� (with uniformity over
f0 ∈ 6) are also given by the following:

yi; i = 1; : : : ; n i.i.d. with density f;(26)

dy�t� = log f�F−1
0 �t��dt+ n−1/2 dW�t�; t ∈ �0;1�y(27)

dy�t� = f�t�dt+ n−1/2f
1/2
0 �t�dW�t�; t ∈ �0;1�y(28)

dy�t� = f1/2�t�dt+ 1
2n
−1/2 dW�t�; t ∈ �0;1�:(29)

Note that (28) is related to the weak convergence of the empirical distribu-
tion function F̄n,

n1/2 (F̄n −F
)
⇒ B ◦F:

Indeed, arguing heuristically, when F is in a shrinking neighborhood of F0
we have B ◦F ≈ B ◦F0, while F̄n is a sufficient statistic. We obtain

F̄n ≈ F+ n−1/2B ◦F0;

which suggests a Gaussian accompanying experiment (28). This reasoning is
familiar as a heuristic introduction to limiting Gaussian shift experiments,
when neighborhoods are shrinking with rate n−1/2. However, our neighbor-
hoods f ∈ 6n�f0� are larger [recall γn = n−1/4�log n�−1].
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3. From local to global results. The local result concerning a shrink-
ing neighborhood of some f0 is of limited value for statistical inference since
usually such prior information is not available. Following Le Cam’s general
principles, we shall construct an experiment where the prior information is
furnished by a preliminary estimator, and subsequently the local Gaussian
approximation is built around the estimated parameter value.

To formalize this approach, let Nn define a “fraction of the sample size;”
that is, Nn is a sequence Nn → ∞; Nn < n, and consider the corresponding
fraction of the sample y1; : : : ; yNn

. Then let f̂n be an estimator of f based on
this fraction, fulfilling (with Pn;f the pertinent measure)

inf
f∈6

Pn;f�f̂n ∈ 6n�f�� → 1:(30)

The set 6 must be such that the shrinking rate of 6n�f� is an attainable
rate for estimators. If f has a bounded derivative of order α, we have for f
an attainable rate in sup norm �n/ log n�−α/�2α+1� [see Woodroofe (1967)]. The
required sup norm rate is γn = o�n−1/4�; this corresponds to α > 1/2. Thus we
may expect for the Hölder smoothness classes assumed here that the rate γn
is attainable if the size Nn of the fraction is sufficiently large. We will allow
for a range of choices:

n/ log n ≤Nn ≤ n/2:(31)

Define E0; n to be the original i.i.d. experiment (3) with global parameter
space 6.

Lemma 3.1. Suppose (31) holds. Then in E0; n there exists a sequence of

estimators f̂n depending only on y1; : : : ; yNn
fulfilling (30). One may assume

that for each n the estimator takes values in a finite subset of 6.

The proof is in Section 8. The following construction of a global approx-
imating experiment assumes such an estimator sequence fixed. The idea is
to substitute f̂n for f0 in the local Gaussian approximation and to retain the
first fraction of the i.i.d. sample. Recall that our local Gaussian approximations
were given by families �Qn;f;f0

, f ∈ 6n�f0�� [cf. (10)]. Note that f ∈ 6n�f0�
is essentially the same as f0 ∈ 6n�f�. Accordingly we now consider the event
f̂n ∈ 6n�f� and let f range in the unrestricted parameter space 6. We look at
the second sample part, of size n−Nn, with its initial i.i.d family (P⊗�n−Nn�

f ,
f ∈ 6). Based on the results of the previous section, we can hope that this
family will be close, in the experiment sense, to the conditionally Gaussian
family (Qn−Nn; f; f̂n

, f ∈ 6), on the event f̂n ∈ 6n�f�. The measures Qn;f; f̂n
,

which now depend on f̂n, have to be interpreted as conditional measures, and
we form a joint distribution with the first sample fraction.

This idea is especially appealing when the locally approximating Gaussian
measure Qn;f;f0

does not depend on the “center” f0. In this case the resulting
global experiment will have a convenient product structure, as we shall see.



ASYMPTOTIC EQUIVALENCE 2411

This is the case with the variant (29) in Remark 2.8, when we parametrize
with f1/2.

To be more precise, define Qi; n; f; f0
, i = 1, 2, 3, to be the distributions of

(y�t�, t ∈ �0;1�) in (27)–(29). Consider a “compound experiment” given by joint
observations y1; : : : ; yNn

and y = �y�t�; t ∈ �0;1��, where

y1; : : : ; yNn
are i.i.d. with density f;(32)

L �y�y1; : : : ; yNn
� = Qi; n−Nn; f; f̂n

:(33)

Here (33) describes the conditional distribution of y given y1; : : : ; yNn
. Define

Ri; n; f�f̂� to be the joint distribution of y1; : : : ; yNn
and y in this setup, for

i = 1, 2, 3; the notation signifies dependence on the sequence of decision
functions f̂ = �f̂n�n≥1 (not dependence on the estimator value). Then the
compound experiment is

Ei;n�f̂� =
(
�0;1�Nn ×C�0;1�;B

Nn

�0;1� ⊗BC�0;1�; �Ri; n; f�f̂�; f ∈ 6�
)
:

Since Q3; n; f; f0
= Q3; n; f does not depend on f0, the measure R3; n; f�f̂� =

R3; n; f does not depend on f̂ either and is just the product measure P⊗Nn

f ⊗
Q3; n−Nn; f

. We also write E3; n�f̂� = E3; n. The technical implementation of the
above heuristic reasoning (see Section 9) gives the following result.

Theorem 3.2. Suppose (31) holds and let f̂n be a sequence of estimators as
in Lemma 3.1. Then, for i = 1, 2, 3,

1�E0; n;Ei; n�f̂�� → 0:

To restate this in a more transparent fashion, we refer to y1; : : : ; yNn
and

y = �y�t�, t ∈ �0;1�� in (32) and (33) as the first and second parts of the
compound experiment, respectively. Let F̂n be the distribution function corre-
sponding to the realized density estimator f̂n.

Corollary 3.3. Under the conditions of Theorem 3.2, the compound exper-
iments with first part

yi; i = 1; : : : ;Nn; i.i.d. with density f(34)

and respective second parts

yi; i =Nn + 1; : : : ; n; i.i.d.with density f;(35)

dy�t� = log f�F̂−1
n �t�� + �n−Nn�−1/2 dW�t�; t ∈ �0;1�;(36)

dy�t� = f�t�dt+ �n−Nn�−1/2f̂1/2
n �t�dW�t�; t ∈ �0;1�;(37)

dy�t� = f1/2�t�dt+ 1
2�n−Nn�−1/2dW�t�; t ∈ �0;1�;(38)

with f ∈ 6 are all asymptotically equivalent.
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For obtaining a closed-form global approximation, the compound experi-
ment E3; n [i.e., (34), (38)] is the most interesting one, in view of its product
structure and independence of f̂. Here the estimator sequence f̂ only serves
to show asymptotic equivalence to E0; n; it does not show up in the target ex-
periment E3; n itself. This structure of E3; n suggests employing an estimator
based on the second part for a next step.

Lemma 3.4. Suppose (31) holds. Then in E3; n there exists a sequence of
estimators f̌n depending only on y in (38) fulfilling (30). The second statement
of Lemma 3.1 also applies.

Note the similarity to Lemma 3.1. Here we exploit the well-known paral-
lelism of density estimation and white noise on the rate of convergence level.

Proof of Theorem 1.1. We choose Nn = �n/2�. On the resulting com-
pound experiment E3;n we may then operate again, reversing the roles of first
and second part. We may in turn substitute y1; : : : ; yNn

by a white noise
model, using a preliminary estimator based on (38). The existence of such an
estimator is guaranteed by the previous lemma. Thus substituting y1; : : : ; yNn

by white noise leads to an experiment with joint observations

dy1�t� = f1/2�t�dt+ 1
2N
−1/2
n dW1�t�; t ∈ �0;1�;

dy2�t� = f1/2�t�dt+ 1
2�n−Nn�−1/2 dW2�t�; t ∈ �0;1�;

where W1 and W2 are independent Wiener processes. A sufficiency argument
shows this is equivalent to observing n i.i.d. processes, each distributed as

dy�t� = f1/2�t�dt+ 1
2 dW�t�; t ∈ �0;1�;

which in turn is equivalent to (4). 2

4. Poissonization and product structure. For the proof of Proposition
2.5 we need some basic concepts from the theory of point processes [see Reiss
(1993)]. A point measure on �R;B� is a measure µx B 7→ �0;∞� of form µ =∑
i∈I µxi , where I ⊂ N, xi are points in R and µx is Dirac measure at x. A point

process is a random variable on a probability space ��;A ;P� with values in
the space of point measures M equipped with the appropriate σ-algebra M
[see Reiss (1993), page 6]. If Y = �yi, i = 1, 2; : : :� is a sequence of i.i.d.
r.v.’s, then the random measure µ0;n =

∑n
i=1 µyi is called an empirical point

process. More generally if ν is a random natural number independent of Y,
then µ = ∑ν

i=1 µyi is a mixed empirical point process. In particular, if ν = πn
is Poisson�n�, then µ∗; n =

∑πn
i=1 µyi is a Poisson process which has intensity

function nf if y1 has density f. If f and f0 are two densities for y1 such
that Pf � Pf0

and the law of ν is given, then it is possible to write down
densities for the distributions 5f x= L �µ � Pf� of the mixed empirical point
process µ. For the case of the empirical and the Poisson point process (ν = n or
ν = πn) we shall denote these distributions, respectively, by 50; n; f and 5∗; n; f.
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For observations �ν, yi, i = 1; : : : ; ν� write the likelihood ratio for hypotheses
(Pf, L �ν�) versus (Pf0

, L �ν�),
ν∏
i=1

�f/f0��yi� = exp
∫

log�f/f0�dµ:(39)

This is a function of µ which can be construed as a density of the point process
law 5f on �M;M ;5f0

� or as a likelihood process when f varies. Note that for
different L �ν� these densities are defined on different probability spaces, since
the respective laws 5f0

differ. However, let ��;A ;P� = ��0;1�∞;B∞�0;1�; λ⊗∞�,
where λ is Lebesgue measure on �0;1�, and let Y and ν be defined on that
space (as independent r.v.’s). Then (39) also describes versions on the proba-
bility space ��;A ;P�, which is common for different L �ν�. For the case of the
empirical and the Poisson point process (ν = n or ν = πn) we shall denote these
likelihood processes, respectively, by 30; n�f;f0��ω� and 3∗; n�f;f0��ω�. The
experiments defined by these versions construed as P-densities are then equiv-
alent to the respective point process experiments, for any parameter space. In
particular, the empirical point process experiment (with laws 50; n; f) is equiv-
alent to the original i.i.d. experiment with n observations; µ0; n =

∑n
i=1 µyi is

a sufficient statistic.
For our particular parameter space 6n�f0� define the Poisson process ex-

periment

E∗;n�f0� = �M;M ; �5∗;n;f; f ∈ 6n�f0���

and recall the definition (8) of the i.i.d. experiment E0; n�f0�.

Proposition 4.1. We have

1�E0; n�f0�;E∗; n�f0�� → 0

uniformly over f0 ∈ 6.

Proof. We use an argument adapted from Le Cam (1985). It suffices to
establish that

H2�30; n�f;f0�; 3∗; n�f;f0�� = O�n1/2γ2
n�

uniformly over f ∈ 6n�f0�; f0 ∈ 6. With νmin = min�πn; n� and νmax =
max�πn; n� we get

H2�30; n�f;f0�; 3∗; n�f;f0�� = EP
( n∏
i=1

�f/f0�1/2�yi� −
πn∏
i=1

�f/f0�1/2�yi�
)2

= EP
νmin∏
i=1

�f/f0��yi�
( νmax∏
i=νmin+1

�f/f0�1/2�yi� − 1
)2

:
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Consider first the conditional expectation when πn is given; since yi are inde-
pendent it is

EP

(( νmax∏
i=νmin+1

�f/f0�1/2�yi� − 1
)2∣∣∣∣πn

)
:

This can be construed as the squared Hellinger distance of two product densi-
ties, one of which has νmax− νmin = �πn−n� factors and the other has as many
factors equal to unity. Applying Lemma 2.4, we get an upper bound

2
νmax∑

i=νmin+1

EP
((
�f/f0�1/2�yi� − 1

)2∣∣πn
)
≤ 2 �πn − n� γ2

n:

Taking an expectation and observingE�πn−n� ≤ Cn1/2 completes the proof. 2

If µ is a point process and D a measurable set, then define the truncated
point process

µD�B� = µ�B ∩D�; B ∈ B:

Let µ0; n;D and µ∗; n;D be truncated empirical and Poisson point processes on
�0;1�, respectively. The following Hellinger distance estimate is due to Falk
and Reiss (1992); see also Reiss [(1993), Theorem 1.4.2]:

H�L �µ0; n;D �f�;L �µ∗; n;D �f�� ≤
√

3Pf�D�:(40)

Proof of Proposition 2.5. By the previous proposition it suffices to es-
tablish that

1

(
E∗; n�f0�;

kn⊗
j=1

E0; j; n�f0�
)
→ 0(41)

uniformly over f0 ∈ 6. In E0; j; n�f0� we observe n i.i.d. truncated random
variables (18); their empirical point process is a sufficient statistic. Hence
µ0; n;Dj

(the truncated empirical point process for the original yi) is a sufficient
statistic also; let 50; j; n; f = L �µ0; n;Dj

�f� be the corresponding law. It follows
that each E0; j; n�f0� is equivalent to an experiment

E∗0; j; n�f0� = �M;M ; �50; j; n; f; f ∈ 6n�f0���:
Let 5∗; j; n; f = L �µ∗; n;Dj

�f� be the law of the truncated Poisson point process
and

E∗; j; n�f0� = �M;M ; �5∗; j; n; f; f ∈ 6n�f0���:
Then by the properties of the Poisson process, E∗; n�f0� is equivalent to

⊗knj=1E∗; j; n�f0�: It now suffices to show that

1

( kn⊗
j=1

E∗; j; n�f0�;
kn⊗
j=1

E∗0; j; n�f0�
)
→ 0
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uniformly over f0 ∈ 6. From Lemma 2.4 and (40) we obtain

H2
( kn⊗
j=1

5∗; j; n; f;
kn⊗
j=1

50; j; n; f

)
≤ 2

kn∑
j=1

H2�5∗; j; n; f;50; j; n; f� ≤ 6
kn∑
j=1

P2
f�Dj�

≤ 6 sup
1≤j≤kn

Pf�Dj�:

The functions f ∈ 6 are uniformly bounded, in view of the uniform Hölder
condition and

∫
f = 1. Hence Pf�Dj� → 0 uniformly in f ∈ 6 and j. 2

5. Empirical processes and function classes. From the point process
framework we now return to the traditional notion of the empirical process as
a normalized and centered random function. However, we consider processes
indexed by functions. Let zi; i = 1; : : : ; n, be i.i.d. uniform random variables
on �0;1�. Then

Un�f� = n1/2
(
n−1

n∑
i=1

f�zi� −
∫
f

)
; f ∈ L2�0;1�;

is the uniform empirical process. The corresponding Brownian bridge process
is defined as a centered Gaussian random function B�f�; f ∈ L2�0;1�, with
covariance

EB�f�B�g� =
∫
fg −

(∫
f

)(∫
g

)
; f;g ∈ L2�0;1�;

For any natural i, consider the subspace of L2�0;1� consisting of piecewise
constant functions on �0;1� for a partition [�j − 1�2−i, j2−i�, j = 1; : : : ;2i.
Let g�i� be the projection of a function g onto that subspace, and define, for
natural K,

qK�g� =
( K∑
i=0

2i
∥∥g − g�i�

∥∥2
2

)1/2

:

The following version of a KMT inequality is due to Koltchinskii [(1994),
Theorem 3.5] (specialized to a single element function class F there and to
K = log2 n).

Proposition 5.1. There are a probability space (�, A , P) and numbers C1,
C 2 such that for all n there are versions Un and Bn of the empirical process
and of the Brownian bridge such that, for all g ∈ L2�0;1� with �g�∞ ≤ 1 and
for all x, y ≥ 0,

P
(
n1/2

∣∣Un�g� − Bn�g�
∣∣ ≥ x+ x1/2y1/2�qlog2 n

�g� + 1�
)

≤ C1�exp�−C2x� + n exp�−C2y��:
(42)
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To set qK�g� in relation to a smoothness measure, consider functions g ∈
L2�0;1� satisfying, for some C,

∫ 1−h

h
�g�u+ h� − g�u��2du ≤ Ch for all h > 0:(43)

For a given g, define �g�2
H

1/2
2

as the infimum of all numbers C such that (43)

holds; it is easy to see that � · �H1/2
2

is a seminorm. The corresponding space
H

1/2
2 with norm � · �2 + � · �H1/2

2
coincides with the Besov space B1/2

2;∞ on �0;1�
[see Nikolskij (1975), 4.3.3, 6.2]. Furthermore [cf. Koltchinskii (1994), relation
(4.5)],

q2
K�g� ≤ 4K �g�2

H
1/2
2
:

Proof of Proposition 2.3. If g fulfills �g�∞ <∞, we divide by �g�∞, and
apply (42); furthermore, we set y = x + C−1

2 log n, x = C−1
2 t and obtain, from

(42),

2C1 exp�−t�
≥ P

(
n1/2

∣∣Un�g� − Bn�g�
∣∣ ≥ �g�∞ x+ x1/2y1/2�qlog2 n

�g� + �g�∞�
)

≥P�n1/2
∣∣Un�g�−Bn�g�

∣∣ ≥ �g�∞ x+x1/2y1/2�2 �g�H1/2
2
�log2 n�1/2+ �g�∞��

≥ P�n1/2
∣∣Un�g� − Bn�g�

∣∣ ≥ C��g�∞ + �g�H1/2
2
��t+ log n��log n�1/2�: 2

Lemma 5.2. There is a C such that, for all f ∈ 6n�f0�, f0 ∈ 6,
∥∥λf;f0

∥∥
∞ ≤ Cγn; λf;f0

∈ 3α�C�:

Proof. The first relation is obvious. For the second, note that F−1
0 has

derivative 1/f�F−1
0 �·��, and since f ≥ ε, we have F−1

0 ∈ 31�C�. Now write
λf;f0

as a difference of logarithms and again invoke f ≥ ε. 2

Next we have to consider the likelihood ratio for interval censored observa-
tions (18). We shall do this for a generic interval D ⊂ �0;1� of length k−1

n . We
wish to represent the observations via the quantile function F−1

0 in the usual
fashion; we therefore assume D = F−1

0 �A�, where A ⊂ �0;1�. Consider a class
of intervals, for given C1, C2 > 0,

!n = �Ax A = �a1; a2� ⊂ �0;1�; C1 ≤ kn mes�A� ≤ C2� :(44)

The assumption f0 ∈ 6 implies that f0 is uniformly bounded and bounded
away from zero. Hence mes�D� = k−1

n implies thatA = F0�D� ∈ !n for all f0 ∈
6 and appropriately chosen C1 and C2. The technical development will now be
carried out uniformly over all intervals A ∈ !n. We shall set Pf�F−1

0 �A�� = p,
Pf0
�F−1

0 �A�� = p0. The corresponding log-likelihood ratio under f0, expressed
as a function of a uniform�0;1� variable z, is then λf;f0;A

�z�, where

λf;f0;A
�t� = χA�t� log

f

f0
�F−1

0 �t�� + �1− χA�t�� log
1− p
1− p0

:(45)
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Since λf;f0;A
has jumps at the endpoints of A, it is not in a Hölder class

3α�M�; but it is in an L2-Hölder class, so that we can ultimately estimate
�λf;f0;A

�H1/2
2

and apply the KMT inequality of Proposition 2.3. We first need
some technical lemmas.

Lemma 5.3. There is a C such that, for all f ∈ 6n�f0�, f0 ∈ 6, A ∈ !n,

sup
t∈A
�λf;f0;A

�t�� ≤ Cγn; sup
t∈Ac

�λf;f0;A
�t�� ≤ Ck−1

n γn:

Proof. For t ∈ A we invoke the previous lemma. For t ∈ Ac we estimate
∣∣∣∣1−

p

p0

∣∣∣∣ ≤
∫
D �f− f0�∫

D f0
≤
∫
D �f/f0 − 1�f0∫

D f0
≤ γn:

In view of (44) we also have p0 � k−1
n ≤ 1/2; hence

∣∣∣∣1−
1− p
1− p0

∣∣∣∣ =
p0

1− p0

∣∣∣∣1−
p

p0

∣∣∣∣ ≤ Ck
−1
n γn:(46)

This implies a similar estimate for � log ��1− p�/�1− p0�� � and thus yields
the estimate for t ∈ Ac. 2

Lemma 5.4. There is a constant C such that, for all f ∈ 6n�f0�, f0 ∈ 6,
A ∈ !n,

∫
λ2
f;f0;A

≤ C �n log1/2 n�−1; −
∫
λf;f0;A

≤ C �n log1/2 n�−1:

Proof. From the previous lemma and (44) we obtain
∫
λ2
f;f0;A

=
∫
A
λ2
f;f0;A

+
∫
Ac
λ2
f;f0;A

≤ Ck−1
n γ

2
n +Ck−2

n γ
2
n ≤ Ck−1

n γ
2
ny(47)

hence, in view of (6) and (19),

n
∫
λ2
f;f0;A

≤ Cnk−1
n γ

2
n ≤ C�log n�−1/2:

To prove the second relation, define ϕ�t� = expλf;f0;A
�t�; then

∫
ϕ = 1, and

Lemma 5.3 implies �ϕ�t� − 1� ≤ Cγn uniformly. Hence

−n
∫
λf;f0;A

= −n
∫

logϕ ≤ n
∫
�1− ϕ+C�ϕ− 1�2� = Cn

∫
�ϕ− 1�2:

Here we treat the r.h.s. analogously to (47), using the fact that Lemma 5.3
remains true with ϕ− 1 in place of λ, so that

�48� n
∫
�ϕ− 1�2 ≤ C: 2

Lemma 5.5. There is a C such that, for all f ∈ 6n�f0�, f0 ∈ 6, A ∈ !n,

�λf;f0;A
�H1/2

2
≤ Cγn:
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Proof. It suffices to show
∫ 1−h

h
�λf;f0;A

�x+ h� − λf;f0;A
�x��2 dx ≤ Cγ2

nh for 0 < h < 1
2 :(49)

Let A = �a1; a2� and define A1;h = �a1+h;a2−h� and A2; h = �a1−h;a2+h�∩
�h;1−h� (here A1; h is empty for h > kn/2). The integral in (49) over �h;1−h�
will be split into integrals over A1;h, A2; h\A1; h and �h;1−h�\A2; h. According
to Lemma 5.2, λf;f0;A

fulfills a Hölder condition on A and is bounded by Cγn,
so that

∫
A1; h

�λf;f0;A
�x+ h� − λf;f0;;A

�x��2dx ≤ Cmin�h2α; γ2
n�k−1

n :

We have k−1
n ∼ γ2

n log7/2 n in view of (6) and (19), so that for the above we obtain
a bound Chγ2

n�min�h2α−1; h−1γ2
n� log7/2 n�. Since α > 1/2, the expression in

the curly brackets tends to zero uniformly in 0 < h < 1/2, as can be seen by
distinguishing the cases h ≤ γn and h ≥ γn. For the second integral, we use
the estimate �λf;f0;A

�∞ ≤ Cγn implied by Lemma 5.3 and obtain
∫
A2; h\A1; h

�λf;f0;A
�x+ h� − λf;f0;A

�x��2 dx ≤ Cγ2
nh:

Finally, note that λf;f0;A
is constant on �0;1� \A, so that

∫
�h;1−h�\A2; h

�λf;f0;A
�x+ h� − λf;f0;A

�x��2dx = 0:

Thus (49) is established. 2

6. The local likelihood processes. Consider now the likelihood process
for n observations (18) when Dj is replaced by the generic subinterval D =
F−1

0 �A� with A ∈ !n from (44). With n i.i.d. uniform�0;1� variables zi we get
an expression for the likelihood process

30;n�f;f0;A� = exp
{ n∑
i=1

λf;f0;A
�zi�

}
y(50)

for A = F0�Dj� this is the same as 30; j; n�f;f0� as defined after (19). Let

K�f0�f;A� = −
∫
λf;f0;A

�t�dt

denote the pertaining Kullback information number. We assume that Un and
Bn are sequences of uniform empirical processes and Brownian bridges which
both come from the Hungarian construction of Proposition 2.3. We obtain the
representation [cf. (14) and Proposition 2.6, suppressing the notational dis-
tinction of versions]

30;n�f;f0;A� = exp�n1/2 Un�λf;f0;A
� − n K�f0�f;A��:(51)
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The corresponding Gaussian likelihood ratio is [cf. (15)]

31; n�f;f0;A� = exp
{
n1/2 Bn�λf;f0;A

� − n
2

Var�λf;f0;A
�Z��

}
:(52)

Consider also an intermediary expression,

3#; n�f;f0;A� = exp�n1/2 Bn�λf;f0;A
� − n K�f0�f;A��:

The expression 3#;n�f;f0;A� is not normalized to expectation 1, but we con-
sider it as the density of a positive measure on the probability space ��;A ;P�.
The Hellinger distance H2�·; ·� is then naturally extended to these positive
measures.

Lemma 6.1. There is a C such that, for all f ∈ 6n�f0�, f0 ∈ 6, A ∈ !n,

EP�3i; n�f;f0;A��2 ≤ C; i = 0;1; EP�3#;n�f;f0;A��2 ≤ C:

Proof. Define [for a uniform �0;1� variable Z]

T10 = n K�f0�f;A�; T11 =
n

2
Var�λf;f0;A

�Z��;(53)

T20 = n1/2 Un�λf;f0;A
�; T21 = n1/2 Bn�λf;f0;A

�:(54)

Since T21 is a zero-mean Gaussian r.v., we have

EP exp�2T21� = exp�4T11�:
Hence

EP3
2
1; n = EP exp�2�T21 −T11�� = exp�2T11� ≤ exp�n

∫
λ2
f;f0;A

�:

Now from Lemma 5.4 we obtain the assertion for i = 1. For the case i = 0, we
get, from (50),

EP3
2
0; n = EP exp

{
2

n∑
i=1

λf;f0;A
�zi�

}
= �E exp�2λf;f0;A

�Z���n:

Now we have for ϕ�t� = exp�λf;f0;A
�t��

E exp�2λf;f0;A
�Z�� =

∫
�ϕ�t��2 dt = 1+

∫
�ϕ�t� − 1�2 dt ≤ 1+Cn−1

as a consequence of (48). Hence

EP3
2
0; n ≤ �1+Cn−1�n ≤ 2 expC;

so that the lemma is established for i = 0. Finally, to treat EP3
2
#; n, observe

that Lemma 5.4 implies that T10 and T11 are uniformly bounded. Hence

EP3
2
#; n = EP32

1; n exp�2�T12 −T11�� ≤ C: 2

The next lemma is the key technical step, bringing in the Hungarian con-
struction estimate of Proposition 2.3.
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Lemma 6.2. There is a C such that, for all f ∈ 6n�f0�, f0 ∈ 6, A ∈ !n,

H�30; n�f;f0;A�; 3#; n�f;f0;A�� ≤ Cγn�log n�3/2:

Proof. Define

T0 = n1/2�Bn − Un��λf;f0;A
�:

Combining Proposition 2.3 with Lemmas 5.3 and 5.5, we obtain

P��T0� ≥ Cγn�t+ log n� log1/2 n� ≤ C exp�−t�:
Set t = tn = 4 log n and, for the above C,

un = 5Cγn log3/2 n:

For an event

B = Bf;f0;A
= �ωx

∣∣T0

∣∣ ≤ un�;
we obtain an estimate

P�Bc� ≤ Cn−4:(55)

To treat H2�30; n; 3#; n�, split the expectation there into EPχB�·� and EPχBc�·�,
and observe

EPχBc�31/2
0; n − 3

1/2
#; n�2 ≤ 2EPχBc�30;n + 3#; n�

≤ 2
(
P�Bc�2EP�32

0; n + 32
#; n�

)1/2
:

According to the previous lemma EP�32
0; n + 32

#; n� is uniformly bounded, so
that (55) implies

EPχBc�31/2
0; n − 3

1/2
#; n�2 ≤ Cn−2:(56)

For the other part, observe that on ω ∈ B, in view of un = o�1�,
∣∣1− exp�T0/2�

∣∣ ≤ Cun;
so that, on ω ∈ B,

�31/2
0; n − 3

1/2
#; n�2 = �1− exp�T0/2��230; n ≤ Cu2

n30; n:

Since EP30;n = 1, we obtain

EPχB�31/2
0; n − 3

1/2
#; n�2 ≤ Cu2

n:

This completes the proof in view of (56) and n−2 = o�u2
n�. 2

Lemma 6.3. For all f ∈ 6n�f0�, f0 ∈ 6, A ∈ !n,

H�30; n�f;f0;A�; 31; n�f;f0;A�� ≤ 2H�30; n�f;f0;A�; 3#; n�f;f0;A��:
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Proof. Consider the space of random variables L2��, A , P� and note that
H�3#; n, 31; n� is the distance of 31/2

#; n and 31/2
1; n in that space. Furthermore,

3
1/2
1; n = 3

1/2
#; n�EP3#; n�−1/2

is the element of the unit sphere of L2��;A ;P� closest to 31/2
#; n. Since 31/2

0; n is
on the unit sphere, we have

H�3#; n; 31; n� ≤H�3#; n; 30; n�
and therefore

H�30; n; 31; n� ≤H�30; n; 3#; n� +H�3#; n; 31; n� ≤ 2H�30; n; 3#; n�: 2

Now let A = Aj = F0�Dj� and consider also the likelihood process
31; j; n�f;f0� of the Gaussian experiment E1; j; n�f0� of (20). Notice that this
differs from 31; n�f;f0;Aj� [cf. (52) and (45)]. We consider versions of both
likelihood processes which are functions of the Brownian bridge version B.

Lemma 6.4. There is a C such that, for all f ∈ 6n�f0�, f0 ∈ 6 and j =
1; : : : ; kn,

H�31; n�f;f0;Aj�; 31; j; n�f;f0�� ≤ Cγn log3/2 n:

Proof. The likelihood process 31; n�f;f0;Aj� is 31; n�f;f0� from (15) with
λf;f0

replaced by λf;f0;Aj
, so it corresponds to a Gaussian model

dy�t� = �λf;f0;Aj
�t� +K�f0�f;Aj��dt+ n−1/2 dW�t�; t ∈ �0;1�

with f ∈ 6n�f0� [cf. (16)]. Moreover, 31; j; n�f;f0� corresponds to the Gaussian
model (20). Hence the distance H�·; ·� between the likelihood processes on
��;A ;P� equals the Hellinger distance between the two respective shifted
Wiener measures. We may apply (23), setting

g1 = λf;f0;Aj
−
∫
λf;f0;Aj

; g2 = χAj

(
λf;f0

−
∫
λf;f0

)
:

To estimate g1 − g2, we note that, in view of (13) and (45),

g1 − g2 = χAc
j
λf;f0;Aj

− g̃; where g̃ =
∫
λf;f0;Aj

+ χAj

∫
λf;f0

:

We claim

�g̃�22 ≤ Cn−1γ2
n(57)

uniformly. Indeed, using the expansion

log x = log�1+ x− 1� = x− 1− 1
2�x− 1�2 + o��x− 1�2�(58)

and setting x = �f/f0�◦F−1
0 �t� and λ2; f; f0

= �f/f0�◦F−1
0 �t�−1, we note that,

for f ∈ 6n�f0�,
λf;f0

�t� = λ2; f; f0
�t� +O�γ2

n�(59)
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uniformly. Since
∫
λ2; f; f0

= 0, we obtain
∣∣∣
∫
λf;f0

∣∣∣ =K�f0�f� =
∫
�λ2; f; f0

− λf;f0
� ≤

∥∥λ2; f; f0
− λf;f0

∥∥
2
= O�γ2

n�:(60)

Furthermore, according to Lemma 5.4,
∣∣∣
∫
λf;f0;Aj

∣∣∣
2
≤ Cn−2 = n−1γ4

n log4 n:

In conjunction with (60) this implies

�g̃�22 ≤ C�n−1γ4
n log4 n+mes�Aj�γ4

n�;

where mes�Aj� = p0 = Pf0
�Dj�. Using p0 ≤ Ck−1

n and

k−1
n γ

4
n ∼ n−1�log n�−1/2γ2

n;

we obtain (57). Furthermore,

∥∥g1 − g2 + g̃
∥∥2

2 =
∥∥χAc

j
λf;f0;Aj

∥∥2
2 = �1− p0� log2 1− p

1− p0
;

where p = Pf�Dj�. Using (46) we find

�g1 − g2 + g̃�22 ≤ Ck−2
n γ

2
n = Cn−1γ2

n log3 n:(61)

By (23) the squared Hellinger distance is

2
(

1− exp
{
−n

8
�g1 − g2�22

})
;

and the lemma follows from (57) and (61). 2

Proof of Proposition 2.6. Consider 30; n�f;f0;A� for A=Aj and
identify this with 3∗0; j; n�f;f0�. Identify 31; j; n�f;f0� of Lemma 6.4 to
3∗1; j; n�f;f0�. The result then follows from Lemmas 6.2–6.4. 2

7. Further local approximations. Define functions

λ1; f; f0
= λf;f0

+K�f0�f�; λ2; f; f0
= �f/f0 − 1� ◦F−1

0 ;

λ3; f; f0
= 2��f/f0�1/2 − 1� ◦F−1

0

and experiments E#
i; n�f0� given by observations

dy�t� = λi; f; f0
�t�dt+ n−1/2 dW�t�; t ∈ �0;1�;(62)

and parameter space f ∈ 6n�f0�, for i = 1, 2, 3. We have seen that E#
1; n�f0� =

E1; n�f0� [cf. (16)].

Lemma 7.1. We have

1
(
E#
i;n�f0�;Ei; n�f0�

)
= 0; i = 1;2;3:
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Proof. The likelihood process for E#
i; n�f0� is

3i; n�f;f0� = exp
{
n
∫
λi; f; f0

1√
n
dW− n

2
�λi; f; f0

�22
}
; i = 1;2;3:

Define a process

W∗�t� =
∫ t

0
f
−1/2
0 d�W ◦F0�:

This is a centered Gaussian process with independent increments and vari-
ance at t given by

∫ t
0 f
−1
0 dF0 = t. Hence W∗ is a Wiener process, and we have,

for every continuous g on �0;1�,
∫
gf

1/2
0 dW∗ =

∫
gd�W ◦F0�:

Utilizing W∗ in (24), we get a likelihood process for E2; n�f0�,

exp
{
n
∫
�f− f0�f−1

0 n−1/2f
1/2
0 dW∗ − n

2

∫
�f− f0�2f−1

0

}

= exp
{
n
∫ ( f

f0
− 1

)
n−1/2 d�W ◦F0� −

n

2

∫ ( f
f0
− 1

)2

dF0

}

= 32; n�f;f0�:
Similarly for E3;n�f0� we obtain a likelihood process,

exp
{

4n
∫
�f1/2 − f1/2

0 �
1
2
n−1/2 dW∗ − 4n

2

∫
�f1/2 − f1/2

0 �2
}

= exp
{

2n
∫ (( f

f0

)1/2

− 1
)
n−1/2 d�W ◦F0� −

4n
2

∫ (( f
f0

)1/2

− 1
)2

dF0

}

= 33; n�f;f0�: 2

Proof of Theorem 2.7. It now remains to apply (23) to the measures
given by (62) when f ∈ 6n�f0�. We have to prove

sup
f∈6n�f0�

�λ1; f; f0
− λi; f; f0

�22 = o�n−1�(63)

for i = 2, 3, uniformly over f0 ∈ 6. Now (59) and (60) in the proof of Lemma
6.4 imply

�λf;f0
+K�f0�f� − λ2; f; f0

�22 = O�γ4
n� = O�n−1�log n�−4�;

which proves (63) for i = 2. For i = 3, note first that for f ∈ 6n�f0� we have
∥∥�f/f0�1/2 − 1

∥∥
∞ = O�γn�;

and use (58) with x = �f/f0�1/2 ◦F−1
0 �t� to obtain

λf;f0
�t� = 2 log�f/f0�1/2 ◦F−1

0 �t� = λ3;f;f0
�t� +O�γ2

n�(64)

uniformly. Now (64) and (60) imply (63) for i = 3. 2
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8. The preliminary estimator. Consider first an estimator based on the
whole sample. For attainable rates in the uniform norm we can employ the
kernel-type estimators used in the more delicate exact constant theory. Let
ψn = �log n/n�α/�2α+1�. The following result is shown in Korostelev and Nuss-
baum [(1996), Section 4].

Lemma 8.1. In the experiment E0; n there is an estimator f̃n and a κ > 0
such that

sup
f∈6

Pn;f
(∥∥f̃n − f

∥∥
∞ ≥ κ ψn

)
→ 0:

Proof of Lemma 3.1. Consider the estimator applied to a sample fraction
yi, i = 1; : : : ;Nn; call it f̃Nn

. Then, since α > 1/2,

ψNn
= �N−1

n logNn�α/�2α+1� ≤ �n−1 log�n/2� log n�α/�2α+1� = o�γn�:
This immediately implies

sup
f∈6

Pn;f

(
sup
t∈�0;1�

∣∣∣f�t� − f̃Nn
�t�
∣∣∣ > cγn

)
→ 0 for all c > 0:(65)

It is easy to verify that the quantity

µ6 = sup
f∈6
�f�∞(66)

is finite; this is a consequence of Hölder continuity in conjunction with
∫
�f� =

1. Note that the set 6 is compact in the uniform metric: indeed it is equicon-
tinuous and uniformly bounded according to (66), so compactness is implied
by the Arzela–Ascoli theorem. Now cover 6, by a finite set of uniform γn-balls
with centers in 6, and define 60; n to be the set of the centers. Define f̂n as the
element in 60; n closest to f̃Nn

(or in case of nonuniqueness, select an element
measurably). Analogously, for f ∈ 6 select a closest element gf ∈ 60; n. Then
we have

∥∥∥f̂n − f
∥∥∥
∞
≤
∥∥∥f̂n − f̃Nn

∥∥∥
∞
+
∥∥∥f̃Nn

− f
∥∥∥
∞

≤
∥∥∥gf − f̃Nn

∥∥∥
∞
+
∥∥∥f̃Nn

− f
∥∥∥
∞

≤
∥∥gf − f

∥∥
∞ + 2

∥∥∥f̃Nn
− f

∥∥∥
∞
≤ 2

∥∥∥f̃Nn
− f

∥∥∥
∞
+ γn:

Hence f̂n also satisfies (65), and it takes values in the finite set 60; n ⊂ 6.
From this we obtain immediately

sup
f∈6

Pn;f

(
sup
t∈�0;1�

∣∣∣f�t�/f̃Nn
�t� − 1

∣∣∣ > γn
)
→ 0

in view of the uniform bound f�t� ≥ ε for f ∈ 6. 2
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For Lemma 3.4, we first consider estimation of the signal (rather than its
root) in the white noise model. Again let ψn = �log n/n�α/�2α+1�.

Lemma 8.2. Consider an experiment given by observations

dy�t� = g�t�dt+ n−1/2 dW�t�; t ∈ �0;1�;(67)

with g ∈ 3α�M�. There one can find an estimator g̃n and a κ such that

sup
g∈3α�M�

Pn;g��g̃n − g�∞ ≥ κ ψn� → 0:

The proof could be analogous to Lemma 8.1, with simplifications due to
Gaussianity. Alternatively, we may refer to Korostelev (1993) or Theorem C
in Donoho (1994), where sharper results (optimal constants) are obtained.

Proof of Lemma 3.4. If g = f1/2 with f ∈ 6, then since f ∈ F≥ε,
∣∣f1/2�t� − f1/2�u�

∣∣ ≤ ε−1/2
∣∣f�t� − f�u�

∣∣ ;

so we obtain g ∈ 3α�ε−1/2M�. Also, by the previous argument we may assume
that g̃n takes values in a finite subset of �f1/2x f ∈ 6�. On the other hand, if
f̌n = g̃2

n, then
∣∣∣f̌n�t� − f�t�

∣∣∣ ≤
∣∣g̃n�t� + g�t�

∣∣ ∣∣g̃n�t� − g�t�
∣∣ :

Since both g̃n and g are in �f1/2x f ∈ 6� they are uniformly bounded by µ1/2
6

[cf. (66)], so that, for some κ,

sup
f∈6

Pn;f

(∥∥∥f̌n − f
∥∥∥
∞
≥ κ ψn

)
→ 0:

Finally, assume that f̌n is based on observations with noise intensity �n −
Nn�−1/2 instead of n−1/2 [i.e., based on (38)]. Then �n−Nn�−1/2 ≤ �n/2�−1/2 so
that attainable rates are not worse. As in Lemma 3.1 we now infer that the
estimator f̌n based on (38) fulfills (30). 2

9. Experiments and globalization. We collect some basic facts about
experiments and deficiencies following Strasser (1985) ([S] henceforth). Let
E1 = ��1, A1, �P1;ϑ, ϑ ∈ 2�� be an experiment and let L�E1� be the cor-
responding L-space (see [S], 41.4); L�E1� is a certain subspace of the set of
signed measures on ��1;A1� which is a Banach lattice under the variation
norm �·�. Let E2 = ��2;A2; �P2;ϑ;ϑ ∈ 2�� be another experiment with the
same parameter set 2 with L-space L�E2�. A transition from L�E1� to L�E2� is
a positive linear map with norm 1 [i.e., a linear map Mx L�E1� 7→ L�E2� such
that for σ ∈ E1, σ ≥ 0, one has Mσ ≥ 0 and �Mσ� = �σ�, cf. [S], 55.2]. Every
Markov kernel Kx �1 ×A2 7→ �0;1� defines a transition. For the definition of



2426 M. NUSSBAUM

the deficiency δ�E1;E2� of E1 with respect to E2 via decision problems, see [S],
Section 59. An equivalent characterization is ([S], 59.6)

δ�E1;E2� = inf
M

sup
ϑ∈2

∥∥MP1;ϑ −P2;ϑ

∥∥ ;(68)

where the infimum extends over all transitions from L�E1� to L�E2�. The two-
sided deficiency is

1�E1;E2� = max�δ�E1;E2�; δ�E2;E1��:
This defines a pseudodistance on the set of all experiments with parameter
space 2; in particular, the triangle inequality holds ([S], 59.2). Experiments
E1 and E2 are called equivalent (or of the same type) if 1�E1;E2� = 0.

We are interested in conditions under which every transition is given by a
Markov kernel; [S], 55.6, (3), gives it for the case that E1 is dominated and �2
is a locally compact space with countable base and A2 is its Borel σ-algebra.
However, spaces like C�0;1� are not locally compact, so we would like to have
the result for a complete separable metric (Polish) space instead. We briefly
complete the argument.

Definition 9.1. An experiment E = ��, A , �Pϑ, ϑ ∈ 2�� is called Polish
if � is a Polish space and A is the pertaining Borel σ-algebra.

Proposition 9.2. Suppose that E1 is a dominated experiment and E2 is
Polish. Then every transition from L�E1� to L�E2� is given by a Markov kernel.

Proof. It is well known that ��2, A2� is Borel isomorphic to a subset of
the unit interval [Dudley (1989), Lemma 13.1.3, and Parthasarathy (1978),
Proposition 25.6]. This means that there is a one-to-one function ϕ from �2
onto a Borel subset S of the unit interval such that ϕ and ϕ−1 are both mea-
surable. It is clear that E2 is then equivalent to an experiment E∗2 given on the
measurable space �S;BS�, and this equivalence is realized by Markov kernel
transitions given by the mappings ϕ and ϕ−1. Thus it suffices to prove the
theorem for E2 = E∗2. We now refer to Remark 5.5.6(3) in [S]. 2

For the proof of Theorem 3.2 we formulate a lemma in an abstract frame-
work. Let X = �X;X ; �Pϑ;ϑ ∈ 2�� be an experiment. Suppose also that there
are a system of subsets 2�φ� ⊂ 2, φ ∈ 2, and experiments

Fi�φ� = ��i;Ai; �Qi;ϑ;φ; ϑ ∈ 2�φ���; i = 1;2; φ ∈ 2:
Suppose further that there are a finite subset of 20 ⊂ 2 and an estimator
φ̂x �X;X � 7→ �20;220�, and form Markov kernels

Qi;ϑ�x;A′� = Qi;ϑ;φ̂�x��A′�; x ∈X; A′ ∈ Ai; i = 1;2:

Let �X̄i; X̄i� = �X × �i;X × Ai� be a product measurable space. For any
Markov kernel Kx X ×Ai 7→ �0;1� and a measure µ � X we shall form the
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usual composed measure µ⊗K � X̄i. Define measures Pi;ϑ�X̄i = Pϑ⊗Qi;ϑ�X̄i

and experiments Fi = �X̄i; X̄i, �Pi;ϑ, ϑ ∈ 2��, i = 1, 2.

Lemma 9.3. Suppose that for all φ ∈ 2 the experiments Fi�φ�, i = 1, 2, are
Polish and dominated, and

sup
φ∈2

1�F1�φ�;F2�φ�� ≤ ε:(69)

Suppose also that the estimator φ̂ with values in 20 fulfills

inf
ϑ∈2

Pϑ�ϑ ∈ 2�φ̂�� ≥ 1− ε:(70)

Then

1�F1;F2� ≤ 4ε:

Proof. Observe that since 20 is finite and φ̂ is 220 -measurable, the set
Vϑ = �xx ϑ ∈ 2�φ̂�x��� is in X . In accordance with Proposition 9.2, let
Kφ�ω1; ·� be a Markov kernel realizing

sup
ϑ∈2�φ�

∥∥Q2;ϑ;φ −KφQ1;ϑ;φ

∥∥ ≤ δ�F1�φ�;F2�φ�� + ε ≤ 2ε

and define

M�x̄;A� =
∫
�2

χA�x;ω2�Kφ̂�x��ω1; dω2�; x̄ = �x;ω1� ∈ X̄1; A ∈ X̄2:

It is easy to see that M is a Markov kernel. Indeed by standard arguments
this claim is reduced to the measurability of Kφ̂�x��ω1;A

′� in x̄ = �x;ω1� for
given A′ ∈ A2, which again follows from the properties of φ̂. Now we have, for
A ∈ X̄2,

MP1;ϑ�A� =
∫
X

∫
�1

M�x;ω1;A�Q1;ϑ�x;dω1�Pϑ �dx�

=
∫
X

∫
�2
χA�x;ω2��Kφ̂�x�Q1;ϑ; φ̂�x���dω2�Pϑ�dx�:

Hence
∣∣P2;ϑ�A� −MP1;ϑ�A�

∣∣

≤ 2Pϑ�Vc
ϑ�+

∫
Vϑ

∣∣∣∣
∫
�2

χA�x;ω2��Kφ̂�x�Q1;ϑ; φ̂�x�−Q2;ϑ; φ̂�x���dω2�
∣∣∣∣Pϑ�dx�

≤ 2Pϑ�Vc
ϑ� + sup

φ∈20

sup
ϑ∈2�φ�

∥∥KφQ1;ϑ;φ −Q2;ϑ;φ

∥∥ ≤ 4ε
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and we obtain

δ�F1;F2� ≤ sup
ϑ∈2

∥∥P2;ϑ −MP1;ϑ

∥∥ ≤ 4ε:

The argument for δ�F2;F1� is similar. 2

Proof of Theorem 3.2. In the previous lemma we set ϑ = f, φ = f0,
2 = 6, 2�φ� = 6n�f0� and identify the experiment X with the one given by
the sample fraction y1; : : : ; yNn

(which may be written E0;Nn
). Furthermore,

F1�φ� is given by the second sample fraction with f restricted to a neighbor-
hood 6n�f0� [which may be written E0; n−Nn

�f0�, cf. (8)]. Experiment F2�φ�
is given by one of the three local experiments (27)–(29) in Remark 2.8 [we
have seen that those are asymptotically or exactly equivalent to the respective
Ej;n�f0�, j = 1, 2, 3 from Theorem 2.7]. Note that both Fi�φ�, i = 1, 2, are then
Polish and dominated; in particular, C�0;1� is a Polish space [see Dudley (1989),
Corollary 11.2.5]. The estimator φ̂ is taken to be f̂n according to Lemma 3.1,
and the finite set 20 is the range of this estimator. To identify the global ex-
periments Fi of the lemma, note that the measures in F1�φ� do not depend on
φ [indeed, F1�φ� = E0; n−Nn

�f0� is obtained by just restricting the parameter
space in E0; n−Nn

]. Therefore F1 coincides with the experiment given by product

measures P⊗Nn

f ⊗ P⊗�n−Nn�
f , f ∈ 6 (i.e., with E0; n). Experiment F2 coincides

with Ej;n�f̂� as constructed; for j = 3, again F2 is given by a set of prod-

uct measures P⊗Nn

f ⊗Q3; n−Nn; f
. Take ε arbitrary; then for sufficiently large

n we achieve (69) by Theorems 2.1 and 2.7 (they were shown for sample
size n, but since n − Nn is of order n the argument remains valid for the
now relevant diminished sample size). We achieve (70) by Lemma 3.1. We
have shown 1�E0; n;Ej;n�f̂�� ≤ 4ε for sufficiently large n, which proves the
theorem. 2

10. Addendum for Proposition 1.2. Let 6′ denote an arbitrary set of
probability measures on �0;1�. Define

Sn�6′� = ��P;Q� ∈ 6′ × 6′x H2�P;Q� ≤ n−1; P;Q ∈ 6′�:

and let dP/dQ be the R.N. derivative of the Q-continuous part of P. Le Cam’s
second regularity condition for Proposition 1.2 on the set of densities 6 is as
follows: if 6′ is the associated set of probability measures, then

sup
�P;Q�∈Sn�6′�

n�P+Q�
(∣∣∣∣
dP

dQ
− 1

∣∣∣∣ ≤ ε
)
→ 0:

This is fulfilled in the case 6′ = �Pϑ;ϑ ∈K�, where K is a compact subset of
an open set 2 ⊂ Rk and the family (Pϑ, ϑ ∈ 2) is differentiable in quadratic
mean uniformly on compacts K ⊂ 2 [see Le Cam (1986), Proposition 1, Chap-
ter 17.3].
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