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Abstract. A nonparametric statistical model of small di�usion type is
compared with its discretization by a stochastic Euler di�erence
scheme. It is shown that the discrete and continuous models are as-
ymptotically equivalent in the sense of Le Cam's de®ciency distance
for statistical experiments, when the discretization step decreases with
the noise intensity �.
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1 Introduction

Consider the problem of estimating the function f from an observed
di�usion process y�t�; t 2 �0; 1�, which satis®es an Ito stochastic dif-
ferential equation

dy�t� � f �y�t��dt � � dW �t�; t 2 �0; 1�; y�0� � 0 �1�
where dW �t� is Gaussian white noise and � is a small parameter.
Suppose that the function f belongs to some a priori set R, non-
parametric in general. Kutoyants [12] constructed estimates of the
function f the squared L2-risk of which decreases with rate �4m=�2m�1� if
the function f has m bounded derivatives. These are the standard
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nonparametric rates of convergence which also hold in the problem of
`signal recovery in Gaussian white noise'

dx�t� � f �t� dt � � dW �t�; t 2 �0; 1� : �2�
Brown and Low [3] found that the continuous model (2) is asymp-
totically equivalent to its discrete counterpart, i.e. the nonparametric
regression

xi � f �ti� � �n1=2ni; i � 1; . . . ; n �3�
with a uniform grid ti � �iÿ 1�=n and standard normal variables ni,
provided that f varies in a nonparametric subset of L2�0; 1� de®ned by
a moderate smoothness condition and n tends to in®nity not too
slowly. The framework was asymptotic equivalence in the sense of Le
Cam's de®ciency distance D. In this paper we address the analogous
question with respect to discretizing the stochastic di�erential equa-
tion model (1).

The discretization to consider is suggested by the Euler scheme for
solving a stochastic di�erential equation. Introducing an approximate
solution process yi de®ned on a grid ti, i � 1; . . . ; n only (yi corre-
sponding to grid point ti), one gets a sequence of successive approx-
imations

yi�1 � yi � nÿ1f �yi� � � nÿ1=2ni; i � 1; . . . ; n; y1 � 0 : �4�

It is then shown that the process yi on the discrete grid approximates
the solution y of (1) in some probabilistic sense as n!1.

For statistical inference about f given y from (1), a natural ques-
tion is whether inference may be based on the grid values of the
solution process y�ti� only. But these values still depend on the whole
path of y via the integral over �ti; ti�1�. Going a step further, one might
then ask whether estimating f in (1) is equivalent to estimating f from
the discrete process yi in (4).

Our strategy for comparing two models is based on the following
basic concepts from asymptotic decision theory. Suppose we have two
sequences of experiments Ei;� � �Xi;�;Bi;�; �Pi;f ;�; f 2 R��, i � 1; 2,
�! 0 having the same parameter space R. The de®ciency pseudodis-
tance D�E1;�;E2;�� is always de®ned; E1;� and E2;� are equivalent or of
the same type if D�E1;�;E2;�� � 0 (Le Cam [14], chap. 2.3). Some
further related concepts are the following.

De®nition. (i) Two sequences E1;�, E2;� of experiments on a common
measurable space �X1;�;B1;�� � �X2;�;B2;�� are asymptotically total
variation equivalent if
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sup
f2R

P1;�;f ÿ P2;�;f
 

TV ! 0 as �! 0 :

where �k kTV is the total variation distance of measures.
(ii) For sequences E1;�, E2;� as in (i), let T� be a sequence of statistics

on �X1;�;B1;�� with values in measurable spaces �X�;F��. The sequence
T� is asymptotically su�cient in E1;� if T� is su�cient in E2;� and
E1;�;E2;� are asymptotically total variation equivalent.

(iii) Two arbitrary sequences E1;�;E2;� are asymptotically equivalent
in the sense of Le Cam if

D�E1;�;E2;�� ! 0 as �! 0 :

Asymptotic total variation equivalence implies asymptotic equiv-
alence in the Le Cam sense. In the latter case, we also call E1;�;E2;�

accompanying sequences; if all the E2;�, � > 0 are of the same type we
recover the notion of limit of experiments: the type of E1;� has a
(strong) limit. Henceforth the term asymptotic equivalence will be
used in the sense of (iii).

The concept D�E1;�;E2;�� ! 0 in statistical theory has found many
applications for the case of limits of experiment types, in statistical
models after localization (Le Cam [14]). For recent nonlocal results
see Brown and Low [3], Nussbaum [17], Grama and Nussbaum [8].

2 Methodology and main result

Our basic method is coupling of likelihood processes; see Nussbaum
[17], sect. 2 for details. Suppose each experiment Ei, i � 1; 2 is dom-
inated by a probability measure Pi on �Xi;Bi�. Consider
Ki�f � � dPi;f =dPi as a stochastic process indexed by f under Pi. Now
®nd versions K�i of Ki on a common probability space �X�;B�;P��.
De®ne probability measures P �i;f by dP �i;f � K�i �f � dP� and de®ne ex-
periments E�i � �X�;B�; �P �i;f ; f 2 R��. If everything depends on �, for
asymptotic equivalence of Ei;� it then su�ces that E�i;� are asymptot-
ically total variation equivalent, i.e. that

sup
f2R

EP� K�1;��f � ÿ K�2;��f �
��� ���! 0; �! 0 : �5�

Accordingly, in our di�usion model, consider the density for (1) when
the dominating measure is the distribution of �W : for z � �W

K1;��f ��z� � exp
1

�2

Z 1

0

f �z�t�� dz�t� ÿ 1

2�2

Z 1

0

f 2�z�t�� dt
� �

: �6�
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For the discrete scheme (4) the analog is for zi � � W �ti�

K2;��f ��z� � exp
1

�2

Xn

i�1
f �zi��zi�1 ÿ zi� ÿ 1

2�2n

Xn

i�1
f 2�zi�

( )
: �7�

To state our main theorem, let us determine the parameter space R for
our experiments. We assume only the standard condition for existence
and uniqueness of a solution y of the SDE (1) (cp. éksendal [18],
theorem 5.5) in a uniform version: let

RM � f defined on R; f �x� ÿ f �u�j jf
� M jxÿ uj; x; u 2 R; jf �0�j � Mg :

Observe that f 2 RM implies the condition of linear growth:
jf �x�j � M�1� jxj�.
Theorem 1. Suppose that for some M > 0 the parameter space R ful®lls
R � RM , and that n � n� is chosen such that � n� !1: Then the ex-
periments given by (1) and (4) are asymptotically equivalent as �! 0.

Remark 1. The model (4) is an autoregression scheme, and corre-
sponding di�usion limits have been studied extensively in parametric
models. To see the connection, consider the case where the parameter
space is

R � f ; f �x� � # x; j#j � Mf g � RM :

Thus we have the parametric Ornstein-Uhlenbeck model

dy�t� � #y�t� dt � � dW �t�; t 2 �0; 1� �8�

which has been investigated predominantly with ®xed � and an in-
creasing interval of observation (see Kutoyants [11], §3.5). In our case
of ®xed interval and varying � all experiments (8) for di�erent � are
equivalent (exactly). Indeed, multiplying the observations y by �ÿ1

yields an equivalent experiment, and the process ~y � �ÿ1y satis®es (8)
for � � 1. Thus our accompanying sequence of experiments is constant
with respect to type, and theorem 1 for n � �ÿ2 establishes a conver-
gence of the autoregression experiments

yi�1 � yi � nÿ1#yi � nÿ1ni; i � 1; . . . ; n; y1 � 0 �9�

to a di�usion limit (8) with � � 1. De®ne ~yi � nyi and b � 1� nÿ1#;
then (9) may be written

~yi�1 � b ~yi � ni; i � 1; . . . ; n; ~y1 � 0 �10�
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which is the familiar AR(1) model in the nearly nonstationary case
where the parameter b is close to 1. Parametric inference in these
models based on the di�usion limit has been studied by Chan and Wei
[4], Cox [5]; cp. also comments in Jeganathan [10], and Stockmarr and
Jacobsen [21] for a multivariate AR(1) model. We have thus recovered
the limit experiment argument for critical autoregression; the behav-
iour is known as ``locally asymptotically Brownian functional''
(Phillips [19]) or locally asymptotically quadratic (LAQ, Le Cam and
Yang [15]). For a comprehensive discussion cf. Shiryaev and Spokoiny
[20], chap V. Thus Theorem 1 appears as a natural nonparametric
extension of the LAQ limit, the limit being substituted by a sequence
of accompanying experiments.

Remark 2. It is now clear what the relation to nonparametric autore-
gression should be: de®ne ~yi as above, n � �ÿ2 and a function g�x� �
x� f �nÿ1x�; then (4) may be written

~yi�1 � g�~yi� � ni; i � 1; . . . ; n; ~y1 � 0 : �11�

Nonparametric inference for ®xed, unknown g was studied by Dou-
khan and GhindeÂ s [6] under stationarity assumptions. They found
that the theory of kernel type estimators parallels the signal plus white
noise case (2), as regards rates of convergence (cp. also Bosq [1], chap.
3.2). So obviously the nonparametric model (11) with g ®xed and
stationarity corresponds to parametric autoregression in the stable
case where jbj < 1 (and local asymptotic normality holds), while in the
nearly critical case g�x� � x� f �nÿ1x�, f 2 R the di�usion approxi-
mation of theorem 1 holds.

Remark 3. Parametric asymptotic results for autoregressive models are
naturally available for nonnormal ni, based on the limit experiment
rationale. On the other hand, for nonnormal nonparametric regres-
sion models similar to (3), asymptotic equivalence to certain Gaussian
models has been shown recently (Grama and Nussbaum [8]).

Proof of Theorem 1. The argument is related to the one of Brown and
Low [3] in the `signal plus noise' case. De®ne a function �fn on �0; 1�
which depends on a path z�t�; t 2 �0; 1� as

�fn�t; z� �
Xn

i�1
f �z�ti��v�ti;ti�1��t� :

Thus �fn is a piecewise constant function which interpolates f �z���� in
ti. It is easy to see that there is a unique solution �y�t�, t 2 �0; 1� of
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�y�t� �
Z t

0

�fn�u; �y� du� �W �t� : �12�

This solution �y may be represented as a randomly interpolated process
using the values yi; i � 1; . . . ; n from (4), construed as function values
at ti, where ®rst a linear interpolation is carried out and then a
Brownian bridge is added on each interval �ti; ti�1�. These Brownian
bridges should be independent of the ni in (4).

It is clear that �y contains as much information about f as
yi; i � 1; . . . ; n, i.e. the respective experiments are equivalent. This can
be seen formally by looking at the likelihood for model (12) as fol-
lows. Regard �y as a di�usion type process de®ned by (12), see Liptser
and Shiryaev [16], Chap. 4, §2, De®nition 7. Indeed �fn�u; �y� is for each
u a non-anticipating functional, since it depends on �y only via �y�ti�,
u 2 �ti; ti�1�. This process has a distribution which is absolutely con-
tinuous with respect to the distribution of � W if almost surelyR 1
0

�f 2
n �u; �y� du <1 (Liptser and Shiryaev, [16], Chap. 7, §2, Theorem

7.6). But this is ful®lled since every value yi from (4) is ®nite. Then the
density is analogously to (6) for z � �W

K3;��f ��z� � exp
1

�2

Z 1

0

�fn�t; z� dz�t� ÿ 1

2�2

Z 1

0

�f 2
n �t; z� dt

� �
: �13�

Now observe (for zi � �W �ti�)Z 1

0

�fn�t; z� dz�t� �
Xn

i�1
f �zi��zi�1 ÿ zi�;

Z 1

0

�f 2
n �t; z� dt �

Xn

i�1
f 2�zi�nÿ1

so that we obtain K3;��f � � K2;��f �. This means that the density (13)
depends on z via zi � z�ti� only, which implies that the values
�y�ti�; i � 1; . . . ; n are a su�cient statistic in (12). Since this experiment
is dominated and the statistic has values in Rn, it follows that the
experiments given by (4) and (12) are equivalent, for parameter spaces
R � RM .

It remains to establish that the densities of the two di�usion type
processes (1) and (12) ful®ll

sup
f2R

E K1;��f � ÿ K3;��f �
�� ��! 0; �! 0 : �14�

We use an inequality involving the Hellinger process, cf. Jacod and
Shiryaev [9]. Denote by P1;f ;�, P3;f ;� the probability measures on C�0; 1�
given by the two processes (1) and (12), respectively; the notation P3;f ;�

re¯ects the dependence of �fn��; �� in (12) on f . Let hf be the Hellinger
process of order 1=2 between these two measures (see Jacod and
Shiryaev [9], §4b, p. 239): for a realization y
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hf �u��y� � 1

8�2

Z u

0

�f �y�t�� ÿ �fn�t; y��2 dt :

The inequality for the the total variation distance �k kTV is

P1;f ;� ÿ P3;f ;�
 

TV � E�;0 K1;��f � ÿ K3;��f �
�� ��ÿ � � 4

��������������������
E�;f hf �1�

q
; �15�

where E�;f denotes expectation wrt P1;f ;�, see Jacod and Shiryaev [9],
4b, theorem 4.21, p. 279. The following lemma now completes the
proof of Theorem 1.

Lemma. Suppose R is as in theorem 1. Then

Ef ;�

Z 1

0

�f �y�t�� ÿ �fn�t; y��2 dt � O�nÿ2 � �2nÿ1�; �! 0

uniformly over f 2 R.

Proof. The Lipschitz condition on f and the linear growth condition
jf �x�j � M�1� jxj�, both implied by f 2 RM , are used to inferZ 1

0

�f �y�t�� ÿ �fn�t; y��2 dt � Mnÿ2
Xn

i�1

Z ti�1

ti
M2�1� y2�u�� du

� 2Mnÿ1
Xn

i�1
sup

t2�ti;ti�1�
�2 W �t� ÿ W �ti�j j2 :�16�

To estimate the ®rst term in (16), we note the following: there is a
constant CM depending on M but not on � such that for all f 2 R

Ef ;� y2�t� � CM ; t 2 �0; 1�
(cp. éksendal [18], exercise 5.6). The second term in (16) is the average
of n i.i.d. random variables, distributed as

sup
t2�0;nÿ1�

�2 W �t�j j2' �2nÿ1 sup
t2�0;1�

W �t�j j2

where `'' means equality in law. But supt2�0;1� W �t�j j2 has ®nite ex-
pectation (Breiman [2], ch. 13.7), so that the expectation of the second
term in (16) is O��2nÿ1� uniformly. (

3 Sampling from a di�usion

Let us now consider the situation where one has discrete data from the
di�usion process y in (1). Various questions of inference based on
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sampled values y�ti�; i � 1; . . . ; n have been treated in the literature, cf.
Yoshida [22] and the references therein.

Theorem 2. Under the conditions of theorem 1, in the di�usion model (1)
with �! 0 the sampled values y�t1�; . . . ; y�tn� are an asymptotically
su�cient statistic.

Proof. Let E1;� be the experiment given by observations y in (1) and
E3;� be given by �y in (12). De®ne for a path z�t�; t 2 �0; 1� the statistic
T� by T��z� � �z�t1�; . . . ; z�tn��. Then T� is su�cient in E3;�, and the
result follows from (14). (

LareÂ do [13] obtained asymptotic su�ciency of the sampled values
in a parametric framework using a di�erent method, based on the
exponential family approximation related to the standard local as-
ymptotic normality results. The asymptotic su�ciency then naturally
is a local one, i.e. it refers to experiments restricted to neighborhoods
shrinking at rate �. In the parametric local approach other statistics
like level crossings have also been treated, see Genon-Catalot and
LareÂ do [7].
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