Vacant set of random walk on (random) graphs.

Jiří Černý

joint work with Augusto Teixeira, David Windisch

Cornell, 2 May 2011

General Problem

Model:

- $G = (V, \mathcal{E})$ a large finite connected graph, (constant degree)
- (X_t)_{t≥0} simple random walk on G, started from its invariant (uniform) distribution.
- ▶ $\mathcal{V}^u = V \setminus \{X_t : t \le u | V|\}$ vacant set at time u | V|. u > 0 - parameter

Question: Structure (percolative properties) of the vacant set \mathcal{V}^u .

Remark. Scaling u|V| in the definition of \mathcal{V}^u :

 $P[x \in \mathcal{V}^u] \sim \rho(u) \in (0, 1), \qquad x \in V.$

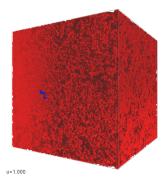
 $V = (\mathbb{Z}/n\mathbb{Z})^d$, $n \in \mathbb{N}$, $d \ge 3$, nearest neighbour edges.



u=0.500

Simulation by D. Windisch

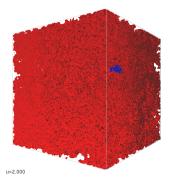
 $V = (\mathbb{Z}/n\mathbb{Z})^d$, $n \in \mathbb{N}$, $d \ge 3$, nearest neighbour edges.



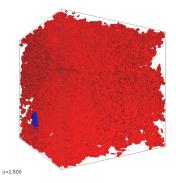
Simulation by D. Windisch



Simulation by D. Windisch

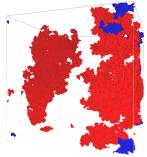


Simulation by D. Windisch



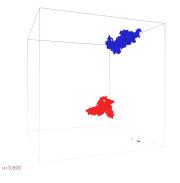
Simulation by D. Windisch

 $V = (\mathbb{Z}/n\mathbb{Z})^d$, $n \in \mathbb{N}$, $d \ge 3$, nearest neighbour edges.



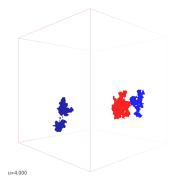
u=3.00

Simulation by D. Windisch



Simulation by D. Windisch

 $V = (\mathbb{Z}/n\mathbb{Z})^d$, $n \in \mathbb{N}$, $d \ge 3$, nearest neighbour edges.



Simulation by D. Windisch

Phase transition?!

Problem I: Existence of a phase transition

 G_n = (V_n, E_n) - sequence of finite connected graphs converging to a transient infinite graph G = (V, E_G).

 $(\exists r_n \to \infty, \text{ s.t. for a typical } x \in V_n: B_{G_n}(x, r_n) \stackrel{\phi_n^x}{\simeq} B_{\mathbb{G}}(0, r_n)$).

 $\blacktriangleright \mathcal{V}_{n}^{u} = V_{n} \setminus \{X_{t}^{n} : t \in [0, u|V_{n}|]\} - \text{vacant set},$

Problem I: Existence of a phase transition

 G_n = (V_n, E_n) - sequence of finite connected graphs converging to a transient infinite graph G = (V, E_G).

 $(\exists r_n \to \infty, \text{ s.t. for a typical } x \in V_n: B_{G_n}(x, r_n) \stackrel{\phi_n^x}{\simeq} B_{\mathbb{G}}(0, r_n)$).

 $\blacktriangleright \ \mathcal{V}_{n}^{u} = V_{n} \setminus \{X_{t}^{n} : t \in [0, u|V_{n}|]\} - \text{vacant set},$

Is there a phase transition?

Is there $u_c = u_c(G_n) \in (0,\infty)$ such that

• Supercritical phase. For $u < u_c$ there is a giant component:

 $\exists c(u) > 0 \text{ such that } P[|\mathcal{C}_{\max}^{u,n}| \ge c|V_n|] \xrightarrow{n \to \infty} 1.$

• Subcritical phase. For $u > u_c$ all components are small:

 $P[|\mathcal{C}_{\max}^{u,n}| \ll n] \xrightarrow{n \to \infty} 1.$

Prior results

For the *d*-dimensional torus:

- Benjamini-Sznitman (JEMS '08):
 If u is small enough, then V^u has a giant component.
- improved slightly by D. Windisch (EJP '08)
- recent considerable improvements by [WT10]

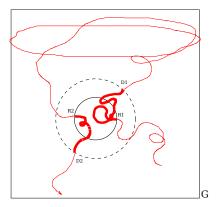
Related literature:

- ▶ disconnection of discrete cylinder G_n × Z
 − Dembo, Sznitman; Sznitman 2006–2009
- Random interlacement

Random interlacement - motivation

Percolation model on an infinite graph $\mathbb{G}=(\mathbb{V},\mathcal{E}_{\mathbb{G}})$

Question. A local limit for the vacant set



Visits of a ball in the *finite* graph

Random interlacement - definition

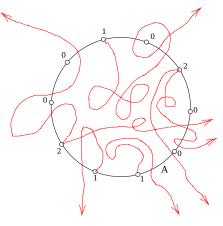
Local construction of RI: Let $A \subset \mathbb{V}$ finite.

• equilibrium measure:

 $e_A(x) = \operatorname{Prob}[\mathsf{RW} \text{ on } \mathbb{V} \text{ started at } x \text{ never returns to } A] \cdot \mathbf{1}_A(x).$

- at every point x start Poisson $(ue_A(x))$ independent random walks
- vacant set of RI:

 $\mathcal{V}^{u}_{\mathsf{RI}}|_{A}$ = the set of vertices in A not visited by these random walks.



Random interlacement - definition

The extension to the whole \mathbb{G} :

If $A \subset B$ finite , then $(\mathcal{V}_{\mathsf{RI}}|_B)|_A \stackrel{\text{law}}{=} \mathcal{V}_{\mathsf{RI}}|_A$.

Constructed on \mathbb{Z}^d in Sznitman, Ann. Math 2010, Extended to transient graphs in Teixeira, EJP 2009.

Random interlacement - phase transition

Critical point of RI: $u_{\star}(\mathbb{G})$,

- ▶ If $u < u_{\star}$, then $\mathcal{V}^u_{\mathsf{RI}}$ contains an infinite connected component \mathbb{P} -a.s.
- ▶ If $u > u_{\star}$, then there are \mathbb{P} -a.s. only finite components of $\mathcal{V}^{u}_{\mathsf{RI}}$.

Theorem. (Sznitman, Sidoravicius) u_{\star} exists and is non-trivial:

$$0 < u_{\star}(\mathbb{Z}^d) < \infty$$
 for all $d \ge 3$.

Problem II: Relation of two models

Theorem. (D. Windisch, ECP 2008) $\mathcal{V}_{\mathsf{RI}}^u$ is a **local limit** of the vacant set \mathcal{V}^u on the torus $(\mathbb{Z}/n\mathbb{Z})^d$.

Remark. Results on Random Interlacement can be used to prove:

For
$$u < u_{\star\star\star} \stackrel{?}{\leq} u_{\star}(\mathbb{Z}^d)$$
, there is a giant component

- ▶ For $u > u_{\star\star} \stackrel{.}{\geq} u_{\star}(\mathbb{Z}^d)$, the largest component has size $O(\log^K n)$
- ▶ For $u > u_{\star}(\mathbb{Z}^d)$, the largest component has size o(n), [WT10]

Conjecture.

$$u_c(G_n) = u_\star(\mathbb{G}).$$

Problem II. Prove this conjecture.

Our setting

Consider graphs that are simpler for Bernoulli percolation:

- d-regular large-girth expanders
 like Ramanujan or Lubotzky-Phillips-Sarnak graphs
- random *d*-regular graph

(graph uniformly chosen from all d-regular graphs on n vertices)

Both these classes of graphs are "finite approximations of *d*-regular tree"

Bernoulli percolation on such graphs studied by Alon-Benjamini-Stacey '04, Nachmias-Peres '09, Pittel '09.

A sequence G_n is expander if for some c > 0

$$\frac{|\partial A|}{|A|} \ge c, \qquad \forall n, \ \forall A \subset V_n, |A| < |V_n|/2.$$

Our setting

Assume that G_n satisfies:

(A0)
$$G_n = (V_n, \mathcal{E}_n)$$
 is *d*-regular, $|V_n| = n$.

(A1) Local almost tree-like property: There exists $\alpha_1 \in (0, 1)$ such that for all n and $x \in V_n$

the ball $B(x, \alpha_1 \log n)$ contains at most one cycle

(A2) Uniform spectral gap:

There exists $\alpha_2 > 0$ such that for all $n: \lambda_1(G_n) \ge \alpha_2$

Remarks

- random d-regular graph satisfies (A0)–(A2) whp.
- (A1): typical $x \in V_n$ has *tree-like* neighbourhood.
- ▶ (A2) is equivalent (via Cheeger's inequality) to expansion

Results: Phase transition

Theorem. Let G_n satisfy (A0)–(A2). Then there exists $u_c(d)$ 1. (giant component) For $u < u_c$ exists $\rho > 0$ such that

$$|\mathcal{C}_{\max}(\mathcal{V}^u)| \geq
ho n$$
 whp

2. (uniqueness) For $u < u_c$, for every $\varepsilon > 0$,

$$|\mathcal{C}_{ ext{sec}}(\mathcal{V}^u)| \leq \varepsilon n$$
 whp

3. (subcritical phase) For $u > u_c$, there is $K < \infty$

$$|\mathcal{C}_{\max}(\mathcal{V}^u)| \le K \log n$$
 whp

Results: Relation to Random Interlacement

Theorem. (equality of critical points) Let G_n satisfy (A0)–(A2) and let T_d be the *d*-regular tree

$$u_c(d) = u_\star(\boldsymbol{T}_d).$$

Problem III: Critical behaviour

Question. Behaviour of the model when $u = u_c(d)$ or $u_n \to u_c(d)$.

In the Bernoulli percolation there is the Erdős-Rényi double jump:

- When $|p_n p_c| \leq c n^{-1/3}$, then $|\mathcal{C}_{\max}| \sim n^{2/3}$.
- When $p_n p_c \to 0$ and $n^{1/3}(p_n p_c) \to \infty$, then $|\mathcal{C}_{\max}| \gg n^{2/3}$.
- When $p_n p_c \to 0$ and $n^{1/3}(p_n p_c) \to -\infty$, then $|\mathcal{C}_{\max}| \ll n^{2/3}$.

Problem III: Critical behaviour

Question. Behaviour of the model when $u = u_c(d)$ or $u_n \to u_c(d)$.

In the Bernoulli percolation there is the Erdős-Rényi double jump:

- When $|p_n p_c| \leq c n^{-1/3}$, then $|\mathcal{C}_{\max}| \sim n^{2/3}$.
- When $p_n p_c \to 0$ and $n^{1/3}(p_n p_c) \to \infty$, then $|\mathcal{C}_{\max}| \gg n^{2/3}$.
- When $p_n p_c \to 0$ and $n^{1/3}(p_n p_c) \to -\infty$, then $|\mathcal{C}_{\max}| \ll n^{2/3}$.

Does the vacant set of the random walk exhibit a similar behaviour?

Results: Critical behaviour of the vacant set

We can consider random *d*-regular graphs only!

Define

- ▶ $\mathbb{P}_{n,d}$, the distribution of the random *d*-regular graph *G* on *n* vertices
- P^{G} , the distribution of the RW on the graph G
- $\mathbf{P}_{n,d}$, the averaged distribution of the RW,

$$\mathbf{P}_{n,d}(\cdot) = \int P^G(\cdot) \mathbb{P}_{n,d}(\mathrm{d}\,G).$$

Results: Critical behaviour of the vacant set

We can consider random *d*-regular graphs only!

Define

- ▶ $\mathbb{P}_{n,d}$, the distribution of the random *d*-regular graph *G* on *n* vertices
- ▶ P^G, the distribution of the RW on the graph G
- $\mathbf{P}_{n,d}$, the averaged distribution of the RW,

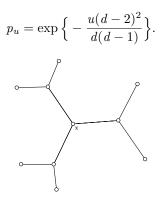
$$\mathbf{P}_{n,d}(\cdot) = \int P^G(\cdot) \mathbb{P}_{n,d}(\mathrm{d}\,G).$$

Theorem. [ČT'2011]
• When
$$|n^{1/3}(u_n - u_\star)| \le \lambda < \infty$$
, then $\forall \varepsilon > 0 \exists A \text{ s.t. } \forall n > n_0$
 $\mathbf{P}_{n,d}[A^{-1}n^{2/3} \le |\mathcal{C}_{\max}^{u_n}| \le An^{2/3}] \ge 1 - \varepsilon.$
• When $u_\star - u_n \to 0$ and $\omega_n := n^{1/3}(u_\star - u_n) \to \infty$, then
 $|\mathcal{C}_{\max}^{u_n}| \sim c(d)\omega_n n^{2/3}, \quad \mathbf{P}_{n,d}\text{-a.a.s.}$

▶ When
$$u_{\star} - u_n \to 0$$
 and $\omega_n \to -\infty$,
 $|\mathcal{C}_{\max}^{u_n}| \leq Bn^{2/3} |\omega_n|^{-1/2}$ $\mathbf{P}_{n,d}$ -a.a.s.

Random Interlacement on tree T_d

Lemma. (Teixeira, 2009) Given $x \in \mathcal{V}_{RI}$, the cluster \mathbb{C}_x of x has the law of branching process whose offspring distribution is binomial with parameters d - 1 (resp. d in the first generation) and p_u , where



Consequence. $u_{\star}(\mathbf{T}_d)$ is the solution to $(d-1)p_{u_{\star}} = 1$.

Local convergence to Random Interlacement

Lemma. There is $\beta \in (0, \alpha_1/5)$, such that for all x with tree-like neighbourhood of radius $r := 5\beta \log_{d-1} n$, for all u > 0, $\varepsilon > 0$, there exists a coupling \mathbb{P} of RW on G and RI's on T^d such that

$$\mathbb{C}_0^{u-\varepsilon}\big|_{_{B_{\mathbb{G}}(0,r)}} \stackrel{\phi_n^x}{\supset} \mathcal{C}_x(\mathcal{V}^u)\big|_{_{B_{G_n}(x,r)}} \stackrel{\phi_n^x}{\supset} \mathbb{C}_0^{u+\varepsilon}\big|_{_{B_{\mathbb{G}}(0,r)}} \qquad \mathsf{whp}(\mathbb{P}).$$

Consequence. In every tree like ball of radius $\beta \log_{d-1} n$ we have a good control of $C_x(\mathcal{V}^u)$ by a branching process.

But we need more!

THE LOCAL CONTROL IS NOT SUFFICIENT!

- In the super-critical phase, the giant component cannot be contained in a ball of of radius β log_{d−1} n (and thus volume < n^β, β < 1).</p>
- In the sub-critical phase, the largest cluster has diameter ~ K log_{d-1} n, but K → ∞ as u ↓ u_c.

In particular, since diam $G = \log_{d-1} n(1 + o(1))$, we have

diam $\mathcal{C}_{\max}(\mathcal{V}^u) \ge \operatorname{diam} G.$

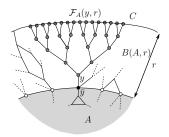
Proof Ideas: Sub-critical regime

Localisation. Prove that $\forall x$

 $P[\mathcal{C}_x \ge K \log n] \le \varepsilon/n.$

Stochastic breadth-first-search algorithm.

- Construct C_x step by step by a BFS exploration.
- ► Control the probability that the next vertex is added to C_x. This can be done only in a specific situation (r = 7 ln ln n):



• Goal: algorithm stops before $(K \log n)$ -th steps.

Proof Ideas: Super-critical regime

Sprinkling.

- 1. Fix $u' \in (u, u_c)$.
- 2. Consider $\mathcal{V}^{u'}$ and use the local branching-process comparison to construct many large components:

$$\#\{x: |\mathcal{C}_x(\mathcal{V}^{u'})| \ge n^{\beta}\} \ge \rho n$$
 whp.

- 3. Erase 'some (u' u)n points' of the trajectory' **Problem.** Cannot erase the last part of the trajectory.
- 4. After the erasure, many of the components constructed in point 2 merge to a unique giant component.

Proof Ideas: Critical window

 In the random regular graph case, the vacant set is distributed as random graph with a given (random) degree sequence
 Cooper-Frieze 2010.

Lemma. Let

- d_x^u be the degree of $x \in V_n$ in the subgraph of G generated by \mathcal{V}^u ,
- Q_n^u be the distribution of $d = (d_x^u)_{x \in V_n}$ under $P_{n,d}$.
- \mathbb{P}_d the distribution of the uniformly chosen graph with degree sequence d.

Then

$$\boldsymbol{P}_{n,d}(\mathcal{V}^u\in\cdot)=\int\mathbb{P}_{\boldsymbol{d}}[G\in\cdot]Q^u_n(\mathrm{d}\boldsymbol{d})$$

Proof Ideas: Critical window

 Random graphs with a given degree sequence are well understood: *Phase transition.* Molloy-Reed 1993, *Critical regime.* Hatami-Molloy 2010.

Theorem. Let $\boldsymbol{d}^n=(d_1^n,\ldots,d_n^n)$ be a deterministic sequence of degree sequence. Set

$$\mathcal{Q}(\boldsymbol{d}) = \frac{\sum_{x} d_{x}^{2}}{\sum_{x} d_{x}} - 2.$$

Then \mathbb{P}_{d^n} -a.a.s.

- $\lim_{n\to\infty} \mathcal{Q}(d^n) > 0 \implies$ giant component
- ▶ $\lim_{n\to\infty} Q(d^n) < 0 \implies$ only log-size components
- $\mathcal{Q}(d^n) \sim n^{-1/3} \implies$ critical window.
- ► To prove our result, we need only to control the distribution Q^u_n of the degree sequence of the vacant set with sufficient precision.

Open problems

- 1. Density of giant cluster for $u < u_c$.
- 2. Stronger uniqueness result. Is $|C_{sec}| = O(\log n)$.
- 3. What about $u = u_c$, out of the random *d*-regular graph case?
- 4. Other graphs, TORUS?

Thank you for your attention.