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General Problem
Model:

I G = (V , E) – a large finite connected graph,
(constant degree)

I (Xt)t≥0 – simple random walk on G,
started from its invariant (uniform) distribution.

I Vu = V \ {Xt : t ≤ u|V | } – vacant set at time u|V |.
u > 0 – parameter

Question: Structure (percolative properties) of the vacant set Vu.

Remark. Scaling u|V | in the definition of Vu :

P[x ∈ Vu ] ∼ ρ(u) ∈ (0, 1), x ∈ V .
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Example: d-dimensional torus (Z/nZ)d

V = (Z/nZ)d , n ∈ N, d ≥ 3, nearest neighbour edges.

Simulation by D. Windisch

Phase transition?!
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Problem I: Existence of a phase transition
I Gn = (Vn, En) – sequence of finite connected graphs converging to

a transient infinite graph G = (V, EG).

(∃rn →∞, s.t. for a typical x ∈ Vn: BGn (x, rn)
φx

n' BG(0, rn) ).

I Vu
n = Vn \ {Xn

t : t ∈ [0, u|Vn|]} – vacant set,

Is there a phase transition?

Is there uc = uc(Gn) ∈ (0,∞) such that
I Supercritical phase. For u < uc there is a giant component:

∃c(u) > 0 such that P[|Cu,n
max| ≥ c|Vn|]

n→∞−−−−→ 1.

I Subcritical phase. For u > uc all components are small:

P[|Cu,n
max| � n] n→∞−−−−→ 1.
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Prior results

For the d-dimensional torus:
I Benjamini-Sznitman (JEMS ’08):

If u is small enough, then Vu has a giant component.
I improved slightly by D. Windisch (EJP ’08)
I recent considerable improvements by [WT10]

Related literature:
I disconnection of discrete cylinder Gn × Z

– Dembo, Sznitman; Sznitman 2006–2009
I Random interlacement
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Random interlacement - motivation

Percolation model on an infinite graph G = (V, EG)

Question. A local limit for the vacant set

G

R1

D1

R2

D2

Visits of a ball in the finite graph
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Random interlacement - definition
Local construction of RI: Let A ⊂ V finite.

I equilibrium measure:
eA(x) = Prob[RW on V started at x never returns to A] · 1A(x).

I at every point x start Poisson(ueA(x)) independent random walks
I vacant set of RI:
Vu

RI|A = the set of vertices in A not visited by these random walks.

A

0

2

0

0

11

2

0

0

1
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Random interlacement - definition

The extension to the whole G:

If A ⊂ B finite , then (VRI|B)|A
law= VRI|A.

Constructed on Zd in Sznitman, Ann. Math 2010,
Extended to transient graphs in Teixeira, EJP 2009.
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Random interlacement - phase transition

Critical point of RI: u?(G),
I If u < u?, then Vu

RI contains an infinite connected component P-a.s.
I If u > u?, then there are P-a.s. only finite components of Vu

RI.

Theorem. (Sznitman, Sidoravicius) u? exists and is non-trivial:

0 < u?(Zd) <∞ for all d ≥ 3.
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Problem II: Relation of two models

Theorem. (D. Windisch, ECP 2008)
Vu

RI is a local limit of the vacant set Vu on the torus (Z/nZ)d .

Remark. Results on Random Interlacement can be used to prove:

I For u < u???
?
≤ u?(Zd), there is a giant component

I For u > u??
?
≥ u?(Zd), the largest component has size O(logK n)

I For u > u?(Zd), the largest component has size o(n), [WT10]

Conjecture.
uc(Gn) = u?(G).

Problem II. Prove this conjecture.
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Our setting

Consider graphs that are simpler for Bernoulli percolation:
I d-regular large-girth expanders

like Ramanujan or Lubotzky-Phillips-Sarnak graphs
I random d-regular graph

(graph uniformly chosen from all d-regular graphs on n vertices)

Both these classes of graphs are “finite approximations of d-regular tree”

Bernoulli percolation on such graphs studied by Alon-Benjamini-Stacey
’04, Nachmias-Peres ’09, Pittel ’09.

A sequence Gn is expander if for some c > 0

|∂A|
|A| ≥ c, ∀n, ∀A ⊂ Vn, |A| < |Vn|/2.
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Our setting

Assume that Gn satisfies:
(A0) Gn = (Vn, En) is d-regular, |Vn| = n.
(A1) Local almost tree-like property:

There exists α1 ∈ (0, 1) such that for all n and x ∈ Vn

the ball B(x, α1 log n) contains at most one cycle

(A2) Uniform spectral gap:
There exists α2 > 0 such that for all n: λ1(Gn) ≥ α2

Remarks
I random d-regular graph satisfies (A0)–(A2) whp.
I (A1): typical x ∈ Vn has tree-like neighbourhood.
I (A2) is equivalent (via Cheeger’s inequality) to expansion
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Results: Phase transition

Theorem. Let Gn satisfy (A0)–(A2). Then there exists uc(d)
1. (giant component) For u < uc exists ρ > 0 such that

|Cmax(Vu)| ≥ ρn whp

2. (uniqueness) For u < uc, for every ε > 0,

|Csec(Vu)| ≤ εn whp

3. (subcritical phase) For u > uc, there is K <∞

|Cmax(Vu)| ≤ K log n whp
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Results: Relation to Random Interlacement

Theorem. (equality of critical points)
Let Gn satisfy (A0)–(A2) and let Td be the d-regular tree

uc(d) = u?(Td).
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Problem III: Critical behaviour

Question. Behaviour of the model when u = uc(d) or un → uc(d).

In the Bernoulli percolation there is the Erdős-Rényi double jump:

I When |pn − pc| ≤ cn−1/3, then |Cmax| ∼ n2/3.
I When pn − pc → 0 and n1/3(pn − pc)→∞, then |Cmax| � n2/3.
I When pn − pc → 0 and n1/3(pn − pc)→ −∞, then |Cmax| � n2/3.

Does the vacant set of the random walk exhibit a similar
behaviour?
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Results: Critical behaviour of the vacant set
We can consider random d-regular graphs only!

Define
I Pn,d , the distribution of the random d-regular graph G on n vertices
I PG, the distribution of the RW on the graph G
I Pn,d , the averaged distribution of the RW,

Pn,d(·) =
∫

PG(·)Pn,d(dG).

Theorem. [ČT’2011]
I When |n1/3(un − u?)| ≤ λ <∞, then ∀ε > 0∃A s.t. ∀n > n0

Pn,d [A−1n2/3 ≤ |Cun
max| ≤ An2/3] ≥ 1− ε.

I When u? − un → 0 and ωn := n1/3(u? − un)→∞, then
|Cun

max| ∼ c(d)ωnn2/3, Pn,d-a.a.s.

I When u? − un → 0 and ωn → −∞,
|Cun

max| ≤ Bn2/3|ωn|−1/2 Pn,d-a.a.s.
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Random Interlacement on tree Td

Lemma. (Teixeira, 2009) Given x ∈ VRI, the cluster Cx of x has the law
of branching process whose offspring distribution is binomial with
parameters d − 1 (resp. d in the first generation) and pu, where

pu = exp
{
− u(d − 2)2

d(d − 1)

}
.

x

Consequence. u?(Td) is the solution to (d − 1)pu?
= 1.
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Local convergence to Random Interlacement

Lemma. There is β ∈ (0, α1/5), such that for all x with tree-like
neighbourhood of radius r := 5β logd−1 n, for all u > 0, ε > 0, there
exists a coupling P of RW on G and RI’s on Td such that

Cu−ε
0
∣∣

BG(0,r)

φx
n⊃ Cx(Vu)

∣∣
BGn (x,r)

φx
n⊃ Cu+ε

0
∣∣

BG(0,r)
whp(P).

Consequence. In every tree like ball of radius β logd−1 n we have a
good control of Cx(Vu) by a branching process.
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But we need more!

THE LOCAL CONTROL IS NOT SUFFICIENT!

I In the super-critical phase, the giant component cannot be contained
in a ball of of radius β logd−1 n (and thus volume < nβ , β < 1).

I In the sub-critical phase, the largest cluster has diameter
∼ K logd−1 n, but K →∞ as u ↓ uc.
In particular, since diam G = logd−1 n(1 + o(1)), we have

diam Cmax(Vu) ≥ diam G.
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Proof Ideas: Sub-critical regime
Localisation. Prove that ∀x

P[Cx ≥ K log n] ≤ ε/n.

Stochastic breadth-first-search algorithm.
I Construct Cx step by step by a BFS exploration.
I Control the probability that the next vertex is added to Cx .

This can be done only in a specific situation (r = 7 ln ln n):

y

ȳ

FA(y, r)

B(A, r)

r

A

C

I Goal: algorithm stops before (K log n)-th steps.
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Proof Ideas: Super-critical regime

Sprinkling.
1. Fix u′ ∈ (u, uc).
2. Consider Vu′ and use the local branching-process comparison to

construct many large components:

#{x : |Cx(Vu′
)| ≥ nβ} ≥ ρn whp.

3. Erase ‘some (u′ − u)n points’ of the trajectory’
Problem. Cannot erase the last part of the trajectory.

4. After the erasure, many of the components constructed
in point 2 merge to a unique giant component.
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Proof Ideas: Critical window

I In the random regular graph case, the vacant set is distributed as
random graph with a given (random) degree sequence
- Cooper-Frieze 2010.
Lemma. Let

I du
x be the degree of x ∈ Vn in the subgraph of G generated by Vu ,

I Qu
n be the distribution of d = (du

x )x∈Vn under Pn,d .
I Pd the distribution of the uniformly chosen graph with degree

sequence d.
Then

Pn,d(Vu ∈ ·) =
∫

Pd [G ∈ ·]Qu
n(dd)
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Proof Ideas: Critical window

I Random graphs with a given degree sequence are well understood:
Phase transition. Molloy-Reed 1993,
Critical regime. Hatami-Molloy 2010.

Theorem. Let dn = (dn
1 , . . . , dn

n ) be a deterministic sequence of
degree sequence. Set

Q(d) =
∑

x d2
x∑

x dx
− 2.

Then Pdn -a.a.s.
I limn→∞Q(dn) > 0 =⇒ giant component
I limn→∞Q(dn) < 0 =⇒ only log-size components
I Q(dn) ∼ n−1/3 =⇒ critical window.

I To prove our result, we need only to control the distribution Qu
n of

the degree sequence of the vacant set with sufficient precision.
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Open problems

1. Density of giant cluster for u < uc.
2. Stronger uniqueness result. Is |Csec| = O(log n).
3. What about u = uc, out of the random d-regular graph case?

4. Other graphs, TORUS?
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The end

Thank you for your attention.
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